《行测》数字推理整体趋势法解题套路
行测数字推理题技巧
行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
行政职业能力倾向测验数字推理之解题技巧
数字推理之解题技巧》1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 ,74*74-40=5436,这就是规律。
4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
数字推理整体趋势法解题套路
数字推理整体趋势法解题套路整体趋势法是解决递推数列最主要的方法,“看趋势”和“作试探”是整体趋势法的基本思路。
其中,“看趋势”是指,根据数列当中数字的整体变化趋势初步判断递推的具体形式;“作试探”是指根据初步判断的趋势作合理的试探,并分析其误差。
本文将“看趋势”和“作试探”进行了“套路”化,兼具了通俗易懂和快速操作的特点。
“套路”化流程如下:(1)整体递减,如果有明显倍数关系,做商;没有明显倍数关系,做差。
做商和做差失败,将该递减数列倒过来变为整体递增,转到(2)(2)整体递增,计算括号前最大的两个数的倍数,如果倍数小于2,“和”运算;接近于方,“方”运算;介于两者之间,积和倍,“乘”运算。
具体操作为,确定是和、方或是积倍之后,圈数列中的三个数(a,b,c),分别使用“+”、“^2”和“×”对圈中的数字进行试探c=a+/×b+/-修正项或者c=a^2+/-修正项或者c=b^2+/-修正项,对于“乘”运算,先考虑是否为“积”再考虑“倍”。
例题讲解:(1)1,6,20,56,144,()(2010年国家公务员考试行测第41题)A、256B、312C、352D、384首先,整体递增,括号前最大两个数:56、144,倍数大于2但小于方,圈(20,56,144)用“×”运算找递推形式,先考虑“积”再考虑“倍”。
对于“积”,20×56远大于144,固排除,考虑“倍”,也即如何找到144=56×?+/-?,进行尝试,144=56×2+32,或者144=56×3-24,同样再往前看,56=20×2+16,或者56=20×3-4,与前面144进行综合,选取×2作为递推规律,因此有,20=6×2+8,6=1×2+4,也即从第二项开始,每一项是前一项的两倍加上修正项,而修正项依次为4,8,16,32,以2为公比的等比数列,所以括号应=144×2+32×2=352。
行政能力测试数字推理题
数字推理行测数字推理全方法:(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。
如:2,5,13,35,97 ()-------------A×2+1 3 9 27 81=B 又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。
此题-------------(A+B)^2-1=c再如:1 , 2 ,3 ,35 ()------------(a×b) 2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3×7=4237+4×2=4542+4×5=6245+6×2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。
行政职业能力测试中数字推理的答题技巧
行政职业能力测试中数字推理的答题技巧数字推理是行政职业能力测试中的一个重要部分,它考察了考生的逻辑思维和数学能力。
在数字推理题目中,考生需要根据给定的数字序列或图形规律,推断出下一个数字或图形是什么。
下面是一些数字推理的答题技巧,希望对考生有所帮助。
1. 观察数字序列的规律数字推理题目中最常见的是数字序列题目,考生需要根据给定的数字序列推断出下一个数字是什么。
在解决这类题目时,考生需要仔细观察数字序列中的规律,找出其中的规律和特点。
例如,数字序列中是否存在递增或递减的趋势,是否存在重复的数字或数字组合,是否存在数字之间的乘法或加法关系等等。
只有找到了数字序列中的规律,才能准确地推断出下一个数字是什么。
2. 注意数字序列中的异常数字在数字序列中,有时会出现一些异常数字,这些数字与其他数字不符合规律,容易让考生产生困惑。
因此,考生需要注意数字序列中的异常数字,并尝试找出它们的特点和规律。
有时,这些异常数字可能是为了干扰考生而故意设置的,因此考生需要保持警惕,不要被这些数字所迷惑。
3. 观察图形的形状和颜色除了数字序列题目外,数字推理题目中还有一类是图形题目。
在这类题目中,考生需要根据给定的图形规律,推断出下一个图形是什么。
在解决这类题目时,考生需要仔细观察图形的形状和颜色,并找出它们之间的规律和特点。
例如,图形中是否存在对称或旋转的关系,是否存在颜色的变化或重复,是否存在图形之间的大小或位置关系等等。
只有找到了图形中的规律,才能准确地推断出下一个图形是什么。
4. 利用排除法在数字推理题目中,有时候考生无法准确地推断出下一个数字或图形是什么。
这时,考生可以利用排除法来缩小答案的范围。
例如,在数字序列中,如果考生无法找到数字之间的规律,可以先排除一些不可能的答案,例如数字太大或太小,或者不符合数字序列中其他数字的规律。
这样可以缩小答案的范围,提高答题的准确性。
5. 多做练习题最后,要想在数字推理题目中取得好成绩,考生需要多做练习题,熟练掌握数字推理的答题技巧。
公务员行政能力测试数字推理答题技巧(非常有用)
公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
行政职业能力测试中数字推理的答题技巧
行政职业能力测试中数字推理的答题技巧一、数字推理的概述数字推理是行政职业能力测试中常见的一种题型,要求通过观察数字序列的规律,推断出下一个数字或找出一个不符合规律的数字。
掌握数字推理的答题技巧对于提高行政职业能力测试的得分很有帮助。
二、数字推理的类型数字推理题可以分为几种常见的类型:1. 数列推理数列推理要求考生根据一组有规律的数字或符号,找出其中的规律并推理出下一个数字或符号。
常见的数列推理有等差数列、等比数列、斐波那契数列等。
示例题目:1, 4, 7, 10, ?答案:132. 数字顺序数字顺序题要求考生按照一定的规则重新排列给定的数字序列。
常见的规则有按照数字的大小、奇偶性或者某个特定的数字规则进行排列。
示例题目:6, 9, 3, 8, ?答案:33. 数字替换数字替换题要求考生通过观察一组数字序列的规律,找出其中一个数字需要被替换成另一个数字。
示例题目:5, 9, 15, ?, 35答案:234. 数字图形数字图形题要求考生根据给定的数字图形,找出其中的规律并推理出下一个图形。
示例题目:133355555答案:1333555553331三、数字推理的解题技巧在行政职业能力测试中,数字推理题需要考生灵活运用不同的解题技巧。
下面列举了一些常用的解题技巧:1. 观察数字之间的关系仔细观察数字之间的关系,看是否存在某种规律。
可以从数字的大小、差值、乘积等方面入手,找出其中的规律。
2. 寻找常见的数列规律数列是数字推理题中最常见的类型之一,掌握各种常见的数列规律对于解题很有帮助。
例如,等差数列的规律是相邻两个数字的差相等,等比数列的规律是相邻两个数字的比相等。
3. 利用排除法在一些复杂的数字推理题中,可以通过排除法逐个排除不符合规律的选项,直到找到符合规律的选项为止。
4. 尝试多种解题方法如果一种解题方法无法找到规律,可以尝试其他的解题方法。
多角度思考有助于发现数字之间的关系。
四、答题技巧的实践与总结通过大量的练习和实践,掌握数字推理题的答题技巧才能得心应手。
行测考试数字推理快速秒杀三招
数字推理,是数学运算的一部分,虽然2011年的国考和省考都没有考数字推理,但是在湖南的选调生考试、村官考试、两院考试以及一些事业单位的招考中还是会经常考到,那么如何在事业单位招考中快速突破数字推理,专家将结合部分真题给广大的考生朋友,介绍一下数字推理快速秒杀的技巧。
第一招:看趋势。
拿到题目以后,用2秒钟迅速判断数列中各项的趋势,例如:是越来越大,还是越来越小,还是有大有小。
通过判断走向,找出该题的突破口。
有规律找规律,没有规律做差。
【例1】(2011年湖南两院)7,9,12,17,24,( )A.27B.30C.31D.35【答案】D【解析】本题属于多级数列。
先看趋势,越来越大,规律不明显,两两做差,得到质数数列2,3,5,7,(11),所以选择D选项。
【例2】(2007应届生)14 ,6 ,2 ,0 ,( )A.-2B.-1C. 0D.1【答案】B【解析】本题属于多级数列。
题目中的一先看趋势,越来越小,也就是趋势是递减的,是一致的。
对于这类递减的数列,我们通常的做法是从相邻两项的差或做商入手,很明显,这道题目不能从做商入手(因为14/6不是整数),那么,我们就作差,相邻两项的差为8,4,2成等比数列,因此,0减去所求项应等于1,故所求项等于-1,所以选择B选项。
利用数列的趋势,可以迅速判断出应该采取的方法,所以,趋势就是旗帜,趋势就是解题的命脉。
第二招,看特殊数字。
比如质数、平方数、立方数等。
一些数字推理题目中出现的数距离这些特殊的数字非常近,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。
【例3】(2011湖南选调)61,59,53,47,43,( ),37A.42B.41C.39D.38【答案】B【解析】本题属于质数数列。
递减的质数数列,所以选择B选项。
【例4】(2011湖南选调)0,9,26,65,124,( )A.186B.199C.215D.217【答案】D【解析】本题属于幂次修正数列。
公务员考试行测各个题型技巧总结
一、数字推理题详解当我们看到一组有关系的数字时,需要快速的建立起四则运算关系。
而且还要建立正确的思维模式,即横向递推、纵向延伸、构造网络。
横向递推主要是看一个数与下一个数或者前两个数与下一个数之间的四则运算关系。
纵向延伸是把一个数变成另外一种形式从而找到一种新的规律。
构造网络是一种逐差逐商的想法。
目前比较新的一种考点是“看变化”。
比如看分数的变化。
分数的分子分母有一定的位置关系,可以拆开来看。
例题精讲例题:1,2/3,5/8,13/21各分数的分子分母之间有和数列的关系,1+2=3,2+3=5,5+3=8,8+5=13。
还有小数(包括整数部分和小数部分)、根式的变化(包括底数、指数、根号)。
还有一些更新的考法就是看上去不能拆分但一定要拆分来看的数列。
特别是多位数的拆分。
例题:12,1112,3112,211213表面上看没什么规律,但拆开来看12是由一个1和一个2组成的,那么1112就是在描述前一个数,后面以此类推。
再看例题:1144,1263,1455,1523,(),1966这组数的规律是:中间两位数是首尾两位数的倍数分别是1倍、2倍、3倍、4倍至6倍。
14是14的1倍,26是13的2倍。
以此类推再看数列:22,24,39,28,(),16规律是每个数的十个位数字是数字倍数的倍数分别是1倍、2倍、3倍、4倍至6倍。
再看例题:78,57,36,19,10,()规律是前一个数的十位数字与个位数字相乘再加1就是后面的数字。
因此考生要随时关注考试题型的变化,及一些地方公务员考试的题型变化趋势。
看下面一道数字变化的例题:红花映绿叶×夏=叶绿映花红这种题如果没有选项比较难猜,但是有选项就可以采用代入法把选项逐一代入进行作答。
二、从例题来看数学运算解题方法数学运算在考生眼里比较难,其实在出题时不是很难。
在15道题中约8~9道基本题型,其他几道题是比较有深度的题。
作答时要掌握快算、精算、巧算的方法。
银行考试行测备考:数字推理解题思路
银行考试行测备考:数字推理解题思路下边就银行考试中的数字推理浅谈一下数字推理的一些个答题技巧。
数理能力主要测查考生理解、把握事物间量化关系和解决数量关系问题的能力。
数字推理题所涉及的数字规律千变万化,对于数字推理题没有万能的解法,建议考生应重点分析题干数字的运算关系和位置关系。
这就要求考生掌握相关的基础数学知识,还要掌握一定的解题方法,提高解题速度。
所以解题的时候需要也是要用一些思维方式。
(一)直觉思维直觉思维是对事物直观认识的特殊思维方式,是逻辑思维的凝结或简缩。
它包括数字直觉和运算直觉两个方面。
数字直觉数字直觉是人们对数字基本属性深入了解之后形成的。
通过数字直觉解决数字推理问题的实质是灵活运用数字的基本属性。
自然数平方数列:由于题干数字的迷惑性,数字推理规律隐藏得很深,解题时可能是直觉思维、构造思维、转化思维交替运用的过程,是猜证结合的过程,这就是一种综合思维。
当前数字推理规律求新求异,真题中时有“出人意外”的数字推理规律出现,这就要求我们在掌握一些基本解题方法的基础上,结合对数字推理规律的积累,多角度开阔思路,实现数字推理解题能力的全面提升。
(二)解题思路1.当数列呈递增或递减趋势,且变化幅度不大时,优先使用作差法。
另外,当数列中无明显规律,寻找数项特征和结构特征也没有头绪时,也可以考虑使用作差法理清关系。
2.当数字之间存在明显倍数关系时,应优先应考虑使用作商法。
3.数列有平稳、递增趋势,但通过作差不能解决问题,利用多次方和作商也不能解决时,可考虑取两项或三项求和,从而寻找新数列的规律。
4.拆分法的应用,拆分法是指将数列中的数字拆分成两个或多个部分,然后通过每部分的规律得到原数列规律的方法,在公务员考试中,拆分法主要有整数乘积拆分与整数加减拆分两种。
对于这种题型,一般来说一套卷子5道,考生在考场上不要过于纠结该种题型,平时只有多做题才能在考场上发挥出预想到的效果,见识更多的规律才行。
银行招聘考试有必要报培训班吗?当前,银行招聘考试逐渐成为应届毕业生,特别是金融类专业重点关注的热门考试之一,银行招聘考试如同中考、高考、公务员等一样,给了一个可以通过自身的努力与奋斗实现自己的理想与自身价值的平台。
行政能力测试数字推理的规律及其解题过程
行政能力测试数字推理的规律及其解题过程数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。
在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。
但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。
行测数字推理题解题技巧大全详解
第一部分:数字推理题的解题技巧行政能力倾向测试是公务员考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。
如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。
并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。
数字推理考察的是数字之间的联系,对运算能力的要求并不高。
所以,文科的朋友不必担心数学知识不够用或是以前学的不好。
只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。
一、解题前的准备1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。
如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
公务员行测:数字推理解题技巧
公务员⾏测:数字推理解题技巧 公务员考试《⾏政职业能⼒测验》数量关系中数字推理题是给出⼀数列,但其中缺少⼀项,要求仔细观察数列,找出其中的排列规律,然后从四个供选择的选项中选出你认为最合适、合理的⼀项,来填补空缺项,使之符合原数列的排列规律。
公务员考试中有个别地⽅及个别题还出现了图形形式的数字推理题,我们也应当有所了解。
总的来说,解答数字推理题有以下四⼤技巧: (1)快速扫描已给出的⼏个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,⼤胆提出假设,并迅速将这种假设延伸到下⾯的数,如果能得到验证,即说明找出规律,问题即迎刃⽽解,如果假设被否定,⽴即改变思考⾓度,提出另外⼀种假设,直到找出规律为⽌。
(2)推导规律时,往往需要简单计算,为节省时间,尽量⽤⼼算,少⽤笔算或不⽤笔算。
(3)空缺项在最后的,从前往后推;空缺项在最前的,从后往前推;空缺项在中间的,可以两边同时推导。
(4)若⼀时难以找出规律,可⽤常见的规律来“对号⼊座”加以验证。
常见规律为奇、偶数规律,等差,等⽐,⼆级等差,⼆级等⽐,递推规律;幂次数,混合型规律等等。
下⽂将通过历年公务员考试真题来阐述各类解题技巧的运⽤。
上海市公务员考试《⾏政职业能⼒测验》数量关系——数字推理练习 1.8,6,2,-6,()[2009年上海市公务员考试⾏政职业能⼒测验真题-1题] A.-8 B.-10 C.-20 D.-22 【答案】D 【解析】⼆级等⽐数列。
2. 【答案】C 【解析】原数列可化为:。
【注释】这是⼀道带根号的题⽬,⼀般带根号的题⽬都⽐较简单,我们不要被根号所迷惑。
3.(), A.-1 D.1 【答案】C 【解析】原数列可化为() 4.0,6,6,20,(),42 [2009年上海市公务员考试⾏政职业能⼒测验真题-4题] A.20 B.21 C.26 D.28 【答案】A 【解析】原数列可化为12-1,22+2,32-3,42+4,(52-5),62+6。
行测答题技巧简单学系列——数字推理全集
行测答题技巧简单学系列——数字推理全集行测答题技巧系列:行测知识简单学——数字推理全集行政职业能力测试,简称“行测”,是事业单位考试当中重要的组成部分。
其中,数字推理作为其组成部分之一,需要考生具备较强的数字敏感性和一定的数字运算能力。
当然,解答相关题目的前提是了解数字推理中各种数列的形式和特点。
本文就将对相关内容进行介绍。
一、等差数列1.概念:如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列。
常考题型:二级等差数列,三级等差数列。
例:35,29,24,20,17,( )(逐项作差后得公差为1的等差数列,为二级等差数列。
三级等差数列为二级数列再作差所得。
)2.等差数列的变式作差或持续作差后,得到其他数列或其变式,这是最常考查的等差数列规律。
例:39,62,91,126,149,178,( )(作差后得到“23,29,35”的循环数列)3.等差数列及其变式特征归纳(1)数列中出现个别质数的,一般都是等差数列或其变式,因为指数不具备进行拆分寻求规律的可能性。
(2)含有0的数列很有可能是等差数列,因为0不易做递推变化,多在等差数列或多次方数列中出现,宜首先从作差方向寻求规律。
(3)单调递增或增减交替有可能是等差数列变式。
二、等比数列1.概念:如果一个数列从第二项起,每一项与它前面一项的比等于同一个非零常数,那么该数列就叫做等比数列。
与等差数列类似,二级等比数列,三级等比数列(较少)也是常考点。
2.等比数列变式(1)二级等比数列;(2)作商后得到等差/质数/常数列。
例:4,4,16,144,( )相邻各项的商依次为12,22,32,(42)。
144*16=(2304)。
3.等比数列及其变式特征归纳(1)数项具有良好的整除性;(2)递增/递减趋势明显,会出现先增后减的情况;(3)具有递推关系的等比数列变式可通过估算相邻项间大致倍数反推规律。
三、和数列1.基本形式(1)两项和数列:数列从第三项开始,没意向等于它前两项之和。
2019河南选调生考试行测技巧:数字推理题的万能套路(一)
在行测考试中,数字推理题型虽然在国考中出现频率越来越少,但广大考生对此切忌掉以轻心,在此向大家介绍的是解决数字推理题的万能套路,请考生谨记,万能套路只是对大多数的题目有效,希望对大家有所帮助。
此外,想要百战不殆,仍需多做题,多总结。
下面就针对例题进行讲解。
第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180B.210C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出 1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是 170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32B. 64C.128D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、 8,2附近有1、4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《行测》数字推理整体趋势法解题套路
整体趋势法是解决递推数列最主要的方法,“看趋势”和“作试探”是整体趋势法的基本思路。
其中,“看趋势”是指,根据数列当中数字的整体变化趋势初步判断递推的具体形式;“作试探”是指根据初步判断的
趋势作合理的试探,并分析其误差。
本文将“看趋势”和“作试探”进行了“套路”化,兼具了通俗易懂和快速操作的特点。
“套路”化流程如下:
(1)整体递减,如果有明显倍数关系,做商;没有明显倍数关系,做差。
做商和做差失败,将该递减数列倒过来变为整体递增,转到(2)
(2)整体递增,计算括号前最大的两个数的倍数,如果倍数小于2,“和”运算;接近于方,“方”运算;介于两者之间,积和倍,“乘”运算。
具体操作为,确定是和、方或是积倍之后,圈数列中的三个数(a,b,c),分别使用“+”、“^2”和“×”对圈中的数字进行试探c=a+/×b+/-修正项或者c=a^2+/-修正项或者c=b^2+/-修正项,对于“乘”运算,先考虑是否为“积”再考虑“倍”。
例题讲解:
(1)1,6,20,56,144,( )(2010年国家公务员考试行测第41题)
A、256
B、312
C、352
D、384
首先,整体递增,括号前最大两个数:56、144,倍数大于2但小于方,圈(20,56,144)用“×”运算找递推形式,先考虑“积”再考虑“倍”。
对于“积”,20×56远大于144,固排除,考虑“倍”,也即如何找到144=56×?+/-?,进行尝试,144=56×2+32,或者144=56×3-24,同样再往前看,56=20×2+16,或者56=20×3-4,与前面144进行综合,选取×2作为递推规律,因此有,20=6×2+8,6=1×2+4,也即从第二项开始,每一项是前一项的两倍加上修正项,而修正项依次为4,8,16,32,以2为公比的等比数列,所以括号应=144×2+32×2=352。
(2)1,3,5,9,17,31,57,( )(2008年江西公务员考试行测第35题)
A、105
B、89
C、95
D、135
首先,整体递增,括号前最大两个数:31、57,倍数小于2,圈(17,31,57)用“+”运算找递推形式,即57=31+17+/-?,计算可得,57=31+17+9,而往前看,31=17+9+5,这里的9和5是所圈三数的前一项,也就是前项型的修正项,所以,括号为31+57+17=105。
(3)3,7,47,2207,( )
A、4870847
B、4870848
C、4870849
D、4870850
首先,整体递增,括号前最大两个数:47和2207,倍数接近于方,圈(7,47,2207)用“方”运算找递推形式,即2207=47^2+/-?,由于数字较大,所以另选(3,7,47),套形式:47=7^2+/-?计算可得,47=7^2-2且7=3^2-2,验证2207=27^2-2(用尾数法),所以,括号为2207^2-2,尾数法选择尾数为7的A。
(4)97,53,29,15,9,5,1,( )
A、1
B、2
C、3
D、4
首先,整体递减,考虑做差和做商,无明显倍数关系,所以做差,圈(97,53,29),用“-”号套,计算有97-53=44,离29多了15,观察发现
15为29的下一项,猜测具有这样的规律,计算发现53-29=24,离后一项15刚好相差下一项9,依次用后面的数字验证,则9-5=1与1相差的值即为1的下一项,也即括号里的值,所以是3。
本题还可以这样理解,将数列倒过来看,变成递增数列,考虑括号前最大两个数:97、53,倍数小于2,圈(97,53,29)用“+”运算找递推形式,即97=53+29+/-?,计算可得,97=53+29+15,而这里的修正项15为29的下一项,也就是前项型的修正项,所以,9=5+1+( ),所以括号里的值为3。