[初中数学]勾股定理说课稿9 人教版
勾股定理说课稿
说课稿教材:九年义务教育三年制新教材(人教版)课题: 八年级(下)§18.1《勾股定理》《勾股定理》说课稿尊敬的各位评委、老师:上午好!今天我说课的课题是《勾股定理》,我将从说教材,说教学任务,说教学过程及说远程教育资源在教学中的应用四个方面说课。
首先,说教材。
《勾股定理》是人教版新课标第十八章第一节的内容,是中学数学几个重要定理之一。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
其次,说教学任务。
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法,应用网络查询资料。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生爱国情感。
在探索问题的过程中,培养学生的合作交流意识和探索精神。
本节课的重点是勾股定理的发现、验证和应用。
难点是用拼图方法、面积法证明勾股定理。
教学工具使用勾股定理拼图模具以及学件,而多媒体辅助工具为多媒体网络教室和课件。
为了实现教学目标,突出教学重点,突破教学难点,在教学中我以“问题情境-分析探究-得出猜想-总结升华”为主线展开。
而学法主要采用启发探究法、合作法、情境法。
第三,说教学过程。
整个教学过程打算分为以下八个活动。
活动一,展示两幅图片,第一幅图片为我国著名数学家华罗庚教授提议的向宇宙发射的勾股定理的图形,用来与外星人联系。
第二幅图片为2002年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。
这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。
为什么要引入这两幅图呢?带着这个问题进入活动二。
活动二,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的最佳状态。
《勾股定理》说课稿(优秀7篇)
《勾股定理》说课稿(优秀7篇)一、教材分析:(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一、课标要求学生必须掌握。
(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用情感态度:2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(二)、创设问题情境(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
勾股定理说课稿
勾股定理-说课稿各位领导、老师:你们好!今天我说课的题目是:《勾股定理》,本节课选自人民教育出版社九年义务教育课程标准实验教科书八年级下册,是第18章勾股定理第一节第一课时。
说课流程是:教材分析、学情分析、教法分析、学法分析、教学程序设计以及设计理念。
一、教材分析(一)教材所处的地位及作用:勾股定理是人类数学最伟大的发现之一,也是几何学中几个最重要、最基本的定理之一。
它在数学的发展中起过重要的作用。
它紧密联系了数学中最基本的两个量——数和形,能够把形(直角三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2),既是数形结合的典范,又体现了转化和方程思想。
它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,又是后续学习解直角三角形的基础,在实际生活中用途也很大。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标:1、知识与能力:掌握勾股定理的内容,会用面积法证明勾股定理;并能用勾股定理解决简单的问题。
2、过程与方法:经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。
3、情感态度与价值观:(1)在探索勾股定理的过程中,让学生体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.通过获得成功的经验和克服困难的经历,增进数学学习的信心.(2)通过介绍勾股定理在中国古代的历史,激发学生的民族自豪感.(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理二、学情分析前面,学生已具备一些平面几何的知识,能够进行一般的推理和论证,对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,因此比较困难三、教法分析针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿
人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是中学数学中一个非常重要的定理。
勾股定理揭示了直角三角形三边之间的数量关系,即直角边的平方和等于斜边的平方。
这一定理在我国古代就已经被发现,并有详细的证明。
在本节课中,学生将通过探究和证明来理解和掌握勾股定理,并能够运用它解决实际问题。
二. 学情分析在进入本节课的学习之前,学生已经学习了平面几何的基本概念,对三角形、直角三角形等有一定的了解。
同时,他们已经学习了平方根的概念,能够进行简单的平方运算。
但是,对于勾股定理的证明和应用,他们可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导他们通过探究和思考来理解和掌握勾股定理。
三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的内容,并能够进行简单的证明。
2.过程与方法目标:学生通过探究和证明,培养逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:学生体验到数学的趣味性和魅力,增强对数学学习的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的内容。
2.教学难点:学生能够进行勾股定理的证明,并能够运用它解决实际问题。
五.说教学方法与手段在本节课的教学中,我将采用探究式教学法和启发式教学法。
通过引导学生进行自主探究和思考,激发他们的学习兴趣和动力。
同时,我将运用多媒体教学手段,如PPT、几何画板等,为学生提供直观的学习材料,帮助他们更好地理解和掌握勾股定理。
六.说教学过程1.导入:通过一个实际问题,引导学生思考直角三角形三边之间的关系。
2.探究:引导学生进行小组讨论,鼓励他们用自己的方法来证明勾股定理。
3.讲解:对学生的探究结果进行点评,并给出标准的证明过程。
4.练习:为学生提供一些练习题,帮助他们巩固所学内容。
5.应用:引导学生运用勾股定理解决实际问题,如测量物体的高度等。
七.说板书设计板书设计如下:直角三角形两直角边的平方和等于斜边的平方。
《勾股定理》说课稿
《勾股定理》说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《勾股定理》说课稿【荐】《勾股定理》说课稿(集锦9篇)下面是本店铺整理的【荐】《勾股定理》说课稿(集锦9篇)以供借鉴。
《勾股定理》说课稿(通用6篇)精选全文
可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。
今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。
”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
“勾股定理”说课稿
“勾股定理”说课稿一、教材分析:(一)教材所处的地位和作用本节课是人教版义务教育课程标准实验教科书八年级下册第十八章“勾股定理”第一节第一课时的内容.勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
本节课以前,学生已经学习了有关三角形的一些知识,通过本节课的学习,学生可以在原有基础上对直角三角形有进一步的认识和理解,对数形结合、转化等丰富的数学思想有所感知。
(二)教学目标根据新教材要求、本节知识的特点和初一学生的认知心理特征,我将教学目标确定为:1.知识与技能:1).定理的由来,初步理解割补拼接的面积证法。
2).股定理,通过动手实践理解勾股定理的证明过程。
3).用勾股定理进行简单的几何计算。
2. 过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的环节,体会数形结合思想进一步发展将未知转化为已知,由特殊推测一般的合情推理意识和能力3. 情感与价值观:1)勾股定理的过程中培养学生的积极参与、勤于思考、勇于创新的探究精神,发展学生的思维能力,让学生体验动手动脑探究发现数学结论的乐趣,增强自信心2)勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
( 三)教学重点与难点:教学重点:勾股定理的内容及应用教学难点:用面积法(拼图法)发现勾股定理。
二、教法与学法分析:教法分析:本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
教具和多媒体的使用,让探索过程变得直观而有趣。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,通过操作、观察、思考、合作、讨论、交流,让学生获得数学活动的经验,得出数学结论。
三、教学过程设计㈠创设情境,导入新课1、 首先创设这样一个情境:人类一直想要弄清楚其他星球上是否存在着“人”,并试图与“他们”取得联系。
《勾股定理》优秀说课稿
《勾股定理》优秀说课稿《勾股定理》优秀说课稿篇一一、教学目标(一)知识点1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。
2、会利用勾股定理解释生活中的简单现象。
(二)能力训练要求1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。
2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。
(三)情感与价值观要求1、培养学生积极参与、合作交流的意识。
2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的`勇气。
二、教学重、难点重点:探索和验证勾股定理。
难点:在方格纸上通过计算面积的方法探索勾股定理。
三、教学方法交流探索猜想。
在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。
四、教具准备1、学生每人课前准备若干张方格纸。
2、投影片三张:第一张:填空(记作1.1.1 A);第二张:问题串(记作1.1.1 B);第三张:做一做(记作1.1.1 C)。
五。
教学过程Ⅰ。
创设问题情境,引入新课出示投影片(1.1.1 A)(1)三角形按角分类,可分为_________、_________、_________。
(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?《勾股定理》说课稿篇二一、说教材分析1.教材的地位和作用华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:知识与技能:1、经历勾股定理的探索过程,体会数形结合思想。
人教版八年级数学勾股定理说课稿范文(精选5篇)
人教版八年级数学勾股定理说课稿范文(精选5篇)人教版八年级数学《勾股定理》说课稿范文(精选5篇)作为一名专为他人授业解惑的人民教师,通常会被要求编写说课稿,是说课取得成功的前提。
那么优秀的说课稿是什么样的呢?以下是小编整理的人教版八年级数学《勾股定理》说课稿范文,仅供参考,希望能够帮助到大家。
八年级数学《勾股定理》说课稿1(一)教材分析⒈教材的地位和作用《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。
它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
⒈教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
培养学生观察、比较、分析、推理的能力。
情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。
3.重点和难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。
本节课主要是对勾股定理的探索和勾股定理的证明。
勾股定理的证明方法很多,本节课介绍的是等积法。
通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。
因此本节课的重点:是勾股定理的发现、验证和应用。
八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。
人教版数学八年级下册第十七章勾股定理说课稿
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。
人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。
数学《勾股定理》说课稿范文
数学《勾股定理》说课稿数学《勾股定理》说课稿范文作为一名默默奉献的教育工作者,就不得不需要编写说课稿,编写说课稿是提高业务素质的有效途径。
那么你有了解过说课稿吗?以下是小编整理的数学《勾股定理》说课稿范文,仅供参考,希望能够帮助到大家。
数学《勾股定理》说课稿1一、教材分析勾股定理就就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就就是直角三角形的一条非常重要的性质,就就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就就是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、教法和学法教法和学法就就是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就就是3,股就就是4,那么弦等于5。
勾股定理优秀说课稿
勾股定理优秀说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是勾股定理。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析勾股定理是初中数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关性质和三角形全等的基础上进行的,为后续学习解直角三角形以及三角函数等知识奠定了基础。
在教材的编排上,通过让学生观察、猜想、验证等活动,引导学生自主探究勾股定理,培养学生的动手能力和逻辑推理能力。
同时,教材还注重了数学文化的渗透,介绍了勾股定理的历史背景和相关数学史,激发学生的学习兴趣和民族自豪感。
二、学情分析八年级的学生已经具备了一定的观察、分析和推理能力,但对于抽象的数学定理的理解和应用还存在一定的困难。
在学习过程中,学生可能会出现对定理的证明过程理解不透彻、在实际问题中不会运用定理等问题。
因此,在教学中要注重引导学生通过动手操作、小组合作等方式,帮助学生理解和掌握勾股定理。
三、教学目标1、知识与技能目标理解勾股定理的内容,能够运用勾股定理解决简单的直角三角形问题。
2、过程与方法目标通过观察、猜想、验证等活动,培养学生的动手能力、逻辑推理能力和数学探究能力。
3、情感态度与价值观目标感受数学文化的魅力,激发学生的学习兴趣和民族自豪感,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点勾股定理的内容及证明。
2、教学难点勾股定理的证明及应用。
五、教法与学法1、教法为了突出重点、突破难点,我将采用启发式教学法、探究式教学法和直观演示法相结合的教学方法。
通过创设问题情境,引导学生自主探究、合作交流,让学生在实践中体验知识的形成过程。
2、学法在学法指导上,我将引导学生采用自主学习、合作学习和探究学习相结合的学习方式。
让学生在动手操作、观察思考、讨论交流中,提高学生的学习能力和思维能力。
六、教学过程(一)创设情境,引入新课首先,我通过多媒体展示一个直角三角形的图片,并提出问题:“如果已知直角三角形的两条直角边的长度,如何求出斜边的长度呢?”引发学生的思考,从而引出本节课的课题——勾股定理。
《勾股定理》初中数学说课稿
各位专家领导,上午好:今天我说课的课题是《勾股定理》
一、教材分析:
(一)本节内容在全书和章节的地位
(二)三维教学目标:
⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并
体会数形结合和从特殊到一般的思想方法。
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
勾股定理的证明与运用
用面积法等方法证明勾股定理
对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发
言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。
这样既保证讨论的有效性,也调动了学生的学习积极性。
《勾股定理》说课稿
《勾股定理》说课稿各位评委老师好:今天我说课的课题是《勾股定理》。
本节课是九年制义务教育人教版八年级第十七章第一节“勾股定理”第一课时。
接下来我将从下面五个方面展开我的说课:一、教材分析(一)教材的地位和作用:勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,为今后学习解直角三角形奠定基础,更好地应用于实际生活中。
(二)教学目标:根据新课标的要求,结合教材的特点以及八年级学生认知规律,制定了以下三维目标:【知识与能力目标】1、掌握勾股定理,并对勾股定理进行运用。
2、培养学生动手操作、合作交流、逻辑推理的能力【过程与方法目标】让学生经历“观察—猜想—归纳—验证”的自主探究过程,让学生体会数形结合和特殊到一般的数学思想。
【情感态度与价值观】1、通过介绍中国古代勾股定理方面的成就,增强学生的民族自豪感2、让学生体验数学充满了探索和创造,感受数学之美,探究之趣。
(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】勾股定理的证明【难点成因】对于勾股定理的得出,需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、学情分析【教法分析】数学是一门培养和发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,还要“知其所以然”。
针对八年级学生的认知结构和心理特征,本节课在教法上选择“引导探索法”,由浅到深,由特殊到一般的提出问题。
引导学生自主探索,合作交流。
【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生参入到学习活动中,在学法上鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计(一)情景导入(1)出示2002年国际数学大会会标设计意图:让学生通过图形欣赏,初识勾股定理(2)引入情境题:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来13米长的云梯,如果梯子的底部离墙基的距离是5米,请问消防队员能否进入三楼灭火?设计意图:通过问题的设计,激发学生的探究欲望,引导学生将实际问题转化为数学问题,这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
初中勾股定理的说课稿.doc
初中勾股定理的说课稿课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它提醒的是直角三角形中三边的数量关系。
它在数学的开展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的,可以在原有的根底上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜测—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,鼓励学生发奋学习。
(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,根本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六局部。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“一直角三角形的两边,如何求第三边?” 的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理尊敬的各位评委老师:您们好!我说课的内容为人教版数学八年级下册第十八章第一节《勾股定理》的第一课时。
下面我从教材分析、教学目标分析、教学策略分析、教学过程分析、教学评价分析及教学反思六个方面对本节课的教学设计进行说明。
一、教材分析1、教材的地位和作用勾股定理在数学学习中有着至关重要的作用。
它是数形结合的代表,是用数学方法来解决几何问题的基础桥梁。
它实现了由角向边的跨越,是几何中一颗美丽的奇葩。
本节课的主要内容是对勾股定理的探索和验证。
它是直角三角形的一条非常重要的性质,揭示了一个直角三角形三条边之间的数量关系。
在此基础上,让学生利用勾股定理来解决一些实际问题。
在中学数学学习中,勾股定理也为后面三角函数的学习及一些图形的计算打下必要的基础。
2、学情分析勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,学生已经对图形的探索、验证有了一定的推理能力,具有良好的协作学习习惯及自主学习能力。
因此学生对勾股定理的学习会有较浓厚的兴趣。
二、教学目标分析根据本节课的内容和学生的认知特点,我将本节课的教学目标设置为:知识与技能:1、使学生在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系。
2、学会初步运用勾股定理进行简单的计算,并解决实际问题。
过程与方法让学生经历用面积法、拼图法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜测、验证的数学方法,体验从特殊到一般的逻辑推理过程。
情感、态度与价值观1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国的悠久文化,激励学生发奋学习。
2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。
教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论,从而发现勾股定理。
教学难点以直角三角形的边为边的正方形面积的计算。
三、教学策略分析教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、教法分析:“引导+探索”的方式符合八年级学生认知水平,适应其思维发展规律及心理特征。
再现知识的发生、发展和形成的过程中,充分体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、学法指导:根据新课标要求培养“可持续发展的学生”。
在学法上,充分发挥学生在教学中的主体作用,采取让学生自主实践、合作探究的研讨式学习方式进行学习。
借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。
3、辅助策略:每个学生一张方格纸;并分小组准备剪刀。
四、教学过程分析本节内容的教学主要体现在学生动手、动脑方面。
根据学生的认知规律和学习心理,教学程序设计如下:活动1、创设情景,激发学生兴趣,引入新知活动2、自主实践,探索验证活动3、进一步探索,体会结论的一般性活动4、应用定理,解决问题活动5、课堂总结,布置作业一、创设问题情境,引入新课.活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,•长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取出6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么意义?•为什么选定它作为2002年在北京召开的国际数学大会的会徽?设计意图:问题设计的目的是激发学生探究知识的欲望.反映了数学来源于实际生活,数学是从人的需要中产生这一基本观点.引导学生将问题2转化为数学问题,也就是“已知直角三角形的两边,•求第三边”的问题,学生会感到困难.于是指出:学习本章,我们就能回答上述问题.首先我们先来看一个传说.二、实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(图中每个小方格代表一个单位面积)(1)观察图1.正方形A 中含有______个小方格,即A 的面积是______个单位面积;正方形B 中含有______个小方格,即B 的面积是______个单位面积;正方形C 中含有______个小方格,即C 的面积是______个单位面积.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3设计意图:通过让学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方,让学生亲历发现、探究结论的过程,有利于培养学生的语言表达能力,体会数形结合的思想.留给学生充分的思考时间,然后让学生交流合作,引导学生得出结论:发现等腰直角三角形以直角边为边的小正方形的面积和等于以斜边为边的稍大的正方形的面积.即两直角边的平方和等于斜边的平方.问:原来著名的哲学家毕达哥拉斯,站起来,大笑着跑回家。
是因为他在朋友家地板砖的启发下,也发现了这个结论.并且还做了更为深入的研究,你知道是什么吗?问:想知道结果吗?我们不妨寻着大哲学家的足迹,也做更深入的探究.活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,•每个小方格的面积均为1,请分别计算出下图中正方形A 、B 、C ,A′、B′、C •′的面积,看看能得出什么结论.问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,•也满足上述结论吗? 设计意图:进一步让学生体会观察、猜想、归纳这一数学结论发现的过程,也让学生的分析问题和解决问题的能力在无形中得到提高,让学生体会到结论更具一般性.让学生计算A 、B 、C ,A′、B′、C′的面积,但正方形C 和C •′的面积不易求出,可以让学生在预先准备好的方格纸上画图形,剪一剪、拼一拼后发现求正方形C 和C′的面积的方法. 问:如果将虚线标出的正方形C 和C′周围的四个直角三角形分别沿斜边折叠进去,你会得出什么结论呢?通过上面的折叠,发现该图案正是2002年在北京召开的国际数学家大会的徽标.通过对A、B、C,A′、B′、C′几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方.问:一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,•我们不妨在你准备好的方格纸上画出一个两直角边为0.5,1.2的直角三角形来进行验证.当时大哲学家也发现并进一步深入探究的也正是这个结论,看似平淡无奇的现象有时却隐藏着深刻的道理.我们也应该向大哲学家学习,认真体验生活,努力发现生活中存在的各种奥秘.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题1:小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.•你同意他的想法吗?你能解释这是为什么吗?问题2:(1)如右图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.设计意图:问题1、2是贴近学生生活有趣的实例,学生可利用勾股定理解决.直角三角形的三边关系告诉我们已知两边可求出第三边。
体验勾股定理解决生活中问题的过程。
问:同学们能用直角三角形的三边关系解答活动1中的问题2吗?请同学们在小组内讨论完成。
五、教学评价分析1、评价学生的学习过程2、评价学生的基础知识和基本技能3、评价学生发现问题和解决问题的能力六、教学反思《勾股定理》的第一课时重点是让学生经历勾股定理的探索过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育,体现新课标的要求。
呈现问题情境,以丰富学生的感性认识,增强直观效果,提高课堂教学效率,建立平等、民主、和谐的师生关系,意在创设一种学生乐学的课堂气氛。
但本节课教学效果还不够理想。
具体表现是:整个教学过程,学生主动参与课堂讨论的积极性不算高,结论都是在老师的引导下被动得出的。
课堂上的问答也只是限于一部分学生,虽然学生也能运用勾股定理去解决简单的数学问题,但在勾股定理的导入方面学生的思维不够活跃。
对于勾股定理的变式学生还不能够灵活的运用。