倒立摆建模

合集下载

倒立摆建模与控制

倒立摆建模与控制

倒⽴摆建模与控制2倒⽴摆系统的模型建⽴2.1 倒⽴摆特性●⾮线性倒⽴摆是⼀个典型的⾮线性复杂系统,实际中可以通过线性化得到系统的近似线性模型,线性化处理后再进⾏控制。

也可以利⽤⾮线性控制理论对其进⾏控制。

●不确定性模型误差以及机械传动间隙,各种阻⼒带来实际系统的不确定性。

实际控制中⼀般通过减少各种误差降低不确定性,如施加预紧⼒减少⽪带或齿轮的传动误差,利⽤滚珠轴承减少摩擦阻⼒等不确定性因素。

●耦合性倒⽴摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒⽴摆的控制中⼀般都在平衡点附近进⾏解耦计算,忽略⼀些次要的耦合量。

●开环不稳定性倒⽴摆的平衡状态只有两个,即垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定平衡点,垂直向下为稳定平横点。

●约束限制由于机构的限制,如运动模块的⾏程限制,电机⼒矩限制等。

为了制造⽅便和降低成本,倒⽴摆的结构尺⼨和电机的功率尽量要求最⼩。

⾏程限制对倒⽴摆的摆起影响尤为突出,容易出现⼩车撞边现象[22]。

2.2 ⼀阶倒⽴摆数学模型倒⽴摆系统是典型的运动的刚性系统,可以在惯性坐标系内应⽤经典⼒学理论建⽴系统的动⼒学⽅程。

下⾯分别采⽤⽜顿⼒学⽅法和拉格朗⽇⽅法建⽴直线型⼀级,⼆级倒⽴摆系统的数学模型。

2.2.1 ⼀级倒⽴摆物理模型在忽略了空⽓阻⼒和各种摩擦之后,可将直线型⼀级倒⽴摆系统抽象成⼩车和匀质杆组成的系统,如图2.1所⽰:⽪带轮图2.1 单级倒⽴摆系统物理模型2.2.2 ⼀级倒⽴摆数学模型各符号代表的意义及相关的数值:表2.1 ⼀级倒⽴摆参数表参数参数意义参数值 M ⼩车质量 1.096Kg m 摆杆质量 0.13Kg b ⼩车摩擦系数0.1N/m/sec l 摆杆转动轴⼼到杆质⼼的长度0.25m I 摆杆转动惯量 0.0034Kg*m*mf 加到⼩车上的⼒ x⼩车位置φ摆杆与竖直向上⽅向的夹⾓通过对系统中⼩车和摆杆进⾏受⼒分析,分别可得到以下运动⽅程:2()cos sin F M m x bx ml ml θθθθ=++-+ (2.1) 22()sin cos 2sin (sin cos )I ml mgl mlx ml θθθθθθθθ+-=++ (2.2)22222cos sin cos 2sin sin 2sin cos M m ml x F bx ml ml ml I ml mgl ml θθθθθθθθθθ+-?--=----(2.3) 2.3 ⼆阶倒⽴摆数学模型2.3.1 ⼆级倒⽴摆物理模型如图2.3所⽰为直线型⼆级倒⽴摆物理模型⽪带轮图2.3⼆级倒⽴摆系统的物理模型倒⽴摆装置主要由沿导轨运动的⼩车和固定到⼩车上的两个摆体组成。

一级倒立摆的可视化建模与稳定控制设计

一级倒立摆的可视化建模与稳定控制设计

1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum deviceQuanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing图2.4系统导轨结构图Fig 2.4 System guide rail structure直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模首先,我们需要定义系统的坐标和状态变量。

在这个问题中,我们可以选择将质点的位置和角度作为系统的状态。

令x表示质点的水平位置,θ表示摆杆与竖直方向的夹角。

其次,我们需要确定系统的动力学方程。

根据牛顿第二定律和欧拉定理,可以得到如下的动力学方程:m * x'' = -m * g * sin(θ) - c * x';I * θ'' = m * g * cos(θ) * L - J * θ'其中,m是质点的质量,g是重力加速度,c是摩擦系数,L是摆杆的长度,I是质点关于摆杆固定点的转动惯量,J是摆杆的转动惯量。

最后,我们可以采用数值方法来求解这个动力学方程。

牛顿-欧拉方法是一种常用的数值方法,它基于一阶泰勒级数展开近似,并使用离散时间步长来进行数值计算。

具体步骤如下:1.将时间t离散化为n个时间步长Δt的序列:t_0,t_1,...,t_n。

2.初始化系统的状态变量:x(0),θ(0),x'(0),θ'(0)。

3.对于每个时间步长i,计算状态变量的更新:a. 计算加速度:x''(i) = (1/m) * (-m * g * sin(θ(i)) - c * x'(i))θ''(i) = (1/I) * (m * g * cos(θ(i)) * L - J * θ'(i))b.使用泰勒级数展开逼近位置和速度:x(i+1)=x(i)+Δt*x'(i)+0.5*Δt^2*x''(i)θ(i+1)=θ(i)+Δt*θ'(i)+0.5*Δt^2*θ''(i)c.使用泰勒级数展开逼近速度和加速度:x'(i+1)=x'(i)+Δt*x''(i)θ'(i+1)=θ'(i)+Δt*θ''(i)d.根据实际情况对状态进行调整,如质点位置不能超过摆杆范围等。

直线一级倒立摆建模与控制

直线一级倒立摆建模与控制

期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。

(完整版)倒立摆建模

(完整版)倒立摆建模

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为得 (3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩&&&&&& sin cos ..........(1)y x J F l F l θθθ=-&&2222(sin ) (2)(cos ).........(3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ&⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法倒立摆是一个经典的力学系统,它由一个固定于垂直支点上并能够绕该支点自由旋转的杆和一个固定在杆上的质点构成。

通过对倒立摆进行建模,可以研究其动力学特性以及控制方法。

本文将介绍一种常用的倒立摆拉格朗日建模方法。

倒立摆的拉格朗日建模方法是基于拉格朗日力学原理。

首先,我们需要确定倒立摆的广义坐标和其相关约束。

对于一个简单的倒立摆,可以选择摆杆与竖直方向的夹角作为广义坐标,记为θ。

同时,倒立摆存在一个约束条件,即摆杆与支点之间的距离为常数L。

接下来,我们需要确定倒立摆的动能和势能函数。

倒立摆的动能函数由摆杆和质点的动能之和构成。

摆杆的动能可以表示为Its(th)+⋯+Its(ph)+⋯+Itgph+⋯+Itgkh+⋯),(0)其中,I表示质量矩阵,ts表示杆的转动惯量,qs表示杆的角速度,g表示重力加速度,kh表示摆杆的质心距离支点的垂直距离。

质点的动能可以表示为(1)其中,ms表示质点的质量,ps表示质点的速度。

倒立摆的势能函数由质点重力势能和杆的重力势能之和构成。

质点的重力势能可以表示为(2)其中,zs表示质点的垂直位置。

杆的重力势能可以表示为(3)其中,zs表示杆的质心位置的垂直距离。

然后,我们需要确定倒立摆的拉格朗日函数。

拉格朗日函数可以表示为动能减去势能。

拉格朗日函数可以表示为(4)接下来,我们需要计算拉格朗日方程。

拉格朗日方程描述了系统的运动方程。

其中,q表示广义坐标,L表示拉格朗日函数,t表示时间,λ表示拉格朗日乘子。

最后,我们对拉格朗日方程进行求解,得到倒立摆的运动方程。

根据拉格朗日方程我们可以得到(6)通过求解这个方程,我们可以得到倒立摆的运动方程。

综上所述,倒立摆的拉格朗日建模方法主要包括确定广义坐标和约束、计算动能和势能函数、确定拉格朗日函数、计算拉格朗日方程、求解运动方程。

这种建模方法能够描述倒立摆的动力学特性,并为后续的控制方法提供基础。

总结:本文介绍了倒立摆的拉格朗日建模方法。

附-倒立摆简介与模型

附-倒立摆简介与模型

倒立(dàolì)摆简介倒立(dàolì)摆系统是理想的自动控制(zìdònɡkònɡzhì)教学实验设备,使用它能全方位的满足自动控制教学的要求。

许多抽象的控制概念如系统稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆直观的表现出来。

倒立摆系统具有模块性好和品种多样化的优点,其基本模块既可是一维直线运动平台或旋转(xuánzhuǎn)运动平台,也可以是两维运动平台。

通过增加角度传感器和一节倒立摆杆,可构成直线单节倒立摆、旋转单节倒立摆或两维单节倒立摆;通过增加两节倒立摆杆和相应的传感器,则可构成两节直线倒立摆和两节旋转倒立摆。

倒立摆的控制技巧和杂技运动员倒立平衡表演技巧有异曲同工之处,极富趣味性,学习自动控制课程的学生通过使用它来验证所学的控制理论和算法(suàn fǎ),加深对所学课程的理解。

由于倒立摆系统机械结构简单、易于设计和制造,成本廉价,因此在欧美发达国家的高等院校,它已成为常见的控制教学设备。

同时由于倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为研究对象,并不断从中发掘出新的控制理论和控制方法。

因此,倒立摆系统也是进行控制理论研究的理想平台。

直线运动型倒立摆外形美观、紧凑、可靠性好。

除了为每个子系列提供模块化的实现方案外,其控制系统的软件平台采用开放式结构,使学生建立不同的模型,验证不同的控制算法,供不同层次的学生进行实验和研究。

由于采用了运动控制器和伺服电机进行实时运动控制,以及齿型带传动,固高公司的倒立摆系统还是一个典型的机电一体化教学实验平台,可以用来进行各种电机拖动、定位和速度跟踪控制实验,让学生理解和掌握机电一体化产品的部件特征和系统集成方法。

一. 系统(xìtǒng)组成及参数:倒立摆系统由水平移动的小车及由其支撑的单节倒立摆构成(gòuchéng)。

倒立摆模型

倒立摆模型

直线一级倒立摆控制方法按照工作原理可将直线一级倒立摆实验装置抽象成小车和摆杆组成的系统,其中小车可沿固定导轨左右移动,摆杆可绕小车与摆杆之间的铰接点自由转动,如图1所示。

图1. 直线一级倒立摆原理控制系统依据读取到的小车位置以及摆杆角度信号,通过控制作用在小车上的水平力,使其沿固定导轨左右移动,可以使得摆杆始终处于垂直向上这样一个临界稳定位置,实验装置具体参数如表2所示。

小车质量1.096M kg = 摆杆质量0.109m kg = 小车与导轨间的阻力系数 0.1/(/)b N m s =摆杆/小车铰接点与摆杆质心的距离0.25l m =摆杆绕其质心的转动惯量20.0034I kg m =⋅备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。

表1. 实验装置参数现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上述控制算法的有效性;6)通过上机实验观察其实际控制效果。

1. 建立直线一级倒立摆的运动方程对小车和摆杆进行受力分析如图2,其中,N 和P 为小车与摆杆相互作用力的水平和垂直两个方向的分量。

图2. 小车与摆杆的受力分析小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:(1)摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力分析,可以得到下式:即, (2)带入方程(1)得:(3)再由摆杆的垂直方向的受力分析,得到下式:即,(4) 又由摆杆对质心的力矩平衡方程有:(5)MNFPa. 小车的受力分析gb. 摆杆的受力分析由于,所以等式左边有负号。

最后,整理方程 (4),(5),可得:(6)由于,则有. 用u代表输入,也就是作用在小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程(7)2.系统的状态空间方程为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:则摆杆角度和小车位移的传递函数为:将表1中参数带入上式,则得到摆杆角度和小车位移的传递函数为:摆杆角度和小车加速度之间的传递函数为:将表1中参数带入上式,则得:摆杆角度和小车所受外界作用力的传递函数:将表1中参数带入上式,则得:以外界作用力作为输入的系统的状态空间表达式为:+将表1中参数带入上式,则得以外界作用力作为输入的系统的状态空间表达式:+以小车加速度作为输入的系统的状态空间表达式为:+将表1中参数带入上式,则得以小车加速度作为输入的系统的状态空间表达式:+3.系统的能控和能观性分析对输入为加速度输出为摆杆与竖直方向的角度的夹角时的系统进行分析,则:,,,AB=,,,,Rank [B AB ]==4Rank因此,系统是可控的,同时是可观测的。

基于倒立摆顺摆控制的建模与仿真研究

基于倒立摆顺摆控制的建模与仿真研究

基于倒立摆顺摆控制的建模与仿真研究基于倒立摆顺摆控制的建模与仿真研究倒立摆是一种经典的非线性控制系统,其稳定性分析和控制方法一直是控制理论研究的热点。

本文将介绍基于倒立摆顺摆控制的建模与仿真研究。

一、倒立摆系统建模倒立摆系统由一个质量为m、长度为l的杆和一个质量为M的小车组成,杆与小车通过一根无摩擦的轴连接。

小车可以在水平方向上移动,杆可以在竖直方向上旋转。

系统的状态变量为小车的位置x、小车的速度v、杆的角度θ和杆的角速度ω。

根据牛顿第二定律和杆的运动方程,可以得到系统的动力学方程:m x'' = F - m g sinθ - m l θ'^2M x'' = F + m l θ'' cosθ - m l θ'^2 sinθl θ'' + g sinθ = x'' cosθ其中,F为小车受到的外力,g为重力加速度。

二、顺摆控制顺摆控制是一种基于状态反馈的控制方法,其目的是使倒立摆系统保持在竖直方向上。

顺摆控制器的设计需要满足系统的稳定性和性能要求。

首先,需要将系统的动力学方程转化为状态空间形式:x' = Ax + Buy = Cx其中,x为状态向量,u为控制输入,y为输出向量,A、B和C为系统的矩阵。

然后,可以设计状态反馈控制器:u = -Kx其中,K为状态反馈矩阵。

最后,可以通过极点配置法或线性二次调节法来确定状态反馈矩阵K,以满足系统的稳定性和性能要求。

三、仿真研究为了验证顺摆控制器的有效性,可以进行仿真研究。

使用MATLAB/Simulink软件,可以建立倒立摆系统的仿真模型,并进行控制器的设计和仿真。

首先,需要建立倒立摆系统的仿真模型。

可以使用Simulink中的Simscape Multibody工具箱,将倒立摆系统建模为一个多体动力学系统。

然后,可以添加控制器模块,设计顺摆控制器,并将其与倒立摆系统相连。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。

倒立摆的s函数建模及仿真

倒立摆的s函数建模及仿真

倒立摆的s函数建模及仿真倒立摆是一类普遍存在于现实生活中的控制工程问题,也是机器人控制领域中的典型问题。

为了探究倒立摆的控制方法,需要进行建模和仿真研究。

本文将介绍如何对倒立摆进行s函数建模,并进行仿真研究。

一、倒立摆的建模1. 系统假设倒立摆系统假设为:(1)摆杆质量可以忽略,只考虑质点的重量;(2)摆杆的摩擦系数可以忽略;(3)摆杆的惯性可以忽略。

2. 系统模型假设摆杆长度为L,质点质量为m,摆杆与竖直方向成θ角度,摩擦系数为f,则可得到如下系统模型:mx”=mgLsinθ-fx’+uθ’=x其中,x表示质点距离垂直方向的距离,u是外部输入信号,可用来控制系统。

3. s函数模型根据系统模型,可以进行s函数建模。

将其转化为状态空间的形式,得到如下s函数模型:function [sys,x0,str,ts] = pendulum(t,x,u,flag)switch flag% Initializationcase 0sys = [0 0 1 2 0 1];x0 = [0; 0];str = [];ts = [];% Derivativescase 1sys = [x(2); (u(1)*cos(x(1))-9.8*sin(x(1)))/0.5];% Outputscase 3sys = [x(1)];% Unhandled flagscase {2, 4, 9}sys = [];otherwiseerror(['Unhandled flag = ',num2str(flag)]);end二、倒立摆的仿真倒立摆的仿真可以使用Matlab软件进行实现。

下面介绍具体的仿真过程:1. 创建仿真模型打开Matlab软件,选择“Simulink”工具栏,创建一个新的模型文件。

2. 添加控制器在模型中添加一个控制器,用于产生外部输入信号u。

具体可选择Proportional Integral Derivative(PI D)控制器或者其他控制器。

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法倒立摆是一种经典的控制系统问题,用于研究平衡和控制的稳定性。

拉格朗日建模方法是描述运动系统的一种常用方法。

以下是关于倒立摆拉格朗日建模方法的10条详细描述:1. 倒立摆是由一根可以旋转的杆(摆杆)和一个可以在摆杆上移动的质点(摆点)组成。

我们的目标是使摆点在垂直位置保持平衡。

2. 拉格朗日建模方法利用拉格朗日方程来描述运动系统中的动能和势能之间的关系。

这个方法非常适用于复杂的系统,因为它能够自然地引入约束条件和非线性项。

3. 拉格朗日方程可以写成以下形式:L = T - V,其中 L 是拉格朗日函数,T 是系统的动能,V 是系统的势能。

4. 在倒立摆的拉格朗日建模中,我们需要首先确定系统的广义坐标。

对于倒立摆,一个广义坐标可以是摆杆的角度θ。

5. 然后,我们需要计算系统的动能和势能。

摆杆的动能可以写成 T_1 = (1/2) * m * L^2 * (dθ/dt)^2,其中 m 是摆杆的质量,L 是摆杆的长度,dθ/dt 是摆杆角度的导数。

6. 摆点的动能可以写成 T_2 = (1/2) * M * (dx/dt)^2,其中 M 是摆点的质量,dx/dt 是摆点在摆杆上移动的速度。

7. 摆杆的势能可以写成V_1 = (1/2) * m * g * L * cos(θ),其中 g 是重力加速度。

8. 摆点的势能可以写成V_2 = M * g * x * cos(θ),其中 x 是摆点在摆杆上的位置。

9. 将动能和势能代入拉格朗日方程中,我们可以得到系统的拉格朗日函数 L = T - V。

10. 我们可以使用拉格朗日方程描述系统的运动方程,例如:d/dt(∂L/∂(dθ/dt)) - ∂L/∂θ = 0 和 d/dt(∂L/∂(dx/dt)) - ∂L/∂x = 0。

通过求解这些方程,我们可以得到倒立摆系统的运动行为和稳定性分析的结果。

倒立摆的拉格朗日建模方法是一种用于描述运动系统的常用方法。

(完整版)倒立摆建模

(完整版)倒立摆建模

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为得 (3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩&&&&&& sin cos ..........(1)y x J F l F l θθθ=-&&2222(sin ) (2)(cos ).........(3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ&⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

倒立摆拉格朗日建模方法(一)

倒立摆拉格朗日建模方法(一)

倒立摆拉格朗日建模方法(一)倒立摆拉格朗日建模介绍倒立摆是一种经典的控制系统问题,它常用于教育和研究领域。

拉格朗日建模是一种用来描述力学系统动力学的数学方法。

本文将详细介绍倒立摆的拉格朗日建模方法,包括各种方法的详细说明。

方法一:拉格朗日方程1.第一步:定义坐标系。

倒立摆通常使用极坐标系,其中θ表示摆杆的角度。

2.第二步:确定系统的势能能量。

根据重力势能的定义,势能能量可以表示为mgL(1 - cosθ),其中m是摆杆的质量,g是重力加速度,L是摆杆的长度。

3.第三步:确定动能能量。

动能能量可以表示为2θ2,其中L是摆杆的长度。

4.第四步:应用拉格朗日方程。

拉格朗日方程可以表示为d/dt(∂T/∂θ̇) - ∂T/∂θ = ∂V/∂θ,其中T是系统的总动能,V 是系统的总势能。

通过求解拉格朗日方程,可以得到系统的运动方程。

方法二:线性化方法1.第一步:使用欧拉-拉格朗日方程。

欧拉-拉格朗日方程可以表示为∑(∂L/∂qi)d q̇i = q之力 - q之耗散,其中L是拉格朗日函数,qi是系统的广义坐标,q i̇是广义速度。

2.第二步:线性化倒立摆方程。

在小角度下,可以通过将sinθ近似为θ,将cosθ近似为1来线性化倒立摆方程。

3.第三步:线性化的拉格朗日方程可以简化为M q̇ = τ - C q̇ -Gq,其中M是质量矩阵,q̇是广义加速度,τ是外部输入力矩,C是速度相关的阻尼矩阵,G是重力矩阵。

方法三:控制方法1.第一步:设计控制器。

倒立摆系统可以用PID控制器来控制。

PID控制器包括比例部分、积分部分和微分部分,可以通过调整各个部分的参数来实现系统的稳定控制。

2.第二步:实施控制。

将PID控制器的输出作为输入力矩τ,通过不断调整输入力矩来控制倒立摆的角度。

3.第三步:闭环控制。

通过实施闭环控制,将实际角度与目标角度进行比较,并根据误差调整控制器的输出,以实现系统的精确控制。

方法四:倒立摆模拟1.第一步:选择合适的模拟软件。

倒立摆建模

倒立摆建模

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lgsin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32m l J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

倒立摆建模

倒立摆建模

系统建模系统建模可以分为两种:机理建模和实验建模.实验建模就是通过在研究对象上加上一系列的研究者先确定的输入信号,鼓励研究对象并通过传感器的检测其可观测的输出,应用数学手段建立起系统输入---输出关系.这里包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容.机理建模就是在了解研究对象在运动规律根底上,通过物理,化学的知识和数学手段建立起的系统内部的输入输出状态关系.系统的建模原那么:1) 建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择适宜的分析方法。

2) 按照所选分析法,确定相应的数学模型的形式;3) 根据允许的误差范围,进行准确性考虑,然后建立尽量简化的合理的数学模型。

小车—倒立摆系统是各种控制理论的研究对象。

只要一提小车—倒立摆系统,一般均认为其数学模型也已经定型。

事实上,小车—倒立摆的数学模型与驱动系统有关,常见到的模型只是对应于直流电机的情况,如果执行机构是交流伺服电机,就不是这个模型了。

本文主要分析由直流电机驱动的小车—倒立摆系统。

小车倒立摆系统是检验控制方式好坏的一个典型对象,其特点是高阶次、不稳定、非线性、强耦合,只有采取有效的控制方式才能稳定控制.在忽略空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车突然均匀质杆组成的系统,如以下图所示:图中F是施加于小车的水平方向的作用力,x是小车的位移,φ是摆的倾斜角。

假设不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,通过小车的水平运动,使倒摆保持在垂直的位置。

即控制系统的状态参数,以保持摆的倒立稳定。

M 小车的质量 0.5Kgm 摆杆的质量 0.2KgB 小车的摩擦力 0.1N/m/secL 摆杆转动轴心到杆之质心的长度 0.3mI 摆杆惯量 0.006kg×m2T 采样频率 0.005secF 加在小车上的力X 小车位置θ摆杆与垂直方向向下的夹角φ摆杆与垂直方向向上的夹角倒立摆系统最终的控制目的是使倒立摆这样一个不稳定的被控对象,通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统,单节倒立摆系统的控制模型是目前国内外广泛采用的模型是研究各种控制算法的根底。

倒立摆数学模型(word文档良心出品)

倒立摆数学模型(word文档良心出品)

1单级倒立摆的数学模型的建立:小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。

电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。

导轨截面成H 型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。

轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。

图1 单级倒立摆系统数学模型倒立摆系统的模型参数如下[]:M 小车质量 1.096Kg ;m 摆杆质量 0.109Kgb 小车摩擦系数 0.1N/m /secI 摆杆质量 0.0034kg*m*ml 摆杆转动轴心到杆质心的长度 0.25mT 采样频率 0.005s下面N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

分析小车水平方向所受的合力,可得到方程为:N x b F x M --=&&& (1)由摆杆水平方向的受力进行分析可以得到下面等式:()θθθθθsin cos sin 222&&&&&ml ml x m N l x dtd m N -+=+= (2) 把这个等式代入(1)式中,得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2&&&& (3)为了推出系统的第二个运动方程,对摆杆垂直方向的合力进行分析,得到下面的方程:()θcos 22l dtd m mg P =- θθθθcos sin 2&&ml ml mg P --=- (4)力矩平衡方程如下:θθ&&I Nl Pl =--cos sin (5)方程中力矩的方向,由于φπθ+=,θφθφsin sin ,cos cos -=-=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程: ()θθθcos sin 2x ml mgl ml I &&&&-=++ (6)假设φ与1(单位是弧度)相比很小,即1〈〈φ,则可进行近似处理:0,sin ,1cos 2=⎪⎭⎫⎝⎛-=-=dt d θφθθ用u 代表被控对象的输入力,线性化后两个运动方程如下:()()⎪⎩⎪⎨⎧=-++=-+u ml x b x m M x ml mgl ml I φφφ&&&&&&&&&2(7)对方程(7)进行拉普拉斯变换,得到:()()⎪⎩⎪⎨⎧=-++=-+)()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I φφφ (8)(推到时假设初始条件为0)则,摆杆角度和小车位移的传递函数为: mgl s ml I mls s X s -+=222)()()(φ将上述参数代入,摆杆角度和小车位移的传递函数为:26705.00102125.002725.0)()(22-=s s s X s φ摆杆角度和小车加速度之间的传递函数为: ()mgl s ml I mls A s -+=22)()(φ将上述参数代入,摆杆角度和小车加速度之间的传递函数为:26705.00102125.002725.0)()(22-=s s s A s φ摆杆角度和小车所受外界作用力的传递函数:22432222()()()()()()ml s s q b I ml M m mgl bmgl F s s s s s q q qq M m I ml m l φ=+++--⎡⎤=++-⎣⎦将上述参数代入,摆杆角度和小车所受外界作用力的传递函数:32()2.35655()0.088316727.9169 2.30942s s F s s s s φ=+-- 以外界作用力作为输入的系统状态空间表达式为:222222222201000()00()()()00010()00()()()x x I ml b m gl I ml x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mml φφφφ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎢⎥⎢⎥++++++⎣⎦⎣⎦&&&&&&&&1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&& 将上述参数代入,以外界作用力作为输入的系统状态空间表达式为:0100000.08831670.62931700.8831670001000.23565527.82850 2.356551000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&&&&&&&&&& 以小车加速度作为输入的系统系统状态空间表达式:'0100000001000103300044x x x x u gl l φφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦&&&&&& '1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&& 将上述参数代入,以小车加速度作为输入的系统系统状态空间表达式:0100000001000100029.4031000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&&&&&&&&&& 2系统的可控性、可观测性分析对于连续时间系统:Bu AX X+=& Du CX y +=系统状态完全可控的条件为:当且仅当向量组B A AB B n 1,...,,-是线性无关的,或n ×n 维矩阵[]B A AB B n 1-M ΛM M 的秩为n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统建模系统建模可以分为两种:机理建模和实验建模.实验建模就是通过在研究对象上加上一系列的研究者先确定的输入信号,激励研究对象并通过传感器的检测其可观测的输出,应用数学手段建立起系统输入---输出关系.这里包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容.机理建模就是在了解研究对象在运动规律基础上,通过物理,化学的知识和数学手段建立起的系统内部的输入输出状态关系.系统的建模原则:1) 建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择合适的分析方法。

2) 按照所选分析法,确定相应的数学模型的形式;3) 根据允许的误差范围,进行准确性考虑,然后建立尽量简化的合理的数学模型。

小车—倒立摆系统是各种控制理论的研究对象。

只要一提小车—倒立摆系统,一般均认为其数学模型也已经定型。

事实上,小车—倒立摆的数学模型与驱动系统有关,常见到的模型只是对应于直流电机的情况,如果执行机构是交流伺服电机,就不是这个模型了。

本文主要分析由直流电机驱动的小车—倒立摆系统。

小车倒立摆系统是检验控制方式好坏的一个典型对象,其特点是高阶次、不稳定、非线性、强耦合,只有采取有效的控制方式才能稳定控制.在忽略空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车忽然均匀质杆组成的系统,如下图所示:图中F是施加于小车的水平方向的作用力,x是小车的位移,φ是摆的倾斜角。

若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,通过小车的水平运动,使倒摆保持在垂直的位置。

即控制系统的状态参数,以保持摆的倒立稳定。

M 小车的质量 0.5Kgm 摆杆的质量 0.2KgB 小车的摩擦力 0.1N/m/secL 摆杆转动轴心到杆之质心的长度 0.3mI 摆杆惯量 0.006kg×m2T 采样频率 0.005secF 加在小车上的力X 小车位置θ摆杆与垂直方向向下的夹角φ摆杆与垂直方向向上的夹角倒立摆系统最终的控制目的是使倒立摆这样一个不稳定的被控对象,通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统,单节倒立摆系统的控制模型是目前国内外广泛采用的模型是研究各种控制算法的基础。

该系统由计算机,运动控制卡,伺服机构,倒立摆,本体和光电码盘等几部分组成了一个闭环系统。

如图所示:光电码盘1将小车的位移速度信号反馈给伺服驱动器和运动控制卡,摆杆的位置,速度信号由光电码盘2也反馈回运动控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动,移动速度,加速度等。

)并实现该控制决策,产生相应的控制量,使电机带动小车,保持平衡。

1.结构参数倒立摆是不稳定的,如果没有适当的控制力作用在它的上面,它将随时可能向任何方向倾倒。

这里只考虑二维问题,即认为倒立摆只在图3所示平面内运动。

控制力F作用于小车上。

摆杆长度为l,质量为m,小车的质量为M,小车瞬时位移为x,摆杆瞬时位置为(x+2L*sinφ),在外力的作用下,系统产生运动。

假设摆杆的重心位于其几何中心。

设输入为作用力F,输出为摆角φ。

2.系统的运动方程控制要求:在摆受到外力F时,调节小车的位置x,保持摆杆平衡。

图3 小车受力分析图 图4 一级摆受力分析图 应用牛顿力学可推导出该倒立摆系统的运动学方程⎪⎪⎩⎪⎪⎨⎧=----=--+=-=+θI Nlcos θPlsin θcos θθml sin θθml mg P sin θθml cos θθml x m N x b F N x M 2注意:此方程中力矩的方向,由于ϕπθ+=,ϕθcos cos -=,ϕθsin sin -=,故等式前有负号.约去P 和N,得到方程:F ml ml x b xm M =-+++θθθθsin cos )(2 (1) θθcos sin )(xml mgl x m M -=++ (2) 3. 线性化设ϕπθ+=假设ϕ与1(单位是弧度) 相比很小,即ϕ远远小于1,则可以进行近似处理0,sin ,1cos 2=⎪⎭⎫ ⎝⎛-=-=dt d θϕθθ 设u 代表被控对象的输入力F ,方程(1) 和方程(2)经过线性化后⎩⎨⎧=-++=-+u ml x b x m M x ml mgl ml I ϕϕϕ)()(2 (3) 其中 231ml I = 因此倒立摆的状态方程为:⎪⎪⎩⎪⎪⎨⎧+-+-=+-++-=F m M m M mg x F m M l m M l m M g 4443)4(3)4()(3θθθ 4. 单节倒立摆传递函数的推导对式(3) 进行拉氏变换,得到:⎩⎨⎧=-++=-+)()()()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I ϕϕϕ (4) 初始条件为0 时,由于输出角度为φ,求解方程组的第一个方程,可以得到)()()(22s s g mlml I s X ϕ⎥⎦⎤⎢⎣⎡-+= 把上式代入到(4)中的第二个方程中,得到:)()()()()()()(22222s U s s ml s s s g mlml I b s s s g ml ml I m M =-⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡-++ϕϕϕ 整理后得到:den num qbmgl s q mgl m M s q ml I b s s q ml s U s =-+-++=)()()()(223ϕ 其中])())([(22ml ml I m M q -++= 5. 状态空间方程的推导系统的状态方程:⎩⎨⎧+=+=DuCX y Bu AX X其中: A 为状态矩阵。

B 为输入矩阵。

C 为输出矩阵。

D 为前馈矩阵。

方程组(3) 求解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++++++-==+++++++++-==u Mml m M I ml Mml m M I m M mgl x Mml m M I mbl u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 2222222222)()()()()()()()(ϕϕϕϕϕ 整理后,系统状态空间方程为u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I b ml I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010ϕϕϕϕu x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001ϕϕϕ 由直线一级倒立摆的数学模型式可知, 被控对象是个单输入力(F) 、双输出(小车的位移, 摆杆的角度) 的对象。

6.系统稳定性分析一级倒立摆系统的特征方程为det{λI-A}=0,经过Matlab 计算得到系统开环特征根为:λ(A)=(0,5.5651,-0.1428,-5.6041)系统有一个极点在复平面的右半平面上,有一个极点在原点,因此系统是不稳定的。

由一级倒立摆系统线性状态方程得到:rank[B AB A 2B A 3B]=4rank[C CA CA 2 CA 3]=4所以一级倒立摆是能控且能观测的。

对于一级倒立摆状态方程,对A 矩阵进行奇异值分解,得到A 矩阵的奇异值阵: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==000001000001.100002996.31)(A svd W 定义:被控对象控制的难易程度,即系统状态矩阵最大奇异值的到数称为相对能控度。

A 矩阵的奇异值为W 对角线上的值,所以一级倒立摆的相对能控度,03195.02996.311==δ,δ越小系统的控制难度越高。

PID 控制考虑角度的PID 控制对于一级倒立摆,由前面式子及系统数据,得到数学模型如下:u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5455.408182.1001818.314545.00100006727.21818.000010ϕϕϕϕ u x x y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=ϕϕ 01000001 系统结构框图如图所示:图1 PID 控制框图图中KD(S)是控制器的传递函数,G(S)是一级倒立摆的传递函数。

考虑到r(s)=0,结构图可以变换成:图2 输入为0时系统框图该系统的输出为: )())(())(())(()())(())((1)()()(1)()(s f num numPID den denPID denPID num s f den denPID num numPID den nums f s G s KD s G s y +=+=+=其中,num —被控对象传递函数的分子项den 一被控对象传递函数的分母项numPID —PID 控制器传递函数的分子项denPID —PID 控制器传递函数的分母项被控对象的传递函数是:den num s qbmgl s q mgl m M s q ml I b s s q ml s U s =-+-++=23242)()()()(φ 其中, ])())([(22ml ml I m M q -++=PID 控制器的传递函数为: denPIDnumPID s K s K s K s K K s K s KD I P D I P D =++=++=2)( 在工程实际当中,常采用工程整定法,它们是在理论基础上通过实践总结出来的。

这些方法通过并不复杂的经验便能迅速获得调节器的近似最佳整定参数,因而在工程中得到广泛应用。

具体步骤如下:(1)置调节器积分时间T i 到最大值,微分时间T d 为0,比例带置较大值,使系统投入运行。

(2)待系统运行稳定后,逐渐增大K p ,直到系统出现等幅震荡过程,记下此时的比例带并计算两个波峰间的时间T cr (临界震荡周期)。

利用δcr 和T cr ,的值,按照下面给出的经验公式计算:对于PID 调节器:8;2;67.11cr d cr i cr p T T T T K ===δ 得:K P =40 K I =1 K D =10系统响应曲线如图所示: control 为受控系统,nature 为自然状态:图3 PID 控制一级倒立摆相应曲线从上图中可以看出,进过PID 控制后,倒立摆在1.5达到稳定状态,系统超调量很小,而且没有稳态误差,该方法对单级倒立摆的控制可以很容易实现。

相关文档
最新文档