近三年全国中考数学试题分类汇编汇编——二次函数
中考数学专题题库∶二次函数的综合题及详细答案
抛物线的解析式为 y x2 2x 3 .
2 连接 BC 交抛物线对称轴于点 P,此时 PA PC 取最小值,如图 1 所示.
当 y 0时,有 x2 2x 3 0 , 解得: x1 1 , x2 3 ,
点 B 的坐标为 3, 0 .
抛物线的解析式为 y x2 2x 3 (x 1)2 4 ,
2.抛物线 y=ax2+bx﹣3(a≠0)与直线 y=kx+c(k≠0)相交于 A(﹣1,0)、B(2,﹣3) 两点,且抛物线与 y 轴交于点 C. (1)求抛物线的解析式;
(2)求出 C、D 两点的坐标 (3)在第四象限抛物线上有一点 P,若△ PCD 是以 CD 为底边的等腰三角形,求出点 P 的 坐标.
解得: m 2 , 3
点
M
的坐标为
1,
2 3
.
综上所述:当
MAC
是直角三角形时,点
M
的坐标为
1,1
、
1,
2
、
1,
8 3
或
1,
2 3
.
【点睛】
本题考查待定系数法求二次 ( 一次 ) 函数解析式、二次 ( 一次 ) 函数图象的点的坐标特征、
轴对称中的最短路径问题以及勾股定理,解题的关键是: 1 由点的坐标,利用待定系数
【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(1+ 2 ,﹣2).
【解析】
【分析】
(1)把 A(﹣1,0)、B(2,﹣3)两点坐标代入 y=ax2+bx﹣3 可得抛物线解析式. (2)当 x=0 时可求 C 点坐标,求出直线 AB 解析式,当 x=0 可求 D 点坐标. (3)由题意可知 P 点纵坐标为﹣2,代入抛物线解析式可求 P 点横坐标.
2024年中考数学真题分类汇编(全国通用)(第一期)专题15 二次函数的实际应用(21题)(原卷版)
专题15二次函数的实际应用(21题)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是()A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,23cm EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是()A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背背景◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.景1◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫ ⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =-+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度.21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).。
2022年中考数学题分类汇编——二次函数应用题(二)含答案
2022年年年年年年年年年年——年年年年年年年年年年1.(2022·辽宁省铁岭市)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?2.(2022·山东省临沂市)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距x2+bx+c.离x(m)具备二次函数关系,其解析式为y=−160(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离ℎ最大,最大值是多少?3. (2022·辽宁省)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?4. (2022·内蒙古自治区包头市)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y(单位:千克)与x 之间的函数关系式为y ={12x,0≤x ≤10−20x +320,10<x ≤16,草莓价格m(单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x ≤12时,草莓价格m 与x 之间的函数关系式; (3)试比较第8天与第10天的销售金额哪天多?5.(2022·广西壮族自治区南宁市)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.6.(2022·广西壮族自治区贺州市)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?7.(2022·江苏省无锡市)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?8.(2022·河南省)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x−ℎ)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.参考答案1.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由表中数据得:{20x +b =6622x +b =60,解得:{k =−3b =126,∴y 与x 之间的函数关系式为y =−3x +126;(2)设批发商每日销售这批山野菜所获得的利润为w 元,由题意得:w =(x −18)y =(x −18)(−3x +126)=−3x 2+180x −2268=−3(x −30)2+432,∵市场监督部门规定其售价每千克不高于28元, ∴18≤x ≤28, ∵−3<0,∴当x <30时,w 随x 的增大而增大, ∴当x =28时,w 最大,最大值为420,∴当每千克山野菜的售价定为28元时,批发商每日销售这批山野菜所获得的利润最大,最大利润为420元. 2.解:(1)作BE ⊥y 轴于点E , ∵OA =65m ,着陆坡AC 的坡角为30°,AB =100m ,∴点A 的坐标为(0,65),AE =50m ,BE =50√3m , ∴OE =OA −AE =65−50=15(m), ∴点B 的坐标为(50√3,15),∵点A(0,65),点B(50√3,15)在二次函数y =−160x 2+bx +c 的图象上,∴{c=65−160×(50√3)2+50√3b+c=15,解得{b=√32c=65,即b的值是√32,c的值是65;(2)①设x关于t的函数解析式是x=kt+m,因为点(0,0),(5,50√3)在该函数图象上,∴{m=05k+m=50√3,解得{k=10√3m=0,即x关于t的函数解析式是x=10√3t;②设直线AB的解析式为y=px+q,∵点A(0,65),点B(50√3,15)在该直线上,∴{q=6550√3p+q=15,解得{p=−√33q=65,即直线AB的解析式为y=−√33x+65,则ℎ=(−160x2+√32x+65)−(−√33x+65)=−160x2+5√36x,∴当x=−5√362×(−160)=25√3时,ℎ取得最值,此时ℎ=1254,∵25√3<50√3,∴x=25√3时,ℎ取得最值,符合题意,将x=25√3代入x=10√3t,得:25√3=10√3t,解得t=2.5,即当t为2.5时,运动员离着陆坡的竖直距离ℎ最大,最大值是1254m.3.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由所给函数图象可知:{14k +b =22016k +b =180,解得:{k =−20b =500,故y 与x 的函数关系式为y =−20x +500; (2)∵y =−20x +500,∴w =(x −13)y =(x −13)(−20x +500) =−20x 2+760x −6500 =−20(x −19)2+720, ∵−20<0,∴当x <19时,w 随x 的增大而增大, ∵13≤x ≤18,∴当x =18时,w 有最大值,最大值为700, ∴售价定为18元/件时,每天最大利润为700元. 4.解:(1)∵当10≤x ≤16时,y =−20x +320, ∴当x =14时,y =−20×14+320=40(千克), ∴第14天小颖家草莓的日销售量是40千克.(2)当4≤x ≤12时,设草莓价格m 与x 之间的函数关系式为m =kx +b , ∵点(4,24),(12,16)在m =kx +b 的图象上, ∴{4k +b =2412k +b =16, 解得:{k =−1b =28,∴函数解析式为m =−x +28. (3)当0≤x ≤10时,y =12x , ∴当x =8时,y =12×8=96, 当x =10时,y =12×10=120; 当4≤x ≤12时,m =−x +28, ∴当x =8时,m =−8+28=20, 当x =10时,m =−10+28=18∴第8天的销售金额为:96×20=1920(元),第10天的销售金额为:120×18=2160(元), ∵2160>1920, ∴第10天的销售金额多.5.解:(1)设函数解析式为y =kx +b ,由题意得: {60k +b =20080k +b =100, 解得:{k =−5b =500,∴y =−5x +500,当y =0时,−5x +500=0, ∴x =100,∴y 与x 之间的函数关系式为y =−5x +500(50<x <100); (2)设销售利润为w 元,w =(x −50)(−5x +500)=−5x 2+750x −25000=−5(x −75)2+3125, ∵抛物线开口向下, ∴50<x <100,∴当x =75时,w 有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元. 6.解:(1)根据题意,得y =200−12×4(x −48) =−2x +296,∴y 与x 之间的函数关系式:y =−2x +296; (2)根据题意,得W =(x −34)(−2x +296) =−2(x −91)2+6498, ∵a =−2<0,∴抛物线开口向下,W 有最大值, 当x =91时,W 最大值=6498,答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元. 7.解:(1)根据题意知:较大矩形的宽为2xm ,长为24−x−2x3=(8−x) m ,∴(x +2x)×(8−x)=36, 解得x =2或x =6,经检验,x =6时,3x =18>10不符合题意,舍去,∴x =6,答:此时x 的值为2m ;(2)设矩形养殖场的总面积是ym 2,∵墙的长度为10,∴0<x ≤103,根据题意得:y =(x +2x)×(8−x)=−3x 2+24x =−3(x −4)2+48, ∵−3<0,∴当x =103时,y 取最大值,最大值为−3×(103−4)2+48=1403(m 2), 答:当x =103时,矩形养殖场的总面积最大,最大值为1403m 2.8.解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y =a(x −5)2+3.2,将(0,0.7)代入得: 0.7=25a +3.2,解得a =−110,∴y =−110(x −5)2+3.2=−110x 2+x +710,答:抛物线的表达式为y =−110x 2+x +710;(2)当y =1.6时,−110x 2+x +710=1.6,解得x =1或x =9,∴她与爸爸的水平距离为3−1=2(m)或9−3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m .。
中考数学专题10二次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)
专题10.二次函数一、单选题1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+C .()2351y x =--D .()2311y x =+-2.(2021·四川凉山彝族自治州·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论中不正确的是( )A .0abc >B .函数的最大值为a b c -+C .当31x -时,0yD .420a b c -+<3.(2021·四川达州市·中考真题)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( ) A .1个 B .2个 C .3个 D .4个4.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大5.(2021·四川眉山市·中考真题)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---6.(2021·上海中考真题)将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变7.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2-8.(2021·天津中考真题)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .39.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个10.(2021·山东泰安市·中考真题)将抛物线223y x x =--+的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )A .(2,2)-B .(1,1)-C .(0,6)D .(1,3)-11.(2021·四川资阳市·中考真题)已知A 、B 两点的坐标分别为()3,4-、()0,2-,线段AB 上有一动点(),M m n ,过点M 作x 轴的平行线交抛物线2(1)2y a x =-+于()11,P x y 、()22,Q x y 两点.若12x m x <≤,则a 的取值范围为( )A .342a -≤<-B .342a -≤≤-C .302a -≤<D .302a -<< 12.(2021·四川泸州市·中考真题)直线l 过点(0,4)且与y 轴垂直,若二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,且其对称轴在y 轴右侧,则a 的取值范围是( )A .a >4B .a >0C .0<a ≤4D .0<a <413.(2021·浙江中考真题)已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S P AB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当12221x x ->->时,12S S >;④当12221x x ->+>时,12S S <.其中正确结论的个数是( )A .1B .2C .3D .414.(2020·四川广安市·中考真题)二次函数y=ax 2十bx+c (a ,b ,c 为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x 轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①0abc <;②0a b c -+>;③c -4a=1;④24b ac >;⑤21am bm c ++≤(m 为任意实数).其中正确的有( )A .2个B .3个C .4个D .5个15.(2020·新疆中考真题)二次函数y =ax 2+bx+c 的图象如下左图所示,则一次函数y =ax+b 和反比例函数c y x=在同一平面直角坐标系中的图象可能是( ) A . B . C . D .16.(2020·山东济南市·中考真题)已知抛物线y =x 2+(2m ﹣6)x +m 2﹣3与y 轴交于点A ,与直线x =4交于点B ,当x >2时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若3t ≥-,则m 的取值范围是( )A .m ≥32B .32≤m ≤3C .m ≥3D .1≤m ≤317.(2020·辽宁阜新市·中考真题)已知二次函数 2y x 2x 4=-++ ,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向下B .图象的顶点坐标是 ()13,C .当 x 1<时,y 随x 的增大而减少D .图象与x 轴有唯一交点18.(2020·四川中考真题)已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( ) (1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是﹣34<m <0. A .1 B .2 C .3 D .419.(2020·山东日照市·中考真题)如图,二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为直线x =﹣1,下列结论:①abc <0;②3a <﹣c ;③若m 为任意实数,则有a ﹣bm ≤am 2+b ; ④若图象经过点(﹣3,﹣2),方程ax 2+bx +c +2=0的两根为x 1,x 2(|x 1|<|x 2|),则2x 1﹣x 2=5.其中正确的结论的个数是( ) A .4个 B .3个 C .2个 D .1个20.(2020·辽宁铁岭市·)如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244+<a b ac ,④30a c +<.正确的个数是( ) A .1 B .2 C .3 D .421.(2020·四川绵阳市·中考真题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.B.C.D.7米22.(2020·云南昆明市·中考真题)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=23m+D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时,y1<y223.(2020·辽宁丹东市·中考真题)如图,二次函数2y ax bx c=++(0a≠)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(1,0)-,点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线2x=,有以下结论:①0abc>;②若点11,2M y⎛⎫-⎪⎝⎭,点27,2N y⎛⎫⎪⎝⎭是函数图象上的两点,则12y y<;③3255a-<<-;④ADB∆可以是等腰直角三形.其中正确的有()A.1个B.2个C.3个D.4个24.(2020·贵州毕节市·中考真题)已知2y ax bx c=++()0a≠的图象如图所示,对称轴为直线2x=,若1x,2x是一元二次方程20ax bx c++=()0a≠的两个根,且12x x<,110x-<<,则下列说法正确的是()A.12x x+<B.245x<<C.240b ac-<D.0ab>25.(2020·内蒙古呼和浩特市·中考真题)关于二次函数216274y x x a=-++,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点()4,5,则5a=-B.当12x=时,y有最小值9a-C .2x =对应的函数值比最小值大7D .当0a <时,图象与x 轴有两个不同的交点26.(2020·四川宜宾市·中考真题)函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0),顶点坐标为(-1,n),其中0n >,以下结论正确的是( )①0abc >;②函数2(0)y ax bx c a =++≠在1,2x x ==-处的函数值相等;③函数1y kx =+的图象与的函数2(0)y ax bx c a =++≠图象总有两个不同的交点;④函数2(0)y ax bx c a =++≠在33x -≤≤内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④ 27.(2020·黑龙江齐齐哈尔市·中考真题)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x =1,结合图象给出下列结论:①ac <0;②4a ﹣2b +c >0;③当x >2时,y 随x 的增大而增大;④关于x 的一元二次方程ax 2+bx +c =0有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个28.(2020·湖北随州市·中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①20a b +=;②23c b <;③当ABC是等腰三角形时,a 的值有2个;④当BCD 是直角三角形时,2a =-.其中正确的有( ) A .1个 B .2个 C .3个 D .4个29.(2020·福建中考真题)已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A .若12|1||1|->-x x ,则12y y >B .若12|1||1|->-x x ,则12y y <C .若12|1||1|-=-x x ,则12y y =D .若12y y =,则12x x =30.(2020·湖南长沙市·中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:2p at bt c =++(0,a ≠a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟二、填空题目31.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.32.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.33.(2021·湖北武汉市·中考真题)已知抛物线2y ax bx c =++(a ,b ,c 是常数),0a b c ++=,下列四个结论:①若抛物线经过点()3,0-,则2b a =;②若b c =,则方程20cx bx a ++=一定有根2x =-;③抛物线与x 轴一定有两个不同的公共点;④点()11,A x y ,()22,B x y 在抛物线上,若0a c <<,则当121x x <<时,12y y >.其中正确的是__________(填写序号).34.(2021·四川成都市·中考真题)在平面直角坐标系xOy 中,若抛物线22y x x k =++与x 轴只有一个交点,则k =_______.35.(2021·山东泰安市·中考真题)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0),对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为________(将所有正确结论的序号都填入).36.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.37.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________.38.(2021·安徽中考真题)设抛物线2(1)y x a x a =+++,其中a 为实数.(1)若抛物线经过点(1,)m -,则m =______;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.39.(2021·浙江中考真题)已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当b a的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则b a的值是____. 40.(2020·广西贵港市·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.41.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根;③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.42.(2020·湖北荆州市·中考真题)我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.43.(2020·广东广州市·中考真题)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mm 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.44.(2020·四川内江市·中考真题)已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x ;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)45.(2020·湖北武汉市·中考真题)抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论:①一元二次方程20ax bx c ++=的根为12x =,24x =-;②若点()15,C y -,()2,D y π在该抛物线上,则12y y <;③对于任意实数t ,总有2at bt a b +≤-; ④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号).46.(2020·山东泰安市·中考真题)已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表:下列结论:①0a >;②当2x =-时,函数最小值为6-;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <;④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)47.(2019·四川广元市·中考真题)如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设 4 2 M a b c =++,则M 的取值范围是___.48.(2019·广西贵港市·中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______. 三、解答题49.(2021·安徽中考真题)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.50.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上. (1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.51.(2021·湖北十堰市·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少? (3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.52.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元? (2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?53.(2021·湖南怀化市·中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?54.(2021·湖北黄冈市·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.55.(2021·新疆中考真题)已知抛物线223(0)y ax ax a =-+≠.(1)求抛物线的对称轴;(2)把抛物线沿y 轴向下平移3a 个单位,若抛物线的顶点落在x 轴上,求a 的值;(3)设点()1,P a y ,()22,Q y 在抛物线上,若12y y >,求a 的取值范围.56.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x xy tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上); (2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.57.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.58.(2021·陕西中考真题)已知抛物线228y x x =-++与x 轴交于点A 、B (其中A 在点B 的左侧),与y轴交于点C .(1)求点B 、C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称在y 轴上是否存在点P ,使PCC '△与POB 相似且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由.59.(2021·浙江杭州市·中考真题)在直角坐标系中,设函数21y ax bx =++(a ,b 是常数,0a ≠).(1)若该函数的图象经过()1,0和()2,1两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当,x p q =(p ,q 是实数,p q ≠)时,该函数对应的函数值分别为P ,Q .若2p q +=,求证6P Q +>.60.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?61.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=. (1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.62.(2021·浙江丽水市·中考真题)如图,已知抛物线2:L y x bx c =++经过点(0,5),(5,0)A B -.(1)求,b c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .①求点M 的坐标;②将抛物线L 向左平移(0)m m >个单位得到抛物线1L .过点M 作//MNy 轴,交抛物线1L 于点N .P 是抛物线1L 上一点,横坐标为1-,过点P 作//PE x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若10PE MN +=,求m 的值.63.(2021·江苏扬州市·中考真题)如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于点.()1,0A -、()3,0B ,与y 轴交于点C .(1)b =________,c =________; (2)若点D 在该二次函数的图像上,且2ABDABCSS=,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且APCAPBS S=,直接写出点P 的坐标.64.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+. (1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =,1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.65.(2021·山东泰安市·中考真题)二次函数2()40y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D . (1)求二次函数的表达式;(2)连接BC ,当2DPB BCO ∠=∠时,求直线BP 的表达式; (3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.66.(2021·浙江温州市·中考真题)已知抛物线228y ax ax =--()0a ≠经过点()2,0-.(1)求抛物线的函数表达式和顶点坐标.(2)直线l 交抛物线于点()4,A m -,(),7B n ,n 为正数.若点P 在抛物线上且在直线l 下方(不与点A ,B 重合),分别求出点P 横坐标与纵坐标的取值范围,67.(2021·浙江嘉兴市·中考真题)已知二次函数265y x x =-+-.(1)求二次函数图象的顶点坐标;(2)当14x ≤≤时,函数的最大值和最小值分别为多少? (3)当3t x t +≤≤时,函数的最大值为m ,最小值为n ,m -n=3求t 的值.68.(2021·浙江中考真题)如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.69.(2020·广西贵港市·中考真题)如图,已知抛物线212y x bx c =++与x 轴相交于()6,0A -,()10B ,,与y 轴相交于点C ,直线l AC ⊥,垂足为C .(1)求该抛物线的表达式:(2)若直线l 与该抛物线的另一个交点为D ,求点D 的坐标; (3)设动点()P m n ,在该抛物线上,当45PAC ∠=︒时,求m 的值.70.(2020·山东济南市·中考真题)如图1,抛物线y =﹣x 2+bx +c 过点A (﹣1,0),点B (3,0)与y 轴交于点C .在x 轴上有一动点E (m ,0)(0<m <3),过点E 作直线l ⊥x 轴,交抛物线于点M . (1)求抛物线的解析式及C 点坐标;(2)当m =1时,D 是直线l 上的点且在第一象限内,若△ACD 是以∠DCA 为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设△AEM 的面积为S 1,△MON 的面积为S 2,若S 1=2S 2,求m 的值.71.(2020·山东日照市·中考真题)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.(Ⅰ)求m,n的值以及函数的解析式;(Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;(Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.72.(2020·山东日照市·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.73.(2020·湖北荆门市·中考真题)如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.祝你考试成功!祝你考试成功!。
人教全国各地中考数学分类:二次函数综合题汇编含答案解析
一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【解析】 【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100, 解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC 92,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0);解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7.如图,抛物线22y ax bx =++交x 轴于A (1,0)-,(4,0)B 两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点221(6)()82x x -+=,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出此时点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;点D 坐标为(32),; (2)P 1(0,2); P 2(412,-2);P 3(3412-,-2) ; (3)满足条件的点P 13 132),(13-132). 【解析】【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D 的坐标(2)分两种情况进行讨论,①当AE 为一边时,AE ∥PD,②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P 坐标(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),分情况讨论,①当P 点在y 轴右侧时,②当P 点在y 轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可【详解】解:(1)∵抛物线22y ax bx =++经过A (10)-,,B (40),两点, ∴2016420a b a b -+=⎧⎨++=⎩,解得:12a =-,32b =, ∴抛物线解析式为:213222y x x =-++; 当2y =时,2132222x x -++=,解得:13x =,20x =(舍),即:点D 坐标为(32),.(2)∵A ,E 两点都在x 轴上,∴AE 有两种可能:①当AE 为一边时,AE ∥PD ,此时点P 与点C 重合(如图1),∴1(0,2)P , ②当AE 为对角线时,P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为2-(如图2),把2y =-代入抛物线的解析式,得:2132222x x -++=-, 解得:13412x =,23412x =, ∴P 点的坐标为3+41(2)-,341(2)2-, 综上所述:1(0,2)P ; 2P 3+412)-;3P 341(2)2- . (3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F , 点P 的坐标为(a ,213222a a -++), ①当P 点在y 轴右侧时(如图3),p CQ x a ==,2132(2)22c p PQ y y a a =-=--++=21322a a -, 又∵CQ O FQ P ''∠+∠=18018090CQ P PQC '︒-∠=︒-∠=︒,90CQ O OCQ ''∠+∠=︒∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒,∴COQ Q FP '', ∴'''Q C Q P CO Q F=, ∵Q C CQ a '==,2CO =,Q P PQ '==21322a a -,∴213222'a a a Q F-=,∴'3Q F a =-,∴(3)OQ OF Q F a a ''=-=--3=,CQ =CQ '2222'2313CO OQ +=+= 即13a =,∴点p 139132-), ②当p 点在y 轴左侧时(如图4),此时0a <,2132022a a -++<,CQ =P x =a -, PQ =2-(213222a a -++)=21322a a -, 又∵90CQ O FQ P CQ P PQC '''∠+∠=∠=∠=︒,90CQ O OCQ ''∠+∠=︒, ∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒∴COQ Q FP '',∴'''Q C Q P CO Q F=, ∵Q C CQ a '==-,2CO =,Q P PQ '==21322a a -, ∴213222'a a a Q F--=,∴'3Q F a =-, ∴3()3OQ Q F OF a a ''=-=---=,CQ =CQ '2222'2313CO OQ +=+= 此时13a =P 的坐标为(13913--). 综上所述,满足条件的点P 139132-+),(13-913--). 【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大8.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=1 6-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是43考点:二次函数的实际应用.9.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213. 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,即52=52,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、151296±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH =OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。
中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
二次函数-三年中考数学真题分项汇编(原卷版)
二次函数一、单选题(共0分)1.(2022年浙江杭州)已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图像经过点(1,0);命题①:该函数的图像经过点(3,0);命题①:该函数的图像与x 轴的交点位于y 轴的两侧;命题①:该函数的图像的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( ) A .命题①B .命题①C .命题①D .命题①2.(2022年浙江宁波)点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( ) A .2m >B .32m >C .1m <D .322m <<3.(2020年浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( ) A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -4.(2020年浙江温州)已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =--+上的点,则( ) A .3y <2y <1yB .3y <1y <2yC .2y <3y <1yD .1y <3y <2y5.(浙江衢州2020年)二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是( ) A .向左平移2个单位,向下平移2个单位 B .向左平移1个单位,向上平移2个单位 C .向右平移1个单位,向下平移1个单位 D .向右平移2个单位,向上平移1个单位6.(2022年浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,-5D .-1,57.(2022年浙江温州)已知点(,2),(,2),(,7)A a B b C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( ) A .若0c <,则a c b << B .若0c <,则a b c << C .若0c >,则a c b <<D .若0c >,则a b c <<8.(2020年浙江杭州)设函数y =a (x ﹣h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( ) A .若h =4,则a <0 B .若h =5,则a >0 C .若h =6,则a <0D .若h =7,则a >09.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .110.(浙江杭州2021年)在“探索函数2y ax bx c =++的系数a ,b ,c 与图象的关系”活动中,老师给出了直角坐标系中的四个点:()0,2A ,()10B ,,()3,1C ,()2,3D ,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A .52B .32C .56D .1211.(浙江杭州2021年)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( ) A .212y x x =+和21y x =-- B .212y x x =+和21y x =-+ C .11y x =-和21y x =--D .11y x=-和21y x =-+12.(浙江绍兴2021年)关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值613.(2020年浙江宁波)如图,二次函数y =ax 2+bx+c (a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =﹣1.则下列选项中正确的是( )A .abc <0B .4ac ﹣b 2>0C .c ﹣a >0D .当x =﹣n 2﹣2(n 为实数)时,y≥c14.(2020年浙江杭州)在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,( ) A .若M 1=2,M 2=2,则M 3=0 B .若M 1=1,M 2=0,则M 3=0 C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=015.(2020·浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .16.(浙江湖州2021年)已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S P AB 的面积为2S .有下列结论:①当122x x >+时,12S S >;①当122x x <-时,12S S <;①当12221x x ->->时,12S S >;①当12221x x ->+>时,12S S <.其中正确结论的个数是( ) A .1 B .2C .3D .4二、填空题17.(浙江台州2021年)以初速度v (单位:m/s )从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =vt -4.9t 2,现将某弹性小球从地面竖直向上抛出,初速度为v 1,经过时间t 1落回地面,运动过程中小球的最大高度为h 1(如图1);小球落地后,竖直向上弹起,初速度为v 2,经过时间t 2落回地面,运动过程中小球的最大高度为h 2(如图2).若h 1=2h 2,则t 1:t 2=_____.18.(浙江湖州2021年)已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当ba的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba的值是____.三、解答题19.(2022年浙江湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标; ①求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ①AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.20.(浙江湖州2021年)如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.21.(2020年浙江温州)已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13). (1)求a ,b 的值;(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.22.(2022年浙江宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?23.(浙江宁波2021年中考数学试卷)如图,二次函数()()1y x x a =--(a 为常数)的图象的对称轴为直线2x =.(1)求a 的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.24.(2022年浙江绍兴)已知函数2=-++(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).y x bx c(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.25.(2022年浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.26.(2020年浙江宁波)如图,在平面直角坐标系中,二次函数y =ax 2+4x ﹣3图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是(1,0).(1)求A ,C 两点的坐标,并根据图象直接写出当y >0时x 的取值范围.(2)平移该二次函数的图象,使点D 恰好落在点A 的位置上,求平移后图象所对应的二次函数的表达式.27.(2022年浙江金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:售价x (元/千克)… 2.5 3 3.5 4 …需求量1y (吨) … 7.75 7.2 6.55 5.8 …①该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1.①1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题: (1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.28.(浙江温州2021年)已知抛物线228y ax ax =--()0a ≠经过点()2,0-. (1)求抛物线的函数表达式和顶点坐标.(2)直线l 交抛物线于点()4,A m -,(),7B n ,n 为正数.若点P 在抛物线上且在直线l 下方(不与点A ,B 重合),分别求出点P 横坐标与纵坐标的取值范围,29.(浙江衢州2021年)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.①为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.30.(浙江绍兴2021年)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径4AB=,且点A,B关于y轴对称,杯脚高4DO=,杯底MN在x轴上.CO=,杯高8(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.31.(浙江杭州2021年)在直角坐标系中,设函数21y ax bx =++(a ,b 是常数,0a ≠).(1)若该函数的图象经过()1,0和()2,1两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当,x p q =(p ,q 是实数,p q ≠)时,该函数对应的函数值分别为P ,Q .若2p q +=,求证6P Q +>.32.(浙江金华2021年)某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.33.(2022年浙江杭州)设二次函数212y x bx c =++(b ,c 是常数)的图像与x 轴交于A ,B 两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数1y 的表达式及其图像的对称轴.(2)若函数1y 的表达式可以写成()2122y x h =--(h 是常数)的形式,求b c +的最小值.(3)设一次函数2y x m =-(m 是常数).若函数1y 的表达式还可以写成()()122y x m x m =---的形式,当函数12y y y =-的图像经过点()0,0x 时,求0x m -的值.34.(2020年浙江杭州)在平面直角坐标系中,设二次函数y 1=x 2+bx +a ,y 2=ax 2+bx +1(a ,b 是实数,a ≠0). (1)若函数y 1的对称轴为直线x =3,且函数y 1的图象经过点(a ,b ),求函数y 1的表达式.(2)若函数y 1的图象经过点(r ,0),其中r ≠0,求证:函数y 2的图象经过点(1r,0). (3)设函数y 1和函数y 2的最小值分别为m 和n ,若m +n =0,求m ,n 的值.35.(2022·浙江丽水)如图,已知点()()1122,,,M x y N x y 在二次函数2(2)1(0)y a x a =-->的图像上,且213x x -=.(1)若二次函数的图像经过点(3,1).①求这个二次函数的表达式;①若12y y =,求顶点到MN 的距离;(2)当12x x x ≤≤时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a 的取值范围.。
2022年全国中考数学真题分类汇编专题10:二次函数
3.(2022•广州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是( )
A.a<0
B.c>0
C.当x<﹣2时,y随x的增大而减小
D.当x>﹣2时,y随x的增大而减小
4.(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )
A.2B.3C.4D.5
14.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是( )
A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)
15.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于( )
A.5B.4C.3D.2
16.(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x=﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是( )
A.2个B.3个C.4个D.5个
22.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.1B.2C.3D.4
12.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c x+c的解集为0<x<x1.其中正确结论的个数是( )
初三数学09 二次函数-2024年中考数学真题分项汇编(全国通用)(解析版)
专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<【答案】D【分析】先将抛物线配成顶点式,求出对称轴为1x =,再求出抛物线与x 轴的两个交点坐标为(1,0)-和(3,0),根据开口向上即可判断.【详解】解: 抛物线2223(1)4y x x x =--=--,∴对称轴1x =,顶点坐标为(1,4)-,当0y =时,2(1)40--=x ,解得1x =-或3x =,∴抛物线与x 轴的两个交点坐标为:(1,0)-,(3,0),∴当110x -<<,212x <<,33x >时,213y y y <<,故选:D .【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .4【答案】B【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根,∴△=1-4c =0,解得:c =14.故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.3.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y =(x -1)2+5,∵a =1>0,故抛物线开口向上,故A 错误;顶点坐标为(1,5),故B 错误;该函数有最小值,是小值是5,故C 错误;当1x >时,y 随x 的增大而增大,故D 正确,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A .0b >B .0c <C .0a b c ++>D .30a c +=【答案】D【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-,∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过(30)-,,∴图象经过点(1)0,,∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -【答案】B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限.【详解】解:∵抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限,故选:D .【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.8.(2022·广西玉林)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A 【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤【答案】A【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -,6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,93a ∴-≤-解得13a ≥故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<0【答案】D【分析】根据二次函数的图像和性质作出判断即可.【详解】解:根据图像知,当1x =时,0y a b =+>,故B 选项结论正确,不符合题意,0a < ,0b ∴>,故A 选项结论正确,不符合题意;由题可知二次函数对称轴为12b x a=-=,2b a ∴=-,20a b a a a ∴+=-=->,故B 选项结论正确,不符合题意;根据图像可知2x =是关于x 的方程()200++=≠ax bx c a 的一个根,故C 选项结论正确,不符合题意,若点()11,x y ,()22,x y 在二次函数的图像上,当122x x >>时,120y y <<,故D 选项结论不正确,符合题意,故选:D .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.12.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D【分析】先由反比例函数图象得出b >0,再分当a >0,a <0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.【详解】解:∵反比例函数(0)b y b x =≠的图象在第一和第三象限内,∴b >0,若a <0,则-2b a >0,所以二次函数开口向下,对称轴在y 轴右侧,故A 、B 、C 、D 选项全不符合;当a >0,则-2b a<0时,所以二次函数开口向上,对称轴在y 轴左侧,故只有C 、D 两选项可能符合题意,由C 、D 两选图象知,c <0,又∵a >0,则-a <0,当c <0,a >0时,一次函数y =cx -a 图象经过第二、第三、第四象限,故只有D 选项符合题意.故选:D .【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分0≤x ≤1,1<x <2,2≤x ≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x ≤1时,过点F 作FG ⊥AB 于点G ,∵∠A=60°,AE=AF=x,x,∴AG=12由勾股定理得FG,AE×FG2,图象是一段开口向上的抛物线;∴y=12当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=1,2由勾股定理得DH(DF+AE)×DH∴y=12当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物线;∴y= AB×DH -12观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ' ,设动点P 的运动时间为t 秒,A PQ ' 与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】D【分析】由题意易得AP t =,1tan 2A ∠=,则有12PQ t =,进而可分当点P 在AB 中点的左侧时和在AB 中点的右侧时,然后分类求解即可.【详解】解:∵90,24ABC AB BC ∠=︒==,∴1tan 2A ∠=,由题意知:AP t =,∴1tan 2PQ AP A t =⋅∠=,由折叠的性质可得:,90A P AP APQ A PQ ''=∠=∠=︒,当点P 与AB 中点重合时,则有2t =,当点P 在AB 中点的左侧时,即02t ≤<,∴A PQ ' 与ABC 重叠部分的面积为211112224A PQ S A P PQ t t t ''=⋅=⋅= ;当点P 在AB 中点的右侧时,即24t ≤≤,如图所示:由折叠性质可得:,90A P AP t APQ A PQ ''==∠=∠=︒,1tan tan 2A A '∠=∠=,∴4BP t =-,∴24A B t '=-,∴tan 2BD A B A t ''=⋅∠=-,∴A PQ ' 与ABC 重叠部分的面积为()()2111324442224PBDQ S BD PQ PB t t t t t ⎛⎫=+⋅=+-⋅-=-+- ⎪⎝⎭梯形;综上所述:能反映A PQ ' 与ABC 重叠部分的面积S 与t 之间函数关系的图象只有D 选项;故选D .【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.15.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-【答案】A 【分析】观察图象,先设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,根据已知条件OAC OCB ∠=∠及OC AB ⊥证明OAC OCB ∽△△,得出21212x x c x x ⋅==-⋅,利用根与系数的关系知12c x x a ⋅=,最后得出答案.【详解】设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,∵二次函数2y ax bx c =++的图象过点(0,)C c ,∴OC c =,∵OAC OCB ∠=∠,OC AB ⊥,∴OAC OCB ∽△△,∴OA OC OC OB=,∴2OC OA OB =⋅,即21212x x c x x ⋅==-⋅,令20ax bx c ++=,根据根与系数的关系知12c x x a ⋅=,∴212c x x c a -=-=,故1ac =- 故选:A .【点睛】本题考查了二次函数2y ax bx c =++(0)a ≠与关于方程20ax bx c ++=(0)a ≠之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.16.(2022·黑龙江牡丹江)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)【答案】A【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =-【答案】D【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()2211121y x x =-++-=-故选D .【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.18.(2022·四川遂宁)如图,D 、E 、F 分别是ABC 三边上的点,其中8BC =,BC 边上的高为6,且DE //BC ,则DEF 面积的最大值为( )A .6B .8C .10D .12【答案】A 【分析】过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,根据∥DE BC ,证明ADE ABC ,根据相似三角形对应高的比等于相似比得到43DE a =,列出DEF 面积的函数表达式,根据配方法求最值即可.【详解】如图,过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,DE BC ∥,,ADE B AED C ∴∠=∠∠=∠,ADE ABC ∴ ,DE AN BC AM ∴=,86DE a ∴=,∴43DE a =,2211422(6)4(3)622333DEF S DE MN a a a a a ∴=⋅⋅=⨯⨯-=-+=--+ ,∴当3a =时,S 有最大值,最大值为6,故选:A .【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.19.(2022·四川自贡)已知A(−3,−2),B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥−2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为−5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=12.其中正确的是()A.①③B.②③C.①④D.①③④【答案】D【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--⨯=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D ..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y 轴上的情况.20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x=B .23y x =C .3y x =D .3y x=-【答案】D【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x ,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4【答案】D【分析】先找到二次函数的对称轴和顶点坐标,求出y =15时,x 的值,再根据二次函数的性质得出答案.【详解】解:∵二次函数y =2x 2-4x -1=2(x -1)2-3,∴抛物线的对称轴为x =1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x =1的右侧,y 随x 的增大而增大,∵当0≤x ≤a 时,即在对称轴右侧,y 取得最大值为15,∴当x =a 时,y =15,∴2(a -1)2-3=15,解得:a =4或a =-2(舍去),故a 的值为4.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.22.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2【答案】A【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.23.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根,∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a 、b 、c 的正负即可解答;③将点A 的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【详解】解:①由抛物线的开口方向向下,则a <0,故①正确;②∵抛物线的顶点为P (1,m )∴12b a-=,b =-2a ∵a <0∴b >0∵抛物线与y 轴的交点在正半轴∴c >0∴abc <0,故②错误;③∵抛物线经过点A (2,1)∴1=a ·22+2b +c ,即4a +2b +c =1,故③正确;④∵抛物线的顶点为P (1,m ),且开口方向向下∴x >1时,y 随x 的增大而减小,即④正确;⑤∵a <0∴at 2+bt -(a +b )= at 2-2at -a +2a = at 2-2at +a =a (t 2-2t +1)= a (t -1)2≤0∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故答案为C .【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B .①②④C .①③D .①②③④【答案】B【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x 轴的交点坐标可判断④,从而可得答案.【详解】解: y =(x ﹣2)2﹣9,图象的开口向上,∴当x =2时,y 取得最小值﹣9;故①符合题意;y =(x ﹣2)2﹣9的对称轴为2x =,而3242,-<- 21,y y ∴> 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x +1)2﹣5,故③不符合题意;当0y =时,则()2290,x --= 解得:125,1,x x ==- 而()516,--= 故④符合题意;故选B【点睛】本题考查的是二次函数的图象与性质,二次函数与x 轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .【答案】354【分析】根据题意以及函数图像可得出AED APQ ∽,则点Q 在AD 上运动时,APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时3x =,则26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,则此时APQ APF ADQ PQDF S S S S =+- 四边形,分别表示出相关线段可得y 与x 之间的函数解析式,将7(s)2x =代入解析式求解即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,在Rt ADE △中,∵90AED ∠=︒,45EAD ∠=︒,∴AE AD =,∵点P /s ,点Q 的速度为2cm /s ,∴,2AP AQ x =,∴AP AQ 在APQ 和AED 中,∵AE AP AD AQ =45A ∠=︒,∴AED APQ ∽,∴点Q 在AD 上运动时,APQ 为等腰直角三角形,∴AP PQ ==,∴当点Q 在AD 上运动时,21122y AP AQ x =⋅==,由图像可知,当9y =此时面积最大,3x =或3-(负值舍去),∴26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,如图:此时APQ APF ADQ PQDF S S S S =+- 四边形,在Rt APQ 中,AP =,45A ∠=︒,∴AF PF x ==,6FD x =-,26QD x =-,∴2111(26)(6)6(26)222APQ S x x x x x =++-⋅--⨯⨯- ,即26y x x =-+,所以当7(s)2x =时,227735(6(cm )224y =-+⨯=,故答案为:354.【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.【答案】m >3【分析】先求得原抛物线的顶点坐标为(-2,m -4),再求得平移后的顶点坐标为(1,m -3),根据题意得到不等式m -3>0,据此即可求解.【详解】解:∵y =x 2+4x +m =(x +2)2+m -4,此时抛物线的顶点坐标为(-2,m -4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m -4+1),即(1,m -3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。
2022年中考数学题分类汇编——二次函数应用题(三)含答案
2022年年年年年年年年年年——年年年年年年年年年年1.(2022·湖北省荆州市)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24−x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?2.(2022·湖北省咸宁市)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉3.(2022·陕西省)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.4.(2022·四川省广元市)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?5.(2022·浙江省宁波市)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?6. (2022·江西省)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为ℎm(ℎ为定值).设运动员从起跳点A 起跳后的高度y(m)与水平距离x(m)之间的函数关系为y =ax 2+bx +c(a ≠0). (1)c 的值为______;(2)①若运动员落地点恰好到达K 点,且此时a =−150,b =910,求基准点K 的高度ℎ;②若a =−150时,运动员落地点要超过K 点,则b 的取值范围为______; (3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.7. (2022·浙江省金华市)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息: ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表: 售价x(元/千克) … 2.5 3 3.5 4 … 需求量y 需求(吨) … 7.75 7.2 6.55 5.8 …②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x−1,函数图象见图1.③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=12t+2,x成本=14t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.8.(2022·山东省滨州市)360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.9.(2022·湖北省武汉市)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度v/cm/s109.598.58运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.10.(2022·广东省)某种服装,平均每天可销售20件,每件利润是44元,经市场调查发现,该品牌服装在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多销售5件.(1)如果每件降价x元,平均每天销售的服装为y1件,试写出x与y1之间的函数关系(用x表示y1);(2)如果每天该服装销售的利润总金额记为y2(元),求当y2=1600,每件应降价多少元?1.解:(1)根据题意得:w=(x−8)(24−x)−60=−x2+32x−252;(2)①∵该产品第一年利润为4万元,∴4=−x2+32x−252,解得:x=16,答:该产品第一年的售价是16元.②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,∴{x≤1624−x≤13,解得11≤x≤16,设第二年利润是w′万元,w′=(x−6)(24−x)−4=−x2+30x−148,∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,∴x=11时,w′有最小值,最小值为(11−6)×(24−11)−4=61(万元),答:第二年的利润至少为61万元.2..解:(1)当0<x≤40时,y=30;当40<x≤100时,设函数关系式为y=kx+b,∵线段过点(40,30),(100,15),∴{40k+b=30100k+b=15,∴{k=−1 4b=40,∴y=−14x+40,即y={30(0<x≤40)−14x+40(40<x≤90);(2)∵甲种花卉种植面积不少于30m2,∴x≥30,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴360−x≥3x,∴x≤90,即30≤x≤90;由(1)知,y=30x,∵乙种花卉种植费用为15元/m2.∴w=yx+15(360−x)=30x+15(360−x)=15x+5400,当x=30时,w min=5850;当40<x≤90时,x+40,由(1)知,y=−14(x−50)2+6025,∴w=yx+15(360−x)=−14(90−50)2+6025=5625,∴当x=90时,w min=−14∵5850>5625,∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;②当30≤x≤40时,由①知,w=15x+5400,∵种植总费用不超过6000元,∴15x+5400≤6000,∴x≤40,即满足条件的x的范围为30≤x≤40,当40<x≤90时,(x−50)2+6025,由①知,w=−14∵种植总费用不超过6000元,(x−50)2+6025≤6000,∴−14∴x≤40(不符合题意,舍去)或x≥60,即满足条件的x的范围为60≤x≤90,综上,满足条件的x的范围为30≤x≤40或60≤x≤90.3..解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x−5)2+9,,把(0,0)代入,可得a=−925(x−5)2+9;∴抛物线的解析式为y=−925(2)令y=6,得−925(x−5)2+9=6,解得x1=5√33+5,x2=−5√33+5,∴A(5−5√33,6),B(5+5√33,6).4..解:(1)设科技类图书的单价为x元,文学类图书的单价为y元,依题意得:{2x+3y=154 4x+5y=282,解得:{x=38 y=26.答:科技类图书的单价为38元,文学类图书的单价为26元.(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100−m)本.①当30≤m≤40时,w=38m+26(100−m)=12m+2600,∵12>0,∴w随m的增大而增大,∴2960≤w≤3080;②当40<m≤50时,w=[38−(m−40)]m+26(100−m)=−(m−26)2+3276,∵−1<0,∴当m>26时,w随m的增大而减小,∴2700≤w<3080;③当50<m≤60时,w=[38−(50−40)]m+26(100−m)=2m+2600,∵2>0,∴w随m的增大而增大,∴2700<w≤2720.综上,当30≤m≤60时,w的最小值为2700.答:社区至少要准备2700元购书款.5..解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4−0.5(x−2)=−0.5x+5,答:y关于x的函数表达式为y=−0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,∵−0.5<0,∴当x =5时,W 取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.6..66 b >9107..解:(1)把(3,7.2),(4,5.8)代入y 需求=ax 2+c ,{9a +c =7.2①16a +c =5.8②, ②−①,得7a =−1.4,解得:a =−15,把a =−15代入①,得c =9,∴a 的值为−15,c 的值为9;(2)设这种蔬菜每千克获利w 元,根据题意,w =x 售价−x 成本=12t +2−(14t 2−32t +3)=−14(t −4)2+3, ∵−14<0,且1≤t ≤7,∴当t =4时,w 有最大值,答:在4月份出售这种蔬菜每千克获利最大;(3)当y 供给=y 需求时,x −1=−15x 2+9, 解得:x 1=5,x 2=−10(舍去),∴此时售价为5元/千克,则y 供给=x −1=5−1=4(吨)=4000(千克),令12t +2=5,解得t =6,∴w =−14(t −4)2+3=−14(6−4)2+3=2,∴总利润为w ⋅y =2×4000=8000(元),答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.8..解:(1)设y =kx +b ,把x =20,y =360,和x =30,y =60代入,可得{20k +b =36030k +b =60,解得:{k =−30b =960, ∴y =−30x +960(10≤x ≤32);(2)设每月所获的利润为W 元,∴W =(−30x +960)(x −10)=−30(x −32)(x −10)=−30(x 2−42x +320)=−30(x −21)2+3630.∴当x =21时,W 有最大值,最大值为3630.9..解:(1)设v =mt +n ,将(0,10),(2,9)代入,得{n =102m +n =9, 解得,{m =−12n =10, ∴v =−12t +10;设y =at 2+bt +c ,将(0,0),(2,19),(4,36)代入,得{c =04a +2b +c =1916a +4b +c =36,解得{a =−14b =10c =0,∴y =−14t 2+10t .(2)令y =64,即−14t 2+10t =64,解得t =8或t =32,当t =8时,v =6;当t =32时,v =−6(舍);(3)设黑白两球的距离为w cm ,根据题意可知,w =70+2t −y =14t 2−8t +70=14(t −16)2+6, ∵14>0,∴当t =16时,w 的最小值为6,∴黑白两球的最小距离为6cm ,大于0,黑球不会碰到白球.10..解:(1)设每件降价x 元,平均每天销售的服装为y 1件, 则x 与y 1之间的函数关系(用x 表示y 1)为:y 1=20+5x(0≤x ≤10);(2)由题意可得:y2=(44−x)(20+5x) =−5x2+200x+880,(0≤x≤10);1600=−5x2+200x+880,解得:x1=4,x2=36(不合题意舍去),答:每件应降价4元.第14页,共1页。
专题10 二次函数-2023年中考数学真题分项汇编(全国通用)(第1期)(原卷版)
专题10 二次函数一.选择题1.(2022·山东泰安)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表: x-2 -1 0 6 y 0 4 6 1A .抛物线的开口向下B .抛物线的对称轴为直线12x =C .抛物线与x 轴的一个交点坐标为()2,0D .函数2y ax bx c =++的最大值为254 2.(2022·新疆)已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大 3.(2022·湖南株洲)已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .4.(2022·陕西)已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .231y y y << 5.(2022·浙江宁波)点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A .2m >B .32m >C .1m <D .322m << 6.(2022·山东泰安)一元二次方程2152121543x x x -++=-+根的情况是( ) A .有一个正根,一个负根B .有两个正根,且有一根大于9小于12C .有两个正根,且都小于12D .有两个正根,且有一根大于127.(2022·四川成都)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>8.(2022·四川泸州)抛物线2112y x x =-++经平移后,不可能得到的抛物线是( ) A .212y x x =-+ B .2142=--y x C .21202120222=-+-y x x D .21y x x =-++ 9.(2022·四川自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )A .方案1B .方案2C .方案3D .方案1或方案2 10.(2022·山东泰安)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D . 11.(2022·湖北随州)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点1,0对称轴为直线1x =.则下列结论:①0abc >;②20a b +=;③函数2y ax bx c =++的最大值为4a -;④若关于x 的方数21ax bx c a ++=+无实数根,则105a -<<.正确的有( )A .1个B .2个C .3个D .4个12.(2022·浙江杭州)已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x 轴的交点位于y 轴的两侧;命题④:该函数的图像的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A .命题①B .命题②C .命题③D .命题④13.(2022·天津)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论:①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( ) A .0 B .1 C .2 D .314.(2022·浙江温州)已知点(,2),(,2),(,7)A a B b C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( )A .若0c <,则a c b <<B .若0c <,则a b c <<C .若0c >,则a c b <<D .若0c >,则a b c <<15.(2022·浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A .0,4B .1,5C .1,-5D .-1,516.(2022·山东滨州)如图,抛物线2y ax bx c =++与x 轴相交于点()()2,0,6,0A B -,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac ->;②40a b +=;③当0y >时,26x -<<;④0a b c ++<.其中正确的个数为( )A .4B .3C .2D .117.(2022·四川南充)已知点()()1122,,,M x y N x y 在抛物线222(0)y mx m x n m =-+≠上,当124x x +>且12x x <时,都有12y y <,则m 的取值范围为( )A .02m <≤B .20m -≤<C .2m >D .2m <-二、填空题 18.(2022·新疆)如图,用一段长为16m 的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为_______2m .19.(2022·甘肃武威)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .20.(2022·江苏连云港)如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .21.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ≤≤时,w 的取值范围是_________;当23t ≤≤时,w 的取值范围是_________.22.(2022·四川遂宁)抛物线y =ax 2+bx +c (a ,b ,c 为常数)的部分图象如图所示,设m =a -b +c ,则m 的取值范围是______.23.(2022·湖北武汉)已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<; ③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根. 其中正确的是_________(填写序号).24.(2022·四川南充)如图,水池中心点O 处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O 在同一水平面.安装师傅调试发现,喷头高2.5m 时,水柱落点距O 点2.5m ;喷头高4m 时,水柱落点距O 点3m .那么喷头高_______________m 时,水柱落点距O 点4m .三.解答题25.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?26.(2022·湖北十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?27.(2022·四川广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?28.(2022·湖北黄冈)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元? ②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.29.(2022·江苏扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.30.(2022·江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠. (1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.31.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.32.(2022·浙江温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1:图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2:为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1:确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2:探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3:拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.33.(2022·浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.34.(2022·浙江杭州)设二次函数212y x bx c =++(b ,c 是常数)的图像与x 轴交于A ,B两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数1y 的表达式及其图像的对称轴. (2)若函数1y 的表达式可以写成()2122y x h =--(h 是常数)的形式,求b c +的最小值. (3)设一次函数2y x m =-(m 是常数).若函数1y 的表达式还可以写成()()122y x m x m =---的形式,当函数12y y y =-的图像经过点()0,0x 时,求0x m -的值.35.(2022·浙江宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?36.(2022·浙江绍兴)已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.37.(2022·安徽)如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式; (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23P P ,34P P ,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P 的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值; (ⅰ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).38.(2022·山东滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式; (2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.39.(2022·湖南湘潭)已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB . ①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ⊥轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由. (2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.40.(2022·四川乐山)如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()1,0A -、()2,0B ,与y 轴交于点C ,且tan 2OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x ∥轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBC BCD S S =△△,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q .设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ的值,并求PQOQ的最大值.41.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⅰAP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.42.(2022·云南)已知抛物线23y x x c =-+经过点(0,2),且与x 轴交于A 、B 两点.设k 是抛物线23y x x c =-+与x 轴交点的横坐标;M 是抛物线23y x x c =-+的点,常数m >0,S 为ⅰABM 的面积.已知使S =m 成立的点M 恰好有三个,设T 为这三个点的纵坐标的和.(1)求c 的值;(2)直接写出T 的值;(3)求486422416k k k k k ++++的值.43.(2022·四川自贡)已知二次函数()20y ax bx c a =++≠.(1)若1a =-,且函数图象经过()0,3,()2,5-两点,求此二次函数的解析式,直接写出抛物线与x 轴交点及顶点的坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值3y ≥时自变量x 的取值范围;(3)若0a b c ++=且a b c >>,一元二次方程20ax bx c ++= 两根之差等于a c -,函数图象经过121P c,y ⎛⎫- ⎪⎝⎭,()132Q c,y +两点,试比较12,y y 的大小 .44.(2022·四川凉山)在平面直角坐标系xoy 中,已知抛物线y =-x 2+bx +c 经过点A (-1,0)和点B (0,3),顶点为C ,点D 在其对称轴上,且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.(1)求抛物线的解析式;(2)求点P 的坐标;(3)将抛物线平移,使其顶点落在原点O ,这时点P 落在点E 的位置,在y 轴上是否存在点M ,使得MP +ME 的值最小,若存在,求出点M 的坐标;若不存在,请说明理由.45.(2022·江苏连云港)已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标; (2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.46.(2022·浙江舟山)已知抛物线1L :2(1)4y a x =+-(0a ≠)经过点(1,0)A .(1)求抛物1L 的函数表达式.(2)将抛物线1L 向上平移m (0m >)个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移n (0n >)个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.47.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.48.(2022·山东泰安)若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x ⊥轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.49.(2022·四川眉山)在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为(5,0)-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求点P 到直线AC 距离的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.50.(2022·湖南衡阳)如图,已知抛物线2=--交x轴于A、B两点,将该抛物线位于y x x2x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;=-+与图象W有三个交点,请结合图象,直接写出b的值;(2)若直线y x b∥轴交直线BC于点M,交图象W于点N,是(3)P为x轴正半轴上一动点,过点P作PM y△与OBC相似?若存在,求出所有符合条件的点P的坐标;否存在这样的点P,使CMN若不存在,请说明理由.。
2022年中考数学真题分类汇编:二次函数解答题(含答案)
2022中考数学真题汇编——二次函数解答题1.(2022·浙江省绍兴市)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,-3),(-6,-3).2.(1)求b,c的值.3.(2)当-4≤x≤0时,求y的最大值.4.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.5.(2022·浙江省舟山市)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).6.(1)求抛物线L1的函数表达式.7.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.8.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8-t,s),Q(t-4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.9.(2022·四川省凉山彝族自治州)在平面直角坐标系xOy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.10.(1)求抛物线的解析式;11.(2)求点P的坐标;12.(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.13.(2022·浙江省丽水市)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x-2)2-1(a>0)的图象上,且x2-x1=3.14.(1)若二次函数的图象经过点(3,1).15.①求这个二次函数的表达式;16.②若y1=y2,求顶点到MN的距离;17.(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.18.19.(2022·山东省滨州市)如图,在平面直角坐标系中,抛物线y=x2-2x-3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.20.(1)求线段AC的长;21.(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;22.(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.23.(2022·四川省南充市)抛物线y=1x2+bx+c与x轴分别交于点A,B(4,0),与y轴3交于点C(0,-4).24.(1)求抛物线的解析式.25.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.26.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.27.(2022·四川省德阳市)抛物线的解析式是y=-x2+4x+a.直线y=-x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,-3)关于x轴对称.28.(1)如图①,求射线MF的解析式;29.(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;30.(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=-x+2交于的最大值.点N.求PNAN31.(2022·重庆市B卷)如图,在平面直角坐标系中,抛物线y=-3x2+bx+c与x轴交于点A4(4,0),与y轴交于点B(0,3).32.(1)求抛物线的函数表达式;33.(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+6AM的最大值及此时点P的坐标;534.(3)在(2)的条件下,点P′与点P关于抛物线y=-3x2+bx+c的对称轴对称.将4x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线抛物线y=-34上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.35.(2022·重庆市A卷)如图,在平面直角坐标系中,抛物线y=1x2+bx+c与直线AB交于2点A(0,-4),B(4,0).36.(1)求该抛物线的函数表达式;37.(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;38.(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.39.(2022·四川省遂宁市)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).40.(1)求抛物线的解析式;41.(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求△DEF周长的最小值;42.(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN 为等腰三角形时,求点N的坐标.43.(2022·四川省成都市)如图,在平面直角坐标系xOy中,直线y=kx-3(k≠0)与抛物线y=-x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.44.(1)当k=2时,求A,B两点的坐标;45.(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;46.(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.47.(2022·四川省达州市)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(-1,0),B(3,0),与y轴交于点C.48.(1)求该二次函数的表达式;49.(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;50.(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.51.(2022·四川省泸州市)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(-2,0),B(0,4)两点,直线x=3与x轴交于点C.52.(1)求a,c的值;53.(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;54.(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.55.(2022·江苏省连云港市)已知二次函数y=x2+(m-2)x+m-4,其中m>2.56.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;57.(2)求证:二次函数y=x2+(m-2)x+m-4的顶点在第三象限;58.(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=-x-2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.59.(2022·山东省)如图,抛物线y=ax2+3x+c与x轴交于点A,B,与y轴交于点C,已2知A,C两点坐标分别是A(1,0),C(0,-2),连接AC,BC.60.(1)求抛物线的表达式和AC所在直线的表达式;61.(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;62.(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求S1的值最大时点P的坐标.S263.(2022·四川省)如图,已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A,B两点(点A在点B的左边),点B的横坐标是1.64.(1)求a的值及P的坐标;65.(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;66.(3)如图(2),点Q是x正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.67.(2022·安徽省)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.68.(1)求此抛物线对应的函数表达式;69.(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:70.(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;71.(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).72. (2022·浙江省金华市)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:73. ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表:②该蔬莱供给量y 供给(吨)关于售价x (元/千克)的函数表达式为y 供给=x -1,函数图象见图1.③1~7月份该蔬莱售价x 售价(元/千克)、成本x 成本(元/千克)关于月份t 的函教表达式分别为x 售价=12t +2,x 成本=14t 2-32t +3,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.参考答案1.解:(1)把(0,-3),(-6,-3)代入y=-x2+bx+c,得b=-6,c=-3.(2)∵y=-x2-6x-3=-(x+3)2+6,又∵-4≤x≤0,∴当x=-3时,y有最大值为6.(3)①当-3<m≤0时,当x=0时,y有最小值为-3,当x=m时,y有最大值为-m2-6m-3,∴-m2-6m-3+(-3)=2,∴m=-2或m=-4(舍去).②当m≤-3时,当x=-3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为-4,∴-(m+3)2+6=-4,∴m=−3−√10或m=−3+√10(舍去).综上所述,m=-2或−3−√10.2.解:(1)把A(1,0)代入y=a(x+1)2-4得:a(1+1)2-4=0,解得a=1,∴y=(x+1)2-4=x2+2x-3;答:抛物线L1的函数表达式为y=x2+2x-3;(2)抛物线L1:y=(x+1)2-4的顶点为(-1,-4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(-1,-4+m),而(-1,-4+m)关于原点的对称点为(1,4-m),把(1,4-m)代入y=x2+2x-3得:12+2×1-3=4-m,解得m=4,答:m的值为4;(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x-n+1)2-4,∵点P (8-t ,s ),Q (t -4,r )都在抛物线L 3上,∴s =(8-t -n +1)2-4=(9-t -n )2-4,r =(t -4-n +1)2-4=(t -n -3)2-4,∵当t >6时,s >r ,∴s -r >0,∴[(9-t -n )2-4]-[(t -n -3)2-4]>0,整理变形得:(9-t -n )2-(t -n -3)2>0,(9-t -n +t -n -3)(9-t -n -t +n +3)>0,(6-2n )(12-2t )>0,∵t >6,∴12-2t <0,∴6-2n <0,解得n >3,∴n 的取值范围是n >3.3.解:(1)把A (-1,0)和点B (0,3)代入y =-x 2+bx +c ,得{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =-x 2+2x +3;(2)∵y =-(x -1)2+4,∴C (1,4),抛物线的对称轴为直线x =1,如图,设CD =t ,则D (1,4-t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处,∴∠PDC =90°,DP =DC =t ,∴P (1+t ,4-t ),把P (1+t ,4-t )代入y =-x 2+2x +4得:-(1+t )2+2(1+t )+3=4-t ,整理得t 2-t =0,解得:t 1=0(舍去),t 2=1,∴P (2,3);(3)∵P 点坐标为(2,3),顶点C 坐标为(1,4),将抛物线平移,使其顶点落在原点O ,这时点P 落在点E 的位置,∴E 点坐标为(1,-1),∴点E 关于y 轴的对称点F (-1,-1),连接PF 交y 轴于M ,则MP +ME =MP +MF =PF 的值最小,设直线PF 的解析式为y =kx +n ,∴{2k +n =3−k +n =−1, 解得:{k =43n =13, ∴直线PF 的解析式为y =43x +13,∴点M 的坐标为(0,13). 4.解:(1)①∵二次函数y =a (x -2)2-1(a >0)经过(3,1),∴1=a -1,∴a =2,∴二次函数的解析式为y =2(x -2)2-1;②∵y 1=y 2,∴M ,N 关于抛物线的对称轴对称,∵对称轴是直线x =2,且x 2-x 1=3,∴x 1=12,x 2=72,当x =12时,y 1=2(12-2)2-1=72,∴当y 1=y 2时,顶点到MN 的距离=72+1=92;(2)设抛物线与X 轴的交点为A (m ,0),B (n ,0)(m >n ). ∵x 1≤x ≤x 2时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧, 又∵二次函数y 的最小值为-1,∴x =x 1或x 2时,y 的值为0,点M ,点N 在x 轴上或在x 轴的下方, ∴AB ≥3,∴m -n ≥3,令y =0,可得a (x -2)2-1=0,∴m =2+√a ,n =2-√a ,∴(2+√a )-(2-√a )≥3, ∴√a ≥3,又∵a >0,∴0<a ≤49. 5.解:(1)针对于抛物线y =x 2-2x -3,令x =0,则y =-3,∴C (0,-3);令y =0,则x 2-2x -3=0,∴x =3或x =-1,∵点A 在点B 的左侧,∴A (-1,0),B (3,0),∴AC =√(−1−0)2+(0+3)2=√10;(2)∵抛物线y =x 2-2x -3的对称轴为直线x =-−22=1,∵点P 为该抛物线对称轴上,∴设P (1,p ),∴PA =√(1+1)2+p 2=√p 2+4,PC =√12+(p +3)2=√p 2+6p +10,∵PA=PC,∴√p2+4=√p2+6p+10,∴p=-1,∴P(1,-1);(3)由(1)知,B(3,0),C(0,-3),∴OB=OC=3,设M(m,m2-2m-3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°-∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=-3-(m2-2m-3)=-m2+2m,∴-m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,-4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(-2,3);③当∠BMC=90°时,如图2,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC +∠EMB =90°,∴∠DCM =∠EMB ,∴△CDM ∽△MEB ,∴CD ME =MD BE ,∵M (m ,m 2-2m -3),B (3,0),C (0,-3),∴DM =m ,CD =m 2-2m -3+3=m 2-2m ,ME =3-m ,BE =-(m 2-2m -3)=-m 2+2m +3, ∴m 2−2m 3−m =m−m 2+2m+3,∴m =0(舍去)或m =3(点B 的横坐标,不符合题意,舍去)或m =1−√102(不符合题意,舍去)或m =1+√102,∴M (1+√102,-5+2√104), 即满足条件的M 的坐标为(1,-4)或(-2,3)或(1+√102,-5+2√104). 6.解:(1)由题意得,{13×42+4b +c =0c =−4, ∴{b =−13c =−4, ∴y =13x 2-13x −4;(2)如图1,作直线l ∥BC 且与抛物线相切于点P 1,直线l 交y 轴于E ,作直线m ∥BC 且直线m 到BC 的距离等于直线l 到BC 的距离,∵BC 的解析式为y =x -4,∴设直线l 的解析式为:y =x +b ,由13x 2−13x −4=x +b 得,x 2-4x -3(b +4)=0,∵Δ=0,∴-3(b +4)=4,∴b =-163,∴x 2-4x +4=0,y =x -163,∴x =2,y =-103,∴P 1(2,-103),∵E (0,-163),C (0,-4),∴F (0,-4×2-(-163)), 即(0,-83),∴直线m 的解析式为:y =x -83,∴{y =13x 2−13x −4y =x −83, ∴{x 1=2+2√2y 1=2√2−23,{x 2=2−2√2y 2=−2√2−23, ∴P 2(2-2√2,-2√2-23),P 3(2+2√2,2√2-23),综上所述:点P (2,-103)或(2-2√2,-2√2-23)或(2+2√2,2√2-23); (3)如图2,作MG ⊥x 轴于G ,作NH ⊥x 轴于H ,作MK ⊥DF ,交DF 的延长线于K , 设D 点的横坐标为a ,∵BN =DN ,∴BD =2BN ,N 点的横坐标为:a+42,∴OH=a+42,∵MH∥DF,∴△BHN∽△BFD,∴NH DF =BNBD=12,∴DF=2NH,同理可得:△OMG∽△ONH,∴MG NH =OGOH=OMON=2,∴MG=2NH,OG=2OH=a+4,∴KF=MG=DF,∵tan∠DEB=2tan∠DBE∴DF EF =2•DFBF,∴EF=12BF,∵BF=4-a,∴EF=12(4−a),∵EF∥MK,∴△DEF∽△DMK,∴EF MK =DF DK,∴12(4−a) 2a+4=12,∴a=0,∴OG=a+4=4,∴G(-4,0),当x=-4时,y=13×(−4)2-13×(−4)-4=83,∴M(-4,83).7.解:(1)∵点F与直线上的点G(5,-3)关于x轴对称,∴F(5,3),∵直线y=-x+2与x轴交于点M,∴M(2,0),设直线MF的解析式为y=kx+b,则有{2k +b =05k +b =3, 解得{k =1b =−2, ∴射线MF 的解析式为y =x -2(x ≥2);(2)如图①中,设折线EMF 与抛物线的交点为P ,Q .∵抛物线的对称轴x =-4−2=2,点M (2,0),∴点M 值抛物线的对称轴上,∵直线EM 的解析式为y =-x +2,直线MF 的解析式为y =x -2, ∴直线EM ,直线MF 关于直线x =2对称,∴P ,Q 关于直线x =2对称,∴2=x 1+x 22,∴x 1+x 2=4;(3)如图②中,过点P 作PT ∥AB 交直线ME 于点T .∵C(0,5),∴抛物线的解析式为y=-x2+4x+5,∴A(-1,0),B(5,0),设P(t,-t2+4t+5),则T(t2-4t-3,-t2+4t+5),∵PT∥AM,∴PN AN =PTAM=13(t-(t2-4t-3)=-13(t-52)2+3712,∵-13<0,∴PN AN 有最大值,最大值为3712.8.解:(1)∵抛物线y=-34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).∴{−12+4b+c=0c=3,∴{b=9 4c=3.∴抛物线的函数表达式为y=-34x2+94x+3;(2)∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB=5,∵PQ⊥OA,∴PQ∥OB,∴△AQM∽△AOB,∴MQ:AQ:AM=3:4:5,∴AM=53MQ,65AM=2MQ,∴PM+65AM=PM+2MQ,∵B(0,3),A(4,0),∴l AB:y=-34x+3,∴设P(m,-34m2+94m+3),M(m,-34m+3),Q(m,0),∴PM+2MQ=-34m2+32m+6=-34(m−1)2+274,∵-34<0,∴开口向下,0<m<4,∴当m=1时,PM+65AM的最大值为274,此时P(1,92);(3)由y=-34x2+94x+3知,对称轴x=32,∴P'(2,92),∵直线l:x=4,∴抛物线向右平移52个单位,∴平移后抛物线解析式为y'=-34x2+6x−11716,设D(4,t),C(c,-34c2+6c−11716),①AP'与DC为对角线时,{4+2=4+c0+92=t+(−34c2+6c−11716),∴{c=2t=4516,∴D(4,4516),②P'D与AC为对角线时,{2+4=4+c92+t=0+(−34c2+6c−11716),∴{c=2t=−4516,∴D(4,-4516),③AD与P'C为对角线时,{4+4=2+c0+t=92+(−34c2+16c−11716),∴{c=6t=9916,∴D(4,9916),综上:D (4,4516)或(4,-4516)或(4,9916).9.解:(1)把A (0,-4),B (4,0)代入y =12x 2+bx +c 得:{c =−48+4b +c =0, 解得{b =−1c =−4,∴抛物线的函数表达式为y =12x 2-x -4;(2)设直线AB 解析式为y =kx +t ,把A (0,-4),B (4,0)代入得: {t =−44k +t =0, 解得{k =1t =−4,∴直线AB 解析式为y =x -4,设P (m ,12m 2-m -4),则PD =-12m 2+m +4, 在y =x -4中,令y =12m 2-m -4得x =12m 2-m , ∴C (12m 2-m ,12m 2-m -4), ∴PC =m -(12m 2-m )=-12m 2+2m ,∴PC +PD =-12m 2+2m -12m 2+m +4=-m 2+3m -4=-(m -32)2+254, ∵-1<0,∴当m =32时,PC +PD 取最大值254, 此时12m 2-m -4=12×(32)2-32-4=-358, ∴P (32,-358);答:PC +PD 的最大值为254,此时点P 的坐标是(32,-358);(3)∵将抛物线y =12x 2-x -4向左平移5个单位得抛物线y =12(x +5)2-(x +5)-4=12x 2+4x +72, ∴新抛物线对称轴是直线x =-42×12=-4,在y =12x 2+4x +72中,令x =0得y =72, ∴F (0,72),将P (32,-358)向左平移5个单位得E (-72,-358), 设M (-4,n ),N (r ,12r 2+4r +72),①当EF 、MN 为对角线时,EF 、MN 的中点重合, ∴{0−72=−4+r72−358=n +12r 2+4r +72,解得r =12,∴12r 2+4r +72=12×(12)2+4×12+72=458, ∴N (12,458);②当FM 、EN 为对角线时,FM 、EN 的中点重合, ∴{0−4=−72+r72+n =−358+12r 2+4r +72,解得r =-12,∴12r 2+4r +72=12×(-12)2+4×(-12)+72=138, ∴N (-12,138);③当FN 、EM 为对角线时,FN 、EM 的中点重合, ∴{0+r =−72−472+12r 2+4r +72=−358+n , 解得r =-152,∴12r 2+4r +72=12×(-152)2+4×(-152)+72=138, ∴N (-152,138);综上所述,N 的坐标为:(12,458)或(-12,138)或(-152,138).10.解:(1)∵抛物线y =x 2+bx +c 经过点A (-1,0),点C (0,-3).∴{1−b +c =0c =−3, ∴{b =−2c =−3, ∴抛物线的解析式为y =x 2-2x -3;(2)如图,设D 1为D 关于直线AB 的对称点,D 2为D 关于ZX 直线BC 的对称点,连接D 1E ,D 2F ,D 1D 2.由对称性可知DE =D 1E ,DF =D 2F ,△DEF 的周长=D 1E +EF +D 2F , ∴当D 1,E .F .D 2共线时,△DEF 的周长最小,最小值为D 1D 2的长, 令y =0,则x 2-2x -3=0, 解得x =-1或3, ∴B (3,0), ∴OB =OC =3,∴△BOC 是等腰直角三角形, ∵BC 垂直平分DD 2,且D (-2,0), ∴D 2(1,-3), ∵D ,D 1关于x 轴的长, ∴D 1(0,2),∴D 1D 2=√D 2C 2+D 1C 2=√52+12=√26, ∴△DEF 的周长的最小值为√26.(3)∵M 到x 轴距离为d ,AB =4,连接BM . ∴S △ABM =2d , 又∵S △AMN =2d , ∴S △ABM =S △AMN ,∴B ,N 到AM 的距离相等, ∵B ,N 在AM 的同侧, ∴AM ∥BN ,设直线BN 的解析式为y =kx +m , 则有{m =−33k +m =0,∴{k =1m =−3, ∴直线BC 的解析式为y =x -3, ∴设直线AM 的解析式为y =x +n , ∵A (-1,0),∴直线AM 的解析式为y =x +1,由{y =x +1y =x 2−2x −3,解得{x =1y =0或{x =4y =5, ∴M (4,5), ∵点N 在射线BC 上, ∴设N (t ,t -3),过点M 作x 轴的平行线l ,过点N 作y 轴的平行线交x 轴于点P ,交直线l 于点Q .∵A (-1,0),M (4,5),N (t ,t -3),∴AM =5√2,AN =√(t +1)2+(t −3)2,MN =√(t −4)2+(t −8)2, ∵△AMN 是等腰三角形,当AM =AN 时,5√2=√(t +1)2+(t −3)2, 解得t =1±√21,当AM =MN 时,5√2=√(t −4)2+(t −8)2, 解得t =6±√21,当AN =MN 时,√(t +1)2+(t −3)2=√(t −4)2+(t −8)2, 解得t =72, ∵N 在第一象限, ∴t >3,∴t 的值为72,1+√21,6+√21,∴点N 的坐标为(72,12)或(1+√21,-2+√21)或(6+√21,3+√21).11.解:(1)当k =2时,直线为y =2x -3,由{y =2x −3y =−x 2得:{x =−3y =−9或{x =1y =−1, ∴A (-3,-9),B (1,-1); (2)当k >0时,如图:∵△B 'AB 的面积与△OAB 的面积相等, ∴OB '∥AB , ∴∠OB 'B =∠B 'BC , ∵B 、B '关于y 轴对称,∴OB =OB ',∠ODB =∠ODB '=90°, ∴∠OB 'B =∠OBB ', ∴∠OBB '=∠B 'BC ,∵∠ODB =90°=∠CDB ,BD =BD , ∴△BOD ≌△BCD (ASA ), ∴OD =CD ,在y =kx -3中,令x =0得y =-3, ∴C (0,-3),OC =3, ∴OD =12OC =32,D (0,-32), 在y =-x 2中,令y =-32得-32=-x 2, 解得x =√62或x =-√62,把B (2,-2)代入y =kx -3得:-32=√62k -3,解得k =√62;当k <0时,过B '作B 'F ∥AB 交y 轴于F ,如图:在y =kx -3中,令x =0得y =-3, ∴E (0,-3),OE =3,∵△B 'AB 的面积与△OAB 的面积相等, ∴OE =EF =3,∵B 、B '关于y 轴对称, ∴FB =FB ',∠FGB =∠FGB '=90°, ∴∠FB 'B =∠FBB ', ∵B 'F ∥AB , ∴∠EBB '=∠FB 'B , ∴∠EBB '=∠FBB ',∵∠BGE =90°=∠BGF ,BG =BG , ∴△BGF ≌△BGE (ASA ), ∴GE =GF =12EF =32,∴OG =OE +GE =92,G (0,-92), 在y =-x 2中,令y =-92得-92=-x 2, 解得x =3√22或x =-3√22,把B (2,-2)代入y =kx -3得:-92=3√22k -3,解得k =-√22,综上所述,k 的值为√62或-√22;(3)直线AB '经过定点(0,3),理由如下: 由{y =−x 2y =kx −3得: {x =−k−√k 2+122y =−k 2−k√k 2+12−62或{x =−k+√k 2+122y =−k 2+k√k 2+12−62, ∴A (−k−√k2+122,−k2−k√k 2+12−62),B (−k+√k2+122,−k2+k√k 2+12−62),∵B 、B '关于y 轴对称, ∴B '(k−√k2+122,−k2+k√k 2+12−62),设直线AB '解析式为y =mx +n ,将A (−k−√k2+122,−k2−k√k 2+12−62),B '(k−√k 2+122,−k2+k√k 2+12−62)代入得:{−k 2−k√k 2+12−62=−k−√k 2+122m +n−k 2+k√k 2+12−62=k−√k 2+122m +n,解得{m =√k 2+12n =3,∴直线AB '解析式为y =√k 2+12•x +3, 令x =0得y =3,∴直线AB '经过定点(0,3).12.解:(1)∵抛物线y =ax 2+bx +2经过点A (-1,0),B (3,0),∴{a −b +2=09a +3b +2=0, 解得:{a =−23b =43,∴该二次函数的表达式为y =−23x 2+43x +2; (2)存在,理由如下: 如图1,当点P 在BC 上方时, ∵∠PCB =∠ABC ,∴CP ∥AB ,即CP ∥x 轴,∴点P 与点C 关于抛物线对称轴对称, ∵y =−23x 2+43x +2, ∴抛物线对称轴为直线x =-432×(−23)=1,∵C (0,2), ∴P (2,2);当点P 在BC 下方时,设CP 交x 轴于点D (m ,0), 则OD =m ,DB =3-m , ∵∠PCB =∠ABC , ∴CD =BD =3-m ,在Rt △COD 中,OC 2+OD 2=CD 2, ∴22+m 2=(3-m )2, 解得:m =56, ∴D (56,0),设直线CD 的解析式为y =kx +d ,则{56k +d =0d =2,解得:{k =−125d =2,∴直线CD 的解析式为y =−125x +2, 联立,得{y =−125x +2y =−23x 2+43x +2, 解得:{x 1=0y 1=2(舍去),{x 2=225y 2=−21425, ∴P (225,-21425),综上所述,点P 的坐标为(2,2)或(225,-21425);(3)由(2)知:抛物线y =−23x 2+43x +2的对称轴为直线x =1, ∴E (1,0),设Q (t ,−23t 2+43t +2),且-1<t <3, 设直线AQ 的解析式为y =ex +f ,则{−e +f =0te +f =−23t 2+43t +2,解得:{e =−23t +2f =−23t +2, ∴直线AQ 的解析式为y =(−23t +2)x -23t +2, 当x =1时,y =-43t +4, ∴M (1,-43t +4),同理可得直线BQ 的解析式为y =(-23t -23)x +2t +2, 当x =1时,y =43t +43, ∴N (1,43t +43), ∴EM =-43t +4,EN =43t +43, ∴EM +EN =-43t +4+43t +43=163, 故EM +EN 的值为定值163.13.解:(1)把A (-2,0),B (0,4)两点代入抛物线y =ax 2+x +c 中得:{4a −2+c =0c =4解得:{a =−12c =4;(2)由(2)知:抛物线解析式为:y =-12x 2+x +4, 设直线AB 的解析式为:y =kx +b , 则{−2k +b =0b =4,解得:{k =2b =4, ∴AB 的解析式为:y =2x +4, 设直线DE 的解析式为:y =mx , ∴2x +4=mx , ∴x =4m−2, 当x =3时,y =3m , ∴E (3,3m ),∵△BDO 与△OCE 的面积相等,CE ⊥OC , ∴12•3•(-3m )=12•4•42−m , ∴9m 2-18m -16=0, ∴(3m +2)(3m -8)=0, ∴m 1=-23,m 2=83(舍),∴直线DE的解析式为:y=-23x;(3)存在,B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:设P(t,-12t2+t+4),①如图1,过点P作PH⊥y轴于H,∵四边形BPGF是矩形,∴BP=FG,∠PBF=∠BFG=90°,∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,∴∠PBH=∠OFB=∠CGF,∵∠PHB=∠FCG=90°,∴△PHB≌△FCG(AAS),∴PH=CF,∴CF=PH=t,OF=3-t,∵∠PBH=∠OFB,∴PH BH =OBOF,即t−12t2+t+4−4=43−t,解得:t1=0(舍),t2=1,∴F(2,0);②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,同①可得:NG =FM =3,OF =t -3, ∵∠OFB =∠FPM , ∴tan ∠OFB =tan ∠FPM , ∴OB OF =FM PM ,即4t−3=3−12t 2+t+4,解得:t 1=1+√2014,t 2=1−√2014(舍),∴F (√201−114,0);综上,点F 的坐标为(2,0)或(√201−114,0).14.(1)解:把O (0,0)代入y =x 2+(m -2)x +m -4得:m -4=0, 解得m =4,∴y =x 2+2x =(x +1)2-1,∴函数图象的顶点A 的坐标为(-1,-1);(2)证明:由抛物线顶点坐标公式得y =x 2+(m -2)x +m -4的顶点为(2−m 2,−m 2+8m−204),∵m >2, ∴2-m <0, ∴2−m 2<0,∵−m 2+8m−204=-14(m -4)2-1≤-1<0,∴二次函数y =x 2+(m -2)x +m -4的顶点在第三象限;(3)解:设平移后图象对应的二次函数表达式为y =x 2+bx +c ,其顶点为(-b2,4c−b 24),当x =0时,B (0,c ),将(-b 2,4c−b 24)代入y =-x -2得:4c−b 24=b2-2, ∴c =b 2+2b−84,∵B (0,c )在y 轴的负半轴, ∴c <0, ∴OB =-c =-b 2+2b−84,过点A 作AH ⊥OB 于H ,如图:∵A (-1,-1), ∴AH =1, 在△AOB 中, S △AOB =12OB •AH =12×(-b 2+2b−84)×1=-18b 2-14b +1=-18(b +1)2+98, ∵-18<0,∴当b =-1时,此时c <0,S △AOB 取最大值,最大值为98, 答:△AOB 面积的最大值是98.15.解:(1)∵抛物线y =ax 2+32x +c 过点A (1,0),C (0,-2),∴{0=a +32+c −2=c ,解得:{a =12c =−2. ∴抛物线的表达式为y =12x 2+32x −2. 设直线AC 的表达式为y =kx +b ,则 {k +b =0b =−2,解得:{k =2b =−2. ∴直线AC 的表达式为y =2x -2.(2)点D 不在抛物线的对称轴上,理由是:∵抛物线的表达式为y=12x2+32x−2,∴点B坐标为(-4,0).∵OA=1,OC=2,∴OA OC =OCOB.又∵∠AOC=∠BOC=90°,∴△AOC~△COB.∴∠ACO=∠CBO.∴∠ACO+∠BCO=∠COB+∠BCO=90°,∴AC⊥BC.∴将△ABC沿BC所在直线折叠,点D一定落在直线AC上,延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,如图1.又∵∠ACO=∠DCE,∴△ACO≌△DCE(AAS).∴DE=AO=1,则点D横坐标为-1,∵抛物线的对称轴为直线x=-32.故点D不在抛物线的对称轴上.(3)设过点B、C的直线表达式为y=mx+n,∵C(0,-2),B(-4,0),∴{−2=n0=−4m+n,解得:{m=−12n=−2.∴过点B、C的直线解析式为y=−12x−2.过点A作x轴的垂线交BC的延长线于点M,点M坐标为(1,-52),过点P作x轴的垂线交BC于点N,垂足为H,如图2.设点P坐标为(m,12m2+32m−2),则点N坐标为(m,−12m−2),∴PN=−12m−2-(12m2+32m−2)=−12m2−2m,∵PN∥AM,∴△AQM~△PQN.∴PQ AQ =PNAM.若分别以PQ 、AQ 为底计算△BPQ 和△BAQ 的面积(同高不等底),则△BPQ 与△BAQ 的面积比为PQ AQ ,即S 1S 2=PQAQ .∴S 1S 2=PNAM =−12m 2−2m 52=−m 25−4m 5=−15(m +2)2+45. ∵-15<0,∴当m =-2时,S 1S 2的最大值为45,此时点P 坐标为(-2,-3).16.解:(1)由抛物线C 1:y =a (x +2)2-5得,顶点P 的坐标为(-2,-5), ∵点B (1,0)在抛物线C 1上, ∴0=a (1+2)2-5, 解得a =59;(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G ,∴∠PHB =∠MGB =90°,∵点P 、M 关于点B 成中心对称, ∴PM 过点B ,且PB =MB ,PH =MG ∴Rt △PBH ≌Rt △MBG (HL ), ∴MG =PH =5,BG =BH =3, ∴顶点M 的坐标为(4,5),抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到, ∴抛物线C 3的表达式为y =-59(x -4)2+5;(3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到, ∴顶点N 、P 关于点Q 成中心对称, 由(2)得点N 的纵坐标为5, 设点N 坐标为(m ,5),作PH ⊥x 轴于H ,作NG ⊥x 轴于G , 作PK ⊥NG 于K ,∵旋转中心Q 在x 轴上,∴点B 与点E 是对应点,点A 与点F 是对应点, ∴EF =AB .∵点P 是抛物线的顶点, ∴AH =BH , ∴BH =3 ∴AB =2BH =6∵点N 是抛物线的顶点, ∴FG =EG =12EF =12AB =3 ∴点F 坐标为(m +3,0).H 坐标为(-2,0),K 坐标为(m ,-5), ∵顶点P 的坐标为(-2,-5), 根据勾股定理得:PN 2=NK 2+PK 2=m 2+4m +104, PF 2=PH 2+HF 2=m 2+10m +50, NF 2=52+32=34,①当∠PNF =90°时,PN 2+NF 2=PF 2,解得m =443, ∴Q 点坐标为(193,0).②当∠PFN =90°时,PF 2+NF 2=PN 2,解得m =103, ∴Q 点坐标为(23,0). ③∵PN >NK =10>NF , ∴∠NPF ≠90°综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.17.解:(1)由题意可得:A (-6,2),D (6,2),又∵E (0,8)是抛物线的顶点,设抛物线对应的函数表达式为y =ax 2+8,将A (-6,2)代入, (-6)2a +8=2, 解得:a =-16,∴抛物线对应的函数表达式为y =-16x 2+8;(2)(ⅰ)∵点P 1的横坐标为m (0<m ≤6),且四边形P 1P 2P 3P 4为矩形,点P 2,P 3在抛物线AED 上,∴P 2的坐标为(m ,-16m 2+8), ∴P 1P 2=P 3P 4=MN =-16m 2+8,P 2P 3=2m ,∴l =3(-16m 2+8)+2m =-12m 2+2m +24=-12(m -2)2+26, ∵-12<0,∴当m =2时,l 有最大值为26,即栅栏总长l 与m 之间的函数表达式为l =-12m 2+2m +24,l 的最大值为26; (ⅱ)方案一:设P 2P 1=n ,则P 2P 3=18-3n ,∴矩形P 1P 2P 3P 4面积为(18-3n )n =-3n 2+18n =-3(n -3)2+27, ∵-3<0,∴当n =3时,矩形面积有最大值为27, 此时P 2P 1=3,P 2P 3=9, 令-16x 2+8=3, 解得:x =±√30,∴此时P 1的横坐标的取值范围为-√30+9≤P 1横坐标≤√30, 方案二:设P 2P 1=n ,则P 2P 3=18−2n 2=9-n ,∴矩形P 1P 2P 3P 4面积为(9-n )n =-n 2+n =-(n -92)2+814, ∵-1<0,∴当n =92时,矩形面积有最大值为814,此时P 2P 1=92,P 2P 3=92, 令-16x 2+8=92, 解得:x =±√21,∴此时P 1的横坐标的取值范围为-√21+92≤P 1横坐标≤√21.18.解:(1)把(3,7.2),(4,5.8)代入y 需求=ax 2+c ,{9a +c =7.2①16a +c =5.8②,②-①,得7a =-1.4, 解得:a =-15,把a =-15代入①,得c =9, ∴a 的值为-15,c 的值为9;(2)设这种蔬菜每千克获利w 元,根据题意, w =x 售价-x 成本=12t +2-(14t 2-32t +3)=-14(t -4)2+3, ∵-14<0,且1≤t ≤7, ∴当t =4时,w 有最大值,答:在4月份出售这种蔬菜每千克获利最大; (3)当y 供给=y 需求时,x -1=-15x 2+9, 解得:x 1=5,x 2=-10(舍去), ∴此时售价为5元/千克,则y 供给=x -1=5-1=4(吨)=4000(千克), 令12t +2=5,解得t =6,∴w =-14(t -4)2+3=-14(6-4)2+3=2, ∴总利润为w •y =2×4000=8000(元), 答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.。
中考数学二次函数综合题汇编及答案解析
∴S△ACF=2S△AOC,
∴AF=2OA=2,
∴F(1,0).
∵A(﹣1,0),C(0,﹣3),
∴直线AC的解析式为y=﹣3x﹣3.
∵AC∥FQ,
∴设直线FQ的解析式为y=﹣3x+b,
将F(1,0)代入,得0=﹣3+b,解得b=3,
∴直线FQ的解析式为y=﹣3x+3.
联立 ,
【详解】
解:(1)根据题意得,(60﹣x)×10+100=3×100,
解得:x=40,
60﹣40=20元,
答:这一星期中每件童装降价20元;
(2)设利润为w,
根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000
=﹣10(x﹣50)2+4000,
答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【详解】
(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),
∴x1+x2=m,x1•x2=﹣(m+1),
∵x12+x22﹣x1x2=13,
∴(x1+x2)2﹣3x1x2=13,
∴m2+3(m+1)=13,
即m2+3m﹣10=0,
解得m1=2,m2=﹣5.
(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?
【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【解析】
【分析】
(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.
2021年全国中考1数学真题分类汇编-----二次函数
2021年全国中考数学真题分类汇编-----二次函数 一、选择题1.(2021.广东省)设O 为坐标原点,点A 、B 为抛物线2yx 上的两个动点,且OA ⊥OB ,连接点A 、B ,过O 作OC ⊥AB 于点C ,则点C 到y 轴距离的最大值(A ) A.12B. 22C. 32D. 12.(2021.湖北省荆门市)抛物线2(a,b,c )yax bx c 为常数开口向下且过点A (1,0),B (m,0)(-2<m<-1),下列结论:①2b+c>0;②2a+c<0;③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不相等的实数根,则4ac-2b <4a.其中正确结论的个数是(A ) A. 4 B. 3 C. 2 D. 1 3.(2021.浙江省绍兴市)关于二次函数22(x 4)6y的最大值或最小值,下列说法正确的是(D )A. 有最大值4B.有最小值4C.有最大值6D. 有最小值6 4. (2021.辽宁省沈阳)在平面直角坐标系中,二次函数2(x h)(a0)y a 的图象可能是(D )5.(2021.杭州)在“探索函数2yax bx c 的系数a,b,c 与图象的关系”活动中,老师给出了直角坐标系中的四个点:A (0,2),B (1,0),C (3,1),D (2,3).同学们探索了经过这个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为(A ) A.52 B.32 C.56 D.126.(2021.杭州)已知线段AB ,按如下步骤作图:①作射线AC ,使AC ⊥AB;②作∠BAC 的平分线AD ;③以点A 为圆心,AB 长为半径作弧,交AD 于点E ;④过点E 作EP ⊥AB 于点P ,则AP:AB=(D )A. 15:B. 12:C. 13:D. 12:7.(2021.浙江省杭州市)已知y 1和y 2均是以x 为自变量的函数,当x=m 时,函数值分别为M 1和M 2,若存在实数m ,使得M 1+M 2=0,则称函数y 1和y 2具有性质P 。
2024年中考数学真题分类汇编(全国)(第一期)专题16 二次函数解答题压轴题(35题)(原卷版)
专题16二次函数解答题压轴题(35题)一、解答题1.(2024·内蒙古赤峰·中考真题)如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE 米,人腾空后的落点D与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM平行,且与水滑道有唯一公共点,一端固定在钢架MN上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).2.(2024·广东深圳·中考真题)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,求a 的值.3.(2024·四川广元·中考真题)在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.4.(2024·天津·中考真题)已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当132OM OP ==时,求a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F 在线段DN 上,2NE NF +,当DE MF +15a 的值.5.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.6.(2024·吉林·中考真题)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.7.(2024·四川达州·中考真题)如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.8.(2024·四川泸州·中考真题)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.9.(2024·四川南充·中考真题)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.10.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.11.(2024·四川德阳·中考真题)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求5PA +的最小值.12.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(2024·上海·中考真题)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.14.(2024·四川遂宁·中考真题)二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.15.(2024·四川凉山·中考真题)如图,抛物线2y x bx c =-++与直线2y x =+相交于()()20,3,A B m -,两点,与x 轴相交于另一点C .(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与,A B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E ,当2PE ED =时,求P 点坐标;(3)抛物线上是否存在点M 使ABM 的面积等于ABC 面积的一半?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.(2024·江苏连云港·中考真题)在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.17.(2024·江苏苏州·中考真题)如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.18.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.19.(2024·山东威海·中考真题)已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.20.(2024·河北·中考真题)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .21.(2024·四川宜宾·中考真题)如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.22.(2024·湖南·中考真题)已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.23.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A.(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.24.(2024·四川眉山·中考真题)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -和点B ,与y 轴交于点()0,3C ,点D 在抛物线上.(1)求该抛物线的解析式;(2)当点D 在第二象限内,且ACD 的面积为3时,求点D 的坐标;(3)在直线BC 上是否存在点P ,使OPD △是以PD 为斜边的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.(2024·黑龙江绥化·中考真题)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.26.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线122y x =-与x 轴交于点A ,与y 轴交于点C ,过A ,C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一个交点为点(10)B -,,点P 是抛物线位于第四象限图象上的动点,过点P 分别作x 轴和y 轴的平行线,分别交直线AC 于点E ,点F .(1)求抛物线的解析式;(2)点D 是x 轴上的任意一点,若ACD 是以AC 为腰的等腰三角形,请直接写出点D 的坐标;(3)当EF AC =时,求点P 的坐标;(4)在(3)的条件下,若点N 是y 轴上的一个动点,过点N 作抛物线对称轴的垂线,垂足为M ,连接NA MP ,,则NA MP +的最小值为______.27.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.28.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.29.(2024·广东广州·中考真题)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.30.(2024·四川广安·中考真题)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.31.(2024·山东烟台·中考真题)如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.32.(2024·甘肃·中考真题)如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.33.(2024·湖北·中考真题)如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.34.(2024·湖北武汉·中考真题)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.35.(2024·吉林长春·中考真题)在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.。
人教全国中考数学二次函数的综合中考真题汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2012全国各地中考数学试题分类汇编二次函数专辑:一.选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)24.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++ B .23(2)3y x =-+C .23(2)3y x =+- D .23(2)3y x =--5.(2012泰安)二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .3-B .3C .6-D .96.(2012泰安)二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )7.(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>8.(2012•乐山)二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <1 9.(2012•衢州)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 110.(2012义乌市)如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是( )A .①②B .①④C .②③D .③④11.(2012•杭州)已知抛物线y=k (x+1)(x ﹣)与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是( ) A .2 B .3 C .4 D .512.(2012•扬州)将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A.y=(x+2)2-2B.y=(x+2)2+2C.y=(x-2)2+2D.y=(x-2)2-2 13.(2012•资阳)如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A. -1<x<5B. x>5C.x<-1且x>5D. x<-1或x>514.(2012•德阳)在同一平面直角坐标系内,将函数y=2x 2+4x+1的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是( ) A.(-1,1) B.(1,-2) C.(2,-2) D.(1,-1) 15.(2012•德阳)设二次函数y=x 2+bx+c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A.c=3B.c ≥3C.1≤c ≤3D.x ≤3 16.(2012•兰州)抛物线y =-2x 2+1的对称轴是( ) A.直线x=21 B.直线x= -21C.y 轴D. 直线x=2 17.(2012张家界)当a ≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是( )A .B .C D18.(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题: ①直线y=0是抛物线y=x 2的切线②直线x=﹣2与抛物线y=x 2 相切于点(﹣2,1) ③直线y=x+b 与抛物线y=x 2相切,则相切于点(2,1) ④若直线y=kx ﹣2与抛物线y=x 2 相切,则实数k=其中正确命题的是( ) A . ①②④ B .①③C .②③D .①③④19.(2012潜江)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0; ④8a+c >0.其中正确的有( )A.3个B.2个C.1个D.0 二.填空题 1.(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。
2.(2012•扬州)如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 1 .3.(2012无锡)若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为_______________。
4.(2012广安)如图,把抛物线y=x 2平移得到抛物线m ,抛物线m 经过点A (﹣6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线y=x 2交于点Q ,则图中阴影部分的面积为 .5.(2012苏州)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x ﹣1)2+1的图象上,若x 1>x 2>1,则y 1 > y 2(填“>”、“<”或“=”). 6.(2012深圳)二次函数622+-=x x y 的最小值是 . 三.解答题1.(2012临沂26.)如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过点A .O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.2.(2012菏泽21.)如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.3. (2012义乌市24.)如图1,已知直线y=kx 与抛物线y=交于点A (3,6).(1)求直线y=kx 的解析式和线段OA 的长度; (2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD .继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?4.(2012•杭州22.)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.5.(2012•烟台26.)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1,0),C (3,0),D (3,4).以A 为顶点的抛物线y=ax 2+bx+c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动.同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P ,Q 的运动速度均为每秒1个单位.运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P ,Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C ,Q ,E ,H 为顶点的四边形为菱形?请直接写出t 的值.6.(2012•益阳20)已知:如图,抛物线y=a (x ﹣1)2+c 与x 轴交于点A (,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P'(1,3)处. (1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x 轴的平行线交抛物线于C 、D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W ”型的班徽,“5”的拼音开头字母为W ,“W ”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W ”图案的高与宽(CD )的比非常接近黄金分割比(约等于0.618).请你计算这个“W ”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)7.(2012•广州24.)如图,抛物线y=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.8. (2012铜仁25.)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.9.(2012泰安29.)如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.10. (2012•乐山26.)如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并写出此时点D 的坐标.11.(2012•衢州24.)如图,把两个全等的Rt △AOB 和Rt △COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y=ax 2+bx+c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由. (3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移过程中与△COD 重叠部分面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.12. (2012绍兴25.)如图,矩形OABC 的两边在坐标轴上,连接AC ,抛物线242y x x =--经过A ,B 两点。