二次函数专题复习—平行四边形存在性问题
二次函数-平行四边形存在性问题
专题:二次函数中的平行四边形存在性问题类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.类型:已知两个定点,再找两个点构成平行四边形1.已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。
点B 的坐标为(1,0),OC=30B.(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值:(3)若点E 在x 轴上,点P 在抛物线上。
是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.2、练习如图,抛物线:c bx x y ++=221与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。
(1)求此抛物线的关系式;并直接写出点A、B 的坐标;(2)求过A、B、C 三点的圆的半径;(3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。
1.如图,抛物线223y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2.(1)求A、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.2、练习:如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B 两点(点A在点B的左侧)。
2024年九年级中考数学专题+课件-+:二次函数平行四边形存在性问题
五
三
一
学 四例 二平
目
以 致 用
方 法 归
题 解 析
纳
中 点 坐 标 公 式
行 四 边 形 性 质
录
+
判
定
一、平行四边形性质+判定
一、平行四边形性质
1、边:对边平行且相等 2、角:对角相等,邻角互补 3、对角线:对角线互相平分
二、平行四边形判定
1、两组对边分别平行的四边形是平行四边形 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形 4、对角线互相平分的四边形是平行四边形
边形是平行四边形?若存在,请求出所有
满足条件的点F的坐标;若不存在,请说明
理由.
谢
谢
与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边
形为平行四边形?直接写出所有符合条件的点F的坐标。
2.已知抛物线L:y=-x2+bx+c经过点O(0,0)、A(4,0),L关于 x轴对称的抛物线为L′,点B的坐标为(0,8). (1)求抛物线L和L′的函数表达式。 (2)点M在抛物线L的对称轴上,点P在抛物线L′上,是否 存在这样的点M与点P,使以A、B、M、P为顶点的四边形是平 行四边形?若存在,请求出点P的坐标;若不存在,请说明 理由。
3.如图,抛物线
与x轴交于点A、
B 两点,抛物线的对称轴为直线x=1,
(1)求m的值及抛物线的解析式;
(2)过A的直线与抛物线的另一交点C的横 坐标为2. 直线AC的解析式;
3.如图,抛物线
专题60 二次函数背景下的特殊平行四边形存在性问题(解析版)
模型介绍要求证平行四边形的存在,得先了解平行四边形的性质:(1)对应边平行且相等.(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D,移动路径完全相同.(2)对角线互相平分转化为:2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩,2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩.当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得:(1)BC 为对角线时,531352m n +=+⎧⎨+=⎩,可得()17,6D ;(2)AC 为对角线时,135253m n +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235m n +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可.比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2).(1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质:(1)对边平行且相等;(2)对角线互相平分.但此两个性质统一成一个等式:A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.例题精讲考点一:二次函数背景下的平行四边形存在性问题【例1】.如图,抛物线y =ax 2+bx +6与x 轴交于A (2,0),B (﹣6,0)两点.(1)求该抛物线的表达式;(2)点P是抛物线上一点,点Q是抛物线对称轴上一点,是否存在点P,使得以B、Q、C、P为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)将点A(2,0),B(﹣6,0)代入抛物线y=ax2+bx+6得:,解得,∴抛物线的表达式为y=﹣x2﹣2x+6;(2)存在点P,使得以B、Q、C、P为顶点的四边形是平行四边形,理由如下:∵y=﹣x2﹣2x+6=﹣(x+2)2+8,∴抛物线对称轴为直线x=﹣2,在y=﹣x2﹣2x+6中,令x=0得y=6,∴C(0,6),设P(m,﹣m2﹣2m+6),Q(﹣2,t),又B(﹣6,0),①以CP,QB为对角线,则CP,QB的中点重合,∴,解得,∴P(﹣8,﹣10);②以CQ,PB为对角线,则CQ,PB中点重合,∴,解得,∴P(4,﹣10);③以CB,PQ为对角线,则CB,PQ中点重合,∴,解得,∴P((﹣4,6);综上所述,点P的坐标为(﹣4,6)或(﹣8,﹣10)或(4,﹣10).变式训练【变1-1】.如图所示,在平面直角坐标系xOy中,抛物线y=(m﹣1)x2﹣(3m﹣4)x﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴是经过(1,0)且与y轴平行的直线,点P是抛物线上的一点,点Q是y轴上一点;(1)求抛物线的函数关系式;(2)若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)若tan∠PCB=,求点P的坐标.解:(1)当y=0时,(m﹣1)x2﹣(3m﹣4)x﹣3=0,解得x1=,x2=3,即A(,0)B(3,0),由A,B关于x=1对称,得=﹣1,解得m=2,即A(﹣1,0),函数解析式为y=x2﹣2x﹣3;(2)由四边形ABPQ是平行四边形,得PQ∥AB,PQ=AB=4,当PQ=4,即x=4时,y=5,即P(4,5);当x=﹣4时,y=21,即P(﹣4,21),AB为对角线,A(﹣1,0),B(3,0),设P(a,a2﹣2a﹣3),Q(0,n),则,解得,P(2,﹣3).综上所述:四边形ABPQ是平行四边形P(4,5),(﹣4,21),(2,﹣3);(3)如图,过P作PQ⊥x轴于Q,交CB延长线于R,过P作PH⊥BC于H,设P(m,m2﹣2m﹣3),∵抛物线y=x2﹣4x+3与坐标轴交于A,B,C三点,∴x=0,则y=﹣3;y=0,则0=x2﹣4x+3,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),C(0,﹣3),设直线BC的解析式为:y=kx+b,则,解得:,故直线BC解析式:y=x﹣3,∴R(m,m﹣3),PR=m2﹣2m﹣3﹣(m﹣3)=m2﹣3m,∵OB=OC=3,∴∠CBQ=135°,∴∠HPR=45°,∵CO=OB,∴∠OCR=45°,∴CR=OQ=m,∴PH=RH=PR÷=m(m﹣3),又∵CR=OQ=m,∴CH=m+m(m﹣3)=m(m﹣1)由tan∠PCB===,解得:m=5,则m2﹣2m﹣3=12,故P(5,12).当点P在直线BC的下方时,同法可得:=,解得m=或0(舍弃),∴P(,﹣),综上所述,满足条件点P坐标为(5,12)或(,﹣).考点二:二次函数背景下的菱形存在性问题【例2】.如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3),∵△PBC的周长为:PB+PC+BC,BC是定值,∴当PB+PC最小时,△PBC的周长最小.如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.∵AP=BP,∴△PBC周长的最小值是AC+BC,∵A(3,0),B(﹣1,0),C(0,3),∴AC=3,BC=.∴△PBC周长的最小值是:3+.抛物线对称轴为直线x=﹣=1,设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:,解得:,∴直线AC的解析式为y=﹣x+3,∴P(1,2);(3)存在.设P(1,t),Q(m,n)∵A(3,0),C(0,3),则AC2=32+32=18,AP2=(1﹣3)2+t2=t2+4,PC2=12+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图2,∴t2﹣6t+10=18,解得:t=3±,∴P1(1,3﹣),P2(1,3+),∵四边形ACPQ是菱形,∴AP与CQ互相垂直平分,即AP与CQ的中点重合,当P1(1,3﹣)时,∴=,=,解得:m=4,n=﹣,∴Q1(4,﹣),当P2(1,3+)时,∴=,=,解得:m=4,n=,∴Q2(4,),②以AC为对角线时,则PC=AP,如图3,∴t2﹣6t+10=t2+4,解得:t=1,∴P3(1,1),∵四边形APCQ是菱形,∴AC与PQ互相垂直平分,即AC与CQ中点重合,∴=,=,解得:m=2,n=2,∴Q3(2,2),③当以CP为对角线时,则AP=AC,如图4,∴t2+4=18,解得:t=±,∴P4(1,),P5(1,﹣),∵四边形ACQP是菱形,∴AQ与CP互相垂直平分,即AQ与CP的中点重合,∴=,=,解得:m=﹣2,n=3,∴Q4(﹣2,3+),Q5(﹣2,3﹣),综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG垂直平分CD∴点E的纵坐标y==1,将y=1代入y=x+3,得x=﹣2.∵EG关于y轴对称,∴点G的坐标为(2,1);②如图2,当四边形CDEG为菱形时,以点D为圆心,DC的长为半径作圆,交AD于点E,可得DC=DE,构造菱形CDEG设点E的坐标为(n,n+3),点D的坐标为(0,3)∴DE==∵DE=DC=4,∴=4,解得n1=﹣2,n2=2.∴点E的坐标为(﹣2,﹣2+3)或(2,2+3)将点E向下平移4个单位长度可得点G,点G的坐标为(﹣2,﹣2﹣1)(如图2)或(2,2﹣1)(如图3)③如图4,“四边形CDGE为菱形时,以点C为圆心,以CD的长为半径作圆,交直线AD于点E,设点E的坐标为(k,k+3),点C的坐标为(0,﹣1).∴EC==.∵EC=CD=4,∴2k2+8k+16=16,解得k1=0(舍去),k2=﹣4.∴点E的坐标为(﹣4,﹣1)将点E上移4个单位长度得点G.∴点G的坐标为(﹣4,3).综上所述,点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).考点三:二次函数背景下的矩形存在性问题【例3】.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.解:(1)∵OA=1,∴A(﹣1,0),又∵对称轴为x=2,∴B(5,0),将A,B代入解析式得:,解得,∴,自变量x为全体实数;(2)由(1)得:C(0,),D(2,),∴CD=,故答案为2;(3)∵B(5,0),C(0,),∴直线BC的解析式为:,设E(x,),且0<x<5,作EF∥y轴交BC于点F,则F(x,),∴EF=﹣()=,∴,有最大值为;当x=时,S△BCE(4)设P(2,y),Q(m,n),由(1)知B(5,0),C(0,),若BC为矩形的对角线,由中点坐标公式得:,解得:,又∵∠BPC=90°,∴PC2+PB2=BC2,即:,解得y=4或y=﹣,∴n=或n=4,∴Q(3,)或Q(3,4),若BP为矩形的对角线,由中点坐标公式得,解得,又∵∠BCP=90°,BC2+CP2=BP2,即:,解得y=,∴Q(7,4),若BQ为矩形的对角线,由中点坐标公式得,解得:,又∵∠BCQ=90°,∴BC2+CQ2=BQ2,即:,解得n=,∴Q(﹣3,﹣),综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).变式训练【变3-1】.如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K 为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.解:(1)令x=0,则y=4,∴C(0,4),令y=0,则﹣x2+3x+4=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),∴AB=5,=×5×4=10;∴S△ABC(2)存在,理由如下:=10,∵四边形ABPC的面积为18,S△ABC∴△BCP的面积为8,设直线BC的解析式为y=kx+4,将点B(4,0)代入,得k=﹣1,∴直线BC的解析式为y=﹣x+4,过P点作PM⊥x轴,交BC于点M,设P(t,﹣t2+3t+4),则M(t,﹣t+4),=×4×PM=2(﹣t2+3t+4+t﹣4)=2(﹣t2+4t)=8,∴S△BCP∴t=2,∴P(2,6);(3)存在,理由如下:设Q(m,﹣m2+3m+4),当m>0时,如图1,∵矩形是以BC为边,∴QK∥BC,CQ⊥BC,KB⊥BC,过点Q作QH⊥y轴交H点,过K作KG⊥x轴交G点,∵CQ=BK,∠OCB=∠OBC=45°,∴∠HCQ=∠GBK=45°,∴△CHQ≌△BGK(AAS),∴HC=HQ=BG=GK,∴m=﹣m2+3m+4﹣4,∴m=2或m=0(舍),∴HQ=2,∴K(6,2);当m<0时,如图2,∵矩形是以BC为边,∴QK∥BC,KC⊥BC,BQ⊥BC,设KC与x轴的交点为F,BQ与y轴的交点为H,过点Q作QG⊥y轴交G点,过K作KE⊥x轴交E点,∵∠OCB=∠OBC=45°,∴∠OBH=∠OHB=45°,∠FCO=∠CFO=45°,∴OF=OC=OB=OH=4,∠HQG=∠EFK=45°,∵KC=BQ,CF=HB,∴FK=QH,∴△QHG≌△KFE(AAS),∴QG=HG=EF=EK,∴﹣m=﹣4﹣(﹣m2+3m+4),∴m=﹣2或m=4(舍),∴GQ=2,∴K(﹣6,﹣2);综上所述,K点的坐标为(﹣6,﹣2)或(6,2).考点四:二次函数背景下的正方形存在性问题【例4】.已知O为坐标原点,抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的右侧),有点C(﹣2,6).(1)求A,B两点的坐标.(2)若点D(1,﹣3),点E在线段OA上,且∠ACB=∠ADE,延长ED交y轴于点F,求△EFO的面积.(3)若M在直线AC上,点Q在抛物线上,是否存在点M和点N,使以Q,M,N,A 为顶点的四边形是正方形?若存在,直接写出M点的坐标.若不存在,请说明理由.解:(1)令x2﹣3x﹣4=0,解得x=4或x=﹣1,∵A(4,0),B(﹣1,0);(2)过点B作BG⊥AC,过点E作EH⊥OA,设E(m,0),∵C(﹣2,6),D(1,﹣3),AC=6,AD=3,BC=,由△ABC的面积可得,5×6=6BG,∴BG=,由△ADE的面积可得,3|4﹣m|=3EH,∴EH=|4﹣m|,∵∠ACB=∠ADE∴=,∴=,∴2m2﹣41m+57=0,∴m=或m=19,∵点E在线段OA上,∴E(,0),则ED的直线解析式为y=6x﹣9,∴F(0,﹣9),∴△EFO的面积=×OE×OF=××9=;(3)直线AC的解析式为y=﹣x+4,∴∠CAO=45°,设M(t,﹣t+4),如图1:当AC为正方形QAMN边时,M点与N点关于x轴对称,∴N(t,t﹣4),∴M、N的中点为(t,0),∴A、Q中点也为(t,0),∴Q(2t﹣4,0),∵点Q在抛物线上,∴2t﹣4=﹣1,∴t=,∴M(,);如图2:当M、Q关于x轴对称时,M(0,4),此时Q(0,﹣4)在抛物线上;如图3:当Q(0,﹣4)时,M(8,﹣4);如图4:当Q(﹣1,0)时,M(﹣1,5);综上所述:M(,)或M(0,4)或M(8,﹣4)或M(﹣1,5).变式训练【变4-1】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△BCQ是以BC为直角边的直角三角形,求点Q 的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C y=﹣x2+2x+3.(2)如图1,连接BC,CD.由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).1.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB,点P是第三象限内抛物线上的一动点,连接AC,过点P作PE∥y 轴,与AC交于点E.(1)求此抛物线的解析式;(2)当PC∥AB时,求点P的坐标;(3)用含x的代数式表示PE的长,并求出当PE的长取最大值时对应的点P的坐标;(4)在(3)的条件下,平面内是否存在点Q,使以A、P、C、Q为顶点的四边形是平行四边形,若存在,直接写出点Q的坐标,若不存在,请说明理由.解:(1)令x=0,则y=﹣4,∴C(0,﹣4),∴OC=4,∵OA=2OC=8OB,∴OA=8,OB=1,∴A(﹣8,0),B(1,0),将A、B代入y=ax2+bx﹣4,得,∴,∴y=x2+x﹣4;(2)当PC∥AB时,P点的纵坐标为﹣4,∴x2+x﹣4=﹣4,∴x=0或x=﹣7,∵P点在第三象限,∴P(﹣7,﹣4);(3)设AC的直线解析式为y=kx+b,∴,解得,∴y=﹣x﹣4,设P(x,x2+x﹣4),则E(x,﹣x﹣4),∴PE=﹣x﹣4﹣(x2+x﹣4)=﹣x2﹣4x=﹣(x+4)2+8,∴当x=﹣4时,PE有最大值8,此时P(﹣4,﹣10);(4)存在点Q,使得以A、P、C、Q为顶点的四边形是平行四边形,理由如下:设Q(m,n),①当AC为对角线时,AC的中点为(﹣4,﹣2),PQ的中点为(,),∴﹣4=,﹣2=,∴m=﹣4,n=6,∴Q(﹣4,6);②当AP为对角线时,AP的中点为(﹣6,﹣5),CQ的中点为(,),∴﹣6=,﹣5=,∴m=﹣12,n=﹣6,∴Q(﹣12,﹣6);③当AQ为对角线时,AQ的中点为(,),CP的中点为(﹣2,﹣7),∴=﹣2,=﹣7,∴m=4,n=﹣14,∴Q(4,﹣14);综上所述:以A、P、C、Q为顶点的四边形是平行四边形时,Q点坐标为(﹣4,6)或(﹣12,﹣6)或(4,﹣14).2.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x﹣3.(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b′.得,解得,∴y=﹣x﹣3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,﹣m﹣3),N(m,m2+2m﹣3),∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,∴当m=﹣时,MN有最大值.②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=﹣m2﹣3m,MC=﹣m,∴﹣m2﹣3m=﹣m,解得m=﹣3+或0(舍弃)∴MN=3﹣2,∴CQ=MN=3﹣2,∴OQ=3+1,∴Q(0,﹣3﹣1).如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ =2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m=﹣m,解得m=﹣3﹣或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ﹣OC=3﹣1,∴Q(0,3﹣1).当点P在y轴的右侧时,显然MN>CM,此时满足条件的菱形不存在.综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).3.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),∴A(﹣1,0),∴,解得,∴抛物线的解析式y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3;设点D坐标为(t,﹣t2+2t+3),则点N(t,﹣t+3),∵A(﹣1,0),C(0,3),∴AC2=12+32=10,AN2=(t+1)2+(﹣t+3)2=2t2﹣4t+10,CN2=t2+(3+t﹣3)2=2t2,①当AC=AN时,AC2=AN2,∴10=2t2﹣4t+10,解得t1=2,t2=0(不合题意,舍去),∴点N的坐标为(2,1);②当AC=CN时,AC2=CN2,∴10=2t2,解得t1=,t2=﹣(不合题意,舍去),∴点N的坐标为(,3﹣);③当AN=CN时,AN2=CN2,∴2t2﹣4t+10=2t2,解得t=,∴点N的坐标为(,);综上,存在,点N的坐标为(2,1)或(,3﹣)或(,);(3)设E(1,a),F(m,n,∵B(3,0),C(0,3),∴BC=3,①以BC为对角线时,BC2=CE2+BE2,∴(3)2=12+(a﹣3)2+a2+(3﹣1)2,解得:a=,或a=,∴E(1,)或(1,),∵B(3,0),C(0,3),∴m+1=0+3,n+=0+3或n+=0+3,∴m=2,n=或n=,∴点F的坐标为(2,)或(2,);②以BC为边时,BE2=CE2+BC2或CE2=BE2+BC2,∴a2+(3﹣1)2=12+(a﹣3)2+(3)2或12+(a﹣3)2=a2+(3﹣1)2+(3)2,解得:a=4或a=﹣2,∴E(1,4)或(1,﹣2),∵B(3,0),C(0,3),∴m+0=1+3,n+3=0+4或m+3=1+0,n+0=3﹣2,∴m=4,n=1或m=﹣2,n=1,∴点F的坐标为(4,1)或(﹣2,1),综上所述:存在,点F的坐标为(2,)或(2,)或(4,1)或(﹣2,1).4.如图1,在平面直角坐标系xOy中,抛物线C:y=﹣x2+bx+c与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.解:(1)由题意把点A(﹣4,0),B(4,0),代入y=﹣x2+bx+c中,得:,解得:,∴抛物线C的函数解析式为:y=﹣x2+8;(2)如图1,由题意抛物线C′的顶点坐标为(2m,﹣8),设抛物线C′的解析式为:y=(x﹣2m)2﹣8,由,消去y得到:,∵抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,∴,解得:,∴满足条件的m的取值范围为:4<m<4;(3)结论:四边形PMP'N能成为正方形.理由:情形1,如图2,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(4,4),当△PFM是等腰直角三角形时,四边形PMP'N是正方形,∴PF=FM,∠PFM=90°,∵∠PEF=∠FHM=90°,∴∠PFE+∠FPE=90°,∠PFE+∠MFH=90°,在△PFE和△FMH中,∴,∴△PFE≌△FMH(AAS),∴PE=FH=4,EF=HM=4﹣m,∴M(m+4,m﹣4),∵点M在y=﹣x2+8上,∴m﹣4=﹣(m+4)2+8,解得或(舍),∴m=﹣6+2时,四边形PMP'N是正方形.情形2,如图,四边形PMP′是正方形,同法可得M(m﹣4,4﹣m),把M(m﹣4,4﹣m)代入y=﹣x2+8中,4﹣m=﹣(m﹣4)2+8,解得m=12或m=0(舍去),∴m=12时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣6+2或12.5.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点F为直线AD下方抛物线上一动点,连接FA,FD,求△FAD面积的最大值;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点F的对应点,点P为y1的对称轴上任意一点,在y1上确定一点Q,使得以点D,E,P,Q为顶点的四边形是平行四边形,请直接写出所有符合条件的点Q的坐标.解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣4得,∴,∴y=x2﹣3x﹣4,(2)当x=0时,y=﹣4,∴点C(0,﹣4),∵点D与点C关于直线l对称,且对称轴为直线x=,∴D(3,﹣4),∵A(﹣1,0),∴直线AD的函数关系式为:y=﹣x﹣1,设F(m,m2﹣3m﹣4),作FH∥y轴交直线AD于H,∴H(m,﹣m﹣1),∴FH=﹣m﹣1﹣(m2﹣3m﹣4)=﹣m2+2m+3,=S△AFH+S△DFH==2(﹣m2+2m+3)=﹣2m2+4m+6,∴S△AFD最大为8,当m=﹣=1时,S△AFD(3)∵直线AD与x轴正方向夹角为45°,∴沿AD方向平移,实际可看成向右平移4个单位,再向下平移4个单位,∵F(1,﹣6),∴E(5,﹣10),抛物线y=x2﹣3x﹣4平移后y1=x2﹣11x+20,∴抛物线y1的对称轴为:直线x=,当DE为平行四边形的边时:若D平移到对称轴上F点,则Q的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴Q(,﹣),若E平移到对称轴上F点,则Q的横坐标为,代入y1=x2﹣11x+20得y=,∴Q(,﹣),若DE为平行四边形的对角线时,若E平移到对称轴上F点,则Q平移到D点,∴Q的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴Q(,﹣),∴Q()或Q()或Q().6.如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=﹣x2+3x+4…①,令y=0,则x=﹣1或4,故点B(﹣1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=﹣x2+3x+4﹣(﹣x+4),解得:x=0或4﹣(舍去0),故菱形边长为x=4﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4﹣2或2.7.如图,已知直线y=2x+n与抛物线y=ax2+bx+c相交于A,B两点,抛物线的顶点是A(1,﹣4),点B在x轴上.(1)求抛物线的解析式;(2)若点M是y轴上一点,点N是坐标平面内一点,当以A、B、M、N为顶点的四边形是矩形时,求点M的坐标.(3)在抛物线上是否存在点Q,使∠BAQ=45°,若存在,请直接写出点Q的横坐标;若不存在,说明理由.解:(1)将点A(1,﹣4)代入直线y=2x+n得,2+n=﹣4,∴n=﹣6,∴直线y=2x﹣6,当y=0时,代入直线得:0=2x﹣6,解得:x=3,∴点B坐标(3,0),设抛物线表达式为y=a(x﹣1)2﹣4,将点B代入抛物线得,0=4a﹣4,解得:a=1,∴抛物线表达式y=(x﹣1)2﹣4;(2)当以A、B、M、N为顶点的四边形是矩形时,有两种情况:①如图,当AB为边时,设点M(0,m),已知点A(1,﹣4),点B(3,0)∴MA2=12+(m+4)2,AB2=(1﹣3)2+(﹣4﹣0)2=20,BM2=32+m2,∴MB2=AM2+AB2,即12+(m+4)2+20=32+m2,解得m=﹣,即点M的坐标(0,﹣),延长BN交y轴于点M′,作AG⊥y轴于G,BH⊥GA交GA的延长线于点H.由△BOM′∽△BHA,可得=,∴=,∴OM′=,∴M′(0,),②如图,当AB为对角线时,取线段AB的中点P,作辅助圆⊙P,与y轴交于点M1,M2,作PG⊥y轴于点G,点P坐标(,),即(2,﹣2),由①可得线段AB==2,∴⊙P半径,在Rt△PM1G中,PM1=,PG=2,M1G==1,根据垂径定理可得,M2G=1,∴点M1坐标(0,﹣1),点M2坐标(0,﹣3);综上所述,当以A、B、M、N为顶点的四边形是矩形时,点M坐标为:(0,﹣)或(0,)或(0,﹣1)或(0,﹣3);(3)存在点Q的横坐标为﹣2或,使∠BAQ=45°.理由如下:假设存在满足条件的点Q,如图,当四边形ADBC为正方形,且点Q1,Q2分别在直线AD和直线AC上时,∠BAQ=45°,设过线段AB中点P,且与线段AB垂直的直线:y=﹣+b,将点P(2,﹣2)代入得:﹣2=﹣1+b,解得b=﹣1,∴直线为y=﹣,设点C点坐标(n,﹣n﹣1),在Rt△ABD中,∠BAQ=45°,AB=2,sin45°=,解得BD=,∴BD==,解得n1=0,n2=4,∴点C坐标(0,﹣1),点D坐标(4,﹣3),设直线AD表达式为:y=qx+p,将点A(1,﹣4),点D(4,﹣3)代入得,,解得,∴直线AD的表达式为y=﹣,同理可得直线AC的表达式为y=﹣3x﹣1,联立直线AD与抛物线y=(x﹣1)2﹣4可得,﹣=(x﹣1)2﹣4,解得x1=1,x2=,同理联立直线AC与抛物线可解得x3=1,x4=﹣2,∴点Q的横坐标为﹣2或.8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、(结位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.果保留根号)解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴,解得,所以,抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m﹣3=0,当△=32﹣4×1×(m﹣3)=0,即m=时,直线与抛物线只有一个交点,PD最长,此时x=﹣,y=﹣+=,∴点P(﹣,)时,△PDE的周长最大;②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,在正方形APMN中,AP=PM,∠APM=90°,∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,∴∠APF=∠QPM,∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS),∴PF=PQ,设点P的横坐标为n(n<0),则PQ=﹣1﹣n,即PF=﹣1﹣n,∴点P的坐标为(n,﹣1﹣n),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0,解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,所以,点P的坐标为(,);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,设点P坐标为P(x,﹣x2﹣2x+3),则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,解得x=﹣1(不合题意,舍去)或x=﹣﹣1,此时点P坐标为(﹣﹣1,2).综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2).9.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,点E为抛物线在直线AD下方的一个动点,连接AE、DE,问:△ADE的面积是否存在最大值?若存在,请求出面积的最大值和点E的坐标.若不存在,请说明理由.(3)P为抛物线上的一动点,Q为对称轴上一动点,若以A、D、P、Q为顶点的四边形为平行四边形,请直接写出点P的坐标(至少写两个).解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),把点C(0,6)代入,∴6=a(0﹣1)(0﹣3),∴a=2,∴y=2(x﹣1)(x﹣3)=2x2﹣8x+6,∴抛物线解析式为y=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2)∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN的解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立y=2x2﹣8x+6得:,解得:,,∴点D(4,6),设△ADE的面积为S,点E(e,2e2﹣8e+6),过点E作EF⊥x轴交直线AD于点F,则点F坐标为(e,2e﹣2),∴EF=(2e﹣2)﹣(2e2﹣8e+6)=﹣2e2+10e﹣8,∴S=•EF•|D x﹣A x|=×3×(﹣2e2+10e﹣8)=﹣3(e2﹣5e﹣4)=,所以,当时,△ADE的面积,此时点E坐标为;(3)由(2)知,A(1,0),D(4,6),设Q(2,m),P(x,2x2﹣8x+6),①以AD为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(3,0);②以AP为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(5,16);③以AQ为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(﹣1,16);综上所述,当点P的坐标为(5,16)或(﹣1,16)或(3,0)时,以A,D,P,Q为顶点的四边形为平行四边形.10.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c 图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,∴A(3,0),B(0,﹣),∵二次函数y=x2+bx+c图象过A、B两点,∴,解得,∴二次函数解析式为y=x2﹣x﹣;(2)存在,理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),∵C与B关于直线x=1对称,∴C(2,﹣),①当BC、PQ为对角线时,如图:。
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)求B 、D 坐标,并写出该二次函数表达式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,有PQ AC ⊥?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求抛物线的对称轴;(2)在平面直角坐标系内是否存在一点P ,使以P 、A 、O 、B 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求点A B 、的坐标; (2)求抛物线的对称轴;(3)平面内是否存在一点P ,使以P A O B 、、、为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()10A -,和()50B ,,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒()05t <<.当t 为何值时,BMN 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,求点Q 坐标;若不存在,请说明理由. 5.已知二次函数213442y x x =--与x 数轴交于点A 、B (A 在B 的左侧),与y 轴交于点C ,连接BC . 发现:点A 的坐标为__________,求出直线BC 的解析式;拓展:如图1,点P 是直线BC 下方抛物线上一点,连接PB 、PC ,当PBC 面积最大时,求出P 点的坐标; 探究:如图2,抛物线顶点为D ,抛物线对称轴交BC 于点E ,M 是线段BC 上一动点(M 不与B 、C 两点重合),连接PM ,设M 点的横坐标为()08<<m m ,当m 为何值时,四边形PMED 为平行四边形?6.解答题如图,在平面直角坐标系中,二次函数24y ax bx =+-的图像交坐标轴于()1,0A -、()4,0B 两点,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.如图,二次函数23y ax bx =++的图象与x 轴交于点()30A -,和()4,0B ,点A 在点B 的左侧,与y 轴交于点C .(1)求二次函数的函数解析式;(2)如图,点P 在直线BC 上方的抛物线上运动,过点P 作PD AC ∥交BC 于点D ,作PE x ⊥轴交BC 于点E ,求724PD PE +的最大值及此时点P 的坐标;(3)在(2)中724PD PE +取最大值的条件下,将抛物线沿水平方向向右平移4个单位,再沿竖直方向向上平移3个单位,点Q 为点P 的对应点,平移后的抛物线与y 轴交于点G ,M 为平移后的抛物线的对称轴上一点,在平移后的抛物线上确定一点N ,使得以点Q 、G 、M 、N 为顶点的叫边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 8.如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是(4,0),与y 轴交于点C (0,-3),点D 在抛物线上运动.(1)求抛物线的表达式;(2)当点E 在x 轴上运动时,探究以点B ,C ,D ,E 为顶点的四边形是平行四边形,并直接写出点E 的坐标. 9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(30)A -,,()1,0B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q ,为顶点的四边形是平行四边形?若存在,直接写出M 的坐标;若不存在,说明理由. 10.如图,直线122y x =+分别与x 轴、y 轴交于C ,D 两点,二次函数2y x bx c =-++的图像经过点D ,与直线相交于点E ,且:4:3CD DE =.(1)求点E 的坐标和二次函数表达式. (2)过点D 的直线交x 轴于点M .①当DM 与x 轴的夹角等于2DCO ∠时,请直接写出点M 的坐标;①当DM CD ⊥时,过抛物线上一动点P (不与点D ,E 重合),作DM 的平行线交直线CD 于点Q ,若以D ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.11.如图,在平面直角坐标系中,二次函数的图像交坐标轴于()()1,04,0A B C -、、三点,且OB OC =,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.12.已知二次函数220y ax x c a =++≠()的图像与x 轴交于10()A B 、,两点,与y 轴交于点(03)C -,.(1)求二次函数的表达式;(2)D 是二次函数图像上位于第三象限内的点,求ACD 的面积最大时点D 的坐标;(3)M 是二次函数图像对称轴上的点,在二次函数图像上是否存在点N ,使以M N B O 、、、为顶点的四边形是平行四边形?若有,请写出点N 的坐标.(不写求解过程)13.在平面直角坐标系中,二次函数22y ax bx =++的图像与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C . (1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.14.如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求二次函数的解析式;(2)点P 为二次函数第一象限图象上一点,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图象与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线1:l y x b k=-+交线段OC 于点M (不与O 、C 重合),过点T 作直线TN //y 轴交OC 于点N ,若在点T 运动的过程中,2ON OM =常数m ,求m 、k 的值. 15.如图,在平面直角坐标系中,二次函数214y x bx c =-++的图象与坐标轴交于、、A B C 三点,其中点A的坐标为()0,8,点B 的坐标为()4,0-.(1)求该二次函数的表达式及点C 的坐标;(2)点D 为该二次函数在第一象限内图象上的动点,连接AC CD 、,以AC CD 、为邻边作平行四边形ACDE ,设平行四边形ACDE 的面积为.S ①求S 的最大值;①当S 取最大值时,Р为该二次函数对称轴上--点,当点D 关于直线CP 的对称点E 落在y 轴上时,求点Р的坐标.参考答案1.【答案】(1)()4,0B - ()8,3D 211384y x x =--(2)当点P 运动到距离点52A 个单位处时,四边形PDCQ 面积最小,最小值为8182.【答案】(1)4x =-(2)()4,16或()4,16--或()4,16-3.【答案】(1)()4,0A - ()0,16B (2)4x =-(3)()4,16或()4,16-或()4,16--. 4.【答案】(1)245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)存在,Q 的坐标为()712-,或()72-,或()14,或()23, 5.【答案】发现:()2,0-,直线BC 的解析式为1y x 42=-;拓展:()4,6P -;探究:当5m =时,四边形PMED 为平行四边形6.【答案】(1)234y x x =--(2)当P 点坐标为(2,6)-时,16(3)Q 的坐标为(2,6)--或(10,6)7.【答案】(1)211344y x x =-++(2)724PD PE +的最大值为12,此时522⎛⎫ ⎪⎝⎭,(3)1611632N ⎛⎫ ⎪⎝⎭, 2471632N ⎛⎫-- ⎪⎝⎭,32147216N ⎛⎫- ⎪⎝⎭,.8.【答案】(1)239344y x x =--(2)(1,0)或(7,0)或41502⎛⎫+- ⎪ ⎪⎝⎭,或41502⎛⎫- ⎪ ⎪⎝⎭, 9.【答案】(1)224233y x x =--+(2)存在,点M 的坐标为(2,2)-或---,(172)或(17,2)-+-10.【答案】(1)2722y x x =-++(2)①302⎛⎫- ⎪⎝⎭,或302⎛⎫⎪⎝⎭,;①3192-或3192+ 11.【答案】(1)234y x x =--(2)(2,6)P -,四边形PBOC 的最大面积为16(3)存在,Q 的坐标为(2,6)--或(10,6) 12.【答案】(1)223y x x =+-(2)315(,)24D --(3)存在,点N 的坐标为(2,5)或(0,3)-或(2,3)--13.【答案】(1)224233y x x =--+;(2)35(,)22P -(3)存在 12(1,0),(5,0)Q Q -- 34(27,0),(27,0)+-Q Q .14.【答案】(1)22y x x =-;(2)点P 的坐标(15,4)+或(13,2)+;(3)554m =12k =.15.【答案】(1)y =-14x 2+x +8,C 点坐标为(8,0);(2)①32;①P (2,2)或(2,6)。
初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思
《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。
对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。
2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。
3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。
针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。
效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。
其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。
教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。
在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。
2、注重板书。
通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。
3、注重数学思想方法的渗透。
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。
动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。
方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。
数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)
专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。
移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。
、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。
、。
四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。
使得以A 、B 、。
、。
四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。
专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)
专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。
中考数学各类计算题型:二次函数存在性问题(平行四边形)
中考数学| 各类计算题型二次函数存在性问题:平行四边形【一】已知抛物线y=−mx2+4x+2m与x轴交于点A,B 与y轴交点C(0,2).(1)抛物线的解析式。
(2)抛物线的对称轴为l,顶点为D,点C关于直线l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,求出周长的最小值;若不存在,请说明理由。
(3)若点P在抛物线上,点Q在x轴上,当以点D. E. P、Q 为顶点的四边形是平行四边形时,求点P的坐标。
【二】如图,抛物线y= -x2+2x+n经过点M(-1,0)顶点为C.(1)求点C的坐标;(2)设直线y=2x与抛物线交于A、B两点(点A在点B的左侧).①在抛物线的对称轴上是否存在点G,使∠AGC=∠BGC?若存在,求出点G的坐标;若不存在,请说明理由;②点P在直线y=2x上,点Q在抛物线上,当以O、M、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.【三】已知抛物线y=ax2+bx+8(a≠0)经过点A (-3,-7),B(3.5),顶点为E,抛物线的对称轴与直线AB交于C。
(1)求直线AB的解析式和抛物线的解析式(2)在抛物线上两点AE之间的部分(不包含A,E 两点),是否存在点D,使得S△DAC=2S△DCE?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点P在抛物线上,点Q在x轴上,当以点A,E,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标。
【四】如图,直线y=x−4与x轴、y轴分别交于A. B两点,抛物线y=1/3x2+bx+c经过A. B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C. D. P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由。
二次函数专题复习—平行四边形存在性问题
二次函数专题复习—平行四边形存在性问题
《平行四边形存在性问题》教学设计
课题平行四边形存在性问题
解读理念面向全体学生,着眼于学生的中考,使学生会解决动点产生的平行四边形问题。
学情分析
学生对于平行四边形会按三种情况讨论,但这类问题涉及知识面多,很多学生求不出最后结果,这就需要教师进行必要的引导,帮助分析,寻找解决问题的策略。
教材分析内容标准
一、按情况分类
二、根据分类列方程组
三、根据点的坐标画图
教学目标
情感态度价值
观目标
培养学生观察、思考、归纳的良好思维习惯能力目标经历动点产生的平行四边形作图过程,
明确“动中求静”的解题策略。
知识目标理解和掌握动点产生的平行四边形问题
中所涉及的平行四边形的性质,二次函数性
质,方程等数学知识。
教学资源 1.北师大版九年级中考专题
2.课件
教学重点根据分类情况列方程
教学难点根据二次函数、中点坐标公式用所学知识求解。
方法解读教学方法启发式、探究式、参与式教学
教学准备1.把握教材,了解学生的知识基础和思维层次.
2.教师搜集相关资料,制作多媒体课件.。
二次函数专题——平行四边形的存在
《二次函数专题复习——平行四边形的存在性》--教学预案教材来源:义务教育教科书《数学》/北京师范大学出版社2014年6月第1版内容来源:初中九年级综合复习主题:二次函数专题复习——平行四边形的存在性授课对象:九年级学生目标确定的依据1.中考地位与内容二次函数是初中阶段的重要学习内容,是初等函数中的重要函数,为高中学习函数知识打下基础。
作为中考热点问题之一,每年必考。
二次函数与几何图形相结合考查的内容主要有线段问题、面积问题、等腰三角形存在性、直线三角形存在性问题、平行四边形存在性问题、相似三角形问题、角度问题等。
其中,平行四边形存在性问题,是其中主要考查内容之一,10年3考。
主要运用分类讨论的数学思想,来求动点的坐标。
2.学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也正在迅速发展。
但同时,这一阶段的学生注意力容易分散,所以在教学中应该抓住这些特点,运用几何画板等信息技术手段,引发学生兴趣,吸引注意力。
从知识层面来说,二次函数的线段问题已经解决,为今天这节课顺利完成打下基础。
但由于动点的抽象性,如何画图就成了重中之重。
所以先用几何画板展示动点的动画,让学生明白在解决问题中先分类讨论,再画出草图的重要性,进而解决平行四边形存在性的问题。
3.近10年中考23题分析教学目标1.能独立分析并画出平行四边形存在的几种情况;2.能用线段的平移、线段的中点坐标等知识求出“三定一动”、“两定两动”等两类型平行四边形存在性中的点的坐标。
教学重点1.分析并画出二次函数中平行四边形的存在的过程;2.运用线段的平移、线段的中点坐标等正确求出平行四边形存在性中的点的坐标。
教学难点画出并求出平行四边形存在性中的点的坐标。
教学方法师生合作,学生自主探索,小组合作等相结合。
评价任务1.能分类画出平行四边形存在的几种情况,画出草图;2.正确运用线段的平移、线段的中点坐标等求出平行四边形存在性中的点的坐标。
二次函数中的平行四边形存在性问题
二次函数中的平行四边形存在性问题
本节课主要讲解了解决平行四边形存在性问题的一般方法和思路。
首先回顾了平行四边形的性质,包括角、边和对角线。
接着介绍了二次函数的相关知识点,如表达式、顶点坐标、对称轴和增减性。
然后通过単动点和双动点的实例,让学生探索如何根据条件求出平行四边形的顶点坐标。
在解决问题时,可以选择一种情况作为画图的依据,然后满足对边平行再用对边相等求出要求的点的坐标。
最后,对本节课的内容进行了小结。
二次函数存在性问题(平行四边形)
有关平行四边形的存在性问题一.知识与方法积累:已知点C(0,2), B(4,0),点A 为X 轴上一个动点,试在直角坐标平面内确定点M ,使得以点M 、A 、B 、C 为顶点的四边形是平行四边形(画出草图即可)分以下几种情况:(1)以BC 为对角线,BE 为边;(2)以CE 为对角线,BC 为边; (3)以BE 为对角线,BC 为边;2. 方法归纳:先分类;(按对角线和边)再画图;(画草图,确定目标点的大概位置)后计算。
(可利用三角形全等性质和平行四边形性质,准确求点的坐标)二.例题解析:如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A 、B 两点,31tan =∠OCA ,6=∆ABC S . (1)求点B 的坐标; (2)求抛物线的解析式及顶点坐标;(3)设点E 在x 轴上,点F 在抛物线上,如果A 、C 、E 、F 构成平行四边形,请求出点E 的坐标.321123422468OBC321123422468OBCCABOy x巩固练习:1. 已知抛物线322++-=x x y 与x 轴的一个交点为 A(-1,0),与y 轴的正半轴交于点C . 问坐标平面内是否存在点M ,使得以点M 和抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.2. 已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.3.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.4.已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.第(4)题xy BC ODA MN N ′ BN①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等5.已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。
二次函数与特殊四边形存在问题(学生版)
二次函数与几何综合专题---- 平行四边形存在性问题【模型解读】考虑到求证平行四边形存在,必先了解平行四边形性质: (1)对应边平行且相等; (2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中: (1)对边平行且相等可转化为:A B D CAB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.(2)对角线互相平分转化为:2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD 的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D BA B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩, 2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩. 当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)y D -y Cx D -x Cy A -y Bx A -x BABC DDCBA引例:已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2). (1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质: (1)对边平行且相等; (2)对角线互相平分.但此两个性质统一成一个等式: A C B DAC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.【模型实例】1.如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.2.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD 交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.3.如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线与直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【课后练习】1.如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD 的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.2.已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L 于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.二次函数与几何综合专题---- 菱形存在性问题【模型解读】作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型: (1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点引例:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.【分析】设C 点坐标为(m ,0),D 点坐标为(p ,q ). (1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()2222151********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC )()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩【模型实例】1.如图,已知直线与x 轴、y 轴分别交于B 、C 两点,抛物线y =ax 2+3x +c 经过B 、C 两点,与x 轴的另一个交点为A ,点E 的坐标为.(1)求抛物线的函数表达式;(2)点E ,F 关于抛物线的对称轴直线l 对称,Q 点是对称轴上一动点,在抛物线上是否存在点P ,使得以E 、F 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2交x轴于点A、B,交y轴于点C.(1)求△ABC的面积;(2)如图,过点C作射线CM,交x轴的负半轴于点M,且∠OCM=∠OAC,点P为线段AC上方抛物线上的一点,过点P作AC的垂线交CM于点G,求线段PG的最大值及点P的坐标;(3)将该抛物线沿射线AC方向平移个单位后得到的新抛物线为y′=ax2+bx+c(a≠0),新抛物线y′与原抛物线的交点为E,点F为新抛物线y′对称轴上的一点,在平面直角坐标系中是否存在点Q,使以点A、E、F、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+c与x轴交于A,B(﹣1,0)两点,与y轴交于点C,直线AC的解析式为y=x﹣2.(1)求抛物线的解析式;(2)已知k为正数,当0<x≤1+k时,y的最大值和最小值分别为m,n,且m+n=,求k的值;(3)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以点A,C,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.【课后练习】1.如图1,抛物线y=ax2+bx+c与x轴相交于点B、C(点B在点C左侧),与y轴相交于点A.已知点B坐标为B(1,0),BC=3,△ABC面积为6.(1)求抛物线的解析式;(2)如图1,点P为直线AC下方抛物线上一动点,过点P作PD∥AB,交线段AC于点D.求PD长度的最大值及此时P点的坐标;(3)如图2,将抛物线向左平移个单位长度得到新的抛物线,M为新抛物线对称轴l上一点,N为平面内一点,使得以点A、B、M、N为顶点的四边形为菱形,请直接写出点N的坐标,并写出求解其中一个N点坐标的过程.2.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC,交对称轴于点D.(1)求抛物线的解析式;(2)点P是直线BC上方的抛物线上一点,连接PC,PD.求△PCD的面积的最大值以及此时点P的坐标;(3)将抛物线y=ax2+bx+3向右平移1个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点.当以D、E、F、G四点为顶点的四边形是菱形时,直接写出点F的坐标,并写出求解其中一个点F的坐标的过程.二次函数与几何综合专题---- 矩形存在性问题【模型解读】矩形的判定:(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形; (3)有三个角为直角的四边形.【题型分析】矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=(AC 为对角线时)因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解. 确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个. 题型如下:(1)2个定点+1个半动点+1个全动点; (2)1个定点+3个半动点.引例:已知A (1,1)、B (4,2),点C 在x 轴上,点D 在坐标系中,且以A 、B 、C 、D 为顶点的四边形是矩形,求D 点坐标.【分析】设C 点坐标为(a ,0),D 点坐标为(b ,c ),又A (1,1)、B (4,2). 先考虑平行四边形存在性:(1)AB 为对角线时,14120a b c +=+⎧⎨+=+⎩,满足此条件的C 、D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,另外AB =CD=综合以上可解:323a b c =⎧⎪=⎨⎪=⎩或233a b c =⎧⎪=⎨⎪=⎩.故C (3,0)、D (2,3)或C (2,0)、D (3,3).(2)AC为对角线时,14102a bc+=+⎧⎨+=+⎩,另外AC=BD得:143531abc⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩.故C14,03⎛⎫⎪⎝⎭、D5,13⎛⎫-⎪⎝⎭.(3)AD为对角线时,14120b ac+=+⎧⎨+=+⎩,另外AD=BC综合以上可解得:431331abc⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.故C14,03⎛⎫⎪⎝⎭、D13,13⎛⎫⎪⎝⎭.【小结】这个方法是在平行四边形基础上多加一个等式而已,剩下的都是计算.【模型实例】1.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE 的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于A、B两点(点A在点B的左侧),交y轴于点E,一次函数y=x+1与抛物线交于A、D两点,交y轴于点C,且D(4,5).(1)求抛物线的解析式;(2)若点P是第四象限内抛物线上的一点,过点作PQ⊥AD交AD于点Q,求PQ的最大值以及相应的P点坐标;(3)将抛物线向右平移1个单位长度,再向上平移1个单位长度得到新抛物线,新抛物线与原抛物线交于点R,M点在原抛物线的对称轴上,在平面内是否存在点N,使得以点A、R、M、N为顶点的四边形是矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.【课后练习】1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m 的最大值及此时点P的坐标;(3)在(2)的条件下,m取最大值时,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.2.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数的关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.二次函数与几何综合专题----正方形存在性问题【模型解读】作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.引例:在平面直角坐标系中,A(1,1),B(4,3),在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.【模型实例】1.如图,某一次函数与二次函数y =x 2+mx +n 的图象交点为A (﹣1,0),B (4,5).(1)求抛物线的解析式;(2)点C 为抛物线对称轴上一动点,当AC 与BC 的和最小时,点C 的坐标为 (1,2) ;(3)点D 为抛物线位于线段AB 下方图象上一动点,过点D 作DE ⊥x 轴,交线段AB 于点E ,求线段DE 长度的最大值;(4)在(2)条件下,点M 为y 轴上一点,点F 为直线AB 上一点,点N 为平面直角坐标系内一点,若以点C ,M ,F ,N 为顶点的四边形是正方形,请直接写出点N 的坐标.2.如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.3.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.【课后练习】1.已知抛物线L:y=﹣ax2+2ax+c与x轴交于A、B两点(点A在点B的左侧),且AB=4.(1)求A、B两点的坐标;(2)将抛物线L沿x轴翻折后得到的新抛物线记为L',且记L和L'的顶点分别记为M、M',要使点A、B、M、M'为顶点的四边形是正方形,请求抛物线L的解析式.。
中考复习专题6二次函数与平行四边形存在性问题(含解析)
专题6二次函数与平行四边形存在性问题解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1.平面直角坐标系中,点A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,22x x y y ++.2.平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A C B D y y y y +=+.3.已知不在同一直线上的三点A 、B 、C ,在平面内找到一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形,有三种情况:【例1】(2022•娄底)如图,抛物线y =x 2﹣2x ﹣6与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)点P (m ,n )(0<m <6)在抛物线上,当m 取何值时,△PBC 的面积最大?并求出△PBC 面积的最大值.(3)点F 是抛物线上的动点,作FE ∥AC 交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;,S△BOP,计算出S△BOC,根据S△PBC=S (2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;四边形PBOC(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),=x P==3m,∴S△POCS△BOP=|y P|=+2m+6),==18,∵S△BOC=S四边形PBOC﹣S△BOC∴S△PBC+S△POB)﹣S△BOC=(S△POC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,=;∴当m=3时,S△PBC最大方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,===﹣(m﹣3)2+,∴S△PBC=;∴当m=3时,S△PBC最大(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【例2】.(2022•毕节市)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y 轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用抛物线的顶点式可直接得出抛物线的表达式;(2)先根据(1)中抛物线的表达式求出点A,B,C的坐标,进而可得出直线BC的表达式;设出点平移后的抛物线,联立直线BC和抛物线的表达式,根据根的判别式可得出结论;(3)假设存在以点D,E,M,N为顶点的四边形是平行四边形,分别以DE为边,以DE为对角线,进行讨论即可.【解析】(1)∵抛物线y=﹣x2+bx+c的顶点为D(2,1),∴抛物线的表达式为:y=﹣(x﹣2)2+1=﹣x2+4x﹣3.(2)由(1)知,抛物线的表达式为:y=﹣x2+4x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x=1或x=3,∴A(1,0),B(3,0).∴直线BC的解析式为:y=x﹣3.设平移后的抛物线的解析式为:y=﹣(x﹣2)2+1﹣h,令﹣(x﹣2)2+1﹣h=x﹣3,整理得x2﹣3x+h=0,∵该抛物线与直线BC始终有交点,∴Δ=9﹣4h≥0,∴h≤.∴h的最大值为.(3)存在,理由如下:由题意可知,抛物线的对称轴为:直线x=2,∴E(2,﹣1),∴DE=2,设点M(m,﹣m2+4m﹣3),若以点D,E,M,N为顶点的四边形是平行四边形,则分以下两种情况:①当DE为边时,DE∥MN,则N(m,m﹣3),∴MN=|﹣m2+4m﹣3﹣(m﹣3)|=|﹣m2+3m|,∴|﹣m2+3m|=2,解得m=1或m=2(舍)或m=或m=.∴N(1,﹣2)或(,)或(,).②当DE为对角线时,设点N的坐标为t,则N(t,t﹣3),∴,解得m或(舍),∴N(3,0).综上,点N的坐标为N(1,﹣2)或(,)或(,)或(3,0).【例3】(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y 轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【分析】(1)根据抛物线对称轴和点C坐标分别确定b和c的值,进而求得结果;(2)根据点A,D,C坐标可得出AD,AC,CD的长,从而推出三角形ADC为直角三角形,进而得出∠DAC和∠BCO的正切值相等,从而得出结论;(3)先得出y1的顶点,进而得出先抛物线的表达式,N的坐标,根据三角形相似或一次函数可求得点M 坐标,以MN为边,点M,N,P,Q为顶点的四边形是▱MNQP和▱MNPQ根据M,N和点P的横坐标可以得出Q点的横坐标,进而求得结果.【解答】(1)解:由题意得,,∴,∴二次函数的表达式为:y=﹣x2﹣2x+3;(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,∴D(﹣1,4),由﹣x2﹣2x+3=0得,x1=﹣3,x2=1,∴A(﹣3,0),B(1,0),∴AD2=20,∵C(0,3),∴CD2=2,AC2=18,∴AC2+CD2=AD2,∴∠ACD=90°,∴tan∠DAC===,∵∠BOC=90°,∴tan∠BCO==,∴∠DAC=∠BCO;(3)解:如图,作DE⊥y轴于E,作D1F⊥y轴于F,∴DE∥FD1,∴△DEC∽△D1FC,∴=,∴FD1=2DE=2,CF=2CE=2,∴D1(2,1),∴y1的关系式为:y=﹣(x﹣2)2+1,当x=0时,y=﹣3,∴N(0,﹣3),同理可得:,∴,∴OM=3,∴M(3,0),设P(2,m),当▱MNQP时,∴MN∥PQ,PQ=MN,∴Q点的横坐标为﹣1,当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,∴Q(﹣1,8),当▱MNPQ时,同理可得:点Q横坐标为:5,当x=5时,y=﹣(5﹣2)2+1=﹣8,∴Q′(5,﹣8),综上所述:点Q(﹣1,﹣8)或(5,﹣8).【例4】(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)①方法一:求出直线CD的解析式为y=4x﹣3,当y=0时,求出x的值,则可得出答案;方法二:求出OD=3,证明△DEO∽△CEB,由相似三角形的性质得出,设OE=x,则BE=3﹣x,列出方程求出x的值,则可得出答案;②分别以已知线段BC为边、BC为对角线,画出图形,利用平行四边形的性质及全等三角形的性质求点F的坐标和点D的坐标即可.【解析】(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c得,,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)①由(1)可知,C(0,﹣3),设直线BC的解析式为y=kx+m,将C(0,﹣3),B(3,0)代入得,,∴,∴直线BC的解析式为y=x﹣3,∴直线MN的解析式为y=x,∵抛物线的对称轴为x=﹣=﹣=1,把x=1代入y=x,得y=1,∴D(1,1),方法一:设直线CD的解析式为y=k1x+b1,将C(0,﹣3),D(1,1)代入得,,解得,∴直线CD的解析式为y=4x﹣3,当y=0时,4x﹣3=0,∴x=,∴E(,0),∴OE=.方法二:由勾股定理得OD==,BC==3,∵BC∥MN,∴△DEO∽△CEB,∴,设OE=x,则BE=3﹣x,∴,解得x=,∴OE=.②存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.理由如下:(Ⅰ)若平行四边形以BC为边时,由BC∥FD可知,FD在直线上,∴点F是直线MN与对称轴l的交点,即F(1,1),由点D在直线MN上,设D(t,t),如图,若四边形BCFD是平行四边形,则DF=BC,过点D作y轴的垂线交对称轴l于点G,则G(1,t),∵BC∥MN,∴∠OBC=∠DOB,∵GD∥x轴,∴∠GDF=∠DOB,∴∠OBC=∠GDF,又∵∠BOC=∠DGF=90°,∴△DGF≌△BOC(AAS),∴GD=OB,GF=OC,∵GD=t﹣1,OB=3,∴t﹣1=3,∴t=4,∴D(4,4),如图,若四边形BCDF是平行四边形,则DF=CB,同理可证△DKF≌△COB(AAS),∴KD=OC,∵KD=1﹣t,OC=3,∴1﹣t=3,∴t=﹣2,∴D(﹣2,﹣2);(Ⅱ)若平行四边形以BC为对角线时,由于D在BC的上方,则点F一定在BC的下方,如图,四边形BFCD为平行四边形,设D(t,t),F(1,n),同理可证△DHC≌△BPF(AAS),∴DH=BP,HC=PF,∵DH=t,BP=3﹣1=2,HC=t﹣(﹣3)=t+3,PF=0﹣n=﹣n,∴,∴,∴D(2,2),F(1,﹣5),综上所述,存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.当点F的坐标为(1,1)时,点D的坐标为(4,4)或(﹣2,﹣2);当点F的坐标为(1,﹣5)时,点D的坐标为(2,2).1.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y 轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【分析】(1)将A(1,0)和点B(5,0)代入y=ax2+bx﹣5计算出a,b的值即可;,利用二次函数求最值;(2)作ED⊥x轴于D,表示出ED,从而表示出S△BEP(3)过A作AE∥y轴交直线BC于E点,过N作NF∥y轴交直线BC于点F,则NF=AE=4,设N(m,﹣m2+6m﹣5),则F(m,m﹣5),从而有NF=|﹣m2+5m|=4,解方程即可求出N的横坐标.【解析】(1)将A(1,0)和点B(5,0)代入y=ax2+bx﹣5得:,解得,∴抛物线y=﹣x2+6x﹣5,(2)作ED⊥x轴于D,由题意知:BP=4﹣t,BE=2t,∵B(5,0),C(0,﹣5),∴OB=OC=5,∴∠OBC=45°,∴ED=sin45°×2t=,==﹣,∴S△BEP最大为2.当t=﹣时,S△BEP最大为2.∴当t=2时,S△BEP(3)过A作AE∥y轴交直线BC于E点,过N作NF∥y轴交直线BC于点F,则NF=AE=4,设N(m,﹣m2+6m﹣5),则F(m,m﹣5),∴NF=|﹣m2+5m|=4,∴m2﹣5m+4=0或m2﹣5m﹣4=0,∴m1=1(舍),m2=4,或m3=,m4=,∴点N的横坐标为:4或或.2.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM ⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.【分析】(1)将点A(﹣3,0),B(4,0)代入y=ax2+bx+4,即可求函数解析式;(2)先求出BC的解析式为y=﹣x+4,设P(m,﹣m2+m+4),Q(m,﹣m+4),=×BC×PN=×PQ×OB,可得PN=﹣(m﹣2)2+,所以当m=2时,PN 由面积S△BCP有最大值,P(2,);(3)由抛物线沿着射线CB的方向平移,可设抛物线沿x轴正方向平移t(t>0)个单位,则沿y轴负半轴平移t个单位,则平移后的函数解析式为y'=﹣+﹣t,再由新抛物线y'过原点,可求t=2,则可求新的抛物线解析式为y'=﹣x2+x,联立﹣x2+x=﹣x2+x+4,求出D(3,2),由点E在y'上,则E点的横坐标为,由点F为新抛物线y'上,设F点横坐标为n,当以A,D,E,F为顶点的四边形为平行四边形时,有三种情况:①当AE与DF为平行四边形的对角线时,﹣3+=n+3,得F(﹣,﹣);②当AF与ED为平行四边形对角线时,﹣3+n=3+,得F(,﹣);③当AD与EF为平行四边形对角线时,﹣3+3=n+,得F(﹣,﹣).【解析】(1)将点A(﹣3,0),B(4,0)代入y=ax2+bx+4,得:,解得:,∴y=﹣x2+x+4;(2)∵抛物线与y轴交于点C,∴C(0,4),设直线BC的解析式为y=kx+d,将点B与点C代入可得,,解得,∴y=﹣x+4,∵点P的横坐标为m,PM⊥x轴,∴P(m,﹣m2+m+4),Q(m,﹣m+4),=×BC×PN=×PQ×OB,∴S△BCP∵B(4,0),C(0,4),∴BC=8,∴8PN=(﹣m2+m+4+m﹣4)×4,∴PN=﹣(m﹣2)2+,∴当m=2时,PN有最大值,∴P(2,);(3)y=﹣x2+x+4=﹣+,∵抛物线沿着射线CB设抛物线沿x轴正方向平移t(t>0)个单位,则沿y轴负半轴平移t个单位,平移后的函数解析式为y'=﹣+﹣t,∵新抛物线y'过原点,∴0=﹣+﹣t,解得t=2或t=﹣6(舍),∴y'=﹣+=﹣x2+x,∵点D为原抛物线y与新抛物线y'的交点,联立﹣x2+x=﹣x2+x+4,∴x=3,∴D(3,2),∵y=﹣x2+x+4的对称轴为直线x=,∴E点的横坐标为,∵点F为新抛物线y'上一动点,设F点横坐标为n,①当AE与DF为平行四边形的对角线时,∴﹣3+=n+3,∴n=﹣,∴F(﹣,﹣);②当AF与ED为平行四边形对角线时,∴﹣3+n=3+,∴n=,∴F(,﹣);③当AD与EF为平行四边形对角线时,∴﹣3+3=n+,∴n=﹣,∴F(﹣,﹣);综上所述:以A,D,E,F为顶点的四边形为平行四边形时,F的坐标为(﹣,﹣)或(,﹣)或(﹣,﹣).3.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.(1)求抛物线M的表达式和顶点D的坐标;(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.【分析】(1)将点代入抛物线解析式求出a,b的值,即可求出抛物线解析式,再将抛物线解析式转化为顶点式,求出顶点D的坐标;(2)先求出B,C的坐标,再设E,F的坐标,根据平移的特点列出关系式,求出h的值.【解析】(1)将(1,﹣3),(﹣4,12)代入y=ax2+bx+b﹣a,得,解得,∴,∴抛物线M的表达式为,顶点D的坐标为.(2)存在.∵,当x=0时,y=﹣2,当y=0时,,解得x1=﹣1,x2=4,∴C(0,﹣2),B(4,0),设,,当四边形BCFE是平行四边形时,可看出是E,F可看成分别是B,C平移相同的单位得到,则②﹣③得m+n=2h﹣1④,(①+④)÷2得⑤,(④﹣①)÷2得⑥,将⑤,⑥代入③得h=±,当四边形BCEF是平行四边形时,可看出是E,F可看成分别是C,B平移相同的单位得到,则②﹣③得m+n=2h﹣1④,(①+④)÷2得⑤,(④﹣①)÷2得⑥,将⑤,⑥代入③得h=或,当h=时,m=h+=+=8,n=h﹣=﹣=4,∴E(4,0),F(8,2),此时点E与点B重合,不符合题意,舍去;综上,h的值为或±.4.(2021•本溪模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣,0),B(3,0)两点,与y轴交于点C,抛物线的顶点为点E.(1)填空:△ABC的形状是直角三角形.(2)求抛物线的解析式;(3)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,求P点坐标;(4)M在直线BC上,N在抛物线上,以M、N、E、D为顶点的四边形为平行四边形,直接写出符合条件的点M的坐标.【分析】(1)由tan∠ACO==,故∠ACO=30°,同理可得,∠BCO=60°,即可求解;(2)用待定系数法即可求解;(3)当△PCD的面积最大时,若直线l和抛物线只要一个交点P,则点P为所求点,进而求解;(4)当ED是边时,点D向上平移2个单位得到点E,同样,点M(N)向上平移2个单位得到点N(M),进而求解;②当ED为对角线时,由中点坐标公式得:=m+n且4+2=﹣n2+n+3+3,即可求解.【解析】(1)由抛物线的表达式知,c=3,OC=3,则tan∠ACO==,故∠ACO=30°,同理可得,∠BCO=60°,故△ABC为直角三角形,故答案为:直角三角形;(2)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3①;(3)由点B、C的坐标得,直线BC的表达式为y=﹣x+3,则设直线l∥BC,则设直线l的表达式为:y=﹣x+c②,当△PCD的面积最大时,直线l和抛物线只要一个交点P,则点P为所求点,联立①②并整理得:﹣x2+x+3﹣c=0③,则△=()2﹣4×(﹣)(3﹣c)=0,解得:c=,将c的值代入③式并解得x=,故点P的坐标为(,);(4)由抛物线的表达式知,点E的坐标为(,4),∵直线BC的表达式为y=﹣x+3,故点D(,2),设点M的坐标为(m,﹣m+3),点N的坐标为(n,﹣n2+n+3),①当ED是边时,点D向上平移2个单位得到点E,同样,点M(N)向上平移2个单位得到点N(M),则m=n且﹣m+3±2=﹣n2+n+3,解得:m=(舍去)或2或;②当ED为对角线时,由中点坐标公式得:=m+n且4+2=﹣n2+n+3﹣m+3,解得m=(舍去)或0,综上,m=0或2或或,故点M的坐标为(0,3)或(2,1)或(,)或(,).5.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N 为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E 三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.【分析】(1)因为抛物线经过点(2,﹣3a),代入到解析式中,得到关于a和b的方程,由于抛物线对称轴为直线x=1,所以,联立两个方程,解方程组,即可求出a和b;(2)先将解析式配成顶点式,求出M坐标,然后求出C点坐标,利用待定系数法,求出直线MC的解析式,再求出MC和x轴交点N的坐标,利用抛物线解析式分别求出A和C坐标,以A,C,N,P为顶点构造平行四边形,并且P点必须在抛物线上,通过构图可以发现,只有当AC为对角线时,才有可能构造出符合条件的P点,所以过C作CP∥AN,使CP=AN,由于AN=2,所以可以得到P(2,﹣3),将P代入到抛物线解析式中,满足解析式,P即为所求;(3)利用y=﹣x+3,可以求出直线与y轴交点D的坐标,可以证得△DOB是等腰直角三角形,同理可以证得△BOC也是等腰直角三角形,根据题意画出图形,利用同弧所对的圆周角相等,可以证得∠AEF =∠AFE=45°,所以△AEF是等腰直角三角形.【解析】(1)∵抛物线经过点(2,﹣3a),∴4a+2b﹣3=﹣3a①,又因为抛物线对称为x=1,∴②,联立①②,解得,∴抛物线对应的函数表达式为y=x2﹣2x﹣3;(2)如图1,∵y=(x﹣1)2﹣4,∴M(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线MC为y=kx﹣3,代入点M得k=﹣1,∴直线MC为y=﹣x﹣3,令y=0,则x=﹣3,∴N(﹣3,0),令y=0,则x2﹣2x﹣3=0,∴x=﹣1或3,∴A(﹣1,0),B(3,0),过C作CP∥AN,使CP=AN,则四边形ANCP为平行四边形,∴CP=AN=﹣1﹣(﹣3)=2,∴P(2,﹣3),∵P的坐标满足抛物线解析式,∴P(2,﹣3)在抛物线上,即P(2,﹣3);(3)如图2,令x=0,则y=﹣x+3=3,∴D(0,3),∴OB=OD=3,又∠DOB=90°,∴∠DBO=45°,同理,∠ABC=45°,∵同弧所对的圆周角相等,∴∠AEF=∠ABC=45°,∠AFE=∠DBO=45°,∴∠AEF=∠AFE=45°,∴△AEF为等腰直角三角形.6.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3.(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.【分析】(1)第一题将ABC三个点坐标表示后,代入求值即可.(2)第二题求面积最大值,可用铅锤法将面积转化为求铅垂高的最大值.(3)第三题平行四边形存在性问题,利用平行四边形对角线互相平分,套用中点坐标公式即可求出相应的点.【解析】(1)∵抛物线解析式为y=ax2+bx+3,令x=0得y=3,∴点C坐标为(0,3),∵OG﹣OB=3,∴B坐标为(3,0),∵tan∠CAO=3,∴=3,∴OA=1,∴点A坐标为(﹣1,0),∴设解析式为y=a(x+1)(x﹣3),代入(0,3)得a=﹣1,∴y=﹣(x+1)(x﹣3),=﹣(x2﹣2x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线解析式为:y=﹣(x﹣1)2+4;(2)∵Q为线段PB中点,=S△CPB,∴S△CPQ面积最大时,△CPQ面积最大.当S△CPB设P坐标(a,﹣a2+2a+3),过点P作PH∥y轴交BC于点H,H坐标为(a,﹣a+3),∴PH=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+2a+3+a﹣3=﹣a2+3a,S△CPB=•PH•(x B﹣x C)=•PH•3=PH=(﹣a2+3a)=﹣(a2﹣3a+﹣)=﹣(a﹣)2+,当a=时,即P坐标为(,)时,=S△CPB=,最大S△CPQ∴P坐标为(,);(3)沿CB方向平移2个单位,即向右2个单位,向下2个单位,∴新抛物线解析式为y=﹣(x﹣3)2+2,M坐标为(3,2)C坐标为(0,3),点N坐标设为(n,0),∵=,∴=,∴y D=1,则1=﹣(x﹣3)2+2﹣1=﹣(x﹣3)2,(x﹣3)2=1,x﹣3=±1,∴x=4或2,∴x D=4或x D=2,=⇒=,∴x N=7,或=,∴x N=5,∴N坐标为(7,0)或(5,0),或=⇒=,得y D=﹣1,则﹣1=﹣(x﹣3)2+2,(x﹣3)2=3,x=±+3,∴x D=3﹣或x D=3+,即x N=﹣或,N坐标为(﹣,0)或(,0).7.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式及顶点M的坐标;(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将A(﹣4,0),C(2,6)代入y=x2+bx+c,用待定系数法可得解析式,从而可得顶点M的坐标;(2)由OA=OB可得B(0,4),设直线AB的函数解析式解析式为y=kx+b,将A(﹣4,0)、B(0,4)代入可求得AB为y=x+4,Rt△AOB中,可得sin∠ABO==,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,过P作PQ⊥x轴于Q,过C作CH⊥x轴于H,分两种情况:①当S△AOP:S△COP=1:2时,PQ:CH=1:3,可求PQ=2,从而:S△AOP=1:2时,S△AOP:S△AOC=2:3,同理可求P坐标;求得P坐标,②当S△COP(3)设N(m,n),利用平行四边形对角线互相平分,即对角线的中点重合,分三种情况分别列方程组求解即可.【解析】(1)将A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线的解析式为y=x2+2x,对称轴x==﹣2,当x=﹣2时,y=×4+2×(﹣2)=﹣2,∴顶点M的坐标为(﹣2,﹣2);(2)∵A(﹣4,0),∴OA=4,∵OA=OB,∴OB=4,B(0,4),设直线AB的函数解析式解析式为y=kx+b,将A(﹣4,0)、B(0,4)代入得:,解得,∴直线AB的函数解析式解析式为y=x+4,Rt△AOB中,AB==4,∴sin∠ABO===,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,过P作PQ⊥x轴于Q,过C作CH⊥x轴于H,分两种情况:①当S△AOP:S△COP=1:2时,如图::S△COP=1:2,∵S△AOP:S△AOC=1:3,∴S△AOP∴PQ:CH=1:3,而C(2,6),即CH=6,∴PQ=2,即y P=2,在y=x+4中,令y=2得2=x+4,∴x=﹣2,∴P(﹣2,2);②当S△COP:S△AOP=1:2时,如图::S△AOP=1:2,∵S△COP:S△AOC=2:3,∴S△AOP∴PQ:CH=2:3,∵CH=6,∴PQ=4,即y P=4,在y=x+4中,令y=4得4=x+4,∴x=0,∴P(0,4);综上所述,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,则P坐标为(﹣2,2)或(0,4);(3)点A、O、C、N为顶点的四边形是平行四边形时,设N(m,n),分三种情况:①以AN、CO为对角线,此时AN中点与CO中点重合,∵A(﹣4,0)、O(0,0),C(2,6),∴AN的中点为(,),OC中点为(,),∴,解得,∴N(6,6),②以AC、NO为对角线,此时AC中点与NO中点重合,同理可得:解得,∴N(﹣2,6),③以AO、CN为对角线,此时AO中点与CN中点重合,同理可得:,解得,∴N(﹣6,﹣6),综上所述,点A、O、C、N为顶点的四边形是平行四边形,N的坐标为:(6,6)或(﹣2,6)或(﹣6,﹣6).8.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y 轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线于直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)将A,B坐标代入y=ax2+bx﹣3中,利用待定系数法可求;=S△CEF+S△BEF (2)求出直线l的解析式,用m表示点E,F的坐标,进而表示线段EF,根据S四边形CEBF=EF•OP+•BP=FE•OB,用含m的代数式表示四边形CEBF的面积,利用二次函数的性质,通过配方法得出结论;(3)分点M在直线BD的下方和点M在直线BD的上方时两种情形讨论解答;依据题意画出图形,①过M作ME⊥y轴于E,过N作NF⊥ME于F,通过说明△AOC≌△MFN,得出NF=3,设出点M的坐标,用坐标表示相应线段,利用线段与坐标的关系,用相同的字母表示点N的坐标后,用坐标表示出线段NG,GF,利用NG+GF=NF=3,列出方程,解方程,点M坐标可求;②利用①中相同的方法求得点M在直线BD的上方时点M的坐标.【解析】(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3中得:.解得:.∴该抛物线的函数表达式为:y=x2﹣2x﹣3.(2)设直线l的解析式为y=kx+n,将B(3,0),D(0,3)代入上式得:.解得:.∴直线l的解析式为:y=﹣x+3.∵点P(m,0),EF⊥x轴,∴E点坐标为(m,m2﹣2m﹣3),点F的坐标为(m,﹣m+3).∴EF=﹣m+3﹣m2+2m+3=﹣m2+m+6.∵B(3,0),∴OB=3.=S△CEF+S△BEF=EF•OP+•BP×EF=FE•OB,∵S四边形CEBF∴=﹣.∵<0,有最大值=.∴当m=时,S四边形CEBF即:当m=时,四边形CEBF面积的最大值为.(3)存在.①当点M在直线BD的下方时,如图,令x=0,则y=﹣3.∴C(0,﹣3).∴OC=3.∵A(﹣1,0),∴OA=1.过M作ME⊥y轴于E,过N作NF⊥ME于F,交x轴于点G,∵四边形ACMN为平行四边形,∴AC∥MN,AC=MN.∵NF⊥ME,ME⊥OE,∴NF∥OE.∴∠ACO=∠MNF.在△AOC和△MFN中,.∴△AOC≌△MFN(AAS).∴NF=OC=3,MF=OA=1.设M(h,h2﹣2h﹣3),则ME=h,GF=OE=﹣h2+2h+3.∴OG=EF=ME﹣MF=h﹣1.∴N(h﹣1,﹣h+4).∴NG=﹣h+4,∵NG+GF=NF=3,∴﹣h+4﹣h2+2h+3=3.解得:h=(负数不合题意,舍去).∴h=.∴M().②当点M在直线BD的上方时,如图,过N作NE⊥y轴于E,过M作MF⊥NE于F,交x轴于点G,由①知:△MNF≌△CAO(AAS),可得NF=OA=1,MF=OC=3.设M(h,h2﹣2h﹣3),则OG=FE=h,GM=h2﹣2h﹣3.∴NE=EF+NF=h+1.∴N(h+1,﹣h+2).∴GF=OE=h﹣2.∵MG+GF=MF=3,∴h﹣2+h2﹣2h﹣3=3.解得:h=(负数不合题意,舍去).∴h=.∴M().综上所述,存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,此时点M的坐标为()或().9.(2021•南昌县一模)如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x ﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为(﹣1,﹣4m+1);当二次函数L1,L2的y 值同时随着x的增大而增大时,则x的取值范围是﹣1<x<3;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点:①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M的坐标;结合函数图象填空;(2)利用抛物线解析式与一元二次方程的关系求得点A、B、C、D的横坐标,可得AD的中点为(1,0),MN的中点为(1,0),则AD与MN互相平分,可证四边形AMDN是矩形;(3)根据菱形的性质可得EH1=EF=4即可,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得方程即可求解.【解析】(1)x=﹣=﹣1,顶点坐标M为(﹣1,﹣4m+1),由图象得:当﹣1<x<3时,二次函数L1,L2的y值同时随着x的增大而增大.故答案为:(﹣1,﹣4m+1);﹣1<x<3(2)结论:四边形AMDN由二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)解析式可得:A点坐标为(,0),D点坐标为(,0),顶点M坐标为(﹣1,﹣4m+1),顶点N 坐标为(3,4m﹣1),∴AD的中点为(1,0),MN的中点为(1,0),∴AD与MN互相平分,∴四边形AMDN是平行四边形,又∵AD=MN,∴▱AMDN是矩形.(3)①∵二次函数L1:y=mx2+2mx﹣3m+1=m(x+3)(x﹣1)+1,故当x=﹣3或x=1时y=1,即二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,∵二次函数L2:y=﹣m(x﹣3)2+4m﹣1=﹣m(x﹣1)(x﹣5)﹣1,故当x=1或x=5时y=﹣1,即二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,②∵二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,如图:四个定点分别为E(﹣3,1)、F(1,1),H(1,﹣1)、G(5,﹣1),则组成四边形EFGH为平行四边形,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得:42=22+(4﹣x)2.解得:x=,抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2向左平移或.10.(2022•渝中区校级模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,过点P作PQ ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.【分析】(1)求出B、C点坐标,将B、C点代入y=ax2+bx﹣3,即可求解;(2)先求出BC的解析式,设P(t,t2﹣t﹣3),则Q(t,t﹣3),PQ=﹣t2+3t,由PQ∥CO,可得∠HQP=∠OCB,利用直角三角形三角函数求出HP==PQ,HQ=PQ,则△PHQ周长=HP+PQ+HQ=(1+)PQ=(1+)[﹣(t﹣3)2+],当t=3时,△PHQ周长有最大值+,此时P(3,﹣6);(3)求出平移后的函数解析式为y'=x2+x﹣5,则D(﹣3,﹣5),设M(m,=m2+m﹣5),E (x1,﹣3x1﹣3),F(x2,﹣3x2﹣3),分三种情况讨论:①以EF为平行四边形的对角线时,M(,)或(,);②以EM为平行四边形的对角线时,M(﹣6,4);③以ED为平行四边形的对角线时,求得M(﹣6,4).【解析】(1)令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵OB=2OC,∴OB=6,∴B(6,0),将B、C点代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣x﹣3;(2)设直线BC的解析式为y=kx+b,,解得,∴y=x﹣3,∴设P(t,t2﹣t﹣3),则Q(t,t﹣3),∴PQ=﹣t2+3t,∵CO=3,BO=6,∴BC=3,在Rt△ABC中,sin∠BCO=,cos∠BCO=,∵PQ∥CO,∴∠HQP=∠OCB,∴sin∠HQP==,cos∠HQP==,∴HP=PQ,HQ=PQ,∴△PHQ周长=HP+PQ+HQ=(1+)PQ=(1+)(﹣t2+3t)=(1+)[﹣(t﹣3)2+],∵点P是直线BC下方,∴0<t<6,∴当t=3时,△PHQ周长有最大值+,此时P(3,﹣6);(3)∵y=x2﹣x﹣3=(x﹣)2﹣,∴平移后的函数解析式为y'=(x+)2﹣=x2+x﹣5,∴D(﹣3,﹣5),设M(m,﹣m2+m﹣5),设直线AC的解析式为y=kx+b,,解得,∴y=﹣3x﹣3,设E(x1,﹣3x1﹣3),F(x2,﹣3x2﹣3),①以EF为平行四边形的对角线时,.解得m=或m=,∴M(,)或(,);②以EM为平行四边形的对角线时,,解得m=﹣3(舍)或m=﹣6,∴M(﹣6,4);③以ED为平行四边形的对角线时,,解得m=﹣3(舍)或m=﹣6,∴M(﹣6,4);综上所述:M点坐标为(,)或(,)或(﹣6,4).11.(2022•平桂区二模)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y =﹣x+3交于点B、C(0,n).(1)求点C的坐标及抛物线的对称轴;(2)求该抛物线的表达式;(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.【分析】(1)把C(0,n)代入y=﹣x+3得n=3,即知C(0,3),根据抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,得抛物线y=ax2+bx+c的对称轴为直线x=1;(2)用待定系数法可得抛物线的表达式为y=﹣x2+2x+3;(3)由P(1,t),B(3,0)可知C(0,3)的对应点C'坐标为(﹣2,3+t),设Q(m,﹣m2+2m+3),分两种情况:①当PQ∥BC,BQ∥CP时,BP的中点即为CQ的中点,可得,P(1,﹣2);②当PQ∥BC,BP∥CQ时,BQ中点即为CP中点,,得P(1,﹣8).【解析】(1)把C(0,n)代入y=﹣x+3得:n=3,∴C(0,3),∵抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,∴抛物线y=ax2+bx+c的对称轴为直线x==1,答:C(0,3),抛物线y=ax2+bx+c的对称轴为直线x=1;(2)把A(﹣1,0)、B(3,0),C(0,3)代入y=ax2+bx+c得:,解得,∴抛物线的表达式为y=﹣x2+2x+3;(3)∵点P在抛物线的对称轴上,纵坐标为t,∴P(1,t),∵平移BC使点B与P重合,B(3,0),∴C(0,3)的对应点C'坐标为(﹣2,3+t),设Q(m,﹣m2+2m+3),①当PQ∥BC,BQ∥CP时,BP的中点即为CQ的中点,如图:。
二次函数中平行四边形存在性问题精选全文
可编辑修改精选全文完整版二次函数中平行四边形存在性问题解题原理:对角线互相平分的四边形是平行四边形1. 平行四边形顶点坐标公式平行四边形ABCD的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),则:x1+x3=x2+x4;y1+y3=y2+y4.证明:如图,连接AC、BD,相交于点E.∵点E为AC的中点,∴E点坐标为(221xx+,231yy+). 又∵点E为BD的中点,∴E点坐标为(242xx+,242yy+).∴x1+x3=x2+x4;y1+y3=y2+y4.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 解题的预备知识如右图,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、B、C、D为顶点的四边形是平行四边形.答案有三种:以AB为对角线的□ACBD1,以AC为对角线的□ABCD2,以BC为对角线的□ABD3C.3 两类存在性问题解题策略第一步:把四个点的坐标表示出来(如果是动点用字母表示其坐标)第二步:分三种情况讨论对角线(如果四个点中有一组平行例1中PM//OB那么以PM为对角线是不存在的,就可以只讨论以PB、PO为对角线的情况)第三步:利用对角线两端点的横坐标、纵坐标之和分别相等列式。
题型1 有一组对边平行,探究平行四边形存在性问题例1.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.题型2 两个定点、两个动点,(或一个定点、三个动点)探究平行四边形存在性问题例2.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.习题巩固1.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,1),过点A的直线与抛物线交于另一点B(3,),过点B作BC⊥x轴,垂足为C.点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.(1)求抛物线的解析式;(2)连结CM,BN,当m为何值时,以B、C、M、N为顶点的四边形为平行四边形?2.抛物线:y=x2﹣x﹣与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标.2.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M 作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.3.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.4.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B 恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.。
二次函数专题复习平行四边形的存在性问题
二次函数专题复习——平行四边形的存在性问题二次函数中存在性问题是河南中考必考内容,主要与几何图形结合起来考查,且都以解答题形式出现,分值11分.预计2017年河南中考对二次函数存在性问题仍会考查,且涉及到的内容有:等腰三角形,直角三角形,相似三角形、面积最值、特殊四边形等存在性问题.这一节我们复习平行四边形的存在性问题。
学习目标:1掌握函数背景下平行四边形存在性问题的解题方法和步骤2 体会分类讨论及数形结合思想在解题中的应用温故知新:一、二次函数表达式1、二次函数一般式2、二次函数顶点式二、平行四边形的判定方法三、复习两个知识点:1.线段中点公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点P的坐标为PAB的中点,3),则线段B (4 如图,已知点A (-2,1),的坐标是________.线段的平移2.,A'B' AB∥平移得到线段平面内,线段ABA'B' ,则①AA'= BB'.BB',;②AB=A'B' AA'∥,,B (-32),AB平移得到线段A'B' 已知点A (-2,线段如图,的坐标是,则点,-1),B' (31)A'________.探求新知一、探究两个解题方法的顶点坐标分别ABCD 如图,在平面直角坐标系中,□个顶,已知其中3、C(x3,y3)、D(x4,y4)为A(x1,y1)、B(x2,y2) 个顶点的坐标?点的坐标,如何确定第4,,1)-1),C (3,,已知□如图,ABCD中A (-22),B (-3 ________. 则点D的坐标是方法一:利用线段平移y1-y2= y4-y3 总结:x1-x2= x4-x3,等y4-y1= y3-y2 ,x4-x1= x3-x2 或者.方法二:利用中点公式y1+y3= y2+y4,x1+x3= x2+x4总结:两个方法的结果表述在本质上是一样的二、解决两类问题类型一:三定一动例1 如图,平面直角坐标中,已知中A (-1,0),B (1,-2),C (3,1),点D是平面内一动点,若以点A 、B 、C、D为顶点的四边形是平行四边形,则点D的坐标是总结说明:若题中四边形ABCD是平行四边形,则点D的坐标只有一个结果__________.对应训练1 已知,抛物线y=-x2+x+2 与x轴的交点为A、B,与x 轴的交点为C,点M是平面内一点,判断有几个位置能使以为顶点的四边形是平行四边形,请写出相应C、B、A、M点.的坐标类型二:两定两动轴相交于与y 如图,平面直角坐标中,y=0.5x2+x-4例2上的y=-xQ是直线是抛物线上的动点,,点B (0-4),点P点为顶点的四边、BO、、动点,判断有几个位置能使以点PQ . 的坐标Q形为平行四边形,写出相应的点.对应训练A x与轴相交于点2 如图,平面直角坐标中,y=x2-2x-3抛物线上的动点,点P-3),点的坐标是(,(-10),点C2,QP、、CAxQ是轴上的动点,判断有几个位置能使以点、. 的坐标Q为顶点的四边形为平行四边形,写出相应的点.归纳与总结二次函数问题中平行四边形的存在性问题,无论是“三,一招制胜的方法,就是“中点定一动”,还是“两定两动”,往往需要分三种情况,得出三个方程组求解。
2023年中考数学总复习专题6二次函数与平行四边形存在性问题(学生版)
专题6 二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1. 平面直角坐标系中,点 A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++. 2. 平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+.3. 已知不在同一直线上的三点A 、B 、C ,在平面内找到一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形,有三种情况:【例1】.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【例2】.(2022•毕节市)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y 轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【例3】.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【例4】.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.1.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.2.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM ⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.3.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.(1)求抛物线M的表达式和顶点D的坐标;(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.4.(2021•本溪模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣,0),B(3,0)两点,与y轴交于点C,抛物线的顶点为点E.(1)填空:△ABC的形状是.(2)求抛物线的解析式;(3)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,求P点坐标;(4)M在直线BC上,N在抛物线上,以M、N、E、D为顶点的四边形为平行四边形,直接写出符合条件的点M的坐标.5.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N 为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E 三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.6.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3.(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.7.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式及顶点M的坐标;(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.8.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y 轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线于直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.9.(2021•南昌县一模)如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x ﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为;当二次函数L1,L2的y值同时随着x 的增大而增大时,则x的取值范围是;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点:①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?10.(2022•渝中区校级模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,过点P作PQ ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.11.(2022•平桂区二模)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y =﹣x+3交于点B、C(0,n).(1)求点C的坐标及抛物线的对称轴;(2)求该抛物线的表达式;(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.12.(2022•龙岗区校级模拟)在平面直角坐标系xOy中,对于二次函数y=﹣x2+2mx﹣m2+4(m是常数),当m=1时,记二次函数的图象为C1;m≠1时,记二次函数的图象为C2.如图1,图象C1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C;如图2,图象C2与x轴交于D、E两点(点D在点E的左侧).(1)请直接写出点A、B、C的坐标;(2)当点O、D、E中恰有一点是其余两点组成线段的中点时,m=;(3)如图3,C2与C1交于点P,当以点A、C、D、P为顶点的四边形是平行四边形时,求m的值.13.(2022•康巴什一模)如图,抛物线y=﹣x2+6x﹣5与x轴交于点A和点B,与y轴交于点C,经过B、C两点的直线为y=x﹣5.(1)写出相应点的坐标:A,B,C;(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大,并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.14.(2022•武城县模拟)如图,直线l:y=﹣x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE 的最大值;(3)设F为直线l上的点,点P仍在直线l下方的抛物线上,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.15.(2022•沙坪坝区校级模拟)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣2,0)、点B (点A在点B的左侧),与y轴交于点C,且过点(2,3).(1)求抛物线的表达式;(2)如图1,点P为直线BC上方抛物线上(不与B、C重合)一动点,过点P作PD∥y轴,交BC于D,过点P作PE∥x轴,交直线BC于E,求PE+DB的最大值及此时点P的坐标;(3)如图2,将原抛物线沿x轴向左平移1个单位得到新抛物线y′,点M为新抛物线y′上一点,点N为原抛物线对称轴上一点,当以点A、C、M、N为顶点的四边形为平行四边形时,求点N的坐标,并写出求其中一个N点坐标的解答过程.16.(2022•开州区模拟)如图1,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥直线AC,交抛物线y于另一点D,点P为直线AC上方抛物线上一动点.(1)求线段AB的长.(2)过点P作PF∥y轴交AC于点Q,交直线BD于点F,过点P作PE⊥AC于点E,求2PE+3PF 的最大值及此时点P的坐标.(3)如图2,将抛物线y=向右平移3个单位得到新抛物线y′,点M为新抛物线上一点,点N为原抛物线对称轴一点,直接写出所有使得A、B、M、N为顶点的四边形是平行四边形时点N的坐标,并写出其中一个点N的坐标的求解过程.17.(2022•凤翔县二模)如图,在平面直角坐标系中,抛物线的图象经过A(﹣1,0),C(0,﹣2)两点,将抛物线C1向右平移2个单位得到抛物线C2,平移后点A的对应点为点B.(1)求抛物线C1与C2的函数表达式;(2)若点M是抛物线C1上一动点,点N是抛物线C2上一动点,请问是否存在这样的点M、N,使得以A、B、M、N为顶点且以AB为边的四边形是面积为8的平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,在平面直角坐标系中,抛物线W:y=x2﹣2x与x轴正半轴交于点A.直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求线段AB的长度;(2)将抛物线W平移,使平移后的抛物线交y轴于点D,与直线BC的一个交点为P,若以A、B、D、P为顶点的四边形是以AB为边的平行四边形,求平移后的抛物线表达式.19.(2020秋•文昌期末)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,交直线l于点A、C(2,﹣3).(1)求该抛物线的解析式;(2)在y轴上是否存在点D,使S△ABD=S△ABC?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由;(3)P是线段AC上的一个动点,过点P做PE∥y轴交抛物线于点E,求线段PE长度的最大值;(4)点F是抛物线上的动点,在x轴上是否存在点G,使得以点A,C,G,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点G的坐标;如果不存在,请说明理由.20.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N 为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
二次函数中的存在性问题(平行四边形)
专题:平行四边形的存在性问题一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)1.已知抛物线.x x y 3332332++-=与x 轴的一个交点为A ,与y 轴的正半轴交于点C . 问:坐标平面内是否存在点M ,使得以点M 和中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.二、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)2.已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。
点B 的坐标为(1,0),OC=30B . (1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值:(3)若点E 在x 轴上,点P 在抛物线上。
是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.3、已知抛物线:x x y 22121+-= (1)求抛物线1y 的顶点坐标.(2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式. (3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,若存在,求出N 点的坐标;若不存在,请说明理由.②两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形得边或对角线4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点, 求线段PE 长度的最大值;(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样 的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.1、解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A (-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵O P =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+-- ∴.a 33=………………………………4分 ∴ ………………5分⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB . 由⑵知,AB =4,∴|x |=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正 2、解:(1)∵对称轴3322a x a =-=-………1分 又∵OC=3OB=3,0a >,∴C (0,-3)………2分方法一:把B(1,0)、C(0,-3)代入23y ax ax c =++得:330c a a c =-⎧⎨++=⎩ 解得:334a c ==-,∴239344y x x =+-…………………4分方法二:∵B (1,0),∴A(-4,0)可令(4)(1)y a x x =+- 把C(0,-3)代入得:34a =∴3(4)(1)4y x x =+-………………4分239344x x =+- (2)方法一:过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M 、N 。
2019精选教育二次函数专题复习—平行四边形存在性问题.doc
《平行四边形存在性问题》教学设计课题平行四边形存在性问题解读理念面向全体学生,着眼于学生的中考,使学生会解决动点产生的平行四边形问题。
学情分析学生对于平行四边形会按三种情况讨论,但这类问题涉及知识面多,很多学生求不出最后结果,这就需要教师进行必要的引导,帮助分析,寻找解决问题的策略。
教材分析内容标准一、按情况分类二、根据分类列方程组三、根据点的坐标画图教学目标情感态度价值观目标培养学生观察、思考、归纳的良好思维习惯能力目标经历动点产生的平行四边形作图过程,明确“动中求静”的解题策略。
知识目标理解和掌握动点产生的平行四边形问题中所涉及的平行四边形的性质,二次函数性质,方程等数学知识。
教学资源 1.北师大版九年级中考专题2.课件教学重点根据分类情况列方程教学难点根据二次函数、中点坐标公式用所学知识求解。
方法解读教学方法启发式、探究式、参与式教学教学准备1.把握教材,了解学生的知识基础和思维层次.2.教师搜集相关资料,制作多媒体课件.教学过程教学环节教学内容教师活动学生活动导入新课创设情境,激发学生学习热情通过学生自己画图找平行四边形激发学生的学习热情.学生通过分类讨论作图,思考本节课的讲解内容.(师课件动画展示)自主合作、探究学习1通过课件动画演示三个定点形成平行四边形问题2.通过课件动画演示动点在函数图像上运动讨论平行四边形问题3通过相应练习巩固动点产生平行四边形问题。
学习例题,学生分组讨论,寻找解决方案,师巡视指导,师生共同研究,分析题型,总结相应规律.自主学习的基础上进行小组合作学习,然后由小组代表进行总结补充并展示作品。
小结回顾总结本节课平行四边形的解决策略最后归纳性总结根据个人所学情况进行总结发言.当堂达标经验学生的学习效果看学生的完成情况完成并展示作业板书设计1、中点坐标公式2、平行四边形分类讨论的三种情况教学效果预测通过教师的补充和总结性归纳,学生能够达到梳理形成自己的知识体系并掌握了解决动点产生的平行四边形问题的策略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点
根据分类情况列方程
教学难点
根据二次函数、中点坐标公式用所学知识求解。
方法解读
教学方法
启发式、探究式、参与式教学
教学准备
1.把握教材,了解学生的知识基础和思维层次.
2.教师搜集相关资料,制作多媒体课件.
教学过程
教学环节
教学内容
教师活动
学生活动
导入新课
创设情境,激发学生学习热情
通过学生自己画图找平行四边形激发学生的学习热情.
1、按情况分类
2、根据分类列方程组
三、根据点的坐标画图
教学目标
情感态度价值观目标
培养学生观察、思考、归纳的良好思维习惯
能力目标
经历动点产生的平行四边形作图过程,明确“动中求静”的解题策略。
知识目标
理解和掌握动点产生的平行四边形问题中所涉及的平行四边形的性质,二次函数性质,方程等数学知识。
教学资源
1.北师大版九年级中考专题
自主学习的基础上进行小组合作学习,然后由小组代表进行总结补充并展示作品。
小结回顾
总结本节课平行四边形的解决策略
最后归纳性总结
根据个人所学情况进行总结发言.
当堂达标
经验学生的学习效果
看学生的完成情况
完成并展示作业
板书设计
1、中点坐标公式2、平行四边形分类讨论的三种情况
教学效果预测
通过教师的补充和总结性归纳,学生能够达到梳理形成自己的知识体系并掌握了解决动点产生的平行四边形问题的策略.
学生通过分类讨论作图,思考本节课的讲解内容.(师课件动画展示)
自主合作、探究学习
1通过课件动画演示三个定点形成平行四讨论平行四边形问题
3通过相应练习巩固动点产生平行四边形问题。
学习例题,学生分组讨论,寻找解决方案,师巡视指导,师生共同研究,分析题型,总结相应规律.
《平行四边形存在性问题》教学设计
课题
平行四边形存在性问题
解读理念
面向全体学生,着眼于学生的中考,使学生会解决动点产生的平行四边形问题。
学情分析
学生对于平行四边形会按三种情况讨论,但这类问题涉及知识面多,很多学生求不出最后结果,这就需要教师进行必要的引导,帮助分析,寻找解决问题的策略。
教材分析
内容标准