2013年高考文科数学各地试题分类汇编10
2013年文科全国各省市高考真题——数列(解答题带答案)
2013年全国各省市文科数学—数列1、(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和2、(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。
(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和。
3、(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)求14732+n a a a a -++⋅⋅⋅+;4、2013山东文(20)(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式(Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T5、(本小题共13分)给定数列1a ,2a , ,n a 。
对1,2,3,,1i n =- ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +, ,n a 的最小值记为i B ,i i i d A B =-。
(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值。
(2)设1a ,2a , ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d , ,1n d -是等比数列。
(3)设1d ,2d , ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a , ,1n a -是等差数列。
6、(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈.(Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .7、 (本小题满分12分) 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项, 求数列{}n a 的首项、公比及前n 项和。
2013年全国各地高考数学试题分类汇编(文科):立体几何
2013年全国各地高考数学试题分类汇编(文科):立体几何各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013年全国各地高考数学试题分类汇编(文科):立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.B.C.D.【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为()A.B.C.D.【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥的正弦值等于()A.B.C.D.【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100 cm3 C.92cm3 D.84cm3【答案】B7 .(2013年高考北京卷(文))如图,在正方体中, 为对角线的三等分点,则到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是()A.B.C.D.【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【答案】D10.(2013年高考浙江卷(文))设是两条不同的直线,α.β是两个不同的平面, ()A.若m‖α,n‖α,则m‖n B.若m‖α,m‖β,则α‖βC.若m‖n,m⊥α,则n⊥α D.若m‖α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱的6个顶点都在球的球面上,若, , ,则球的半径为()A.B.C.D.【答案】C12.(2013年高考广东卷(文))设为直线, 是两个不同的平面,下列命题中正确的是()A.若, ,则B.若, ,则C.若, ,则D.若, ,则【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是()A.B.C.D.8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为()A.200+9π B.200+18π C.140+9π D.140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.【答案】16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】317.(2013年高考课标Ⅰ卷(文))已知是球的直径上一点, , 平面, 为垂足, 截球所得截面的面积为,则球的表面积为_______.【答案】;18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】20.(2013年高考大纲卷(文))已知圆和圆是球的大圆和小圆,其公共弦长等于球的半径, 则球的表面积等于______.【答案】21.(2013年上海高考数学试题(文科))已知圆柱的母线长为,底面半径为, 是上地面圆心, 、是下底面圆周上两个不同的点, 是母线,如图.若直线与所成角的大小为,则________.【答案】22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为, 则正方体的棱长为______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF 与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体的棱长为1, 为的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是__________(写出所有正确命题的编号).①当时, 为四边形;②当时, 为等腰梯形;③当时, 与的交点满足;④当时, 为六边形;⑤当时, 的面积为.【答案】①②③⑤三、解答题26.(2013年高考辽宁卷(文))如图,(I)求证:(II)设【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与APC 所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PGGC 的值.【答案】解:证明:(Ⅰ)由已知得三角形是等腰三角形,且底角等于30°,且,所以;、,又因为;(Ⅱ)设,由(1)知,连接,所以与面所成的角是,由已知及(1)知: ,,所以与面所成的角的正切值是;(Ⅲ)由已知得到: ,因为,在中, ,设28.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积.【答案】解: (Ⅰ) 设...(证毕)(Ⅱ).在正方形AB CD中,AO = 1 ..所以, .29.(2013年高考福建卷(文))如图,在四棱锥中, ,, ,, , , .(1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程);(2)若为的中点,求证: ;(3)求三棱锥的体积.【答案】解法一:(Ⅰ)在梯形中,过点作,垂足为, 由已知得,四边形为矩形,,在中,由, ,依勾股定理得:,从而,又由平面得,从而在中,由, ,得正视图如右图所示:(Ⅱ)取中点,连结,,在中, 是中点,∴, ,又,∴,, ∴四边形为平行四边形,∴又平面, 平面, ∴平面(Ⅲ) ,又, ,所以解法二:(Ⅰ)同解法一(Ⅱ)取的中点,连结,在梯形中, ,且,∴四边形为平行四边形∴,又平面, 平面∴平面,又在中,平面, 平面∴平面.又,∴平面平面,又平面∴平面(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中, 分别是边上的点, , 是的中点, 与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明: //平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.【答案】(1)在等边三角形中,,在折叠后的三棱锥中也成立,, 平面,平面, 平面;(2)在等边三角形中, 是的中点,所以①,.在三棱锥中, , ②;(3)由(1)可知,结合(2)可得.31.(2013年高考湖南(文))如图2.在直菱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= ,AA1=3,D是BC的中点,点E在菱BB1上运动.(I) 证明:AD⊥C1E;(II) 当异面直线AC,C1E 所成的角为60°时,求三菱子C1-A2B1E的体积.【答案】解: (Ⅰ)..(证毕)(Ⅱ) ..32.(2013年高考北京卷(文))如图,在四棱锥中, , , ,平面底面, , 和分别是和的中点,求证:(1) 底面;(2) 平面;(3)平面平面【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD.(II)因为AB‖CD,CD=2AB,E为CD的中点所以AB‖DE,且AB=DE所以ABED为平行四边形,所以BE‖AD,又因为BE 平面PAD,AD 平面PAD所以BE‖平面PAD.(III)因为AB⊥AD,而且ABED为平行四边形所以BE⊥CD,AD⊥CD,由(I)知PA ⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD所以CD⊥PD,因为E和F分别是CD 和PC的中点所以PD‖EF,所以CD⊥EF,所以CD ⊥平面BEF,所以平面BEF⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱中, ,, .(Ⅰ)证明: ;(Ⅱ)若, ,求三棱柱的体积.【答案】【答案】(I)取AB的中点O,连接、、,因为CA=CB,所以,由于AB=A A1,∠BA A1=600,故为等边三角形,所以OA ⊥AB.因为OC⨅OA =O,所以AB 平面OA C.又A CC平面OA C,故AB AC.(II)由题设知34.(2013年高考山东卷(文))如图,四棱锥中, ,,分别为的中点(Ⅰ)求证: ;(Ⅱ)求证:【答案】35.(2013年高考四川卷(文))如图,在三棱柱中,侧棱底面, , ,分别是线段的中点, 是线段上异于端点的点.(Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.(锥体体积公式: ,其中为底面面积, 为高)【答案】解:(Ⅰ)如图,在平面ABC内,过点作直线,因为在平面外,BC在平面内,由直线与平面平行的判定定理可知, 平面.由已知, , 是BC中点,所以BC⊥AD,则直线,又因为底面,所以,又因为AD, 在平面内,且AD与相交,所以直线平面(Ⅱ)过D作于E,因为平面,所以,又因为AC, 在平面内,且AC与相交,所以平面,由,∠BAC ,有,∠DAC ,所以在△ACD中, ,又,所以因此三棱锥的体积为36.(2013年高考湖北卷(文))如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为, ,且. 过, 的中点, 且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.【答案】(Ⅰ)依题意平面, 平面, 平面,所以A1A2‖B1B2‖C1C2. 又, , ,且.因此四边形、均是梯形.由‖平面, 平面,且平面平面,可得AA2‖ME,即A1A2‖DE. 同理可证A1A2‖FG,所以DE‖FG.又、分别为、的中点,则、、、分别为、、、的中点,即、分别为梯形、的中位线.因此, ,而,故,所以中截面是梯形.(Ⅱ) . 证明如下:由平面, 平面,可得.而EM‖A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得, ,故.37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A1B1C1中,D,E 分别是AB,BB1的中点.(1) 证明: BC1//平面A1CD;(2) 设AA1= AC=CB=2,AB=2 ,求三棱锥C一A1DE的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥P-ABCD中,∠ABC=∠BAD=900,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形.(I)证明:PB⊥CD;(II)求点A到平面PCD的距离.【答案】(Ⅰ)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由和都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故,从而.因为O是BD的中点,E是BC的中点,所以OE//CD.因此, .(Ⅱ)解:取PD的中点F,连结OF,则OF//PB.由(Ⅰ)知, ,故.又, ,故为等腰三角形,因此, .又,所以平面PCD.因为AE//CD, 平面PCD, 平面PCD,所以AE//平面PCD.因此,O到平面PCD的距离OF就是A到平面PCD的距离,而,所以A至平面PCD的距离为1.39.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形, .已知.(Ⅰ)证明:(Ⅱ)若为的中点,求三菱锥的体积.【答案】解:(1)证明:连接交于点又是菱形而⊥面⊥(2)由(1) ⊥面=40.(2013年上海高考数学试题(文科))如图,正三棱锥底面边长为,高为,求该三棱锥的体积及表面积.【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12 分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥中, ⊥底面, , ,(Ⅰ)求证: ⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD –A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3(1) 证明:BE⊥平面BB1C1C;(2) 求点B1 到平面EA1C1 的距离【答案】解.(1)证明:过B作CD的垂线交CD于F,则在在,故由(2),同理,因此.设点B1到平面的距离为d,则,从而各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2013年全国各地高考文科数学试题分类汇编:数列
2013年全国各地高考文科数学试题分类汇编:数列一、选择题1 .〔2013年高考大纲卷〔文〕〕数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于〔 〕A .()-10-61-3B .()-1011-39C .()-1031-3D .()-1031+3【答案】C2 .〔2013年高考〔文〕〕设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,那么9a =〔 〕A .6-B .4-C .2-D .2【答案】A3 .〔2013年高考课标Ⅰ卷〔文〕〕设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,那么 〔 〕 A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D4 .〔2013年高考卷〔文〕〕下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列;其中的真命题为〔 〕 A .12,p pB .34,p pC .23,p pD .14,p p【答案】D 二、填空题5 .〔2013年高考卷〔文〕〕假设2、a 、b 、c 、9成等差数列,那么c a -=____________.【答案】726 .〔2013年高考卷〔文〕〕假设等比数列{}n a 满足243520,40a a a a +=+=,那么公比q =__________;前n 项n S =_____.【答案】2,122n +-7 .〔2013年高考卷〔文〕〕设数列{}n a 是首项为1,公比为2-的等比数列,那么1234||||a a a a +++=________【答案】158 .〔2013年高考卷〔文〕〕某住宅小区计划植树不少于100棵,假设第一天植2棵,以后每天植树的棵树是前一天的2倍,那么需要的最少天数n(n∈N*)等于_____________.【答案】69 .〔2013年高考卷〔文〕〕等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,假设13a a ,是方程2540x x -+=的两个根,那么6S =____________.【答案】6310.〔2013年高考卷〔文〕〕观察以下等式:23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯照此规律, 第n 个等式可为________.【答案】)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n11.〔2013年高考数学试题〔文科〕〕在等差数列{}n a 中,假设123430a a a a +++=,那么23a a +=_________.【答案】15 三、解答题12.〔2013年高考卷〔文〕〕等差数列{}n a 的公差1d=,前n 项和为n S .(1)假设131,,a a 成等比数列,求1a ; (2)假设519S a a >,求1a 的取值围.【答案】解:(1)因为数列{}n a 的公差1d=,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =. (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;即2113100a a +-<,解得152a -<<13.〔2013年高考大纲卷〔文〕〕等差数列{}n a 中,71994,2,a a a ==(I)求{}n a 的通项公式; (II)设{}1,.n n n nb b n S na =求数列的前项和 【答案】(Ⅰ)设等差数列{}n a 的公差为d,那么1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩.解得,111,2a d ==.所以{}n a 的通项公式为12n n a +=. (Ⅱ)1222(1)1n n b na n n n n ===-++, 所以2222222()()()122311n n S n n n =-+-++-=++. 14.〔2013年高考卷〔文〕〕n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?假设存在,求出符合条件的所有n 的集合;假设不存在,说明理由.【答案】(Ⅰ)设数列{}n a 的公比为q ,那么10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即 23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----. 假设存在n ,使得2013n S ≥,那么1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,那么11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .15.〔2013年高考〔文〕〕设n S 为数列{n a }的前项和,01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.【答案】解: (Ⅰ) 11111121.S S a a n a S ⋅=-=∴=时,当 .1,011=≠⇒a a11111111222221----=⇒-=---=-=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- .*,221}{11N n a q a a n n n ∈===⇒-的等比数列,公比为时首项为(Ⅱ)n n n n qa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设1432321+⋅++⋅+⋅+⋅=⇒n n a n a a a qT上式左右错位相减:n n n nn n n n na qq a na a a a a T q 21211)1(111321⋅--=---=-++++=-++*,12)1(N n n T n n ∈+⋅-=⇒.16.〔2013年高考卷〔文〕〕(本小题总分值13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈. (Ⅰ)求{}n a 的通项公式与前n 项和n S ;(Ⅱ){}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .【答案】17.〔2013年高考卷〔文〕〕首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N .【答案】18.〔2013年高考卷〔文〕〕本小题共13分)给定数列12n a a a ,,,.对1,2,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项12i i n a a a ++,,,的最小值记为i B ,i i i d A B =-. (Ⅰ)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(Ⅱ)设12n a a a ,,,(4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,,1n d -是等比数列;(Ⅲ)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明:1a ,2a ,,1n a -是等差数列【答案】解:(I)1232,3,6d d d ===.(II)因为10a >,公比1q >,所以12n a a a ,,,是递增数列. 因此,对1,2,,1i n =-,i i A a =,1i i B a +=.于是对1,2,,1i n =-,111(1)i i i i i i d A B a a a q q -+=-=-=-.因此0i d ≠且1i id q d +=(1,2,,2i n =-),即1d ,2d ,,1n d -是等比数列.(III)设d 为1d ,2d ,,1n d -的公差.对12i n ≤≤-,因为1i i B B +≤,0d >,所以111i i i A B d +++=+i i B d d ≥++i i B d >+=i A . 又因为{}11max ,i i i A A a ++=,所以11i i i i a A A a ++=>≥. 从而121n a a a -,,,是递增数列,因此i i A a =(1,2,,2i n =-).又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<<.因此1n a B =. 所以121n n B B B a -====.所以i i a A ==i i n i B d a d +=+. 因此对1,2,,2i n =-都有11i i i i a a d d d ++-=-=,即1a ,2a ,,1n a -是等差数列.19.〔2013年高考卷〔文〕〕设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a(Ⅰ)求数列{}n a 的通项公式(Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T 【答案】20.〔2013年高考卷〔文〕〕在公差为d 的等差数列{a n }中,a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d,a n ; (Ⅱ) 假设d<0,求|a 1|+|a 2|+|a 3|++|a n | .【答案】解:(Ⅰ)由得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;21.〔2013年高考卷〔文〕〕在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比与前n 项和.【答案】解:设{}n a 的公比为q .由可得211=-a q a ,211134q a a q a +=,所以2)1(1=-q a ,0342=+-q q ,解得 3=q 或 1=q ,由于2)1(1=-q a .因此1=q 不合题意,应舍去,故公比3=q ,首项11=a .所以,数列的前n 项和213-=n n S22.〔2013年高考卷〔文〕〕设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【答案】(1)当1n =时,22122145,45a a a a =-=+,21045n a a a >∴=+(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-=∴{}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-.(3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦ 23.〔2013年高考〔文〕〕设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)假设122nn n a b a =+(),求数列{}n b 的前n 项和n S . 【答案】解:由12a =248a a +=1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 1212--sin -cos n n n n n f x a a a a x a x ++++'=+⋅⋅()121'()--02n n n n f a a a a π+++=+= 所以,122n n n a a a ++=+{}n a ∴是等差数列. 而12a =34a =1d =2-111n a n n ∴=+⋅=+() (2)111122121222n n n a n nb a n n +=+=++=++()()() 111-22122121-2n n n n S ++=+()()21=31-2131-2n n n n n n ++=++() 24.〔2013年高考课标Ⅱ卷〔文〕〕等差数列{}n a 的公差不为零,a 1=25,且a 1,a11,a 13成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732n a a a a -++++.【答案】25.〔2013年高考卷〔文〕〕正项数列{a n }满足2(21)20nn a n a n ---=.(1)求数列{a n }的通项公式a n ; (2)令1(1)n nb n a =+,求数列{b n }的前n 项和T n .【答案】解:(21)20n n ---=2n n n n (1)由a a 得(a -2n)(a +1)=0由于{a n }是正项数列,那么2n =n a . (2)由(1)知2n =n a ,故11111()(1)(1)(2)2(1)n n b n a n n n n ===-+++11111111(1...)(1)222312122n T n n n n ∴=-+-++-=-=+++n 26.〔2013年高考卷〔文〕〕设S n 表示数列{}n a 的前n 项和.(Ⅰ) 假设{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 假设11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.【答案】解:(Ⅰ) 设公差为d,那么d n a a n)1(1-+=)()()()(2111121121121a a a a a a a a S a a a a S a a a a S n n n n n n n n nn n ++++++++=⇒⎩⎨⎧++++=++++=---- )21(2)()(2111d n a n a a n S a a n S n n n n -+=+=⇒+=⇒. (Ⅱ) 1,011≠≠=q q a 由题知,.n n n n n n n n n n q qq q q q q q S S a q q S N n =--=-----=-=⇒--=∈∀++++11111111111*,*21111N n q a n qn a n n n n ∈=⇒⎩⎨⎧≥==--,.所以,}{n a 数列是首项11=a ,公比1≠q 的等比数列.27.〔2013年高考数学试题〔文科〕〕此题共有3个小题.第1小题总分值3分,第2小题总分值5分,第3小题总分值8分.函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈. (1)假设10a =,求2a ,3a ,4a ;(2)假设10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,,n a 成等差数列?假设存在,求出所有这样的1a ;假设不存在,说明理由.【答案】11 /1128.〔2013年高考课标Ⅰ卷〔文〕〕等差数列{}n a 的前n 项和n S 满足30S =,55S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和. 【答案】(1)设{a n }的公差为d,那么S n =1(1)2n n na d -+. 由可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得{}n =2-.n a a n 故的通项公式为(2)由(I)知212111111(),(32)(12)22321n n a a n n n n -+==----- 从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112n n n n -=---(.。
2013年全国各地高考文科数学试题分类汇编16:选修部分
2013年全国各地高考文科数学试题分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文))不等式222x -<的解集是( )A .()-1,1B .()-2,2C .()()-1,00,1 D .()()-2,00,2【答案】D 二、填空题2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.P【答案】.63 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.【答案】1cos sin x y θθ=+⎧⎨=⎩(θ为参数)4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是______.【答案】A:R5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.【答案】152[来源:学&科&Z&X&X&K] 6 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s=+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____【答案】47 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线22x t y t⎧=⎨=⎩ (t 为参数)的焦点坐标是____________ .【答案】(1, 0)8 .(2013年高考广东卷(文))(几何证明选讲选做题)如图3,在矩形ABCD 中,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______. 图 39 .(2013年上海高考数学试题(文科))若2011x =,111x y=,则x y +=________.[来源:ZXXK]【答案】1 三、解答题10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =【答案】[来源:Z|xx|k.]11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆. (Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.【答案】[来源:Zxxk.]12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).【答案】解:(1)将45cos 55sin x t y t=+⎧⎨=+⎩,消去参数t,化学普通方程22(4)(5)25x y -+-=,即 1C : 22810160x y x y +--+=, 将22cos ,810160sin x p x y x y y p θθ=⎧+--+=⎨=⎩代入得 [来源:学+科+]28cos 10sin 160ρρθρθ--+=;所以1C 极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=,2222810160=1=0y=2y=2.20x y x y x x x y y ⎧+--+=⎧⎧⎪⎨⎨⎨+-=⎪⎩⎩⎩,,,解得或, 所以12C C 与交点的极坐标为),(2,)42ππ. 13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【答案】14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D.(Ⅰ)证明:DB DC=;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求BCF∆外接圆的半径.[来源:学。
2013年高考数学文科试题分类汇编导数 2
2013年全国各地高考文科数学试题分类汇编:导数一、选择题1 .(2013年高考课标Ⅱ卷(文))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B.函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x = 【答案】C2 .(2013年高考大纲卷(文))已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-6 【答案】D3 .(2013年高考湖北卷(文))已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞ 【答案】B4 .(2013年高考福建卷(文))设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【答案】D5 .(2013年高考安徽(文))已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为 ( )A .3B .4C .5D .6 【答案】A6 .(2013年高考浙江卷(文))已知函数y=f(x)的图像是下列四个图像之一,且其导函数y =f’(x)的图像如右图所示,则该函数的图像是【答案】B 7.(2013年高考广东卷(文))若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =___________【答案】12 8 .(2013年高考江西卷(文))若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_____【答案】2(2013年高考浙江卷(文))已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【答案】解:(Ⅰ)46(2)680y x x y -=-⇒--=; (Ⅱ)当1a>时,函数()y f x =最小值是233a a -;当1a <-时,函数()y f x =最小值是31a -;(2013年高考大纲卷(文))已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围【答案】(Ⅰ)当(1)x ∈-∞时,'()0f x >,()f x 在(1)-∞是增函数;当11)x ∈时,'()0f x <,()f x 在11)是减函数;当1,)x ∈+∞时,'()0f x >,()f x 在1,)+∞是增函数; (Ⅱ)a 的取值范围是5[,)4-+∞.(2013年高考课标Ⅱ卷(文))己知函数f(X) = x 2e -x(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2013年高考北京卷(文))已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a )处与直线y b =相切,求a 与b 的值.(Ⅱ)若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围.【答案】解:解得0a =,(0)1b f ==.(II)()y f x =与直线y b =有且只有两个不同交点,那么b 的取值范围是(1,)+∞.(2013年高考课标Ⅰ卷(文))已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.【答案】121()()2 4.(0)4,(0)4,4,8,4;f x e ax a b x f f b a b a b =++--===+===(I )由已知得故从而 (II) 当2=-2-2=41-)x f x f e -时,函数()取得极大值,极大值为()(.(2013年高考福建卷(文))已知函数()1x a f x x e=-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【答案】解:(Ⅰ)解得a e =.(Ⅱ)综上,当0a ≤时,函数()f x 无极小值; 当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (Ⅲ)综上,得k 的最大值为1.(2013年高考湖南(文))已知函数f(x)=x e x21x 1+-. (Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x 1)=f(x 2)(x 1≠x 2)时,x 1+x 2<0.【答案】解: (Ⅰ) 所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y .(Ⅱ).0)()(212121<+≠=x x x x x f x f 时,且所以,当(2013年高考广东卷(文))设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M ,()'2321f x x kx =-+【答案】(1)()f x 在R 上单调递增.(2)综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--(2013年高考山东卷(文))已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小解答:当0a >时函数()f x 的单调递减区间是。
2013年全国大纲高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013年全国各地高考数学试题汇编汇总文科数学四川卷试题及参考答案
2013年全国各地高考数学试题(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。
满分150分。
考试时间120分钟。
考试结束后,将本试题卷和答题卡上一并交回。
第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合{1,2,3}A =,集合{2,2}B =-,则AB =( )(A)∅ (B){2} (C){2,2}- (D){2,1,2,3}- 2、一个几何体的三视图如图所示,则该几何体可以是( ) (A)棱柱 (B)棱台 (C)圆柱 (D)圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A)A (B)B (C)C (D)D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。
若命题:,2p x A x B ∀∈∈,则( ) (A):,2p x A x B ⌝∃∈∈ (B):,2p x A x B ⌝∃∉∈ (C):,2p x A x B ⌝∃∈∉ (D):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线0x =的距离是( ) (A)216、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A)48 (B)30 (C)24 (D)169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )(A)4 (B)12(C)210、设函数()f x =a R ∈,e 为自然对数的底数)。
2013年全国各地高考文科数学试题分类汇编5:数列-Word版含答案
2013年全国各地高考文科数学试题分类汇编5:数列一、选择题1 .(2013年高考大纲卷(文))已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于( )A .()-10-61-3B .()-1011-39C .()-1031-3D .()-1031+3【答案】C2 .(2013年高考安徽(文))设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( )A .6-B .4-C .2-D .2【答案】A3 .(2013年高考课标Ⅰ卷(文))设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D4 .(2013年高考辽宁卷(文))下面是关于公差0d>的等差数列()n a 的四个命题:其中的真命题为 ( )A .12,p pB .34,p pC .23,p pD .14,p p【答案】D 二、填空题5 .(2013年高考重庆卷(文))若2、a 、b 、c 、9成等差数列,则c a -=____________.【答案】726 .(2013年高考北京卷(文))若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项n S =_____.【答案】2,122n +-7 .(2013年高考广东卷(文))设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++=________【答案】158 .(2013年高考江西卷(文))某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)等于_____________.【答案】69 .(2013年高考辽宁卷(文))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】6310.(2013年高考陕西卷(文))观察下列等式:照此规律, 第n 个等式可为________.【答案】)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n11.(2013年上海高考数学试题(文科))在等差数列{}n a 中,若123430a a a a +++=,则23a a +=_________.【答案】15 三、解答题12.(2013年高考福建卷(文))已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.【答案】解:(1)因为数列{}n a 的公差1d=,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =. (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;即2113100a a +-<,解得152a -<<13.(2013年高考大纲卷(文))等差数列{}n a 中,71994,2,a a a ==(I)求{}n a 的通项公式; (II)设{}1,.n n n nb b n S na =求数列的前项和 【答案】(Ⅰ)设等差数列{}n a 的公差为d,则1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩.解得,111,2a d ==. 所以{}n a 的通项公式为12n n a +=. (Ⅱ)1222(1)1n n b na n n n n ===-++, 所以2222222()()()122311n n S n n n =-+-++-=++. 14.(2013年高考湖北卷(文))已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【答案】(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即 23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .15.(2013年高考湖南(文))设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a ∙=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.【答案】解: (Ⅰ) 11111121.S S a a n a S ⋅=-=∴=时,当 .1,011=≠⇒a a11111111222221----=⇒-=---=-=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- (Ⅱ)n n n n qa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设 上式左右错位相减:*,12)1(N n n T n n ∈+⋅-=⇒.16.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈. (Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .【答案】17.(2013年高考天津卷(文))已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 证明13*)61(n n S n S +≤∈N . 【答案】18.(2013年高考北京卷(文))本小题共13分)给定数列12n a a a ,,,.对1,2,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项12i i n a a a ++,,,的最小值记为i B ,i i i d A B =-. (Ⅰ)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(Ⅱ)设12n a a a ,,,(4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,,1n d -是等比数列;(Ⅲ)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明:1a ,2a ,,1n a -是等差数列【答案】解:(I)1232,3,6d d d ===.(II)因为10a >,公比1q >,所以12n a a a ,,,是递增数列. 因此,对1,2,,1i n =-,i i A a =,1i i B a +=.于是对1,2,,1i n =-,111(1)i i i i i i d A B a a a q q -+=-=-=-.因此0i d ≠且1i id q d +=(1,2,,2i n =-),即1d ,2d ,,1n d -是等比数列.(III)设d 为1d ,2d ,,1n d -的公差.对12i n ≤≤-,因为1i i B B +≤,0d >,所以111i i i A B d +++=+i i B d d ≥++i i B d >+=i A . 又因为{}11max ,i i i A A a ++=,所以11i i i i a A A a ++=>≥. 从而121n a a a -,,,是递增数列,因此i i A a =(1,2,,2i n =-). 又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<<.因此1n a B =. 所以121n n B B B a -====.所以i i a A ==i i n i B d a d +=+. 因此对1,2,,2i n =-都有11i i i i a a d d d ++-=-=,即1a ,2a ,,1n a -是等差数列.19.(2013年高考山东卷(文))设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈ ,求{}n b 的前n 项和n T 【答案】20.(2013年高考浙江卷(文))在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d,a n ; (Ⅱ) 若d<0,求|a 1|+|a 2|+|a 3|++|a n | .【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时, ②当12n ≤时,所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;21.(2013年高考四川卷(文))在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.【答案】解:设{}n a 的公比为q .由已知可得211=-a q a ,211134q a a q a +=,所以2)1(1=-q a ,0342=+-q q ,解得 3=q 或 1=q , 由于2)1(1=-q a .因此1=q 不合题意,应舍去, 故公比3=q ,首项11=a .所以,数列的前n 项和213-=n n S22.(2013年高考广东卷(文))设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【答案】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =,由(1)可知,212145=4,1a a a =-∴=21312a a -=-=∴ {}n a 是首项11a =,公差2d =的等差数列. ∴数列{}n a 的通项公式为21n a n =-.(3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+23.(2013年高考安徽(文))设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅ 满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 【答案】解:由12a = 248a a +=所以,122n n n a a a ++=+{}n a ∴是等差数列.而12a = 34a = 1d = (2)111122121222n n n a n nb a n n +=+=++=++()()() 24.(2013年高考课标Ⅱ卷(文))已知等差数列{}n a 的公差不为零,a 1=25,且a 1,a11,a 13成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732n a a a a -++++.【答案】25.(2013年高考江西卷(文))正项数列{a n }满足2(21)20n n a n a n ---=.(1)求数列{a n }的通项公式a n ; (2)令1(1)n nb n a =+,求数列{b n }的前n 项和T n .【答案】解:(21)20n n ---=2n n n n (1)由a a 得(a -2n)(a +1)=0 由于{a n }是正项数列,则2n =n a . (2)由(1)知2n =n a ,故11111()(1)(1)(2)2(1)n n b n a n n n n ===-+++26.(2013年高考陕西卷(文))设S n 表示数列{}n a 的前n 项和.(Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.【答案】解:(Ⅰ) 设公差为d,则d n a a n)1(1-+=)()()()(2111121121121a a a a a a a a S a a a a S a a a a S n n n n n n n n nn n ++++++++=⇒⎩⎨⎧++++=++++=---- )21(2)()(2111d n a n a a n S a a n S n n n n -+=+=⇒+=⇒. (Ⅱ) 1,011≠≠=q q a 由题知,. *21111N n q a n qn a n n n n ∈=⇒⎩⎨⎧≥==--,.所以,}{n a 数列是首项11=a ,公比1≠q 的等比数列.27.(2013年上海高考数学试题(文科))本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题满分8分.已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈. (1)若10a =,求2a ,3a ,4a ;(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,,n a 成等差数列?若存在,求出所有这样的1a ;若不存在,说明理由.【答案】28.(2013年高考课标Ⅰ卷(文))已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.【答案】(1)设{a n }的公差为d,则S n =1(1)2n n na d -+. 由已知可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得(2)由(I)知212111111(),(32)(12)22321n n a a n n n n -+==-----从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112nn n n-=---(.。
2013各地高考数学试题集锦(文科)
2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V = Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6(C) 5(D) 4(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a = (A) 12-(B) 1(C) 2(D)12(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1-(B)(C)(D) 0 (7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2](8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a << (C) 0()()g a f b <<(D) ()()0f b g a <<2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .(11) 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为 .(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .(14) 设a + b = 2, b >0, 则1||2||a a b+的最小值为 .三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:产品编号 A 1 A 2 A 3 A 4 A 5 质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A 6A 7A 8A 9A 10质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.(16) (本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.(17) (本小题满分13分)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ;(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明13*)61(n n S n S +≤∈N .(20) (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.2013年普通高等学校招生全国统一考试(北京卷)数学(文)C1A1C 本试卷共5页,150分.考试时长120分钟。
2013年全国高考文科数学试题及答案汇编9套(下)
2
2
x
( B)
y
1
32
2
x
( C)
4
2
y1 3
9.若函数 y sin x
0 的部分图像如图,则 =
( A) 5
( B) 4 ( C) 3 ( D) 2
2
2
x
(D)
y
1
54
10.已知曲线 y x4 ax2 1在点 -1,a 2 处切线的斜率为 8,a=
( A) 9
( B) 6 ( C) -9 ( D) -6
5 , 则cosa
13
12
( A)
13
5
(B)
13
5
( C)
13
3.已知向量 m
1,1 , n
2,2 , 若 m n
12
( D)
13
m n ,则 =
( A) 4
( B) 3
4.不等式
2
x
2
2的解集是
( C) -2
( D) -1
( A) -1,1
( B) -2,2
( C) -1,0 0,1
( D) -2,0 0,2
2013 年普通高等学校招生全国统一考试(辽宁卷) 数 学(供文科考生使用)
第I卷
一、选择题:本大题共 12 小题,每小题 5 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目 要求的 .
( 1)已知集合 A 1,2,3,4 , B x | x 2 , 则A B
( A) 0
( B) 0,1
(x1 3)2 8 x12 8 1 3 x1,
| BF2 | ( x2 3)2 y22
( x2 3)2 8 x22 8 3x2 1 ,
2013年全国各地高考文科数学试卷及答案
2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。
2013年全国高考文科数学试题及答案-新课标版
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.2、21i=+( ) (A) (B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i i i i --===-+-+,所以21i =+ C. 3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。
作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得c =117sin 22212bc A π=⨯⨯.因为72231s i n s i n (()12342222πππ=++,所以11sin ()12222bc A =+=,选B. 5、设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( ) (A(B )13 (C )12(D【答案】D【解析】因为21212,30P F F F P F F ⊥∠=,所以2122tan 30,PF c PF ===。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考文科数学全国卷试题与答案word版
2013年普通高等学校夏季招生全国统一测试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A .11i 2-- B .11+i 2- C .11+i 2 D .11i2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .164.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x<3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P为C 上一点,若|PF |=POF 的面积为( ).A .2 B...49.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 和圆M 外切并且和圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是和圆P ,圆M 都相切的一条直线,l 和曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系和参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1和C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2013年普通高等学校夏季招生全国统一测试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:A分析:∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2. 答案:B 分析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.答案:B分析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4. 答案:C分析:∵2e =,∴2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5. 答案:B分析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2, ∵h (0)=-1<0,h (1)=1>0,∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B. 6. 答案:D分析:11211321113n nn n a a a q a q S q q --(-)===---=3-2a n ,故选D. 7. 答案:A分析:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4].故选A. 8. 答案:C分析:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=故选C.9.答案:C分析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A.当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1. 令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10. 答案:D分析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫ ⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).故选D.11. 答案:A分析:该几何体为一个半圆柱和一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A. 12. 答案:D分析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 和y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 和y =|-x 2+2x |相切为界限, 由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.答案:2分析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0,即t a ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2. 14.答案:3分析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3. 15.答案:9π2分析:如图,设球O 的半径为R , 则AH =23R , OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.答案:分析:∵f (x )=sin x -2cos xx -φ), 其中sin φ,cos φ当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭=12nn. 18.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.19.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 和△AA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C ,则A 1C 2=OC 2+21OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.20.解:(1)f ′(x )=e x(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x ⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 21. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 和圆M 外切并且和圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 和y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 和x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 和圆M=1,解得k=4±. 当ky x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2, 所以|AB ||x 2-x 1|=187.当k=4-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线, 所以BG. 设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt△BCF外接圆的半径等于2. 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1和C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}. (2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年全国各地高考文科数学试题分类汇编.doc
2013年全国各地高考文科数学试题分类汇编:集合一、选择题1 .(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( ) A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞ 2 .(2013年高考重庆卷(文))已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则)(B A C U ⋃( )A .{1,3,4}B .{3,4}C .{3}D .{4}3 .(2013年高考浙江卷(文))设集合S={x |x >-2},T={x |-4≤x ≤1},则S∩T=( ) A .[-4,+∞) B .(-2, +∞) C .[-4,1] D .(-2,1]4 .(2013年高考天津卷(文))已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= ( )A .(,2]-∞B .[1,2]C .[-2,2]D .[-2,1]5 .(2013年高考四川卷(文))设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( )A .∅B .{2}C .{2,2}-D .{2,1,2,3}-6 .(2013年高考山东卷(文))已知集合B A 、均为全集}4,3,2,1{=U 的子集,且{}4)(=⋃B A C U ,{1,2}B =,则=⋂B C A U ( )A .{3}B .{4}C .{3,4}D .∅ 7 .(2013年高考辽宁卷(文))已知集合{}{}1,2,3,4,|2,A B x x AB ==<=则 ( ) A .{}0 B .{}0,1C .{}0,2D .{}0,1,28 .(2013年高考课标Ⅱ卷(文))已知集合M={x |-3<x <1},N={-3,-2,-1,0,1},则M ∩N= ( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1 }9 .(2013年高考课标Ⅰ卷(文))已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{0}B .{-1,,0}C .{0,1}D .{-1,,0,1} 10.(2013年高考江西卷(文))若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a= ( )A .4B .2C .0D .0或411.(2013年高考湖北卷(文))已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则=⋂A C B U ( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5} 12.(2013年高考广东卷(文))设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-13.(2013年高考福建卷(文))若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为 ( )A .2B .3C .4D .1614.(2013年高考大纲卷(文))设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð ( ) A .{}1,2 B .{}3,4,5C .{}1,2,3,4,5D .∅ 15.(2013年高考北京卷(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB = ( ) A .{}0 B .{}1,0-C .{}0,1D .{}1,0,1- 16.(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( ) A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1 二、填空题 17.(2013年高考湖南(文))对于E={a 1,a 2,.a 100}的子集X={a 1,a 2,,a n },定义X 的“特征数列”为x 1,x 2,x 100,其中x 1=x 10=x n =1.其余项均为0,例如子集{a 2,a 3}的“特征数列”为0,1,0,0,,0(1) 子集{a 1,a 3,a 5}的“特征数列”的前三项和等于____ _______;(2) 若E 的子集P 的“特征数列”P 1,P 2,,P 100 满足P 1+P i+1=1, 1≤i≤99;E 的子集Q 的“特征数列” q 1,q 2,q 100 满足q 1=1,q 1+q j+1+q j+2=1,1≤j≤98,则P∩Q 的元素个数为_________.18.(2013年高考湖南(文))已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()C A B ⋃⋂=_____19.(2013年高考福建卷(文))设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;(i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下3对集合:①*,N B N A ==; ②}108|{},31|{≤≤-=≤≤-=x x B x x A ;③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)2013年高考真题文科数学分类汇编:常用逻辑用语1、(2013年高考(安徽卷))“(21)0x x -=”是“0x =”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件2、(2013年高考(福建卷))设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3、(2013年高考(湖北卷))在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为=A C UA .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4、(2013年高考(湖南卷))“1<x <2”是“x <2”成立的______A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5、(2013年高考(山东卷))给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件6、(2013年高考(上海卷))钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件7、(2013年高考(四川卷))设x Z ∈,集合A 是奇数集,集合B 是偶数集。
2013年高考数学各地名校文科立体几何试题解析汇编
2013年高考数学各地名校文科立体几何试题解析汇编各地解析分类汇编:立体几何1.【云南省玉溪一中2013届高三上学期期中考试文】设是平面内两条不同的直线,是平面外的一条直线,则“,”是“”的( )A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【答案】C【解析】若直线相交,则能推出,若直线不相交,则不能推出,所以“,”是“”的必要不充分条件,选C.2 【云南省玉溪一中2013届高三第四次月考文】已知某几何体的俯视图是如图所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其全面积是()A.B.C.D.【答案】B【解析】由题意可知,该几何体为正四棱锥,底面边长为2,侧面斜高为2,所以底面积为,侧面积为,所以表面积为,选B.3 【云南省玉溪一中2013届高三第四次月考文】四面体中,则四面体外接球的表面积为()A.B.C.D.【答案】A【解析】分别取AB,CD的中点E,F,连结相应的线段,由条件可知,球心在上,可以证明为中点,,,所以,球半径,所以外接球的表面积为,选A.4 【山东省聊城市东阿一中2013届高三上学期期初考试】设直线m、n和平面,下列四个命题中,正确的是()A. 若B. 若C. 若D. 若【答案】D【解析】因为选项A中,两条直线同时平行与同一个平面,则两直线的位置关系有三种,选项B中,只有Mm,n相交时成立,选项C中,只有m垂直于交线时成立,故选D5 【山东省烟台市莱州一中20l3届高三第二次质量检测(文)】一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是A.①B.②C.③D.④【答案】C【解析】当俯视图为圆时,由三视图可知为圆柱,此时主视图和左视图应该相同,所以俯视图不可能是圆,选C.6 【云南省玉溪一中2013届高三第三次月考文】已知三棱锥的三视图如图所示,则它的外接球表面积为()A.16 B.4 C.8 D.2【答案】B【解析】由三视图可知该几何体是三棱锥,且三棱锥的高为1,底面为一个直角三角形,由于底面斜边上的中线长为1,则底面的外接圆半径为1,顶点在底面上的投影落在底面外接圆的圆心上,由于顶点到底面的距离,与底面外接圆的半径相等则三棱锥的外接球半径R 为1,则三棱锥的外接球表面积,选B.7 【山东省兖州市2013届高三9月入学诊断检测文】设是直线,a,β是两个不同的平面A. 若∥a,∥β,则a∥βB. 若∥a,⊥β,则a⊥βC. 若a⊥β,⊥a,则⊥βD. 若a⊥β, ∥a,则⊥β【答案】B【解析】根据线面垂直的判定和性质定理可知,选项B正确。
专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。