初中数学_实数教学设计学情分析教材分析课后反思

合集下载

初中数学_实数教学设计学情分析教材分析课后反思

初中数学_实数教学设计学情分析教材分析课后反思

7.8 实数(第一课时)教学设计【学习目标】1.了解实数的意义,能对实数按要求进行分类。

2.了解实数范围内相反数和绝对值的意义,会求一个实数的相反数.倒数和绝对值。

3.了解实数与数轴上点的一一对应关系,并会比较两个实数的大小。

【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.【学习过程】一、课堂导入:我们学习过有理数的哪些内容?通过课件引导学生用类比的方法研究实数。

二 、预习自测:1、出示预习自测题目,学生做题预习检测1、把下列各数写在相应的集合里: 0,-21, 4,4.0-39,3.14,135,5π-,,0.4343343334…,有理数集合{ …}无理数集合{ …}2、如图:数轴上点A 表示的数为x ,则x 的相反数是( )3、 2- 5 的相反数是 ,绝对值是 。

4、从0,1,2,…,100的所有算术平方根和立方根中,一共 个有理数。

5、比较大小:3---2 5---- 32、订正答案,宣布预习效果。

三 、预习展示:1、学上展示预习效果自学案:【任务一】实数的分类自学课本70-------71页,思考下列问题:(1).实数是如何分类的?分类标准是什么?(2)仿照例1,完成下面实数的分类:①有理数集合:{ …};②无理数集合:{ …};③正实数集合:{ …};④负实数集合:{ …}.反思: 你认为对实数进行分类时,应注意什么?2、教师补充3、变式练习 3215416270.157.5π0 2.33•--,,,,,,,,,.(1)无限小数是无理数( )(2)无理数都是无限小数( )(3)有理数都是实数 ( )(4)实数可分为正实数和负实数()(5)无理数可分为正无理数,零和负无理数( )(6)带根号的数都是无理数( )(7)不带根号的数都是有理数( )四 、合作探究:1、学生自学课本,独立完成探究案探究案:【任务二】1、相反数 倒数,绝对值在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

初中数学实数教案模板

初中数学实数教案模板

初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。

2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。

二、教学重点与难点1. 重点:实数的定义和性质。

2. 难点:实数的运算和应用。

三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。

2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。

3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。

4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。

5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。

6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。

7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。

四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。

2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。

3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。

4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。

2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。

3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。

4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。

六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。

2. 课件:制作多媒体课件,生动展示实数的定义和性质。

3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计
一、教学目标
1.知识与技能:学生能够理解实数的概念,掌握实数的性质和运算方法。

2.过程与方法:通过探究活动,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们认真思考、勇于探索的
精神。

二、教学内容与过程
1.导入:回顾有理数的概念,通过与有理数对比,引出实数的概念。

2.知识讲解:详细讲解实数的定义、性质和运算方法,强调实数与有理数的区别
与联系。

3.探究活动:设计探究活动,如比较实数的大小、进行实数的四则运算等,让学
生通过实际操作深入理解实数的性质和运算方法。

4.应用实践:引导学生运用所学知识解决实际问题,如测量长度或质量时产生的
误差等,让学生体会实数在实际生活中的应用。

5.总结与提升:总结实数的主要知识点,通过综合性题目提升学生运用知识解决
实际问题的能力。

三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更
好地理解实数的概念和性质。

四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式了解学生的学习情况,调整教学策
略。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

3.测试与反馈:组织阶段性测试,检测学生对实数知识的掌握程度,及时发现问
题并进行针对性辅导。

五、作业布置
1.完成相关练习题,巩固所学知识。

2.预习下一节内容,了解无理数的基本概念。

初中数学_第六章《实数》复习教学设计学情分析教材分析课后反思

初中数学_第六章《实数》复习教学设计学情分析教材分析课后反思

教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备课件、计算器.教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示《实数》复习学情分析本章属于“数与代数”这个范畴的数的内容,学生已经系统学过有理数,对有理数的概念和运算有了较深刻的认识。

初中数学_实数教学设计学情分析教材分析课后反思

初中数学_实数教学设计学情分析教材分析课后反思

三、拓展延伸 四、课堂练习1、如图,数轴上的三个点A ,B ,C 分别表示实数a,b,c.化简下列各式(1)||b a + (2)||b a c +-2、写出所有符合下列条件的数: ⑴小于48的所有正整数:⑵大于—17小于7的所有整数: 1、在下列实数223,14...,80808.0,4|,3|,31,2⎪⎪⎭⎫⎝⎛--∏-,39,3.14中属于无理数的是学情分析新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。

在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。

无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。

要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。

1、在下列实数223,14...,80808.0,4|,3|,31,2⎪⎪⎭⎫⎝⎛--∏-,39,3.14中属于无理数的是(2分)2、求表格中各数相反数及绝对值。

(每题1.5分)a15321-3- 3—1.73、比较下列各数的大小,并按从小到大的顺序排列。

(2分)31-,2-,3,2,-1教材分析本课时主要学习无理数和实数的概念,以及实数与数轴上的点是一一对应的关系等知识. 教科书首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,并分析这些小数的共同特点,进而归纳出有理数都可以化成有限小数或无限循环小数的形式,然后直接指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样就将有理数与有限小数和无限循环小数统一起来.在此基础上指出,前面学习时,遇到的无限不循环小数又叫做无理数,从而引出无理数的概念,并指出无理数也有正负之分.教科书采用与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”概念.为了能让学生全面了解实数的概念,教科书根据实数的大小和归属范围两种标准对实数进行了分类,揭示出实数的内部结构. 紧接着教科书安排了第二个“探究”,通过直径为1的圆在数轴上的滚动得出在数轴上的对应点.通过边长为1的正方形对角线长,在数轴上表示出无理数的点,等等,这样通过作图的方法说明了无理数也可以用数轴上的点来表示,从而说明实数与数轴上的点是一一对应的. 基于以上分析,本节课的教学重点是:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.本节课的教学难点是:对无理数的认识.。

初中数学_实数2教学设计学情分析教材分析课后反思

初中数学_实数2教学设计学情分析教材分析课后反思

第2课时实数的性质及运算1.了解实数范围内的相反数、绝对值、倒数的意义;(重点)2.了解有理数的运算法则和运算律在实数范围内仍适用,能利用化简对实数进行简单的四则运算.(难点)一、情境导入如图所示,小明家有一正方形厨房ABCD和一正方形卧室CEFG,其中正方形厨房ABCD的面积为10平方米,正方形卧室CEFG的面积为15平方米,小明想知道这两个正方形的边长之和BG的长是多少米,你能帮他计算出来吗?二、合作探究探究点一:实数的性质分别求下列各数的相反数、倒数和绝对值:(1)3-64;(2)225;(3)11.解析:根据实数的相反数、倒数和绝对值的定义写出相应结果.注意(1)(2)中的两个数要先化简为整数.解:(1)∵3-64=-4,∴3-64的相反数是4,倒数是-14,绝对值是4;(2)∵225=15,∴225的相反数是-15,倒数是115,绝对值是15;(3)11的相反数是-11,倒数是111,绝对值是11.方法总结:在实数范围内,相反数、倒数和绝对值的意义和在有理数范围内的完全相同.探究点二:实数的运算【类型一】利用运算法则进行计算计算下列各式的值:(1)23-55-(3-55);(2)|3-2|+|1-2|+|2-3|.解析:按照实数的混合运算顺序进行计算.解:(1)23-55-(3-55)=23-55-3+5 5=(23-3)+(55-55)=3;(2)因为3-2>0,1-2<0,2-3>0,所以|3-2|+|1-2|+|2-3|=(3-2)-(1-2)+(2-3)=3-2-1+2+2- 3=(3-3)+(2-2)+(2-1)=1.方法总结:进行实数的混合运算时,要注意运算顺序以及正确运用运算律.【类型二】利用实数的性质结合数轴进行化简实数在数轴上的对应点如图所示,化简:a 2-|b -a |-(b +c )2.解析:由于a 2=|a |,(b +c )2=|b +c |,所以解题时应先确定a ,b -a ,b +c 的符号,再根据绝对值的意义化简.解:由图可知a <0,b -a >0,b +c <0.所以,原式=|a |-|b -a |-|b +c |=-a -(b -a )+(b +c )=-a -b +a +b +c =c .方法总结:根据实数的绝对值的意义正确去绝对值符号是解题的关键:|a |=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).三、板书设计实数⎩⎪⎨⎪⎧实数的性质实数的运算由实际问题引入实数的运算,激发学生的学习兴趣.同时复习有理数的运算法则和运算律,并强调这些法则和运算律在实数范围内同样适用.教学中,让学生通过具体的运算(包含无理数的运算)感知运算法则和运算律,培养学生严谨务实、一丝不苟的学习态度.在涉及用计算器求近似值时,一定要注意题目中的精确度.本节经历从具体实例到一般规律的探究过程,运用类比的方法得出实数运算律和运算法则,使学生清楚新旧知识的区别与联系,对运算技能要求恰当定位。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

人教版数学七年级下册《无理数、实数概念》教学设计1

人教版数学七年级下册《无理数、实数概念》教学设计1

人教版数学七年级下册《无理数、实数概念》教学设计1一. 教材分析人教版数学七年级下册《无理数、实数概念》是学生在初中阶段首次接触无理数和实数这两个重要的数学概念。

教材通过引入无理数和实数的概念,让学生理解实数的分类,以及实数与数轴的关系。

这一部分内容为学生后续学习函数、几何等数学知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的相关知识,具备了一定的逻辑思维能力和抽象思维能力。

但无理数和实数的概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握无理数和实数的概念。

三. 教学目标1.了解无理数和实数的概念,理解实数的分类。

2.掌握无理数和实数在数轴上的表示方法。

3.能够运用无理数和实数的知识解决实际问题。

四. 教学重难点1.无理数和实数的概念。

2.实数的分类和数轴上的表示方法。

3.运用无理数和实数解决实际问题。

五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。

2.数形结合法:利用数轴帮助学生直观地理解无理数和实数的概念。

3.实践操作法:让学生通过实际操作,加深对无理数和实数概念的理解。

六. 教学准备1.教学PPT:制作有关无理数、实数概念的PPT,包括图片、动画等元素,提高学生的学习兴趣。

2.数轴道具:准备数轴道具,方便学生直观地理解实数与数轴的关系。

3.练习题:准备相关练习题,巩固学生对无理数和实数概念的理解。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的无理数,如圆周率、黄金比例等,引导学生思考:这些数是什么类型的数?它们有什么特点?2.呈现(10分钟)介绍无理数和实数的概念,讲解实数的分类,引导学生理解无理数和实数在数轴上的表示方法。

3.操练(10分钟)让学生在数轴上表示一些无理数和实数,如√2、-3、π等,并解释它们在数轴上的位置。

4.巩固(10分钟)让学生回答以下问题:1.无理数和实数有什么区别?2.实数可以分为哪几类?3.如何在数轴上表示无理数和实数?5.拓展(10分钟)利用PPT展示一些实际问题,让学生运用无理数和实数的知识解决,如:计算一张矩形桌子的面积,求解一个无理方程等。

浙教版数学七年级上册《3.4实数的运算》教学设计

浙教版数学七年级上册《3.4实数的运算》教学设计

浙教版数学七年级上册《3.4实数的运算》教学设计一. 教材分析《3.4实数的运算》是浙教版数学七年级上册的一个重要内容,主要包含有理数的混合运算。

通过本节课的学习,学生将掌握有理数的加、减、乘、除以及乘方等基本运算方法,并能灵活运用这些运算方法解决实际问题。

本节课的内容是整个初中数学的基础,对于学生后续的学习具有重要意义。

二. 学情分析七年级的学生已经初步掌握了实数的概念,对于加、减、乘、除等基本运算也有了一定的了解。

但是,学生在运算过程中往往会存在一些错误,例如运算符号的误用、运算顺序的混乱等。

因此,在教学过程中,需要引导学生正确理解运算规则,提高运算的准确性。

三. 教学目标1.知识与技能:使学生掌握有理数的加、减、乘、除以及乘方等基本运算方法,能熟练地进行实数的运算。

2.过程与方法:通过自主学习、合作交流等方法,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。

四. 教学重难点1.重点:实数的加、减、乘、除以及乘方等基本运算方法。

2.难点:运算顺序的判断和运算符号的正确使用。

五. 教学方法1.采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。

2.运用实例讲解,引导学生理解运算规则,提高运算的准确性。

3.注重练习,及时反馈,使学生巩固所学知识。

六. 教学准备1.准备相关课件,展示实数运算的规则和实例。

2.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入实数运算的概念,激发学生的学习兴趣。

2.呈现(10分钟)展示实数运算的规则,引导学生理解并掌握加、减、乘、除以及乘方等基本运算方法。

3.操练(10分钟)让学生进行实数运算的练习,及时发现并纠正学生在运算过程中存在的问题。

4.巩固(5分钟)总结实数运算的规律,加深学生对运算方法的理解。

5.拓展(5分钟)引导学生运用所学知识解决实际问题,提高学生的应用能力。

6.小结(3分钟)对本节课的内容进行总结,强调实数运算的重要性和注意事项。

初中数学_实数(第一课时)教学设计学情分析教材分析课后反思

初中数学_实数(第一课时)教学设计学情分析教材分析课后反思

6.3.1实数教学设计第一课时【教学目标】知识与技能:①了解无理数和实数的概念以及实数的分类;②知道实数与数轴上的点具有一一对应的关系。

过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。

情感态度与价值观:①通过了解数系扩充体会数系扩充对人类发展的作用;②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

教学重点:①了解无理数和实数的概念;②对实数进行分类。

教学难点:对无理数的认识。

【课前准备】电脑、课件、直尺、每组两个两个边长为1 dm的小正方形、裁剪刀【教学过程】一、拼图游戏:1、学生小组活动请同学们试着将两个边长为1 dm的小正方形裁剪拼接,拼成一个大的正方形2、探究:大正方形的边长是小正方形的什么?大正方形的边长是多少?设计意图:组织学生动手操作,让学生在动手动脑中体会学习的快乐,并体会无理数产生的实际背景和引入的必要性二、形成概念1.说一说大约有多大?它是一个什么样的数呢?2. 大小=1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 94…,是无限不循环小数.是什么样的数,为无理数概念打基础。

通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.3.33,5,2 ,π教师给出无理数的定义:无限不循环小数叫做无理数强调无理数的两个要点:小数位数无限小数部分不循环4.常见的三类无理数教师在学生回答的基础上让学生总结出无理数常见的三种形式: ①开方开不尽的数都是无理数(如2、3、39),②圆周率π类③ 有规律但不循环的无限小数.(如2.020020002…(两个2之间依次多个0)等).是不同于有理数的数,.在此过程中,尽可能地让学生思考和交流,以发展学生的辨析和判断能力.通过让学生举例, 让学生体会无理数存在的普遍性,和无理数的三种常见形式4.教师给学生介绍"无理数"的由来公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。

本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。

本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。

但实数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。

三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。

2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和分类。

2.实数的运算规则。

3.实数与数轴的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。

2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。

3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作数轴教具,用于教学演示。

3.准备实数运算的练习题,用于巩固练习。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。

为学生引入实数的概念做铺垫。

2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。

通过讲解和示例,让学生理解实数与数轴的关系。

3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。

教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。

教师可适时给予指导,帮助学生巩固实数的运算规则。

5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。

初中数学_【课堂实录】实数(一)教学设计学情分析教材分析课后反思

初中数学_【课堂实录】实数(一)教学设计学情分析教材分析课后反思

《实数(一)》教学设计课题实数(一)课型新授课主备人地点录播教室教材分析这一章是初中阶段代数运算的重要章节,是对小学数学知识的发展,又是初中代数知识的基础,本节课是在有理数和无理数的基础上引进的概念,并将数从有理数范围扩充到实数范围。

在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。

因此,让学生正确而深刻地理解实数是非常重要的实数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容,因而具有重要地位。

教学目标知识与技能目标1、了解实数的概念和意义,经历探索实数分类的过程,引领学生领会分类思想。

2、了解实数范围内,相反数、倒数、绝对值的意义,了解有理数的运算法则在实数范围内仍然适用,渗透类比思想。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数,形成初步的数形结合意识。

过程与方法目标1、经历借助小游戏引入新课,引发学生思考,渗透分类思想,进一步发展学生的数形结合意识。

2、让学生用类比方法获取新知,发展有条理思考和语言表达能力。

情感与态度目标1、在学习的过程中,使学生感受丰富的数学文化,让学生感受数学,激发兴趣,引发数学思考。

2、在运用数学表述和解决问题的过程中,敢于发表自己的想法,敢于质疑,敢于创新,养成独立思考,合作交流等学习习惯,体会数学的价值。

教学重点: 1.了解实数的意义,能对实数进行分类,2.明确数轴上的点与实数一一对应。

教学难点:用数轴上的点来表示无理数。

教学方法:自学探究,合作交流教学用具:游戏用的数字卡片、音频、微视频、投影仪、多媒体电教平台等。

教学过程:教学环节教师引导活动学生活动设计理念一、创设游戏情景,引入实数概念!1.把下列各数分别填入相应的集合内。

,,,,,,,,,1、学生积极参与小游戏。

初中数学《实数》教学设计

初中数学《实数》教学设计





4. 在数轴上表示 20 的点可能是( )
A
B CD
0
1
2
3
45
5.写出两个在 3 和 4 之间的无理数。 6.若-2a,1-a,a 在数轴上所对应的点从左到右排列,求实数 a 的取值范围?
实数
正 负
实 实
数 数
正 正 负 负
有 无 有 无
理 理 理 理
数 数 数 数
教师说明:分类的原则是:按同一标准,不重不漏。
将上面各数填入下面的集合里。
整数集合
负实数集合
无理数的引进,进一步扩大了数的应用范围,扩充到实数之后,为我们解
决问题带来方便。
三、再次探究,操作感知 有理数可以用数轴上的表示,无理数是否也可以用数轴上的点表示出来
教学重点 正确理解实数、无理数的理解的概念。
教学难点 实数于数轴上的点一一对应。
教学手段 采用“问题解决”教学法,让学生在问题情境中领会新知.
整数
板 书
实数
有理数
分数
无理数
有限小数或无限循环小数 无限不循环小数

画 设 计
实数
正实数 负实数
正有理数 正无理数 负有理数 负无理数
教学过程(含时间分配)
《实数》教学设计(2)
1.了解无理数和实数的概念;

知识 目标
2.会对实数按照一定的标准进行分类; 3.掌握实数与数轴上的点一一对应,平面直角坐标系上的点与有序实 数对一一对应。

4.能够进行实数的大小比较。
目 标
能力 目标
培养学生的分析能力和辨析能力。
情感 鼓励学生从不同角度对实数进行分类,体会数学分类的思想,类比思 目标 想,感受实数的应用价值.

初中教案数学实数

初中教案数学实数

初中教案数学实数一、教学目标:1. 知识与技能目标:理解平方根的概念,掌握求一个数的平方根的方法,会求一些数的平方根。

2. 过程与方法目标:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学素养。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受数学与生活的紧密联系。

二、教学重点与难点:重点:平方根的概念及求法。

难点:理解平方根的性质,求一个数的平方根。

三、教学过程:1. 导入新课:教师通过提问方式引导学生回顾上节课学习的内容,如算术平方根、立方根等,为新课的学习做好铺垫。

2. 自主学习:学生自主阅读教材,理解平方根的概念,观察平方根的性质,教师巡回指导,解答学生的疑问。

3. 课堂讲解:教师讲解平方根的概念,引导学生通过观察、分析、归纳等方法,总结平方根的性质。

如:一个正数的平方根有两个,互为相反数;0的平方根是0;负数没有平方根。

4. 例题解析:教师选取典型例题,引导学生分组讨论、探究,共同得出求一个数的平方根的方法。

如:求16的平方根。

5. 巩固练习:学生独立完成课后练习题,教师巡回指导,解答学生的疑问,及时纠正学生的错误。

6. 课堂小结:教师引导学生总结本节课所学内容,加深学生对平方根概念和求法的学习。

7. 课后作业:教师布置课后作业,巩固学生对平方根的知识掌握。

四、教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。

同时,关注学生的个体差异,针对不同学生制定合适的教学方法,使全体学生都能在课堂上得到充分的发展。

五、教学评价:通过课堂讲解、练习题、课后作业等方式,评价学生对平方根知识的掌握程度,及时发现并解决教学中存在的问题,提高教学质量。

同时,关注学生在课堂上的表现,鼓励学生积极参与、主动探究,培养学生的数学素养。

初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。

掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。

了解实数的性质,如实数的顺序性、稠密性、完备性等。

2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。

通过小组合作学习,培养学生的合作意识和沟通能力。

3. 情感态度与价值观:培养学生对数学的兴趣和热爱,激发学生的求知欲和探索精神。

培养学生的严谨、细致、求实的科学态度。

二、教学内容1. 实数的概念:引导学生理解实数的概念,包括有理数和无理数。

通过举例和实际应用,帮助学生理解实数的意义。

2. 实数的分类:教授学生如何将有理数和无理数进行分类。

通过练习和讨论,巩固学生对实数分类的理解。

3. 实数的运算:讲解实数的加、减、乘、除、乘方、开方等运算方法。

通过大量练习和实际应用,帮助学生熟练掌握实数的运算。

4. 实数的性质:介绍实数的顺序性、稠密性、完备性等性质。

通过讨论和探究,引导学生发现和证明实数的性质。

三、教学策略1. 讲授法:通过讲解和示范,向学生传授实数的概念、分类和运算方法。

2. 讨论法:通过小组讨论和全班讨论,激发学生的思维,促进学生对实数概念和性质的理解。

3. 练习法:设计大量的练习题,让学生通过实际操作巩固所学知识。

4. 探究法:引导学生通过自主探究和合作学习,发现和证明实数的性质。

四、思维导图1. 实数的概念:有理数整数正整数、负整数、零分数正分数、负分数无理数2. 实数的分类:有理数无理数3. 实数的运算:加法减法乘法除法乘方开方4. 实数的性质:顺序性稠密性完备性初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。

掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。

了解实数的性质,如实数的顺序性、稠密性、完备性等。

2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。

初一下册数学实数教案

初一下册数学实数教案

初一下册数学实数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一下册数学实数教案教案一、实数的概念和表示一、教学目标:1.了解实数的概念和特征;2.能够用数轴表示实数;3.能够正确区分整数、有理数和无理数。

初中数学_第7章 实数教学设计学情分析教材分析课后反思

初中数学_第7章  实数教学设计学情分析教材分析课后反思

《实数》教学设计复习目标:1、了解算术平方根,平方根,立方根的概念,会用根号表示数的平方根立方根,掌握三者的区别2、了解无理数与实数的概念,学会区分无理数与有理数,会对实数进行分类;3、了解实数与数轴上的点一一对应,理解实数的相反数和绝对值的意义;了解有理数的运算律适用于实数范围知识点一:1.平方根和算术平方根概念及其性质:(1)概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,读作“根号a”。

一般地,如果一个数x的平方等于a,即x2 =a(在这里,a一定是一个非负数),那么这个数x就叫做a的平方根(也叫做二次方根)记作:a的算术平方根。

(也就是说一个数的平方根有两个,但是它的算数平方根只有一个)。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

(2)性质:①当a≥00;当a无意义;②2=a;a=注意:(1)用平方根和算数平方根进行计算时易混淆;(2)理解根号,不要混淆其与平方运算;(3)算数平方根的非负性。

2.立方根的概念及其性质:(1)概念:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根)。

,读作3次根号a。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a 的立方根的运算,叫做开立方,其中a 叫做被开方数。

(2)性质:①33a a =;②()33a a =;③3a -=3a -知识点二:实数的概念与分类无理数:无限不循环小数一般有三种情况:1.圆周率π 以及一些含有π的数。

2.开不尽方的数3.有一定的规律,但不循环的无限小数实数的概念:有理数和无理数统称为实数.实数有理数正有理数零负有理数有限小数或无限循环小数无理数正无理数负无理数无限不循环小数⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎪⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪练习:1、判断下列说法是否正确:(1).实数不是有理数就是无理数。

( ) (2).无限小数都是无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.8 实数(第一课时)教学设计【学习目标】1.了解实数的意义,能对实数按要求进行分类。

2.了解实数范围内相反数和绝对值的意义,会求一个实数的相反数.倒数和绝对值。

3.了解实数与数轴上点的一一对应关系,并会比较两个实数的大小。

【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.【学习过程】一、课堂导入:我们学习过有理数的哪些内容?通过课件引导学生用类比的方法研究实数。

二 、预习自测:1、出示预习自测题目,学生做题预习检测1、把下列各数写在相应的集合里: 0,-21, 4,4.0-39,3.14,135,5π-,,0.4343343334…,有理数集合{ …}无理数集合{ …}2、如图:数轴上点A 表示的数为x ,则x 的相反数是( )3、 2- 5 的相反数是 ,绝对值是 。

4、从0,1,2,…,100的所有算术平方根和立方根中,一共 个有理数。

5、比较大小:3---2 5---- 32、订正答案,宣布预习效果。

三 、预习展示:1、学上展示预习效果自学案:【任务一】实数的分类自学课本70-------71页,思考下列问题:(1).实数是如何分类的?分类标准是什么?(2)仿照例1,完成下面实数的分类:①有理数集合:{ …};②无理数集合:{ …};③正实数集合:{ …};④负实数集合:{ …}.反思: 你认为对实数进行分类时,应注意什么?2、教师补充3、变式练习 3215416270.157.5π0 2.33•--,,,,,,,,,.(1)无限小数是无理数( )(2)无理数都是无限小数( )(3)有理数都是实数 ( )(4)实数可分为正实数和负实数()(5)无理数可分为正无理数,零和负无理数( )(6)带根号的数都是无理数( )(7)不带根号的数都是有理数( )四 、合作探究:1、学生自学课本,独立完成探究案探究案:【任务二】1、相反数 倒数,绝对值在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

(1)a 是一个实数,它的相反数为 , 绝对值为 ; (2)如果 a ≠ 0,那么它的倒数为 .2、一一对应我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?在数轴上找到下列点:--10 2 10+1总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数3、比较大小数轴上的任意两点, 点所表示的数总比 点表示的数大。

4、求下列个数的相反数与绝对值(1)36- (2) 23-5、比较大小(2)---2 与--- 3(1)7与 2、小组内交流自学效果3、小组之间合作交流四 拓展提升已知实数a 、b 、c 在数轴上的位置如图所示: 化简︱c--b ︱+︱a+b ︱---︱a+c ︱五、总结反思:1、对照预习自测,纠错自查。

2、本节课你有什么收获?说出来与大家分享。

六、达标检测:1、 的相反数是( ),绝对值( )2、绝对值等于 的数是( ), 的平方是( )3、 O bc a4、求绝对值5、 把下列各数填入相应的集合内:有理数集合{ }无理数集合{ }实数集合{ }6.下列说法正确的有( )⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数⑸非负实数中最小的数是0A. 2个B. 3个C. 4个D.5个7、若实数a 满足1a a =-,则( ) A. 0a > B. 0a < C. 0a ≥ D. 0a ≤ 8、若a ,b 为实数,且229943a a b a -+-=++,则a b +的值为( ).9、实数a ,b ,c 在数轴上的对应点如图所示化简c b c b a a ---++2=________________。

七、订正答案:7.8 实数(第一课时)0c b a学情分析八(13)班有学生65人,大部分同学学习习惯良好,学习积极性高,能较好地完成学习任务,从本次考试成绩看,多数学生对基本知识掌握较好,对拔高题目处理欠缺,尤其是面对出题人设计的陷阱,缺乏细心审题的能力。

老师多次强调的问题,仍有学生出错,说明有些同学听课效果不好,上课精力不集中。

还有些同学没有总结反思的习惯,导致同一题目经常出错,做过的题目毫无印象,这些都是今后要解决的问题。

学生基本学习状态:从大的方面来说,八(13)班的同学整体水平不均,优生学习气氛浓厚,但差生比例相对要多一些,他们学习比较浮躁,这主要表现在课堂纪律和作业质量方面,优生的课堂纪律以及作业质量相对较好,思维整体来说比较活跃,能主动提出问题。

随着年级的增高,呈现两极分化的现象,并趋于严重。

从学习习惯上看,多数学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。

但仍有少部分学生学习懒散、学习习惯差,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业质量不高。

教学中注意的问题:1、“要抓质量,先抓习惯”。

帮助学生培养良好的学习习惯和学习方法。

要求学生先从行为数学做起,再到怎样学习数学,后到提高数学学习能力。

激发学习兴趣,养成自主学习的习惯和方法。

平时在教学中,注意抓好学生的书写、审题与检查等良好的学习习惯。

2、加强学生基础知识的掌握,对知识的延伸与拓展需深入了解,特别是对各知识的融会贯通,灵活理解与运用。

3、注重开发性使用对教材,做到“吃透”教材的前提下,大胆创新,对于知识的重难点力求把握准确,突破有法。

对基本技能的训练,通过创设新的情景,让学生在变化的情景中去运用,在理解的基础上去训练,而不是变成大量的、机械的、重复的操练,因为操练并不发展意义,重复并不引起理解,反而加重学习负担,降低学习效率,引起学生的厌恶。

同时,重视能力的培养,继续加强运算能力、思维能力的培养。

4、注重引导学会分析方法,尽量避免程式化练习,加强与生活实际的联系,多给学生提供丰富的与生活实际与已有经验相联系的知识素材,多创设分析思路的机会,提高学生运用知识解决问题的能力,使学生充分感悟“学以致用”数学无处不在的魅力。

5、注重积极的情感、负责的态度和正确的价值观的培养,注意激发学生的好奇心和求知欲,让学生了解数学知识的形成过程和应用价值,发挥评价的激励和导向功能,帮助学生认识自我、建立自信。

大力鼓励和奖励学生,对优良学生,鼓励他们还要刻苦学习,努力进步,要致力于发展性思维训练,主要的是掌握学习策略和学习过程。

7.8 实数(第一课时)效果分析本节课主要在回顾了有理数,无理数,实数的概念,分类;让学生明确了数轴,绝对值,相反数及倒数等几个重要概念,会求一个实数的相反数与绝对值;难点是绝对值的有关化简,非负数的应用。

我认为本节课成功之处在于:1、学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。

2、学生在讨论交流中进一步掌握了实数的相反数、倒数、绝对值等知识。

3、探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。

4、经过学生的探讨,认识到了数轴上点A表示的数是2,它是一个无理数,这表明有理数不能将整个数轴填满。

进而观察到点A在表示数1和2的点之间,因此“数轴上,右边的点表示的数总比左边的点表示的数大”在实数范围内仍然适用。

本节课的不足之处黑板板书较少,学生活动形式比较单一,板书设计应更细一些,让学生在不同的活动中掌握知识。

7.8 实数(第一课时)教材分析本章在学习了平方根、立方根以及开方运算后,本章采用与有理数对照的方法引入无理数的概念,并给出实数的概念和分类,随着无理数的引入,数的范围扩展到实数,教科书通过探究在数轴上画出表示л和的点,说明了无理数也可以用数轴上的点来表示,并指出直线上的点与实数是一一对应的、平面上的点与有序实数对也是一一对应的;接下去,教科书结合具体例子说明,在有理数范围内成立的一些概念和运算(包括运算律、运算性质等)在实数范围内仍然成立,并且可以进行新的运算等。

本节内容为青岛版八年级数学下册第七章第八节第一课时,内容为实数。

教学目标:1.了解实数的意义,能对实数按要求进行分类。

2.了解实数范围内相反数和绝对值的意义,会求一个实数的相反数.倒数和绝对值。

3.了解实数与数轴上点的一一对应关系,并会比较两个实数的大小。

【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.能用有理数估计一个无理数的大致范围。

7.8 实数(第一课时)评测练习1、 的相反数是( ),绝对值( )2、绝对值等于 的数是( ), 的平方是( )3、4、求绝对值5、 把下列各数填入相应的集合内:有理数集合{ }无理数集合{ }实数集合{ }6.下列说法正确的有( )⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数⑸非负实数中最小的数是0A. 2个B. 3个C. 4个D.5个7、若实数a 满足1a a =-,则( ) A. 0a > B. 0a < C. 0a ≥ D. 0a ≤8、若a ,b 为实数,且229943a ab a -+-=++,则a b +的值为( ). 9、实数a ,b ,c 在数轴上的对应点如图所示0c b a化简cbcbaa---++2=________________。

7.8 实数(第一课时)课后反思通过这节课的教学,我感受颇深,为更好地做好今后的教学工作,现对本节教学反思如下:实数作为有理数的扩张,其具体研究内容和有理数完全类似,因此学习中,本课时设计中,十分关注前后知识之间的内在联系,关注运用类比的思想学习新的知识,这是本课设计中一个十分显著的特点。

实际上,类似的问题在其他知识学习中同样存在,注意体会。

此外,根据学生的认知状况,借助类比学习实数有关知识,还可以有一些不同的尝试,如果学生整体认知水平较高,可以要求学生首先回忆有关有理数学习内容和顺序,并根据这个知识框架思考是否可以构建实数的有关顺序,思考在各个具体内容如何研究等问题,然后再打开书本比照学习。

当然也可以首先提出一些思考的问题,让学生自学,整理有关框架,并和旧的框架建立联系等。

相关文档
最新文档