文登考研数学--高等数学--习题集与其答案
2012年陈文登复习指南习题详解高等数学(完整资料).doc
【最新整理,下载后即可编辑】2012版陈文登复习指南习题详解高等数学习题一1.填空题⑴设,则常数__[解答]由题意可得即⑵__[解答]且又由夹逼原则可得原式⑶已知极限,则[解答]当时,由可得原式同理可得故原式⑷已知则__[解答] 原式⑸已知函数则__[解答] 又所以⑹__[解答] 原式⑺设函数有连续的导函数,,,若在处连续,则常数_[解答]为的阶无穷小,则⑻设当时,=[解答]由此可得,⑼__[解答] 原式⑽已知,则_,_[解答] =若极限存在则得故2.选择题⑴设和在内有定义,为连续函数,且,有间断点,则必有间断点必有间断点必有间断点必有间断点[解答]若连续,则也连续,与题设矛盾,所以应该选.⑵设函数则是偶函数无界函数周期函数单调函数[解答]因为,所以,又为无界函数,当任意给定一正数,都存在时,使得,于是,故为无界函数,所以应该选.⑶当时,函数的极限是等于等于为不存在但不为[解答]所以应该选.⑷若函数在处连续,则的值是[解答] ,则,所以应该选.⑸极限的值是不存在[解答] 原式,所以应该选.⑹设则值是均不对[解答] 原式解得所以应该选.⑺设则的值为,,,均不对[解答] 原式,由可得,所以应该选.⑻设则当时,是的等价无穷小与是同阶但非等价无穷小是比较低阶的无穷小是比较高阶无穷小[解答] 原式,所以应该选.⑼设则的值是[解答] 若原式极限存在,当时,由可得,所以应该选.⑽设其中则必有[解答] 原式可得,所以应该选.3.计算题⑴求下列极限①[解答] 原式②[解答] 原式③[解答] 原式④[解答] 原式又所以原极限⑵求下列极限①[解答] 原式②[解答] 原式1③[解答] 原式⑶求下列极限①[解答] 原式()②[解答] 原式③[解答] 原式④[解答] 原式且>>又,故由夹逼原则知原式⑤[解答] 当时,原式当时,原式当时,原式⑥其中[解答] 原式() 4.设试讨论在处的连续性和可导性.[解答] ⑴由于是在处连续.⑵分别求在处的左、右导数所以在处连续且可导. 5.求下列函数的间断点并判别类型.①[解答] 为函数的间断点又所以为函数第一类跳跃间断点. ②[解答] 当时,当时,当时,即,所以为函数第一类间断点. ③] 当时,[解答当时,不存在,所以为第二类间断点.当时,所以为第一类可去间断点.当时,所以为第二类无穷间断点.6.试确定常数的值,使极限存在,并求该极限值.[解答] 原式存在由可得,即则原式同理由可得,即所以原式7.设,且是的可去间断点,求的值.[解答] 存在,由可得.原式存在,同理由可得.8.设求的值.[解答] 原式()由可得原式,即9.讨论函数在处的连续性.[解答] 当时,所以若时,在连续.若时,在为第一类跳跃间断点.当时,是的第二类间断点. 10.设在的某邻域内二阶可导,且求及[解答]由可得所以第二章一、填空题7.设,则__[解答] 原式所以8.已知,则__[解答] 原式即令,则9.设为可导函数,,则__[解答] 原式10.设函数由方程所确定,则曲线在点处的法线方程为__[解答] 两边求导将代入可得故所求的方程为二.选择题1.设可导,,则是在处可导的充分必要条件充分但非必要条件必要但非充分条件既非充分又非必要条件[解答]若在处可导,即,所以应该选.2.设是连续函数,且,则[解答] ,所以应该选.3.已知函数具有任意阶导数,且,则当为大于2的正整数时,的阶导数是[解答] ,由数学归纳法可得,所以应该选. 4.设函数对任意均满足,且,其中为非零常数,则在处不可导在处可导,且在处可导,且在处可导,且[解答] ,故应选.二、选择7.设在处可导,则为任意常数为任意常数] 由在连续可得[解答则,所以应该选. 8.设,则在处可导的充要条件为存在存在存在存在[解答] 当时,~,则等价于,所以应该选.9.设函数在上可导,则当时,必有当时,必有当时,必有当时,必有[解答] 若设时,均错误,若设时,错误,故选.10.设函数在处可导,则函数在处不可导的充分条件是且且且且[解答] 令,由导数定义可得若,由的连续性及保号性可得,此时若,同理可得.故若不存在,则若,且,设,由于所以当时,,时,则故不存在,所以应该选.三.计算题1.,求.[解答]2.已知可导,,求.[解答]3.已知,求.[解答] 等式两边对求导可得化简可得4.设的函数是由方程确定的,求. [解答] 等式两边对求导可得化简得5.已知,求.[解答]6.设,求.[解答] 等式两边对求导可得可得又所以7.设函数二阶可导,,且,求.[解答]8.设曲线由方程组确定,求该曲线在处的曲率.][解答,则⑴确定的值,使在点连续;⑵求. [解答] ⑴即当时,在处连续.⑵当时,有当时,由导数的定义有五.已知当时,有定义且二阶可导,问为何值时是二阶可导.[解答] 在处连续则即在处一阶可导,则有此时,在处二阶可导,则有六.已知,求.[解答]又在处的麦克劳林级数展开式为通过比较可得,当时,当时,七.设,求.[解答] ,,,通过递推公式可得当时,八.证明满足方程证明:化简可得得证.第三章1.求下列不定积分.⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式⑷[解答] 原式⑸[解答] 设原式2.求下列不定积分. ⑴[解答] 设原式⑵[解答] 设,原式⑶[解答] 设原式⑷[解答] 原式⑸[解答] 设原式⑹[解答] 设,则原式⑺[解答] 设,原式3.求下列不定积分. ⑴[解答] 原式⑵[解答] 设,则原式4.求下列不定积分. ⑴[解答] 设,原式⑵[解答] 设,原式5.求下列不定积分.⑴[解答] 原式⑵[解答]所以⑶[解答] 原式⑷[解答] 原式移项得⑸[解答] 原式6.求下列不定积分. ⑴[解答] 原式再求设,则原式==所以原式⑵[解答] 设原式⑶[解答] 设原式7.设,求[解答] 当时当时因为在处连续,可得,所以8.设,(为不同时为零的常数),求. [解答] 设,,则又所以即9.求下列不定积分.⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式⑷[解答] 原式10.设当时,连续,求[解答] 原式11.设,求. [解答] 设,则所以12.求下列不定积分. ⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设原式⑷[解答] 设原式13.下列不定积分.⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设,则原式⑷[解答] 设,原式14.求下列不定积分. ⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式15.求下列不定积分. ⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设原式习题四(1)1.若在上连续,证明:对于任意选定的连续函数,均有则在上,证明:假设在上存在使得,令,由于在上连续,故存在在上,使得.又令则结论与题设矛盾,故假设不成立.2.设为任意实数,证明:证明:设,则所以即,得证.3.已知在连续,对任意都有证明:证明:在连续,则,又所以1.设为大于的正整数,证明:.证明:=即若,则于是这与推论矛盾,所以若,则于是这与推论矛盾,所以综上所述,有.1.设在上连续,且单调减少,,证明:对于满足的任何,,有证明:由积分中值定律有又,且单调递减,故当时,所以即2.设在上二阶可导,且证明:证明:由泰勒公式有又,则两边积分可得7.设在上连续,且单调不增,证明:任给,有证明:,所以又,,单调不增,当时,所以8.设在上具有连续的二阶导数,且,证明:在内存在一点,使证明:由泰勒公式有,其中具有二阶导数,设最大值为,最小值为,即则即,由介值定理可得,至少存在一点,使得即,得证.9.设连续,证明:证明:设,则10.设在上连续,在内存在且可积,,证明:证明: 由,可得,其中即12.设在上连续,且,则证明:令,则两边积分得令,消除后得即13.设函数在上具有一阶连续导数,且,证明:证明:由柯西不等式有14.设函数在上连续,且,,证明:,使证明:因为在上连续,则必存在一点,使得,即,即习题五1. 设函数在在闭区间上可微,对于每一个,函数的值都在开区间内,且,证明:在内有且仅有一个,使.证明:设,则在上连续,又,所以,,由零值定理可知,在内至少存在一个,使,即.利用反证法证明在内至多有一个零点.设且使得,,则由拉格朗日中值定理可得,至少存在一个,使得这与题设矛盾,综上所述,命题得证.2.设函数在上连续,内可导,且,证明:在内一个,使.证明:由积分中值定理,可知在上存在一点,使,,从而有.于是由洛尔定理可知,在内存在一个,使,3.设函数在上有二阶导数,且,又,证明:在内至少一个,使. 证明:由题意可得,根据洛尔定理可得至少存在,使得.又当时,.再对在上应用洛尔定理,可得至少存在一个,使得,命题得证.4.设函数在上连续,在内可导,且,证明:在内一个,使.证明:设,在上连续,在内可导,且,则在满足柯西定理,于是有,使即所以5.设函数在上可导,且,证明:一个,使证明:设,则在上满足拉格朗日中值定理,于是有使即所以6.设函数在上连续,在内可导,证明:一个,使证明:设则在上满足洛尔定理,于是存在,使,即7.设函数在上有二阶导数,且,证明:至少一个使。
考研高等数学教材答案
考研高等数学教材答案
教材:《高等数学》(第三版)
答案版本:参考答案
引言:
在考研备考过程中,高等数学是一门重要的学科。
为了更好地帮助
广大考生对高等数学知识点进行复习和巩固,本文提供了《高等数学》(第三版)教材的答案。
考生可以参考本文答案,结合教材进行自我
检测,以达到更好的备考效果。
第一章微分学
1. 函数、极限与连续
答案:略
2. 导数与微分
答案:略
3. 高阶导数与隐函数、参数方程的微分
答案:略
......
第二章积分学
1. 不定积分
2. 定积分及其应用
答案:略
3. 定积分的计算
答案:略
4. 微积分基本定理与换元积分法答案:略
......
第三章级数
1. 数项级数
答案:略
2. 幂级数
答案:略
3. 函数项级数
答案:略
......
第四章常微分方程
1. 微分方程基本概念与初等解法
2. 可降阶的高阶线性微分方程答案:略
3. 高阶线性微分方程的解法答案:略
......
第五章多元函数微分学
1. 二元函数微分学
答案:略
2. 多元函数微分学
答案:略
3. 隐函数与参数方程
答案:略
......
第六章无穷级数与函数展开1. 广义积分
答案:略
2. 无穷级数
......
结语:
本文提供了《高等数学》(第三版)教材答案的相应章节,以帮助考生在备考过程中进行自我检测,巩固知识点。
考生可以结合教材进行学习和复习,加深对数学知识的理解和掌握。
祝愿广大考生在考研中取得优异成绩!。
高等数学考研真题含答案
高等数学考研真题含答案高等数学对于很多考研的同学来说,那可真是一座难以翻越的大山呀!但别怕,咱们今天就一起来瞅瞅那些让人又爱又恨的高等数学考研真题,还有贴心的答案解析哦!记得我之前有个学生叫小李,他特别努力,每天都早早地来到图书馆,抱着那本厚厚的高等数学教材,一脸严肃地钻研。
有一天,我路过他身边,发现他正对着一道真题愁眉苦脸。
那道题是这样的:计算定积分∫(x^2 + 2x + 1)dx,积分区间是0, 2。
小李在草稿纸上写写画画,额头上都冒出了汗珠。
咱们先来说说这道题的答案吧。
首先对被积函数进行积分,得到(x^3/3 + x^2 + x),然后把积分上限 2 和下限 0 代入,相减得到 14 /3 。
再来看这一类的真题,比如求函数 f(x) = x^3 3x^2 + 2 的极值。
这就需要我们先求导,f'(x) = 3x^2 6x,令导数等于 0 ,解出 x = 0 和 x = 2 。
然后再判断这两个点是极大值还是极小值。
通过二阶导数或者判断一阶导数在这两个点左右两侧的符号,就能得出 x = 0 是极大值点,极大值为 2 ;x = 2 是极小值点,极小值为-2 。
还有像这种证明题,比如证明方程 x^3 3x + 1 = 0 在区间(0, 1)内至少有一个实根。
这就得用到零点定理啦。
先设函数 f(x) = x^3 3x +1 ,然后计算 f(0) 和 f(1) ,发现 f(0) = 1 ,f(1) =-1 ,因为 f(0) 和f(1) 异号,所以根据零点定理,在区间(0, 1)内至少存在一个点使得 f(x) = 0 ,也就是方程 x^3 3x + 1 = 0 在区间(0, 1)内至少有一个实根。
就像小李后来跟我说的,刚开始做这些真题的时候,感觉每个字都认识,放在一起就像天书。
但慢慢地,多做几道,多总结方法,好像也就没那么可怕了。
再比如说求曲线 y = x^2 与直线 y = x 所围成的图形的面积。
文登考研数学--线性代数--习题集及其答案
第一章 行列式一. 填空题1. 四阶行列式中带有负号且包含a 12和a 21的项为______.解. a 12a 21a 33a 44中行标的排列为1234, 逆序为0; 列标排列为2134, 逆序为1. 该项符号为“-”, 所以答案为a 12a 21a 33a 44.2. 排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.解. 排列i 1i 2…i n 可经过1 + 2 + … + (n -1) = n(n -1)/2 次对换后变成排列i n i n -1…i 2i 1. 3. 在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .解. 15423的逆序为5, 23145的逆序为2, 所以该项的符号为“-”. 4. 在函数xx x xxx f 21112)(---=中, x 3的系数是______. 解. x 3的系数只要考察234222x x xx x x+-=--. 所以x 3前的系数为2.5. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---abb a.解. 0)(11010022=+-=--=---b a ab ba abb a. 所以a = b = 0.6. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.解.nn n n a a a a a a a a 2211212221110=7. 设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2, 3)是A 的第j 行, 则行列式=-121332A A A A ______.解.=-121332A A A A 6||33233211213=-=-=-A A A A A A A A .二.计算证明题1. 设4322321143113151||-=A计算A 41 + A 42 + A 43 + A 44 = ?, 其中A 4j (j= 1, 2, 3, 4)是|A |中元素a 4j 的代数余子式.解. A 41 + A 42 + A 43 + A 44 1111321143113151-=210320206)1(000121013201206114--=-=+ =62103202061=-- 2. 计算元素为a ij = | i -j |的n 阶行列式.解. 111111110021201110||--------=n n n n n A 每行减前一行由最后一行起,)1(2)1(1201201121--=--------n n n n n n n列每列加第 3. 计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥ 2).解. 当2>nn x x x n x x x nx x x D n n n n ++++++=222222111+n x x nx x nx x n n ++++++ 2121212211=nx x x x n x x x x nx x x x n n nn++++++33322221111+nx x x nx x x nx x x n n n++++++ 323232222111+n x x x n x x x nx x x n n n ++++++313131222111+n x x nx x nx x n n ++++++ 3213213212211=-n x x x nx x x n x x x n n n ++++++ 313131222111=-nx x x n x x x nx x x n n n+++ 111222111-nx x nx x n x x n n+++ 3131312211= 0当2=n2122112121x x x x x x -=++++4. 证明:奇数阶反对称矩阵的行列式为零.证明: ||||)1(||||||,A A A A A A A nTT-=-=-==-=(n 为奇数). 所以|A | = 0.5. 试证: 如果n 次多项式nn x C x C C x f ++=10)(对n + 1个不同的x 值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明)证明: 假设多项式的n + 1个不同的零点为x 0, x 1, …, x n . 将它们代入多项式, 得关于C i 方程组 00010=++nn x C x C C 01110=++n n x C x C C …………010=++n n n n x C x C C系数行列式为x 0, x 1, …, x n 的范德蒙行列式, 不为0. 所以010====n C C C6. 设).(',62321)(232x F xx x x x xx F 求=解. x x x x x x x F 620321)(232==x x x x x x 3103211222=x x x x x x 310201222=xx x x x 3102101222=32220021012x xx x x x =26)('x x F =第二章 矩阵一. 填空题1. 设α1, α2, α3, α, β均为4维向量, A = [α1, α2, α3, α], B = [α1, α2, α3, β], 且|A | = 2, |B | = 3, 则|A -3B | = ______. 解. βαααα3222|3|321----=-B A =βαααα38321-⨯-=αααα321(8⨯-56|)|3|(|8)3321=--=-B A βααα2. 若对任意n ×1矩阵X , 均有AX = 0, 则A = ______.解. 假设[]m A αα 1=, αi 是A 的列向量. 对于j = 1, 2, …, m , 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010 j X , 第j 个元素不为0. 所以[]m αα 10010==⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡j α (j = 1, 2, …, m ). 所以A = 0.3. 设A 为m 阶方阵, 存在非零的m ×n 矩阵B , 使AB = 0的充分必要条件是______.解. 由AB = 0, 而且B 为非零矩阵, 所以存在B 的某个列向量b j 为非零列向量, 满足Ab j = 0. 即方程组AX = 0有非零解. 所以|A | = 0;反之: 若|A | = 0, 则AX = 0有非零解. 则存在非零矩阵B , 满足AB = 0. 所以, AB = 0的充分必要条件是|A | = 0.4. 设A 为n 阶矩阵, 存在两个不相等的n 阶矩阵B , C , 使AB = AC 的充分条件是______. 解. 0||0)(=⇔-=-⇔=≠A C B C B A AC AB C B 非零且且5. []42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ = ______.解. []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a212221212111421216. 设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则= ______. 解. =2A ⎥⎦⎤⎢⎣⎡-3211⎥⎦⎤⎢⎣⎡-3211=⎥⎦⎤⎢⎣⎡--7841E A A B 232+-==⎥⎦⎤⎢⎣⎡--7841-⎥⎦⎤⎢⎣⎡-9633 + ⎥⎦⎤⎢⎣⎡2002=⎥⎦⎤⎢⎣⎡--0212 21||*1==-B B B⎥⎦⎤⎢⎣⎡--2210=⎥⎥⎦⎤⎢⎢⎣⎡--11210 7. 设n 阶矩阵A 满足12,032-=++A E A A 则= ______.解. 由,0322=++E A A 得E E A A 3)2(-=+. 所以0|3||2|||≠-=+E E A A , 于是A 可逆. 由,0322=++E A A 得)2(31,03211E A A A E A +-==++--8. 设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.解. =2A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100040201=-E A 92⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208, =+E A 3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400050104 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001400050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4100010001100050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-41000104101100050004 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-41000510161041100010001 , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=+-4100510161041)3(1E A)9()3(21E A E A -+-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-4100051161041⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200010102 9. 设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则解. |A| = -3-12 + 8 + 8 + 6-6 = 1→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100010001334212211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----104012001570230211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------104031320015703210211 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----137320313203131310032103401→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----137322524933100010001 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------372252493100010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-3722524931A====---||)(,||,||1*1**1A AA A A A A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3342122111131*4)2(||)2()2(|2|)2(---=--=--=-A A A A A A414)4(])2[(111*===----A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----33421221110. 设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A , 则A 的逆矩阵1-A = ______.解. ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-211111121, ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-215331521使用分块求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----1111100B CAB A BC A -⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--11212153⎥⎦⎤⎢⎣⎡--2111=⎥⎦⎤⎢⎣⎡--1173019 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-21117533019002100111A二. 单项选择题1. 设A 、B 为同阶可逆矩阵, 则(A) AB = BA (B) 存在可逆矩阵P , 使B AP P =-1 (C) 存在可逆矩阵C , 使B AC C T= (D) 存在可逆矩阵P 和Q , 使B PAQ = 解. 因为A 可逆, 存在可逆E AQ P Q P A A A A =使,. 因为B 可逆, 存在可逆E BQ P Q P B B B B =使,.所以 A A AQ P = B B BQ P . 于是B Q AQ P P B A A B =--11令 A B P P P 1-=, 1-=B A Q Q Q . (D)是答案.2. 设A 、B 都是n 阶可逆矩阵, 则⎥⎦⎤⎢⎣⎡--1002B A T等于 (A) 12||||)2(--B A n(B) 1||||)2(--B A n (C) ||||2B A T - (D) 1||||2--B A解. 121||||)2(002---=⎥⎦⎤⎢⎣⎡-B A B A n T. (A)是答案. 3. 设A 、B 都是n 阶方阵, 下面结论正确的是(A) 若A 、B 均可逆, 则A + B 可逆. (B) 若A 、B 均可逆, 则AB 可逆. (C) 若A + B 可逆, 则A -B 可逆. (D) 若A + B 可逆, 则A , B 均可逆. 解. 若A 、B 均可逆, 则111)(---=A B AB . (B)是答案.4. 设n 维向量)21,0,,0,21( =α, 矩阵ααTE A -=, ααTE B 2+=其中E 为n 阶单位矩阵, 则AB =(A) 0 (B) -E (C) E (D) ααTE +解. AB =)(ααTE -)2(ααT E +=ααT E - + 2ααT -2ααT ααT= E . )21(=ααT(C)是答案.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , 设有P 2P 1A = B , 则P 2 =(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001 (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101 (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010101 解. P 1A 表示互换A 的第一、二行. B 表示A 先互换第一、二行, 然后将互换后的矩阵的第一行乘以(-1)加到第三行. 所以P 2 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001.(B)是答案. 6. 设A 为n 阶可逆矩阵, 则(-A )*等于(A) -A * (B) A * (C) (-1)n A * (D) (-1)n -1A * 解. (-A )* =*111)1()1(1||)1()(||A A A A A n n ----=--=--. (D)是答案. 7. 设n 阶矩阵A 非奇异(n ≥ 2), A *是A 的伴随矩阵, 则 (A) A A A n 1**||)(-= (B) A A A n 1**||)(+= (C) A A A n 2**||)(-= (D) A A A n 2**||)(+=解. 1*||-=A A AA A A A A A A A A A A A A n n 211111*1**||||||||)|(|||||)|(|)(-------====(C)是答案.8. 设A 为m ×n 矩阵, C 是n 阶可逆矩阵, 矩阵A 的秩为r 1, 矩阵B = AC 的秩为r , 则 (A) r > r 1 (B) r < r 1 (C) r = r 1 (D) r 与r 1的关系依C 而定 解. n C r C A B n n n m ==⨯⨯)(,, 所以1)()()(r n C r A r AC r r =-+≥= 又因为 1-=BC A , 于是r n C r B r BC r r =-+≥=--)()()(111 所以 r r =1. (C)是答案.9. 设A 、B 都是n 阶非零矩阵, 且AB = 0, 则A 和B 的秩(A) 必有一个等于零 (B) 都小于n (C) 一个小于n , 一个等于n (D) 都等于n解. 若0,0.,)(1===-B AB A n A r 得由存在则, 矛盾. 所以 n A r <)(. 同理n B r <)(. (B)是答案.三. 计算证明题1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B . 求: i. AB -BA ii. A 2-B 2 iii. B T A T 解. =-BA AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1618931717641, =-22B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1326391515649=T T A B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2211531517652. 求下列矩阵的逆矩阵i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------111111*********1 ii. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos αααα iii. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000 iv .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1100210000120025解. i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------10000100001000011111111111111111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------10010101001100010220202022001111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1001001102102100010220220010101111 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------110000110210210*********2200110011→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----11000021210210210210212200110010100101→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----1111002121021021021210400110010101001→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----41414141002121021021021210100110010101001⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------414141414141414141414141414141411000010000100001 , ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------=-414141414141414141414141414141411A ii. ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--ααααααααcos sin sin cos cos sin sin cos 1. 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---111000B A B A 得到: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100cos sin 0sin cos 1ααααA iii. ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-011001101. 由矩阵分块求逆公式: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---0000111A B B A 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-00010010010010001Aiv . 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---1110000B A B A得到: ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-313100323100005200211A 3. 已知三阶矩阵A 满足)3,2,1(==i i A i i αα. 其中T)2,2,1(1=α, T )1,2,2(2-=α, T )2,1,2(3--=α. 试求矩阵A .解. 由本题的条件知: =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---212122221A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---622342641 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001212122221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----102012001630360221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----0313231032001120210221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3231323103232031300210201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----9291923103232031100210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---929192919292929291100010001 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=232323235032037929192919292929291622342641A 4. k 取什么值时, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆, 并求其逆. 解. 011100001||≠=-=k kA→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10011101000001001 k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101110010010001001 k→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111100010010001001k k 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1110100011kkA 5. 设A 是n 阶方阵, 且有自然数m , 使(E + A )m = 0, 则A 可逆. 解. 因为 0)(1=+==+∑∑==mi i im mi iimmA c E A cA E 所以 ∑=-=-mi i imE A cA 11)(. 所以A 可逆.6. 设B 为可逆矩阵, A 是与B 同阶方阵, 且满足A 2 + AB + B 2 = 0, 证明A 和A + B 都是可逆矩阵. 解. 因为022=++B AB A , 所以2)(B B A A -=+. 因为B 可逆, 所以0||)1(||22≠-=-B B n所以 0|||)(|2≠-=+B B A A . 所以B A A +,都可逆. 7. 若A , B 都是n 阶方阵, 且E + AB 可逆, 则E + BA 也可逆, 且 A AB E B E BA E 11)()(--+-=+解. A AB E B BA E BA E A AB E B E BA E 11)()())()((--++-+=+-+ =A AB E AB E B BA E A AB E BAB B BA E 11))(())((--++-+=++-+ =E BA BA E =-+ 所以 A AB E B E BA E 11)()(--+-=+.8. 设A , B 都是n 阶方阵, 已知|B | ≠ 0, A -E 可逆, 且(A -E )-1 = (B -E )T , 求证A 可逆.解. 因为(A -E )-1 = (B -E )T , 所以(A -E )(B -E )T = E所以 E E B E B A TT=+--)(, TT B E B A =-)(由 |B | ≠ 0 知11)(--T B B ,存在. 所以 E B E B A TT=--1))((. 所以A 可逆.9. 设A , B , A + B 为n 阶正交矩阵, 试证: (A + B )-1 = A -1 + B -1.解. 因为A , B , A + B 为正交矩阵, 所以111,,)()(---==+=+B B A A B A B A TTT所以 111)()(---+=+=+=+B A B A B A B A T T T10. 设A , B 都是n 阶方阵, 试证明:||E AB BEE A -=. 解. 因为 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡AB E BE B E E A E A E E E 0000所以ABE B E B E E A E A E EE -=-0000||)1(01)1(2E AB AB E B E B EE A n n --=-=⋅⋅-因为 n n )1()1(2-=-, 所以||E AB BEE A -=11. 设A 为主对角线元素均为零的四阶实对称可逆矩阵, E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k Bi. 试计算|E +AB |, 并指出A 中元素满足什么条件时, E + AB 可逆;ii. 当E + AB 可逆时, 试证明(E + AB )-1A 为对称矩阵.解. i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414342313242312141312000a a a a a a a a a a a a a A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k a a a a a a a a a a a a a AB 0000000000000000044342414342313242312141312⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000343424231413ka la la ka la ka AB E +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1001001001343424231413ka la la ka la ka , 2341||kla AB E -=+ 所以当 2341a kl≠时, E + AB 可逆. ii. 11111)()]([)(-----+=+=+B A AB E A A AB E因为A , B 为实对称矩阵, 所以B A +-1为实对称矩阵, 所以(E + AB )-1A 为对称矩阵.12. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A , 求A n . 解. 使用数学归纳法.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222221020010100100100λλλλλλλλλλλA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλλλ1001002102002223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+323233)21(0300λλλλλλ 假设 k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000则 1+k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλ100100=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++-++1111)1()1(0)1(00k kk k kk k k k λλλλλλ 所以 n A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---n n n n n nn n n λλλλλλ121)11(000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----n n n n n nn n n n λλλλλλ1212)1(00013. A 是n 阶方阵, 满足A m = E , 其中m 是正整数, E 为n 阶单位矩阵. 今将A 中n 2个元素a ij 用其代数余子式A ij 代替,得到的矩阵记为A 0. 证明E A m=0.解. 因为A m = E , 所以1||=mA , 所以A 可逆.11*0)(||]|[|)(--===T T T A A A A A A所以 E E A A A A A A m T m m m T m ====---1110||])[(||])(|[|14. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i. 证明: n ≥ 3时, E A A A n n-+=-22(E 为三阶单位矩阵)ii. 求A 100.解. i. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010*******A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110013A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011102001+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+010*******E A A -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0111020013A = 所以 E A A A -+=-2233 假设 E A A A k k -+=-22则 =-+=-+A A A A k k 311A E A A A k --++-21=E A A k -+-+221)(所以 E A A A n n -+=-22 ii. =-+=E A A A 298100E A E A A4950222296-==-+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=50050050500050⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡490004900049⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10500150001 15. 当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时, A 6 = E . 求A 11. 解. 121232321||=-=A , 所以 ==-||*1A AA ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-21232321因为 1112116--===EA A A A E A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2123232116. 已知A , B 是n 阶方阵, 且满足A 2 = A , B 2 = B , 与(A -B )2 = A + B , 试证: AB = BA = 0. 解. 因为(A -B )2 = A + B , 所以 ))(())(()(3B A B A B A B A B A -+=+-=- 于是 2222B AB BA A B AB BA A --+=-+-, 所以 BA AB =B A B BA AB A B A B A +=+--+=-222,)(因为 A 2 = A , B 2 = B , 所以 2AB = 0, 所以0==BA AB .第三章 向量一. 填空题1. 设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk , 则k = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式110213118110521300001118215213000211142kkk-----=-----=-----316102038++-+--=k k = 13k +5 = 0. 135-=k 2. 设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα, 则t = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式424335550424333555100004230335211012---=----=----t t t t 0603020306020=--+++-=t t . 所以对任何t , α1, α2, α3, α4线性相关.3. 当k = ______时, 向量β = (1, k , 5)能由向量),1,1,2(),2,3,2(21-=-=αα 线性表示. 解. 考察行列式,012513211=--k 得k =-8. 当k =-8时, 三个向量的行列式为0, 于是21,,ααβ线性相关. 显然21,αα线性无关,所以β可用21,αα线性表示.4. 已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα, 则秩(α1, α2, α3, α4) = ______. 解. 将α1, α2, α3, α4表示成矩阵→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---13114152031210211201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------21102550211002201201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------211052110211001101201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---→2052000200001101201. 所以 r (α1, α2, α3, α4) = 3 5. 设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A , 则秩(A) = ______.解. →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3224211631711614040921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------3408012550755110140800921 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→3510151011751015100921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→4100040300045000815100921所以 r (A ) = 3.6. 已知),2,0,1,0(,)2,1,0,1(=-=βαT矩阵A = α·β, 则秩(A ) = ______.解. A = α·β = ()→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-402020100000201020102101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0020000000002010所以 r (A ) = 1.7. 已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα, 且秩(α1, α2, α3, α4) = 2, 则t = ______.解. A = (α1, α2, α3, α4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 654654354324321 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=16630642032104321t ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=7000000032104321t所以当t = 7时, r (A ) = 2.二. 单项选择题1. 设向量组α1, α2, α3线性无关, 则下列向量组线性相关的是 (A) α1 + α2, α2 + α3, α3 + α1 (B) α1, α1 + α2, α1+ α2 + α3 (C) α1-α2, α2-α3, α3-α1 (D) α1 + α2, 2α2 + α3, 3α3 + α1解. 由 0)()()(133322211=-+-+-ααααααk k k 得 0)()()(323212131=-+-+-αααk k k k k k因为向量组α1, α2, α3线性无关, 所以得关于321,,k k k 的方程组⎪⎩⎪⎨⎧=+-=+-=-000322131k k k k k k321,,k k k 的系数行列式为 01111011101=-=---. 所以321,,k k k 有非零解, 所以α1-α2, α2-α3, α3-α1线性相关. (C)是答案.2. 设矩阵A m ×n 的秩为R (A ) = m < n , E m 为m 阶单位矩阵, 下列结论正确的是 (A) A 的任意m 个列向量必线性无关 (B) A 的任意一个m 阶子式不等于零(C) 若矩阵B 满足BA = 0, 则B = 0 (D) A 通过行初等变换, 必可以化为(E m , 0)的形式解. (A), (B)都错在“任意”; (D)不正确是因为只通过行初等变换不一定能将A 变成(E m , 0)的形式; (C)是正确答案. 理由如下:因为 BA = 0, 所以 0)()()()()(B r m m B r m A r B r BA r =-+=-+≥=. 所以)(B r = 0. 于是B = 0.3. 设向量组 (I): TT T a a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组 (II):T T T a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ, 则(A) (I)相关⇒(II)相关 (B) (I)无关⇒(II)无关 (C) (II)无关⇒(I)无关 (B) (I)无关⇔ (II)无关解. 由定理: 若原向量组线性无关, 则由原向量组加长后的向量组也线性无关. 所以(B)是答案. 4. 设β, α1, α2线性相关, β, α2, α3线性无关, 则(A) α1, α2, α3线性相关 (B) α1, α2, α3线性无关 (C) α1可用β, α2, α3线性表示 (D) β可用α1, α2 线性表示解. 因为β, α1, α2线性相关, 所以β, α1, α2, α3线性相关. 又因为β, α2, α3线性无关, 所以α1可用β, α2, α3线性表示. (C)是答案.5. 设A , B 是n 阶方阵, 且秩(A ) = 秩(B ), 则(A) 秩(A -B ) = 0 (B) 秩(A + B ) = 2秩(A) (C) 秩(A -B ) = 2秩(A) (D) 秩(A + B ) ≤秩(A ) + 秩(B )解. (A) 取B A ≠且|A | ≠ 0, |B | ≠ 0则A -B ≠ 0, 则r (A -B ) ≠ 0. 排除(A);(B) 取A =-B ≠ 0, 则秩(A + B ) ≠ 2秩(A); (C) 取A = B ≠ 0, 则秩(A -B ) ≠ 2秩(A). 有如下定理: 秩(A + B ) ≤秩(A ) + 秩(B ). 所以(D)是答案.三. 计算证明题1. 设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时i. β可由α1, α2, α3线性表示, 且表达式唯一; ii. β可由α1, α2, α3线性表示, 但表达式不唯一; iii. β不能由α1, α2, α3线性表示.解. )1(22221111112-=-=k k k k kki. 10≠≠k k 且时, α1, α2, α3线性无关, 四个三维向量一定线性相关, 所以β可由α1, α2, α3线性表示, 由克莱姆法则知表达式唯一; ii. 当k = 1 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121111111111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010********* . 系数矩阵的秩等于增广矩阵的秩为2. 所以所以β可由α1, α2, α3线性表示, 但表示不惟一; iii. 当0=k 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→011011100101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100011100101 .系数矩阵的秩等于2, 增广矩阵的秩为3, 所以所以β不能由α1, α2, α3线性表示.2. 设向量组α1, α2, α3线性相关, 向量组α2, α3, α4线性无关, 问 i. α1能否由α2, α3线性表出? 证明你的结论; ii. α4能否由α1, α2, α3线性表出? 证明你的结论解. i. α1不一定能由α2, α3线性表出. 反例: T)1,1(1=α, T )0,1(2=α, T )0,2(3=α. 向量组α1, α2, α3线性相关, 但α1不能由α2, α3线性表出;ii. α4不一定能由α1, α2, α3线性表出. 反例: T )0,0,2(1=α, T )0,0,1(2=α, T )0,1,0(3=α, T)1,0,0(4=α. α1, α2, α3线性相关, α2, α3, α4线性无关, α4不能由α1, α2, α3线性表出.3. 已知m 个向量α1, α2, …αm 线性相关, 但其中任意m -1个都线性无关, 证明: i. 如果存在等式k 1α1 + k 2α2 + … + k m αm = 0则这些系数k 1, k 2, …k m 或者全为零, 或者全不为零; ii. 如果存在两个等式k 1α1 + k 2α2 + … + k m αm = 0 l 1α1 + l 2α2 + … + l m αm = 0 其中l 1 ≠ 0, 则mm l k l k l k === 2211. 解. i. 假设k 1α1 + k 2α2 + … + k m αm = 0, 如果某个k i = 0. 则k 1α1 +…+ k i -1αi -1 + k i+1αi+1 … + k m αm = 0因为任意m -1个都线性无关, 所以k 1, k 2, …k i -1, k i+1, …, k m 都等于0, 即这些系数k 1, k 2, …k m 或者全为零, 或者全不为零;ii. 因为l 1 ≠ 0, 所以l 1, l 2, …l m 全不为零. 所以 m m l l l l ααα12121---= .代入第一式得: 0)(2212121=+++---m m m m k k l l l l k αααα 即 0)()(1122112=+-+++-m m m k k l l k k l l αα 所以 02112=+-k k l l , …, 011=+-m m k k l l 即mm l k l k l k === 2211 4. 设向量组α1, α2, α3线性无关, 问常数a , b , c 满足什么条件a α1-α2, b α2-α3, c α3-α1线性相关. 解. 假设 0)()()(133322211=-+-+-ααααααc k b k a k 得 0)()()(323212131=-+-+-αααk c k k b k k a k因为 α1, α2, α3线性无关, 得方程组 ⎪⎩⎪⎨⎧=+-=+-=-000322131ck k bk k k ak当行列式 010110=---cb a时, 321,k k k 有非零解. 所以 1=abc 时, a α1-α2, b α2-α3, c α3-α1线性相关.5. 设A 是n 阶矩阵, 若存在正整数k , 使线性方程组A k x = 0有解向量α, 且A k -1α ≠ 0, 证明: 向量组α, A α, ⋯, A k -1α是线性无关的.解. 假设 01110=+++--αααk k A a A a a . 二边乘以1-k A 得 010=-αk A a , 00=a由 0111=++--ααk k A a A a . 二边乘以1-k A 得011=-αk A a , 01=a ………………………………最后可得 011=--αk k A a , 01=-k a所以向量组α, A α, ⋯, A k -1α是线性无关.6. 求下列向量组的一个极大线性无关组, 并把其余向量用极大线性无关组线性表示.i. )3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii. ).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα解. 解. i. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------3763245113122141→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------34180039031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---3200320031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→000032003192141所以 321,,ααα是极大线性无关组. 由 3322114ααααk k k ++= 得方程组⎪⎩⎪⎨⎧-==+=-+323924332321k k k k k k 解得 2331-==k k , 212=k所以 3214232123αααα-+-= ii. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1001424527121203121301→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220101103133021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220313301011021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→04000010001011021301所以 421,,ααα是极大线性无关组. 由 4322115ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401233231k k k k k 解得 21=k , 12=k , 03=k所以 421502αααα++= 由 4322113ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401333231k k k k k 解得 31=k , 12=k , 03=k所以 421303αααα++=7. 已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x yyy x y y y x A , 讨论秩(A)的情形. 解. i. 0==y x , 0)(=A rii. 0,00,0=≠≠=y x y x 或, 3)(=A r iii. 0≠=y x , 1)(=A r iv . 0≠-=y x , 3)(=A r iv . y x y x ±≠≠≠,0,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x yy y xA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→2222x xyxy xy x xy y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2222222200y x y xy y xy y x y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→y x yy y x y y x00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→)2(00y x x yy x yy x 所以, 当 y x 2-=时, 2)(=A r ; 当y x 2-≠时, 3)(=A r 8. 设三阶矩阵A 满足A 2 = E(E 为单位矩阵), 但A ≠ ± E , 试证明:(秩(A -E )-1)(秩(A + E )-1) = 0 解. 由第十一题知3)()(=-++E A r E A r又因为 A ≠ ± E , 所以 0)(≠+E A r , 0)(≠-E A r 所以 )(E A r +, )(E A r -中有一个为1所以 (秩(A -E )-1)(秩(A + E )-1) = 09. 设A 为n 阶方阵, 且A 2 = A , 证明: 若A 的秩为r , 则A -E 的秩为n -r , 其中E 是n 阶单位矩阵. 解. 因为 A 2 = A , 所以 0)(=-E A A 所以 n E A r A r E A A r --+≥-=)()())((0 所以 n E A r A r ≤-+)()(又因为 n E r A E A r A E r A r E A r A r ==-+≥-+=-+)()()()()()( 所以 n E A r A r =-+)()(. 所以 r n E A r -=-)(10. 设A 为n 阶方阵, 证明: 如果A 2 = E , 则秩(A + E ) + 秩(A -E ) = n.解. 因为 A 2 = E , 所以 ))((0E A E A +-=所以 n E A r E A r E A E A r --++≥-+=)()()))(((0 所以 n E A r E A r ≤-++)()(又因为 n E r A E E A r A E r E A r E A r E A r ==-++≥-++=-++)2()()()()()( 所以 n E A r E A r =-++)()(.第四章 线性方程组一. 填空题1. 在齐次线性方程组A m ×n x = 0中, 若秩(A) = k 且η1, η2, …, ηr 是它的一个基础解系, 则r = _____; 当k = ______时, 此方程组只有零解.解. k n r -=, 当n k =时, 方程组只有零解.2. 若n 元线性方程组有解, 且其系数矩阵的秩为r , 则当______时, 方程组有唯一解; 当______时, 方程组有无穷多解.解. 假设该方程组为A m ×n x = b, 矩阵的秩r A r =)(.当n r =, 方程组有惟一解; 当n r <, 方程组有无穷多解.3. 齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解, 则k 应满足的条件是______.解. 03011211≠k k , 53,0623≠≠--+k k k k 时, 方程组只有零解.4. 设A 为四阶方阵, 且秩(A) = 2, 则齐次线性方程组A *x = 0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.解. 因为矩阵A 的秩31412)(=-=-<=n A r , 所以0)(*=A r , A *x = 0的基础解系所含解向量的个数为4-0 = 4.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A , 则A x = 0的通解为______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=000110101110110121112011121A 2)(=A r , 基础解系所含解向量个数为3-2=1.⎩⎨⎧=-=-003231x x x x , 取1,1123===x x x 则. 基础解系为(1, 1, 1)T .A x = 0的通解为k (1, 1, 1)T , k 为任意常数.6. 设α1, α2, …αs 是非齐次线性方程组A x = b 的解, 若C 1α1 + C 2α2 + … + C s αs 也是A x = b 的一个解, 则C 1 + C 2 + … + C s = ______.解. 因为A b A i 且,=α(C 1α1 + C 2α2 + … + C s αs ) = b, 所以b b C C s =++)(1 , 11=++s C C . 7. 方程组A x = 0以TT)1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.解. 方程组A x = 0的基础解系为TT)1,1,0(,)2,0,1(21-==ηη, 所以2)(=-A r n , 即2)(3=-A r , )(A r = 1.所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A , 假设),,(1312111a a a =α. 由 01=ηA , 得02201),,(1311131211=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a a a 由 02=ηA , 得0110),,(1312131211=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a a a 取 2,1,0111213-===a a a 得. 所以)1,1,2(1-=α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A (其中2,1k k 为任意常数). 8. 设A x = b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 则使方程组有解的所有b 是______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 0511221321||≠=-=A , 所以)(A r = 3.因为 A x = b 有解, 所以⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-b r r 112210321112210321 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123112201321k k k b , 其中321,,k k k 为任意常数.9. 设A, B 为三阶方阵, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B , 且已知存在三阶方阵X , 使得B AX =, 则k = ___________.解. 由题设 B X A =⨯⨯3333, 又因为0110121211||=-=A , 所以0||||||==X A B , 即0266411202314=+--=--k k k, 2-=k .二. 单项选择题1. 要使ξ1 = (1, 0, 1)T , ξ2 = (-2, 0, 1)T 都是线性方程组0=Ax 的解, 只要系数矩阵A 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321 (B)⎥⎦⎤⎢⎣⎡-211121 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010 (D) ⎥⎦⎤⎢⎣⎡-020010 解. 因为21,ξξ的对应分量不成比例, 所以21,ξξ线性无关. 所以方程组0=Ax 的基础解系所含解向量个数大于2.(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112213321A , 3)(,0112213321||=≠=A r A . 因为A 是三阶矩阵, 所以0=Ax 只有零解, 排除(A);(B) 2)(,211121=⎥⎦⎤⎢⎣⎡-=A r A . 所以方程组0=Ax 的基础解系所含解向量个数: 3-1)(=A r . 排除(B);(C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123020010A , 2)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r . 排除(C); (D) ⎥⎦⎤⎢⎣⎡-=020010A , 1)(=A r .所以方程组0=Ax 的基础解系所含解向量个数: 3-2)(=A r , (D)是答案.2. 设0,,321=Ax 是ξξξ的基础解系, 则该方程组的基础解系还可以表成 (A) 321,,ξξξ的一个等阶向量组 (B) 321,,ξξξ的一个等秩向量组(C) 321211,,ξξξξξξ+++ (C) 133221,,ξξξξξξ--- 解. 由 0)()(321321211=+++++ξξξξξξk k k , 得0)()(332321321=+++++k k k k k k ξξξ. 因为0,,321=Ax 是ξξξ的基础解系, 所以321,,ξξξ线性无关. 于是⎪⎩⎪⎨⎧==+=++000332321k k k k k k , 所以0321===k k k , 则321211,,ξξξξξξ+++线性无关. 它也可以是方程组的基础解系. (C)是答案.(A) 不是答案. 例如321,,ξξξ和21321,,,ξξξξξ+等价, 但21321,,,ξξξξξ+不是基础解系. 3. n 阶矩阵A 可逆的充分必要条件是(A) 任一行向量都是非零向量 (B) 任一列向量都是非零向量(C) b Ax =有解 (D) 当0≠x 时, 0≠Ax , 其中Tn x x x ),,(1 = 解. 对(A), (B): 反例 ⎥⎦⎤⎢⎣⎡=2121A , 不可逆; 对于(C) 假设A 为n ×n 矩阵, A 为A 的增广矩阵. 当n A r A r <=)()(时, b Ax =有无穷多解, 但A 不可逆; (D) 是答案, 证明如下: 当0≠x 时, 0≠Ax , 说明0=Ax 只有零解. 所以1,0||-≠A A 存在. 4. 设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r , 则0=Ax 有非零解的充分必要条件是 ( A ) n r = ( B ) n r ≥ ( C ) n r < ( D ) n r > 解. ( C )为答案.5. 设n m A ⨯为矩阵, m n B ⨯为矩阵, 则线性方程组0)(=x AB ( A ) 当m n >时仅有零解. ( B ) 当m n >时必有非零解. ( C ) 当n m >时仅有零解. ( D ) 当n m >时必有非零解.解. 因为AB 矩阵为m m ⨯方阵, 所以未知数个数为m 个. 又因为n A r AB r ≤≤)()(, 所以,当n m >时,m n A r AB r <≤≤)()(, 即系数矩阵的秩小于未知数个数, 所以方程组有非零解. ( D )为答案.6. 设n 阶矩阵A 的伴随矩阵0*≠A , 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 则对应的齐次线性方程组0=Ax 的基础解系( A ) 不存在 ( B ) 仅含一个非零解向量( C ) 含有二个线性无关解向量 ( D ) 含有三个线性无关解向量解. 因为 ⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,*)(n A r n A r n A r n A r 因为 0*≠A , 所以 1)(-≥n A r ; 又因为4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 所以 bAx =。
文登考研数学--高数--习题集及其答案
第一章 函数·极限·连续一. 填空题 1. 已知,__________)(,1)]([,sin )(2=-==x x x f x x f ϕϕ则 定义域为___________.解.21)(sin )]([x x x f -==ϕϕ, )1arcsin()(2x x -=ϕ1112≤-≤-x , 2||,202≤≤≤x x2.设⎰∞-∞→=⎪⎭⎫ ⎝⎛+a taxx dt te x x 1lim , 则a = ________. 解. 可得⎰∞-=at adt te e=a a t t e ae ae te -=∞--)(, 所以 a = 2.3.⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =________. 解. nn n nn n n n n n +++++++++22221 <n n n nn n n n +++++++++2222211 <11211222+++++++++n n n n n n n 所以 n n n n +++++221 <n n n n n n n n +++++++++2222211 <1212+++++n n n 212)1(2122→+++=+++++n n n n n n n n n , (n →∞) 2112)1(12122→+++=+++++n n n n n n n , (n →∞) 所以⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =214. 已知函数⎩⎨⎧=01)(x f1||1||>≤x x , 则f[f(x)] _______. 解. f[f(x)] = 1. 5.)3(lim n n n n n --+∞→=_______.解.nn n n n n n n n n n n n n n n n n -++-++--+=--+∞→∞→3)3)(3(lim)3(lim=233lim=-+++-+∞→nn n n n n n n n6. 设当x bxaxe xf xx 为时++-=→11)(,0的3阶无穷小, 则.___________,==b a解.3030301lim )1(1lim 11limx ax bxe e bx x ax bxe e x bx axe k xx x x x x x x --+=+--+=++-=→→→203lim x abxe be e x x x x -++=→ ( 1 )2062lim x bxe be e x x x x ++=→ ( 2 )由( 1 ): 01)(lim 0=-+=-++→a b a bxe be e x x x x 由( 2 ):021)2(lim 0=+=++→b bxe be e x x x x21,21=-=a b7.⎪⎭⎫ ⎝⎛-→x x x x 1sin 1cot lim 0=______. 解.616sin lim 3cos 1lim sin lim sin sin sin cos lim020300==-=-=-⋅→→→→x x x x x x x x x x x x x x x x x 8. 已知A n n n kkn =--∞→)1(lim 1990(≠ 0 ≠ ∞), 则A = ______, k = _______. 解.A kn n n n n k n k k n =+=---∞→∞→119901990lim )1(lim 所以 k -1=1990, k = 1991; 1991111===k A A k ,二. 选择题1. 设f (x )和ϕ(x )在(-∞, +∞)内有定义, f (x )为连续函数, 且f (x ) ≠ 0, ϕ(x )有间断点, 则 (a) ϕ[f (x )]必有间断点 (b) [ ϕ(x )]2必有间断点 (c) f [ϕ(x )]必有间断点 (d))()(x f x ϕ必有间断点 解. (a) 反例 ⎩⎨⎧=01)(x ϕ 1||1||>≤x x , f (x ) = 1, 则ϕ[f (x )]=1(b) 反例⎩⎨⎧-=11)(x ϕ 1||1||>≤x x , [ ϕ(x )]2 = 1 (c) 反例 ⎩⎨⎧=01)(x ϕ 1||1||>≤x x , f (x ) = 1, 则f [ϕ(x )]=1(d) 反设 g(x ) =)()(x f x ϕ在(-∞, +∞)内连续, 则ϕ(x ) = g (x )f (x ) 在(-∞, +∞)内连续, 矛盾. 所以(d)是答案.2. 设函数x e x x x f sin tan )(⋅⋅=, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数 解. (b)是答案. 3. 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界(a) (-1, 0) (b) (0, 1) (c ) (1, 2) (d) (2, 3) 解. 42sin )0(,42sin )0(,)(lim ,)(lim1-=-=+∞=∞=→→f f x f x f x x 所以在(-1, 0)中有界, (a) 为答案.4. 当11211,1---→x e x x x 函数时的极限 (a) 等于2 (b) 等于0 (c ) 为∞ (d) 不存在, 但不为∞解. ⎩⎨⎧-→+→∞+=+=---→-→0101)1(lim 11lim 1111121x x e x e x x x x x x . (d)为答案.5. 极限⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n 的值是 (a) 0 (b) 1 (c) 2 (d) 不存在 解.⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n =1)1(11lim )1(1131212111lim 2222222=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+-++-+-∞→∞→n n n n n , 所以(b)为答案. 6. 设8)1()1()1(lim502595=+++∞→x ax x x , 则a 的值为 (a) 1 (b) 2 (c)58 (d) 均不对解. 8 =502595)1()1()1(lim +++∞→x ax x x =100502559595/)1(/)1(/)1(lim xx x ax x x x +++∞→ =5502595)/11()/1()/11(lim a x x a x x =+++∞→, 58=a , 所以(c)为答案. 7. 设βα=------∞→)23()5)(4)(3)(2)(1(limx x x x x x x , 则α, β的数值为(a) α = 1, β = 31 (b) α = 5, β = 31 (c) α = 5, β = 531(d) 均不对解. (c)为答案. 8. 设232)(-+=x x x f , 则当x →0时(a) f(x)是x 的等价无穷小 (b) f(x)是x 的同阶但非等价无穷小(c) f(x)比x 较低价无穷小 (d) f(x)比x 较高价无穷小解.x x x x 232lim 0-+→=3ln 2ln 13ln 32ln 2lim 0+=+→x x x , 所以(b)为答案. 9. 设6)31)(21)(1(lim0=++++→xax x x x , 则a 的值为(a) -1 (b) 1 (c) 2 (d) 3 解.0)31)(21)(1(lim 0=++++→a x x x x , 1 + a = 0, a = -1, 所以(a)为答案.10. 设02)1()21ln()cos 1(tan lim2202≠+=-+--+-→c a e d x c x b x a x x ,其中, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c解. 2 =)1()21ln()cos 1(tan lim 20x x e d x c x b x a -→-+--+=c a xde xc x b x axx 22212sin cos lim 220-=+--+-→, 所以a =-4c, 所以(d)为答案.三. 计算题 1. 求下列极限(1)xxx e x 1)(lim ++∞→解.e e e eee x xxx x x x e x e x e x xe x x xx x =====++++++∞→+∞→+∞→+∞→11lim)ln(lim)ln(1lim )(lim(2)x x xx )1cos 2(sinlim +∞→ 解. 令xy 1=yy x x y y xx 10)cos 2(sin lim )1cos 2(sin lim +=+→∞→=2cos 2sin sin 2cos 2lim)cos 2ln(sin lim 00e ee yy yy yy y y y ==+-+→→(3)310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→解.=⎪⎭⎫ ⎝⎛++→310sin 1tan 1lim x x x x 310sin 1sin tan 1lim x x x x x ⎪⎭⎫ ⎝⎛+-+→3)sin 1(sin tan sin tan sin 10sin 1sin tan 1lim x x xx xx xx x x x +--+→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+==30sin tan lim x xx x e -→=3)cos 1(sin limxx x x e-→=212sin 2sin lim32eexx x x =⋅→.2. 求下列极限(1)323112arcsin )11ln(lim--+→x x x解. 当x →1时,331~)11ln(--+x x ,323212~12arcsin --x x . 按照等价无穷小代换33132313231221121lim121lim12arcsin )11ln(lim=+=--=--+→→→x x x x x x x x(2)⎪⎭⎫⎝⎛-→x x x 220cot 1lim 解. 方法1:⎪⎭⎫⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎭⎫ ⎝⎛++-→32204sin cos )1(2cos 2lim x x x x x x x =3203204sin cos 2lim 42sin cos 2lim x x x x x x x x x x →→++-=21122cos 2sin cos 4cos 2lim 220+++-→x x x x x x x =2131242sin 4sin cos 4lim 2131122cos 2cos 2lim0220++-=+++-→→x x x x x x x x x =322131612131242sin 2lim 0=++-=++-→x x x方法2:⎪⎭⎫⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫ ⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-→420)12)(cos 1(211lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-++-→444220)(0!4)2(!2)2(11)(1(211lim x x x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-+--→4442420))(024162222(211lim x x x x x x x=3232lim 440=→x xx 3. 求下列极限 (1))1(ln lim-∞→nn n nn解.n nn n n nn n n n ln 1lim )1(ln lim -=-∞→∞→ x n n =-1令 1)1ln(lim0=+→x x x (2)nxnxn e e --∞→+-11lim解.⎪⎩⎪⎨⎧-=+---∞→10111limnxnxn e e 000<=>x x x (3)nn n n b a ⎪⎪⎭⎫ ⎝⎛+∞→2lim , 其中a > 0, b > 0解.nnnn b a ⎪⎪⎭⎫⎝⎛+∞→2lima b c n x /,/1== xc xxx x x ae ca 2ln )1ln(lim 10021lim -+→+→+=⎪⎪⎭⎫⎝⎛+=ab abac a ae aexx x x x c c c x c ====+-++→+→1ln lim2ln )1ln(lim0 4. 设⎪⎪⎩⎪⎪⎨⎧>=<-=⎰0cos 1010)cos 1(2)(022x dt t x x x x x x f x试讨论)(x f 在0=x 处的连续性与可导性.解. 20200200cos lim 1cos 1lim )0()(lim )0('xx dt t x dt t x x f x f f x x x x x -=-=-=⎰⎰+++→→→+ 0221lim 21cos lim 2020=-=-=++→→xxx x x x320200)cos 1(2lim 1)cos 1(2lim )0()(lim )0('x x x x x x x f x f f x x x --=--=-=++-→→→-06)1(cos 2lim 32sin 2lim 020=-=-=++→→x x xx x x x 所以0)0('=f , )(x f 在0=x 处连续可导.5. 求下列函数的间断点并判别类型(1)1212)(11+-=xxx f解.11212lim )0(110=+-=+→+xxx f , 11212lim )0(110-=+-=-→-xxx f所以x = 0为第一类间断点.(2)⎪⎪⎩⎪⎪⎨⎧-+=11sin cos 2)2()(2x x x x x f π 00>≤x x解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点;11sinlim )(lim 211-=→→x x f x x 不存在. 所以x = 1为第二类间断点;)2(π-f 不存在, 而2cos 2)2(lim2πππ=+-→x x x x ,所以x = 0为第一类可去间断点;∞=+--→x x x k x cos 2)2(lim2πππ, (k = 1, 2, …) 所以x =2ππ--k 为第二类无穷间断点.6. 讨论函数⎪⎩⎪⎨⎧+=βαx e xx x f 1sin )( 00≤>x x 在x = 0处的连续性.解. 当0≤α时)1sin (lim 0xx x α+→不存在, 所以x = 0为第二类间断点;当0>α, 0)1sin (lim 0=+→xx x α, 所以1-=β时,在 x = 0连续, 1-≠β时, x = 0为第一类跳跃间断点.7. 设f(x)在[a, b]上连续, 且 a < x 1 < x 2 < … < x n < b, c i (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个ξ, 使nn c c c c x f c x f c f ++++++=212211)()()(ξ.证明: 令M =)}({max 1i ni x f≤≤, m =)}({min 1i ni x f ≤≤所以 m ≤nnc c c c x f c x f c ++++++ 212211)()(≤ M所以存在ξ( a < x 1 ≤ ξ ≤ x n < b), 使得nnc c c c x f c x f c f ++++++=212211)()()(ξ8. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ.9. 设f(x)在[0, 1]上连续, 且0 ≤ f(x) ≤ 1, 试证在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ. 证明: (反证法) 反设)()(],1,0[≠-=∈∀x x f x x ϕ. 所以xx f x -=)()(ϕ恒大于0或恒小于0. 不妨设0)()(],1,0[>-=∈∀x x f x x ϕ. 令)(min 10x m x ϕ≤≤=, 则0>m .因此m x x f x x ≥-=∈∀)()(],1,0[ϕ. 于是01)1(>+≥m f , 矛盾. 所以在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ.10. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个ξ, 使f(ξ) = g(ξ).证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 11. 证明方程x 5-3x -2 = 0在(1, 2)内至少有一个实根. 证明: 令F(x) = x 5-3x -2, 则F(1) =-4 < 0, F(2) = 24 > 0 所以 在(1, 2)内至少有一个ξ, 满足F(ξ) = 0. 12. 设f(x)在x = 0的某领域内二阶可导, 且0)(3sin lim 230=⎪⎭⎫⎝⎛+→x x f x x x , 求)0(''),0('),0(f f f 及203)(lim x x f x +→. 解.0)(3sin lim )(3sin lim )(3sin lim 2030230=+=+=⎪⎭⎫ ⎝⎛+→→→x x f x xx x xf x x x f x x x x x . 所以0)(3sin lim 0=⎪⎭⎫⎝⎛+→x f x x x . f(x)在x = 0的某领域内二阶可导, 所以)('),(x f x f 在x = 0连续. 所以f(0) = -3. 因为 0)(3sin lim 20=+→xx f x x x , 所以03)(33sin lim 20=++-→x x f x xx , 所以 2030202033cos 33lim 3sin 3lim 3sin 3lim3)(lim x x x x x x x x x x f x x x x -=-=-=+→→→→=2923sin 3lim 0=→x x x02903)(lim 3)(lim 0)0()(lim )0('2000=⨯=+⋅=+=--=→→→x x f x x x f x f x f f x x x由293)(lim 20=+→x x f x , 将f(x)台劳展开, 得 293)(0)0(''!21)0(')0(lim 2220=++++→x x x f x f f x , 所以29)0(''21=f , 于是 9)0(''=f .(本题为2005年教材中的习题, 2008年教材中没有选入. 笔者认为该题很好, 故在题解中加入此题)第二章 导数与微分一. 填空题 1 . 设)('31)()(lim0000x f x x f x k x f x =∆-∆+→∆, 则k = ________.解. )('31)()(lim 0000x f x k x f x k x f k x =∆-∆+→∆, 所以)('31)('00x f x kf =所以31=k 2. 设函数y = y(x)由方程0)cos(=++xy e yx 确定, 则=dxdy______. 解.0sin )'()'1(=+-++xy xy y y e y x , 所以xyx e e xy y y yx yx sin sin '--=++3. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ______.解. 由f(-x) =-f(x)得)(')('x f x f -=--, 所以)(')('x f x f =-所以k x f x f =-=)(')('004. 设f(x)可导, 则=∆∆--∆+→∆xx n x f x m x f x )()(lim000_______.解. xx n x f x f x f x m x f x ∆∆--+-∆+→∆)()()()(lim 00000=x m x f x m x f m x ∆-∆+→∆)()(lim 000+x n x f x n x f n x ∆--∆-→∆)()(lim 000=)(')(0x f n m +5. xx x f +-=11)(, 则)()(x fn = _______. 解.1112)1(!12)1()1(11)('++⋅-=++---=x x x x x f , 假设1)()1(!2)1(++⋅-=k k k x k f , 则111)1()1()!1(2)1(++++++⋅-=k k k x k f, 所以1)()1(!2)1(++⋅-=n n n x n f 6. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫⎝⎛21'f _______. 解.x x x f 121'32=⋅⎪⎭⎫ ⎝⎛-, 所以21'22x xf -=⎪⎭⎫ ⎝⎛. 令x 2 = 2, 所以11'2-=⎪⎭⎫⎝⎛x f 7. 设f 为可导函数, )]}([sin sin{x f f y =, 则=dxdy_______. 解.)]}([sin cos{)]([sin ')(cos )('x f f x f f x f x f dxdy= 8. 设y = f(x)由方程1)cos(2-=-+e xy e yx 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.解. 上式二边求导0)sin()'()'2(2=+-++xy xy y y e yx . 所以切线斜率2)0('-==y k . 法线斜率为21, 法线方程为 x y 211=-, 即 x -2y + 2 = 0.二. 选择题1. 已知函数f(x)具有任意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的正整数时, f(x)的n 阶导数是(a) 1)]([!+n x f n (b) 1)]([+n x f n (c) n x f 2)]([ (d) n x f n 2)]([! 解. 3)]([!2)(')(2)(''x f x f x f x f ==, 假设)()(x f k =1)]([!+k x f k , 所以)()1(x f k +=2)]([)!1()(')]([!)1(++=+k k x f k x f x f k k , 按数学归纳法)()(x f n =1)]([!+n x f n 对一切正整数成立. (a)是答案.2. 设函数对任意x 均满足f(1 + x) = af(x), 且=)0('f b, 其中a, b 为非零常数, 则(a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且=)1('f a(c) f(x)在x = 1处可导, 且=)1('f b (d) f(x)在x = 1处可导, 且=)1('f ab解. b =0)0()(lim )0('0--=→x f x f f x =)1('1)1(1)1(1lim 0f ax f a x f a x =-+→, 所以=)1('f ab. (d)是答案 注: 因为没有假设)(x f 可导, 不能对于)()1(x af x f =+二边求导.3. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为(a) 0 (b) 1 (c) 2 (d) 3 解.⎩⎨⎧=3324)(xx x f00<≥x x . ⎩⎨⎧=x x x f 1224)('' 00<≥x x 24024lim 0)0('')(''lim )0('''00=-=--=++→→+xx x f x f f x x12012lim 0)0('')(''lim )0('''00=-=--=--→→-xx x f x f f x x所以n = 2, (c)是答案.4. 设函数y = f(x)在点x 0处可导, 当自变量x 由x 0增加到x 0 + ∆x 时, 记∆y 为f(x)的增量, dy 为f(x)的微分, x dyy x ∆-∆→∆0lim等于(a) -1 (b) 0 (c) 1 (d) ∞ 解. 由微分定义∆y = dy + o (∆x), 所以0)(lim lim00=∆∆=∆-∆→→∆x x o x dy y x x . (b)是答案.5. 设⎪⎩⎪⎨⎧+=b ax xx x f 1sin )(200≤>x x 在x = 0处可导, 则 (a) a = 1, b = 0 (b) a = 0, b 为任意常数 (c) a = 0, b = 0 (d) a = 1, b 为任意常数 解. 在x = 0处可导一定在x = 0处连续, 所以)(lim 1sinlim 020b ax x x x x +=-+→→, 所以b = 0.)0(')0('-+=f f , x ax xx x x x -+→→=020lim 1sinlim , 所以 0 = a. (c)是答案.三. 计算题 1.')]310ln[cos(2y x y ,求+=解.)310tan(6)310cos(6)310sin('222x x x x x y +-=+⋅+-= 2. 已知f(u)可导,')][ln(2y x a x f y ,求++=解.='y ⎪⎪⎭⎫⎝⎛++++⋅++2222211)][ln('x a x x a x x a x f =22)][ln('xa x a x f +++3. 已知20sin cos 22y tdt dt e x yt +=⎰⎰, 求'y .解.22cos '2cos 2'2y yy x x y e y +=22cos 2cos 2'2yy ex x y y -=4. 设y 为x 的函数是由方程xyy x arctanln22=+确定的, 求'y . 解.22222221'2'22xy x y x y y x y x yy x +-=+++y x y yy x -=+'', 所以yx yx y -+='四. 已知当x ≤ 0时, f (x )有定义且二阶可导, 问a, b, c 为何值时⎩⎨⎧++=c bx ax x f x F 2)()( 0>≤x x 二阶可导. 解. F(x )连续, 所以)(lim )(lim 00x F x F x x +-→→=, 所以c = f (-0) = f (0);因为F(x )二阶可导, 所以)('x F 连续, 所以b =)0(')0('f f =-, 且⎩⎨⎧+=-)0('2)(')('f ax x f x F 00>≤x x)0(''F 存在, 所以)0('')0(''+-=F F , 所以a xf f ax x f x f x x 2)0(')0('2lim )0(')('lim 00=-+=--→→+-, 所以)0(''21f a =五. 已知)0(1)()(22n f xx x f ,求-=. 解.xx x f +⋅+-⋅+-=112111211)(11)()1()1(21)1(!21)(+++-⋅+-⋅=n nn n x x n x f0)0()12(=+k f , k = 0, 1, 2, …!)0(2n f k =, k = 0, 1, 2, …六. 设x x y ln =, 求)1()(n f .解. 使用莱布尼兹高阶导数公式121)1()()()!2()1()!1()1()(ln )(ln )(------+--=+⋅=n n n n n n n xn n x n x x n x x x f =121121)!2()1()1()!2()1(-------=⎥⎦⎤⎢⎣⎡+----n n n n n x n x n x n n所以 )!2()1()1(2)(--=-n f n n第三章 一元函数积分学(不定积分)一. 求下列不定积分: 1.⎰-+-dx x xx 11ln 112解.=-+-⎰dx x x x 11ln 112c x x x x d x x +⎪⎭⎫ ⎝⎛-+=-+-+⎰211ln 4111ln 11ln 21 2.c x x x xd x x dx x x x +⎪⎭⎫ ⎝⎛-+=-+-+=-++⎰⎰2211arctan 2111arctan 11arctan 11arctan 11 3.⎰++⋅+++dx x xx x x cos 1sin 1)cos 1(1sin cos 2解.c x x x xd x x dx x x x x x +⎪⎭⎫⎝⎛++=++++=++⋅+++⎰⎰22cos 1sin 121cos 1sin 1cos 1sin 1cos 1sin 1)cos 1(1sin cos 4.⎰+)1(8x x dx解. 方法一: 令tx 1=,c t t dt t dt t t t x x dx ++-=+-=⎪⎭⎫⎝⎛+-=+⎰⎰⎰)1ln(8111111)1(887828 =c x +⎪⎭⎫⎝⎛+-811ln 81 方法二:⎰⎰⎰+--=+=+dx x x x x x dx x x x dx )111()1()1(8878878 =c x x x x d x dx ++-=++-⎰⎰)1ln(81||ln 1)1(81888=c x +⎪⎭⎫ ⎝⎛+-811ln 815.dx xx x x x x dx x x x ⎰⎰+++-+++=+++cos sin 121)cos (sin 21)cos sin 1(21cos sin 1sin 1⎰⎰⎰+++++--=dx x x dx x x x x dx cos sin 1121cos sin 1sin cos 2121dx x x x x x x x d x ⎰⎰++++++-=2cos 22cos 2sin 2121cos sin 1)cos sin 1(212122tan 12tan 121|cos sin 1|ln 2121xd x x x x ⎰++++-=c xx x x +++++-=|12tan |ln 21|cos sin 1|ln 2121二. 求下列不定积分: 1.⎰+++22)1(22x x x dx解.⎰⎰++++=+++1)1()1()1(22)1(2222x x x d x x x dx t x tan 1=+令 ⎰t t t dtsec tan cos 22=⎰++++-=+-=c x x x c t t tdt 122sin 1sin cos 22 2.⎰+241xxdx解. 令x = tan t,⎰⎰⎰⎰⎰++-=-===+c t t t t d t t d dt t t t t t dtxxdx sin 1sin 31sin sin sin sin sin cos sec tan cos 1324434224=c x x x x+++⎪⎪⎭⎫⎝⎛+-23211313.⎰++221)12(xxdx解. 令t x tan =⎰⎰⎰⎰+=+=+=++tt d dt t t t dt t t t x x dx2222222sin 1sin cos sin 2cos sec )1tan 2(sec 1)12(=c xx c t ++=+21arctansin arctan4.⎰-222x a dx x (a > 0)解. 令t a x sin =⎰⎰⎰+-=-=⋅=-c t a t a dt t a t a tdt a t a x a dxx 2sin 412122cos 1cos cos sin 22222222=c x a a x a x a +⎪⎭⎫⎝⎛--2222arcsin 25.⎰-dx x 32)1(解. 令t x sin =⎰⎰⎰⎰++=+==-dt tt dt t tdt dx x 42cos 2cos 214)2cos 1(cos )1(22432=⎰+++=+++c t t t dt t t t 4sin 3212sin 4183)4cos 1(812sin 4141 =c t t x +++)2cos 411(2sin 41arcsin 83=c tt t x +-++)4sin 214(cos sin 241arcsin 832 =c x x x x +--+)25(181arcsin 8322 6.⎰-dx xx 421 解. 令tx 1=⎰⎰⎰--=⎪⎭⎫ ⎝⎛--=-dt t t dt t t t t dx xx 224224211111u t sin =令⎰-udu u 2cos sin=c xx c u +-=+33233)1(cos 31 7.⎰-+dx x xx 1122解. 令tdt t dx t x tan sec ,sec ==⎰⎰⎰++=+=+=-+c t t dt t tdt t tt t dx x xx sin )cos 1(tan sec tan sec 1sec 11222c xx x+-+=11arccos 2 三. 求下列不定积分:1.⎰+-+dx e e e e x x xx 1243解.⎰⎰⎰+-=+--=+-+=+-+-----c e e e e e e d dx e e e e dx e e e e xx x x x x x x x x x x x x )arctan(1)()(11222243 2.⎰+)41(2x x dx解. 令x t2=, 2ln t dtdx =c tt dt t tt t dt dx x x +--=⎪⎭⎫ ⎝⎛+-=+=+⎰⎰⎰2ln arctan 2ln 11112ln 12ln )1()41(22222 =c x x ++--)2arctan 2(2ln 1四. 求下列不定积分: 1.⎰-dx x x 1005)2(解.⎰⎰⎰---+--=--=-dx x x x x x d x dx x x 9949959951005)2(995)2(99)2(991)2( =⎰--⋅⋅+-⨯---dx x x x x x x 983984995)2(989945)2(98995)2(99 =962973984995)2(96979899345)2(97989945)2(98995)2(99-⋅⋅⋅⋅⋅--⋅⋅⋅--⋅---x x x x x x x xc x x x +-⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅-9495)2(95969798992345)2(959697989923452.⎰+41xxdx解.⎰⎰⎰⎰+-=+-=+-=+22244424)(1211111/11t dt t tdt t t t dt t t x x x dx 令c x x c u u du u u u t ++-=++-=-=⎰24221ln 21|sec tan |ln 21sec sec 21tan 令五. 求下列不定积分: 1.⎰xdx x 2cos 解.⎰⎰⎰+=+=x xd x dx x x xdx x 2sin 4141)2cos 1(21cos 22 ⎰-+=xdx x x x 2sin 412sin 41412 c x x x x +++=2cos 812sin 41412 2.⎰xdx 3sec解.⎰⎰⎰-==xdx x x x x x xd xdx tan sec tan tan sec tan sec sec3=⎰⎰-++=--xdx x x x x xdx x x x 32sec |tan sec |ln tan sec sec )1(sec tan secc x x x x xdx +++=⎰|tan sec |ln 21tan sec 21sec 33.⎰dx x x 23)(ln解.⎰⎰⎰+-=-=dx x x x x x d x dx x x 223323)(ln 3)(ln 11)(ln )(ln⎰+--=dx x x x x x x 223ln 6)(ln 3)(ln ⎰+---=dx x x x x x x x 2236ln 6)(ln 3)(lnc xx x x x x x +----=6ln 6)(ln 3)(ln 234.⎰dx x )cos(ln解.⎰⎰⎰-+=+=dx x x x x dx x x x dx x )cos(ln )]sin(ln )[cos(ln )sin(ln )cos(ln )cos(ln∴c x x xdx x ++=⎰)]sin(ln )[cos(ln 2)cos(ln5.⎰⎰⎰⎰---+-=-==dx x x x x xd dx x x xx dx xxx 2sin 812sin 812sin 812cos 2sin 2cos 81sin 2cos 22233434c x x x xd x x x +--=+-=---⎰2cot 412sin 8122sin 412sin 81222六. 求下列不定积分:1.⎰-++dx x x x x 222)1()1ln(解.⎰⎰-++=-++2222211)1ln(21)1()1ln(x dx x dx x x x x=⎰+⋅---++dx x x x x x 222211112111)1ln(21t x tan =令 tdt tt x x x 2222sec sec 1tan 1121)1(2)1ln(⋅⋅---++⎰ =dt t tx x x ⎰---++222sin 21cos 21)1(2)1ln(=⎰---++t td x x x 222sin 21sin 2221)1(2)1ln( =c tt x x x +-+--++sin 21sin 21ln 241)1(2)1ln(22=c xx xx x x x +-+++--++2121ln 241)1(2)1ln(2222 2.⎰+dx xx x 21arctan解.⎰⎰⎰++-+=+=+dx xx x x x xd dx xx x 2222211arctan 11arctan 1arctan =c x x x x dx x x x +++-+=+-+⎰)1ln(arctan 111arctan 122223.⎰dx e e x x2arctan解.dx e e e e e de e dx e e x x x xx x x x x ⎰⎰⎰++-=-=---22222121arctan 21arctan 21arctandx e e e e x x x x ⎰++-=--22121arctan 21⎰++-=-dx e e e e x x x x )1(121arctan 2122c x e e e dx e e e e e x x x xx x x x +++-=+-+-=---⎰)arctan arctan (21)11(21arctan 21222 七. 设⎩⎨⎧-+-+=-xe x x x x xf )32(3)1ln()(22 00<≥x x , 求⎰dx x f )(. 解.⎪⎩⎪⎨⎧-+-+=-⎰⎰⎰dx e x x dxx x dx x f x )32()3)1ln(()(22⎪⎩⎪⎨⎧+++-+-+--+=-122222)14(3)]1ln([21)1ln(21c e x x c x x x x x x 00<≥x x 考虑连续性, 所以c =-1+ c 1, c 1 = 1 + c⎰dx x f )(⎪⎩⎪⎨⎧++++-+-+--+=-c e x x c x x x x x x 1)14(3)]1ln([21)1ln(2122222 00<≥x x 八. 设x b x a e f x cos sin )('+=, (a, b 为不同时为零的常数), 求f(x).解. 令t x e t x ln ==,, )cos(ln )sin(ln )('t b t a t f +=, 所以⎰+=dx x b x a x f )]cos(ln )sin(ln [)(=c x a b x b a x+-++)]cos(ln )()sin(ln )[(2九. 求下列不定积分: 1.⎰++dx x xx )32(332解.⎰⎰+=+=++++c x d dx x xx xx xx 3ln 3)3(3)32(332332222.⎰-+-dx x x x)13()523(232解.)523()523(21)13()523(2232232+-+-=-+-⎰⎰x x d x x dx x x xc x x ++-=252)523(513.dx xx x ⎰+++221)1ln(解.⎰⎰+++=++++=+++c x x x x d x x dx x x x )1(ln 21)1ln()1ln(1)1ln(222222 4.⎰+++++)11ln()11(222x x xxdx解.c x x xd x x xxdx+++=++++=+++++⎰⎰|)11ln(|ln )11ln()11ln()11ln()11(222222十. 求下列不定积分: 1.⎰+dx x x x )1(arctan 2解.⎰⎰⎰-+-=++=+1222222)1(arctan 21)1()1(arctan 21)1(arctan x xd x d x x dx x x x⎰⎰+++-=+++-=dx x x x x d x x x 22222)1(1211arctan 21arctan 11211arctan 21dt t x x tdt x x t x ⎰⎰+++-=++-=22cos 1211arctan 21cos 211arctan 21tan 222令 c t t x x x aex c t t x x ++++-=++++-=cos sin 41arctan 411tan 212sin 81411arctan 2122c xx x x x aex +++++-=22141arctan 411tan 21 2.⎰+dx x x1arcsin解. 令t x t xx2tan ,1arcsin==+则⎰⎰⎰++-=-==+c t t t t tdt t t t d t dx xxtan tan tan tan tan 1arcsin2222c x xx x c x x x x x x +-++=+++-+=1arcsin )1(1arcsin 1arcsin3.⎰-+⋅dxx x x x 22211arcsin解.⎰⎰⎰+=+⋅=-+⋅dt t t tdt t t t t tx dx x x x x )1(csc cos cos sin 1sin sin 11arcsin 222222令 ⎰⎰⎰+++-=+-=c t tdt t t dt t tdt t 221cot cot cotc t t t t +++-=221|sin |ln cotc x x x x x +++--=22)(arcsin 21||ln 1arcsin4.dx x x x⎰+)1(arctan 22解.⎰⎰⎰-==+dt t t dt t t t t tx dx x x x)1(csc sec sec tan tan )1(arctan 222222令22221cot cot 21cot csc t dt t t t t d t dt t dt t t -+-=--=-=⎰⎰⎰⎰c x x x x x c t t t t +-++-=+-+-=222)(arctan 21|1|ln arctan 21|sin |ln cotc x x x x x +-++-=222)(arctan 211ln 21arctan 十一. 求下列不定积分: 1.⎰-dx x x 234 解.⎰⎰⎰==-dt t t dt t t t t x dx x x 23323cos sin 32cos 2cos 2sin 8sin 24令c t t td dt t t ++-=-=⎰5322cos 532cos 332cos cos )cos 1(32c x x +-+--=252232)4(51)4(342.⎰-xa x 22解.⎰⎰⎰-==-dt t t a dt t t a t a t a t a x x a x 2222cos cos 1tan sec sec tan sec 令c xaa a x c at t a +--=+-=arccos tan 223.dx ee e xx x ⎰-+21)1(解.udu u uu t dt t t t dt t t t te dx e e e x xx x cos cos sin 1sin 111)1(1)1(222⎰⎰⎰⎰+=-+=-+=-+令令c e e c u u x x +--=+-=21arcsin cos4. ⎰-dx xa xx2 (a > 0)解.⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8 =⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222=c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222=c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222=c t t a t t a t a+--cos sin 2cos sin 333222=c axa a x a xa a x a a x a a x a+----2222222232arcsin3222=c x a x x a a x a+-+-)2(232arcsin32十二. 求下列不定积分: 1.⎰+xxdx cos 1sin解.⎰⎰⎰⎰-+-=++-=+=+xxd xx x d xx dx x xxdx 222cos 1cos 12cos 1sin )cos 1(cos 1sin sin cos 1sin⎰⎰--=---=+)2(2)1(12cos 12222u u duu du u x 令⎰+-++=-+-=c u u u du u u |22|ln 2211)211(22c xx x++-++++=|cos 12cos 12|ln 221cos 112. ⎰+-dx x xcos 2sin 2 解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2t x =2tan 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt=c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 343. ⎰+dx x x xx cos sin cos sin解.⎰⎰+-+=+dx xx x x dx x x x x cos sin 1cos sin 2121cos sin cos sin =⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π 十三. 求下列不定积分: 1.dx xx x ⎰-1解.c t t td dt t t tx dx xx x +--=---=-=-⎰⎰⎰333321341)1(32121令c x +--=231342.⎰+-dx e e x x 11解.⎰⎰⎰⎰-=-=--=+-dt t dt t t t t e dx e e dx e e xx x x x )1(sec tan tan 1sec sec 11112令c ee e c t t t x x x +-++=+--=1arccos )1ln(|tan sec |ln 23.dx x x x ⎰--1arctan 1解. 令t t dx t x x t x ttan sec 2,sec ,1tan ,1arctan 22==-=-=⎰⎰⎰⎰-===--dt tt t dt t t dt t t t t t dx x x x 22222cos cos 12tan 2tan sec 2sec tan 1arctan 1 ⎰⎰⎰⎰--=-=-=222tan 2tan 2tan 22cos 2t dt t t t t t d t dt t dt ttc t t t t +-+=2|cos |ln 2tan 2c x x x x +-----=2)1(arctan ||ln 1arctan 12第三章 一元函数积分学(定积分)一.若f(x)在[a ,b]上连续, 证明: 对于任意选定的连续函数Φ(x), 均有0)()(=Φ⎰badx x x f , 则f(x) ≡ 0.证明: 假设f(ξ)≠ 0, a < ξ < b, 不妨假设f(ξ) > 0. 因为f(x)在[a ,b]上连续, 所以存在δ > 0, 使得在[ξ-δ, ξ + δ]上f(x) > 0. 令m =)(minx f x δξδξ+≤≤-. 按以下方法定义[a ,b]上Φ(x): 在[ξ-δ, ξ + δ]上Φ(x) =22)(ξδ--x , 其它地方Φ(x) = 0. 所以02)()()()(2>≥Φ=Φ⎰⎰+-πδδξδξmdx x x f dx x x f ba .和0)()(=Φ⎰badx x x f 矛盾. 所以f(x) ≡ 0.二. 设λ为任意实数, 证明:⎰+=20)(tan 11πλdx x I =4)(cot 1120ππλ=+⎰dx x . 证明: 先证:4)(cos )(sin )(sin 2ππ=+⎰dx x f x f x f =⎰+2)(cos )(sin )(cos πdx x f x f x f令 t =x -2π, 所以=+⎰20)(cos )(sin )(sin πdx x f x f x f ⎰-+02)()(sin )(cos )(cos πt d t f t f t f= =+⎰20)(sin )(cos )(cos πdt t f t f t f ⎰+20)(sin )(cos )(cos πdx x f x f x f于是=+⎰20)(cos )(sin )(sin 2πdx x f x f x f ++⎰20)(cos )(sin )(sin πdx x f x f x f ⎰+20)(sin )(cos )(cos πdx x f x f x f=2)(cos )(sin )(cos )(sin 2020πππ==++⎰⎰dx dx x f x f x f x f所以4)(cos )(sin )(sin 2ππ=+⎰dx x f x f x f =⎰+20)(cos )(sin )(cos πdx x f x f x f .所以⎰+=20)(tan 11πλdx x I 4)(sin )(cos )(cos cos sin 11220ππλλλπλ=+=⎪⎭⎫⎝⎛+=⎰⎰x x x dx x x同理 4)(cot 112ππλ=+=⎰dx x I .三.已知f(x)在[0,1]上连续, 对任意x, y 都有|f(x)-f(y)| < M |x -y|, 证明n Mn k f n dx x f n k 21)(110≤⎪⎭⎫ ⎝⎛-∑⎰= 证明:∑⎰⎰=-=nk n kn k dx x f dx x f 111)()(,=∑=n k nkf n 1)(1dx nk f nk n kn k ∑⎰=-11)(。
考研高数历年真题答案解析
考研高数历年真题答案解析高等数学是考研数学一科目中的核心内容,也是备考过程中最重要的一部分。
为了更好地帮助考生提升高数考试的能力,本文将针对考研高数历年真题中的几道典型题目进行答案解析和讲解。
1. 题目一:已知函数 $f(x)$ 在区间 $(-3, 1)$ 上连续,则函数 $F(x) = \int_{-3}^{x} \frac{f(t)}{t^2+5} dt$ 的连续点个数为几个?解析:根据题目中的条件,函数 $f(x)$ 在区间 $(-3, 1)$ 上连续,可以得出 $f(x)$ 在 $(-3, 1)$ 区间上的任意一点都存在极限。
那么 $F(x)$ 在 $(-3, 1)$ 区间上是连续的。
2. 题目二:设 $f(x)$ 为函数 $y = e^x$ 在点 $(1, e)$ 处的切线,则曲线 $y = f(x)$ 在点 $(2, ?)$ 处的切线方程为?解析:题目中要求给出函数 $y = f(x)$ 在点 $(2, ?)$ 处的切线方程。
由题设可知,函数 $f(x)$ 在点 $(1, e)$ 处的切线方程为 $y = e^{x-1} + e$。
那么我们可以利用求导的方法得到函数$f(x)$ 在点 $(2, ?)$ 处的切线方程。
首先求导:$f'(x) = e^x$,然后代入 $x = 2$,得到切线的斜率为 $f'(2) = e^2$。
由于切线经过点 $(2, ?)$,我们可以利用点斜式方程计算出切线方程为 $y - e= e^2(x - 2)$。
因此,曲线 $y = f(x)$ 在点 $(2, ?)$ 处的切线方程为 $y = e^2(x - 2) + e$。
通过以上两道题目的解析和讲解,我们可以看到高等数学在考研数学中的重要性和应用性。
不仅需要熟练记忆和理解相关公式和定理,还需要通过大量的实战训练和真题练习来提高解题能力。
在备考过程中,考生需要注重对真题的解析和讲解,深入理解题目的考点和解题的思路,培养灵活运用数学知识的能力。
高等数学基础习题集(含答案)
sin x
,则 f ( x ) 是(
) (C)周期函数 (D)单调函数
(B)无界函数
【解题思路】把函数看成三个分函数,该指数函数无奇偶性, x 为非周期函数, tan x 无严 格单调性. 【详解】 f ( x ) x tan x e
sin x
中, tan x 无界,另负无穷到正无穷都能取到,故整体无界.
n
7、已知极限 lim
x a
f ( x) f (a) 存在,则 lim f ( x) 是否存在?若存在,为多少? x a xa f ( x) f (a) 0 中,分母趋向于 0,而此极限存在,故只能为 型,因此分 xa 0
x a x a
【解题思路】考虑极限的类型. 2、设 f ( x) 0, 1,
x 1, x 1, g ( x ) e x ,求 f [ g ( x)] 和 g[ f ( x)] ,并作出这两个函数的图形. x 1,
x
x x 【解题思路】求 f [ g ( x)] 时,中间变量为 g ( x ) e ,利用函数 y e 的单调性质,考虑 e
【解题思路】利用数列的单调有界准则. 先求出 a2 , a3 ,易猜测数列是单调递减的,故只需 证有下界即可. 【详解】由已知条件易得 an 0 ,利用基本不等式可得, an+1 = (an + 有下界;又因为 an +1 an = 限 lim an 存在. 证毕.
x a
子也以 0 为极限,故 lim f ( x) f (a) 0 ,所以 lim f ( x) 存在,为 f (a) .
1 2 ex sin x 8、极限 lim 2 x 0 1 e x ln(1 x)
考研高等数学真题及答案解析
考研高等数学真题及答案解析高等数学作为考研数学科目中的一部分,是一门相对较难的学科。
在考前复习过程中,做真题是非常重要的一步。
通过做真题,可以了解考点,熟悉考试形式,并锻炼解题能力。
本文将对考研高等数学真题及答案进行解析,帮助考生加深对高等数学知识的理解。
第一道题目是关于向量的问题。
题目如下:已知向量a = (1,2), b = (3,4),求向量a + b的模长。
答案是√52。
解析:首先,根据向量的定义,向量a + b等于向量a的横纵坐标分别加上向量b的横纵坐标,即(1+3, 2+4),得到向量c = (4, 6)。
接下来,根据向量的模长公式,向量c的模长等于√(4^2+6^2),即√52。
这道题目主要考察了向量的加法和模长的相关知识。
通过计算过程可以看出,向量的加法就是将两个向量的对应分量相加得到新的向量。
而向量的模长就是向量各个分量的平方和的平方根。
掌握了这些基本知识,就可以解答这类题目。
第二道题目是极限问题。
题目如下:求lim(x→0) ((sinx)/x)的值。
答案是1。
解析:这道题目是一个常见的极限问题。
根据极限的定义,当x趋向于0时,((sinx)/x)的极限等于1。
这是因为当x趋向于0时,函数sinx也趋向于0,而分子分母同时趋向于0,所以极限等于1。
这道题目涉及到极限的概念和性质。
在解答这类题目时,可以先观察函数的特点,然后运用极限的定义和基本性质进行推导。
熟练掌握这些概念和方法,可以迅速解决类似的问题。
第三道题目是微分问题。
题目如下:设函数y = 2x^3 - 3x^2 + 2ax + b,如果它在点x = 1处的切线斜率为3,求常数a和b的值。
答案是a=4,b=-3。
解析:根据微分的定义,函数在某点的导数等于该点切线的斜率。
对函数y = 2x^3 - 3x^2 + 2ax + b求导,即求得一阶导数dy/dx = 6x^2 - 6x + 2a。
将x=1代入得到导数的值,即3 = 6 - 6 + 2a,解得a=4。
专升本考研高数试题及答案
专升本考研高数试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^3-3x^2+2x在区间[0,3]上的最大值是()。
A. 0B. 1C. 2D. 32. 已知曲线y=x^2与直线y=4x-5相切于点P(a,b),则a的值为()。
A. 0B. 1C. 2D. 53. 设f(x)=2x-1,g(x)=x^2+1,若f(g(x))=3x^2+x,则x的值为()。
A. 0B. 1C. -2D. 24. 曲线y=x^3在点M(1,1)处的切线斜率为()。
A. 0B. 1C. 3D. 25. 函数f(x)=sin(x)+cos(x)在区间[0,π]上的值域是()。
A. [-1,1]B. [0,√2]C. [√2,2]D. [-√2,0]6. 已知等差数列{an}的前n项和为S(n),若S(5)=50,a(3)=10,则a(1)的值为()。
A. 2B. 4C. 6D. 87. 若f(x)=x^2+bx+c,且f(1)=f(3),则f(-1)的值为()。
A. -1B. 1C. 3D. 58. 设等比数列{bn}的首项为b1=3,公比为q=2,若b(5)=48,则b(3)的值为()。
A. 6B. 12C. 24D. 489. 函数y=ln(x)的图像关于直线x=1对称,那么y=e^x的图像关于直线()对称。
A. x=0B. x=1C. x=eD. x=ln(e)10. 若函数f(x)=x^2-4x+4,g(x)=x^2-4x+13,且f(x)-g(x)=-9,则x 的值为()。
A. 1B. 3C. 5D. 7二、填空题(每题4分,共20分)11. 若函数f(x)=x^3-6x^2+11x-6的零点为x0,则f'(x0)=______。
12. 设数列{an}的通项公式为an=3n-2,若Sn是其前n项和,则S5=______。
13. 已知曲线y=x^2-4x+3在点(2,-1)处的切线方程为y-(-1)=m(x-2),则m的值为______。
高数考研真题及答案
高数考研真题及答案高数考研真题及答案高等数学是考研数学的重要组成部分,也是许多考生最为头疼的一门科目。
为了提高自己的数学水平,很多考生会通过做真题来进行复习。
本文将介绍一些高数考研真题及其答案,希望对考生们有所帮助。
一、函数与极限1. 某函数f(x)在x=0处连续,且f(0)=1,求极限lim(x→0)〖f(2x-1)〗。
解析:根据函数的连续性和极限的性质,可以得出lim(x→0)〖f(2x-1)〗=f(0)=1。
2. 已知函数f(x)满足f(0)=1,且对任意x,有f'(x)=f(x),求f(x)的表达式。
解析:根据题目中给出的条件,可以得出f(x)=e^x,其中e是自然对数的底数。
二、导数与微分1. 求函数y=ln(1+x^2)的导数。
解析:根据链式法则和对数函数的导数公式,可以得出y'=(2x)/(1+x^2)。
2. 某物体的运动方程为s(t)=t^3-2t^2+3t,求物体在t=2时的速度。
解析:速度的定义是位移对时间的导数,即v(t)=s'(t)=3t^2-4t+3。
代入t=2,可以得到v(2)=7。
三、定积分与不定积分1. 求∫(0 to π/2)〖sin^2(x) dx〗。
解析:根据三角恒等式sin^2(x)=1/2-1/2cos(2x),可以将原式转化为∫(0 toπ/2)〖(1/2-1/2cos(2x)) dx〗。
根据不定积分的性质和基本积分公式,可以得到结果为π/4。
2. 求∫(0 to 1)〖x^2e^x dx〗。
解析:根据不定积分的性质和积分公式,可以得到结果为2。
四、级数1. 求级数∑(n=1 to ∞)〖(1/2)^n〗的和。
解析:根据级数的求和公式,可以得到结果为1。
2. 求级数∑(n=1 to ∞)〖(n^2)/(2^n)〗的和。
解析:根据级数的求和公式和幂级数的性质,可以得到结果为6。
通过以上的高数考研真题及答案的介绍,我们可以看到,在高等数学考研中,函数与极限、导数与微分、定积分与不定积分、级数等内容都是考生们需要重点掌握的知识点。
高数考研真题及答案
高数考研真题及答案考研是很多学子们为了继续深造而迈出的大步,而高数作为考研数学科目中的重点,是许多考生们的难点和挑战。
为了帮助考生更好地备战高数考试,本文将提供一些高数考研真题及答案,供考生们参考和复习。
一、选择题1. 已知函数 f(x) = x³ - 3x² + 2x + 4,求其在 x = 2 处的导数。
A. -1B. 0C. 1D. 2答案:C解析:对函数 f(x) 进行求导,得到 f'(x) = 3x² - 6x + 2,将 x = 2 代入f'(x),得到 f'(2) = 3(2)² - 6(2) + 2 = 12 - 12 + 2 = 2,故选 C。
2. 设数列 {an} 的通项公式为 an = 1/(2^n),则该数列的收敛性为:A. 收敛B. 发散C. 无法判断答案:A解析:当 n 趋向于无穷大时,2^n 无穷大,所以 an = 1/(2^n) 趋向于0,故该数列收敛,选 A。
二、填空题1. 设 f(x) = 2x^2 - kx + 5,若 f(x) 恰有一个实根,则 k 的取值范围为______。
答案:[-5, 5]解析:对于 f(x) 恰有一个实根的情况,根据韦达定理可知Δ = k^2 -4ac = 0,即 k^2 - 4(2)(5) = 0,解得k = ±√40,故 k 的取值范围为 [-√40, √40],约化后得到 [-5, 5]。
2. 设二重积分∬D (x^2 + y^2) dxdy,其中 D 为x^2 + y^2 ≤ 4 的区域,求该二重积分的值为______。
答案:16π解析:将二重积分转换为极坐标形式,即∬D (x^2 + y^2) dxdy = ∫[0,2π] ∫[0, 2] (r^2)rdrdθ,计算积分得 16π。
三、解答题1. 求函数 f(x) = x^3 - 3x + 2 的驻点和拐点。
2017年全国硕士研究生入学统一考试数学(三)真题及答案(重庆文登)
绝密★启用前2017年全国硕士研究生入学统一考试数学(三)(科目代码:303)考生注意事项1. 答题前,考生须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2. 选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内,超出答题区域书写的答案无效;在草稿纸试题册上答题无效。
3. 填(书)写必须使用黑色字迹签字笔或钢笔书写,字迹工整,笔迹清晰;涂写部分必须使用2B铅笔填涂。
4. 考试结束,将答题卡和试题册按规定交回。
一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( )(A) 12ab =(B) 12ab =- (C) 0ab = (D) 2ab = (2) 二元函数(3)z xy x y =--的极值点是( )(A)(0,0) (B) (0,3) (C) (3,0) (D) (1,1) (3) 设函数()f x 可导,且()()0f x f x '>,则( )(A)(1)(1)f f >- (B) (1)(1)f f <- (C) (1)(1)f f >- (D) (1)(1)f f <-(4)若续数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A)1 (B) 2 (C) -1 (D) -2 (5) 设α为n 维单位列向量,E 为n 阶单位矩阵,则( )(A) E ααT-不可逆 (B) E ααT+不可逆 (C) 2E ααT+不可逆 (D) 2E ααT-不可逆(6)已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则( ) (A) A 与C 相似,B 与C 相似 (B) A 与C 相似,B 与C 不相似(C) A 与C 不相似,B 与C 相似 (D) A 与C 不相似,B 与C 不相似 (7)设A ,B ,C 为三个随机事件,且A 与C 相互独立,B 与C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A)A 与B 相互独立 (B )A 与B 互不相容 (C )AB 与C 相互独立 (D )AB 与C 互不相容(8)设1,2,...(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i x x n ==∑则下列结论正确的是( )(A)21()nii x μ=-∑服从2x 分布 (B) 212()n x x -服从2x 分布(C)21()nii x X =-∑服从2x 分布 (D) 2()n X μ-服从2x 分布二、填空题:9:14小题,每小题4分,共24分.(9)3(sinx dx ππ-=⎰________.(10)差分方程122tt t y y +-=通解为t y =(11) 设生产某产品的平均成本()1qC q e -=+,其中产量为q ,则边际成本为(12)设函数(,)f x y 具有一阶连续偏导数,且(,)(1)y ydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =(13)设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1α、2α、3α为线性无关的3维列向量组。
文登考研
极限的求法1. 直接代入法适用于分子、分母的极限不同时为零或不同时为例 1. 求.分析 由于,所以采用直接代入法.解 原式=2.利用极限的四则运算法则来求极限为叙述方便,我们把自变量的某个变化过程略去不写,用记号)(lim x f 表示)(x f 在某个极限过程中的极限,因此极限的四则运算法则可确切地叙述如下: 定理 在同一变化过程中,设)(lim ),(lim x g x f 都存在,则 (1)=±)]()(lim[x g x f )(lim )(lim x g x f ± (2)=)]()(lim[x g x f )(lim )(lim x g x f (3)当分母)(lim x g 0≠时,有)(lim )(lim )()(limx g x f x g x f =总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例2. 求11lim2+-→x x x 。
解11lim 2+-→x x x )1(lim )1(lim 22+-=→→x x x x 31= 3.无穷小量分出法 适用于分子、分母同时趋于,即型未定式例3.分析所给函数中,分子、分母当时的极限都不存在,所以不能直接应用法则.注意到当时,分子、分母同时趋于,首先将函数进行初等变形,即分子、分母同除的最高次幂,可将无穷小量分出来,然后再根据运算法则即可求出极限.为什么所给函数中,当时,分子、分母同时趋于呢?以当说明:因为,但是趋于的速度要比趋于的速度快,所以.不要认为仍是(因为有正负之分).解原式(分子、分母同除)(运算法则)(当时,都趋于.无穷大的倒数是无穷小.)4.消去零因子法适用于分子、分母的极限同时为0,即型未定式例4.分析所给两个函数中,分子、分母的极限均是0,不能直接使用法则四,故采用消去零因子法.解原式=(因式分解)=(约分消去零因子)=(应用法则)=5.利用无穷小量的性质例5.求极限分析因为不存在,不能直接使用运算法则, 故必须先将函数进行恒等变形.解原式=(恒等变形)因为当时, , 即是当时的无穷小,而≤1, 即是有界函数,由无穷小的性质:有界函数乘无穷小仍是无穷小,得=0.6.利用拆项法技巧例6:))12)(12(15.313.11(lim+-+⋅⋅⋅++∞→nnn分析:由于))12)(12(1+-nn=)12112(1(21+--nn原式=21)1211(21)]121121()5131()311[(21limlim=+-=+--+⋅⋅⋅+-+-∞→∞→nnn nn7.变量替换例7求极限.分析当时,分子、分母都趋于,不能直接应用法则,注意到,故可作变量替换.解原式 ==(令,引进新的变量,将原来的关于的极限转化为的极限.)=. (型,最高次幂在分母上)8.分段函数的极限例8设讨论在点处的极限是否存在.分析所给函数是分段函数,是分段点, 要知是否存在,必须从极限存在的充要条件入手.解因为所以不存在.注1因为从的左边趋于,则,故.注2因为从的右边趋于,则,故.宏志网校俊杰和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))】对数函数有如下性质loga(MN)=loga(M)+loga(N)loga(M/N)=loga(M)-loga(N)log(M^N)=Nloga(M)。
(word完整版)考研专项练习高等数学--习题集.docx
第一章 函数·极限·连续一. 填空题1. 已知 f ( x)sin x, f [ ( x)] 1 x 2 , 则 (x)__________, 定义域为 ___________.1 xax2.设 limate tdt , 则 a = ________.xx3. lim12n222=________.nnn 1 nn 2nn n1 | x | 1 4. 已知函数 f (x)| x | 1 0, 则 f[f(x)] _______.5.lim ( n3 nnn ) =_______.n6. 设当 x0 时, f (x)ex1ax为 x 的 3 阶无穷小 , 则 a _____, b ______ .1 bx7.lim cot x1 1=______.sin x xx 08. 已知 limn 1990A (0), 则 A = ______, k = _______.n k(n 1) kn二. 选择题1. 设 f(x)和 (x)在 (- , + )内有定义 , f(x)为连续函数 , 且 f(x) 0, (x)有间断点 , 则(a) [ f(x)]必有间断点(b) [(x)]2必有间断点(c) f [(x)] 必有间断点 (d)( x)必有间断点f ( x)2. 设函数 f ( x) x tan xe sin x , 则 f(x) 是(a) 偶函数(b) 无界函数 (c) 周期函数(d) 单调函数3. 函数 f ( x)| x | sin( x 2) 在下列哪个区间内有界x( x 1)( x 2)2(a) ( - 1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3)1时, 函数x 21 4. 当 x1e x 1 的极限x 15. 极限lim352n12 的值是122222n2( n1)n23(a) 0(b) 1(c) 2(d)不存在( x1)95 ( ax1)56. 设lim2508 ,则a的值为x( x1)(a) 1(b) 2(c) 58(d) 均不对7.设lim ( x 1)( x 2)( x3)( x 4)( x 5)x(3x2), 则,的数值为(a)= 1,1(b)= 5,1(c)1(d) 均不对=== 5, =33358. 设f ( x) 2x3x 2 ,则当x0 时(a) f(x) 是 x 的等价无穷小(b) f(x) 是 x 的同阶但非等价无穷小(c) f(x) 比 x 较低价无穷小(d) f(x) 比 x 较高价无穷小9.设lim (1 x)(12x)(13x)a 6 ,则a的值为x 0x(a)-1(b) 1(c) 2(d) 310. 设lim a tan x b(1 cos x)22,其中 a2c20 ,则必有x 0cln( 1 2x) d(1 e x)(a) b = 4d(b) b = - 4d(c) a = 4c(d) a =-4c三. 计算题1.求下列极限1(1)lim (x e x ) xx(2)lim (sin2cos1) x x x x1tan x1 lim x3(3)x 01sin x2.求下列极限(1)lim ln(1 3x1)(2) lim1 cot2 x x 0x 23. 求下列极限 (1) limn(n n 1)nln n1 e nx (2)lim nx n 1 eannn b(3) lim, 其中 a > 0, b > 0n22(1 cosx)x 0x 2 4.f (x) 1x1 x2 dt x 0x costf (x) 在x0 的 性与可 性 .5. 求下列函数的 断点并判 型1(1) f ( x)2 x 112 x 1x(2 x)x2 cos x(2) f (x)1sinx 021xx sin 1x 06. 函数 f ( x)xxe x在 x = 0 的 性 .7. f(x) 在 [a, b] 上 , 且 a < x 1 < x 2 < ⋯ < x n < b, c i (I = 1, 2, 3, ⋯ , n) 任意正数 , 在 (a, b) 内至少存在一个, 使f ( )c 1 f (x 1 ) c 2 f ( x 2 )c ncn .c 1 c 28. f(x) 在 [a, b]上 , 且 f(a) < a, f(b) > b, 在 (a, b)内至少存在一个 , 使 f( ) = .9. 设 f(x) 在 [0, 1] 上连续 , 且 0 f(x) 1, 试证在 [0, 1] 内至少存在一个, 使 f( ) = .10. 设 f(x), g(x) 在[a, b] 上连续 , 且 f(a) < g(a), f(b) > g(b),试证在(a, b)内至少存在一个, 使f( ) = g( ).11.证明方程x5-3x-2 = 0 在(1, 2) 内至少有一个实根 .12. 设 f(x) 在 x = 0 的某领域内二阶可导, 且lim sin 3x f ( x)0 ,求f (0), f ' (0), f ' '(0)及limf (x)3 x3x2x2.x 0x 0第二章导数与微分一. 填空题1 . 设lim f ( x0k x) f ( x0 )1f '( x0 ) ,则 k = ________.x0x32.设函数 y = y(x) 由方程e xy cos(xy)0确定 ,则 dy______.dx3.已知 f(- x) =-f(x), 且f ' (x0 )k ,则 f ' ( x0 )______.4.设 f(x) 可导 ,f ( x0m x) f (x0n x)_______.则 limxx05. f ( x)1x ,则 f ( n ) ( x) = _______.1x6.已知df11, 则f '1_______. dx x2x27.设 f 为可导函数 ,y sin{ f [sindy_______.f ( x)]} ,则dx8.设 y = f(x) 由方程e2 x y cos( xy )e1所确定 , 则曲线 y = f(x) 在点 (0, 1)处的法线方程为 _______.二. 选择题1.已知函数 f(x) 具有任意阶导数 , 且f ' (x)[ f (x)] 2,则当 n 为大于 2 的正整数时 , f(x) 的 n 阶导数是(a) n![ f ( x)]n1(b)n[ f ( x)] n 1(c)[ f (x)] 2n(d)n![ f ( x)] 2n2.设函数对任意x 均满足 f(1 + x) = af(x),且 f ' (0)b,其中 a, b 为非零常数 , 则(a) f(x) 在 x = 1处不可导(b) f(x) 在 x = 1处可导 ,且 f ' (1) a(c) f(x) 在 x = 1处可导 , 且f ' (1) b(d) f(x) 在 x = 1处可导 , 且f ' (1)ab3.设 f ( x)3x3x 2| x |,则使 f ( n)(0) 存在的最高阶导数n 为(a) 0(b) 1(c) 2(d) 34.设函数 y = f(x) 在点 x 0处可导 , 当自变量 x 由 x 0增加到 x0 +y dyx 时 , 记 y 为 f(x) 的增量 , dy 为 f(x) 的微分 , lim等于x 0xx2 sin 1x05. 设f ( x)x x0ax b在 x = 0 处可导 , 则(a) a = 1, b = 0(b) a = 0, b 为任意常数(c) a = 0, b = 0(d) a = 1, b 为任意常数三. 计算题1.y ln[cos( 103x 2 )],求 y'2. 已知 f(u) 可导 ,y f [ln( x a x2 )],求 y'3.已知y e t 2dt x2costdt sin y2,求 y' .004.设 y 为 x 的函数是由方程ln x 2y2arctan y确定的 , 求y' . x四. 已知当 x0 时, f( x) 有定义且二阶可导 ,问 a, b, c 为何值时F ( x)f ( x)x0二阶可导 . ax2bx c x0五. 已知f ( x)x 2,求 f(n ) ( 0) .1x2六. 设y xln x ,求f( n) (1) .第三章一元函数积分学 (不定积分 )一. 求下列不定积分 : 1.1 2 ln 1 xdx 1 x 1 x1 1 x 1 x 1 x 1 1 22.x 1 x 2arctandx arctand arctanx 2arctanc1 x1 x1 1 x3.cos x sin x1 1 sin x dx(1 cos x)21 cos x4.dx x( x 8 1)1 111 sin x(1 sin x cosx)(sin x cosx)5.dx 222dx1 sin x cosx1 sin x cosx二. 求下列不定积分 :dx1.( x 1)2 x 2 2 x 2dx 2.x 4 1 x 23.dx1) 1 x 2(2x 2x 2dx 4.(a > 0)a 2 x 25.(1 x 2 ) 3 dx6.x 21dxx 4x 17.dxx2x21三. 求下列不定积分:e3x e xdx 1.e2xe4 x1dx2.2x (1 4 x)四. 求下列不定积分:x51.( x2)100dxdx2.x 1 x4五. 求下列不定积分:1.x cos2 xdx2.sec3 xdx3.(ln x)3dxx 24.cos(ln x)dxx cos4x1x cos4x1x1x sin 2x1sin 2xdx5.2dxx2dx xd sin 2sin 3 x8sin3 3 x828282cos221x sin 2 x1sin 2 x d x1x sin2x1cotxc824228242六. 求下列不定积分 :x ln( x1x 2 )2.x arctan x dx1x23.arctan e x dxe2 x七.x ln(1x 2 ) 3x0设 f ( x)22x 3)e x x, 求 f (x)dx .( x0八.设 f ' (e x ) a sin x b cos x, (a, b为不同时为零的常数), 求 f(x).九. 求下列不定积分:1.3x23x (2x3)dx32.(3x 22x5) 2(3x1) dx3.ln( x 1 x2 )dx1x2xdx4.(1 x2x21) ln(1x 21)十. 求下列不定积分:x arctan x1.(1x2)dx2.arcsinxdx 1 xarcsinx1x2 3.2dxx1x 2arctan x4.2(1x 2dxx)十一 . 求下列不定积分: 1.x34x 2 dxx2a22.x3.e x (1e x ) dx1e2 x4.xxdx (a > 0) 2a x十二 . 求下列不定积分:dx1.sin x 1cos x2.2sin x2dxcos x3.sin x cos x dxsin x cos x十三 . 求下列不定积分:x1.dx1 x x2.e x 1dxe x 13.x 1arctan x 1 dxx第三章一元函数积分学 (定积分 )b0 ,则f(x) 0.一.若 f(x) 在[a, b]上连续 , 证明 : 对于任意选定的连续函数(x), 均有f (x) ( x)dxa二. 设为任意实数 , 证明 :I21dx=21.0 1(tan x)0 1dx (cot x)4三.已知 f(x) 在 [0, 1]上连续 , 对任意 x, y 都有 |f(x) - f(y)| < M|x-y|, 证明f ( x)dx1n f k M1n k n2n01四.设 In4 tan n xdx , n为大于1的正整数,证明:1I n1.02(n1)2(n1)五. 设 f(x) 在[0, 1] 连续 , 且单调减少 , f(x) > 0,证明:对于满足0 << < 1 的任何, , 有f ( x)dx f ( x)dx六. 设 f(x) 在[a, b] 上二阶可导 , 且 f ' ' ( x) < 0,证明 :b f (x)dx (b a) fa ba2七. 设 f(x) 在[0, 1] 上连续 , 且单调不增 , 证明 : 任给 (0, 1), 有1 f ( x)dxf ( x)dx八. 设 f(x) 在[a, b] 上连续 ,f ' ( x) 在 [a, b]内存在而且可积 , f(a) = f(b) = 0, 试证 :| f ( x) |1b2 | f ' (x) | dx , (a < x < b)a九. 设 f(x) 在[0, 1] 上具有二阶连续导数f ' ' ( x) , 且 f (0) f (1) 0, f ( x) 0 , 试证 :1f ' ' ( x)dx 4f ( x)十. 设 f(x) 在[0, 1] 上有一阶连续导数 , 且 f(1) -f(0) = 1,试证 :1 2dx 1[ f ' (x)] 022十一 . 设函数 f(x) 在 [0, 2] 上连续 , 且f (x)dx = 0,xf ( x)dx = a > 0. 证明 :[0, 2], 使 |f( )| a.0 0第三章一元函数积分学(广义积分 )一. 计算下列广义积分:x2edx(1)10 (e x1)31(2)0( x21)( x24)dx(3)dx3 (1 x2 ) 21(4)sin(ln x)dx11dx (5)2 x x21 (6)arctan x3dx(1 x2 ) 2第四章 微分中值定理一. 设函数 f(x) 在闭区间 [0, 1] 上可微 , 对于 [0, 1] 上每一个 x, 函数 f(x) 的值都在开区间(0, 1)内 , 且 f ' ( x) 1, 证明 : 在 (0, 1)内有且仅有一个 x, 使 f(x) = x.1f ( x) dxf (0) . 证明 : 在(0, 1)内存在一个, 使 f ' ( ) 0 .二. 设函数 f(x) 在[0, 1] 上连续 , (0, 1) 内可导 , 且 3 2 3三.设函数 f(x) 在[1, 2] 上有二阶导数 , 且 f(1) = f(2) = 0,又 F(x) =(x - 1)2f(x), 证明 : 在(1, 2)内至少存在一个 , 使 F ' ' ( ) 0 .四. 设 f(x)在 [0, x](x > 0) 上连续 , 在 (0, x)内可导 , 且 f(0) = 0, 试证 : 在(0, x) 内存在一个, 使f ( x) (1 ) ln(1 x) f ' ( ) .五. 设 f(x)在 [a, b]上可导 , 且 ab > 0, 试证 : 存在一个 (a, b), 使1b n a n [nf ( ) f '()] n 1f (b)b a f (a)六. 设函数 f(x), g(x), h(x)在 [a, b] 上连续 , 在(a, b)内可导 , 证明 :存在一个(a, b), 使f (a) g(a) h(a)f (b)g( b) h(b) 0f ' ( )g' ( )h' ( )七. 设 f(x)在 [x1, x2] 上二阶可导 , 且 0< x1 < x2 , 证明 : 在( x1 , x2)内至少存在一个, 使1e x1e x2 e x1e x2 f ( x1 )f ( ) f ' ( )f ( x2 )八. 若 x1x2 > 0, 证明 : 存在一个(x1, x2)或( x2, x1 ), 使x1e x2x2 e x1(1)e (x1x2 )九 .设f(x), g( x) 在 [a, b] 上连续 ,在(a,b) 内可导 ,且f( a) = f(b) = 0, g(x)0,试证:至少存在一个(a, b),使f ' ( ) g( ) g' ( ) f ( )十. 设 f(x) 在 [a, b] 上连续(0 a b) ,在(a, b)内可导,证明在(a, b)存在,2f ' ()使 f ' ( )ab.第五章一元微积分的应用一. 选择题1. 设 f(x) 在 (-, + )内可导 , 且对任意x1, x2 , x1 > x2时, 都有 f(x 1) > f(x 2), 则(a) 对任意 x, f '( x) 0(b) 对任意 x, f '( x)0(c) 函数 f( - x)单调增加(d) 函数- f(- x)单调增加1x 2x 1的渐近线有2. 曲线y e x2arctan( x 1)( x2)(a) 1 条(b) 2 条(c) 3 条(d) 4 条3. 设 f(x) 在 [- , + ] 上连续 , 当 a 为何值时 , F (a)[ f (x) a cosnx ]2 dx 的值为极小值.(a) f ( x) cos nxdx(b)(c)2(d)f ( x) cosnxdx4. 函数 y = f(x)具有下列特征 :1f ( x) cosnxdx 1f ( x) cosnxdx 2f(0) = 1; f ' (0)0 ,当x0 时, f '( x)0x00 ; f '' ( x)x, 则其图形00(a)(b)(c)(d)11115. 设三次函数y f ( x) ax3bx 2cx d ,若两个极值点及其对应的两个极值均为相反数, 则这个函数的图形是(a) 关于 y 轴对称(b) 关于原点对称(c) 关于直线 y = x 轴对称(d) 以上均错6.曲线 y x( x 1)(2 x) 与x轴所围图形面积可表示为21)( 2x)dx11)( 2x) dx21)( 2x)dx(a)x( x(b)x( x x( x00111)( 2x)dx21)(2x)dx21)(2x)dx(c)x(x x(x(d)x( x010二. 填空题x11. 函数F ( x)2dt (x > 0)的单调减少区间______.1t2. 曲线y x3x 与其在x13. 二椭圆x2y 21,x2y 21( a > b > 0)之间的图形的面积______. a2b2b2 a 24. x2+ y2= a2绕 x =-b(b > a > 0) 旋转所成旋转体体积_______.(5) 求心脏线= 4(1+cos ) 和直线= 0, =围成图形绕极轴旋转所成旋转体体积_____.2三. 证明题xtf (t )dt0 时函数( x)01. 设 f(x) 为连续正值函数 , 证明当 x单调增加 .xf (t )dt2. 设 f(x)在[ a, b]上连续 , 在(a, b)内f ' ' ( x)f ( x) f (a)0 ,证明 ( x)在 (a, b)内单增 .x a3. 设 f(x)在[ a, b]上连续 , 在(a, b)内可导且f ' ( x)0 ,求证:F ( x)1xf (t )dt 在(a, b)内也 F ' ( x) 0 . x a a4. 设 f(x)在[ a, b] 上连续 , 且 f(x) > 0,又 F ( x)x x 1f ( t)dt dt .证明:a b f ( t)i. F ' ( x) 2, ii. F(x) = 0在(a, b)内有唯一实根.5. 明方程tan x 1 x 在(0, 1)内有唯一根.6.a1, a2, ⋯ , a n n 个数 , 并足a1a2(1) n 1a n0 .明:方程32n1a1 cos x a2 cos3x a n cos(2n1) x0在 (0,2) 内至少有一根 .四. 算1. 在直 x-y + 1=0 与抛物y x24x 5 的交点上引抛物的法, 求由两法及接两交点的弦所成的三角形的面.22f (x)] 2 dx 最小的直方程.2. 求通点 (1, 1)的直 y = f(x)中 , 使得[ x3. 求函数f ( x)x2(2 t)e t dt 的最大与最小. 04. 已知 (x- b)2 + y2 = a2, 其中 b > a > 0, 求此 y 旋所构成的旋体体和表面.第六章多元函数微分学一. 考虑二元函数的下面 4 条性质( I ) f ( x, y) 在点 (x0 , y0 ) 处连续;( II ) f ( x, y) 在点 ( x0 , y0 ) 处的两个偏导数连续; ( I II) f ( x, y) 在点 (x0 , y0 ) 处可微;( IV ) f (x, y) 在点 (x0 , y0 ) 处的两个偏导数存在;若用 P Q 表示可由性质P推出性质Q,则有( A ) ( C )(II )(III )( I )(III )(IV )( I )( B )( D )( III )(II )( I )(III )(I )( IV )xy2,( x, y)(0,0)二. 二元函数f ( x, y)x2y0) 处在点 (0, 0,(x, y)(0,0)( A ) 连续 , 偏导数存在 ;( B ) 连续 , 偏导数不存在 ; ( C ) 不连续 , 偏导数存在 ;( D ) 不连续 , 偏导数不存在 .三. 设 f, g 为连续可微函数 , u f ( x, xy), v g( x xy) ,求uv . x x四. 设x2z2y z, 其中为可微函数 , 求z .y y五. 设u f ( x, y, z),又 y(x, t ), t( x, z),求u. x六. 求下列方程所确定函数的全微分:1. f ( x y, y z, z x)0,求 dz ;2.z f ( xz, z y),求 dz .七. 设z f ( e x sin y, x2y 2 ) ,其中f具有二阶连续偏导数, 求 2z.x y八.已知 z f (2 x, x ),求 zxx ' ', z yy ' ' . y九. 已知z f (xln,)' ' ,zxy' ' ,zyy' '.y x y ,求 z xx十. 设y y( x), zx y z z20确定 , 求dy dz z(x),由y2z z30, .x dx dx十一 . 设z xf (y)(y),求 x2 2 z2xy 2 z y 2 2 zx x x 2x y y22十二 . 设z f [ x2y, ( xy)] ,其中f(u, v)具有二阶连续偏导数,(u) 二阶可导,求z. x y十三 . 设F ( x, y(x), z(x))P( x, y(x)) Q ( x, y( x)) z( x) ,其中出现的函数都是连续可微的F d F , 试计算.第七章二重积分一. 比较积分值的大小:1. 设I1D 结论正确的是x y x y 3xy{( x, y) | (x 1)2( y1)22},则下列dxdy, I2dxdy, I 3dxdy 其中D4D4D4( A )I 1I 2I 3( B )I 2I 3I 1( C )I 1I 3I 2( D )I 3I 2I 12.设 I ie ( x2y2) dxdy, i1, 2,3, 其中 :D1{( x, y) | x 2y2r 2 } , D2{( x, y) | x2y 22r 2 } ,D iD 3{( x, y) | | x |r , | y |r } 则下列结论正确的是( A )I 1I 2I 3( B )I 2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 13.设I1cos x 2y2,I 2cos(x 2y2 ), I 3cos(x 2y 2 ) 2其中 D{( x, y) | x2y 21} ,则下列D D D结论正确的是( A ) I1I 2I 3( B ) I2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 1二. 将二重积分I f ( x, y)d 化为累次积分(两种形式),其中D给定如下:D1. D: 由y28x 与 x28 y 所围之区域.2. D: 由 x = 3, x = 5, x -2y + 1 = 0 及 x -2y + 7 = 0 所围之区域 .3. D: 由x2y 2 1 , y x 及 x > 0 所围之区域 .4. D: 由 |x| + |y| 1 所围之区域 .三.改变下列积分次序 :a a2x21.dx a2x 2 f ( x, y)dy2a1x 233xf (x, y) dy2.dx0f (x, y)dy dx201002x 2f ( x, y)dy12x23.dxx dxxf ( x, y) dy10四. 将二重积分I f ( x, y)d 化为极坐标形式的累次积分, 其中 :D1.D: a2x2 +y 2b2 , y0, (b > a > 0)2.D: x 2+y2y, x03.D: 0x +y1, 0 x1五. 求解下列二重积分:2x 1.dx1x sinx42dy dx2y2xxsin dy1y 2 x2. dx e 2 dy003.y dxdy , D:由y = x4-x3的上凸弧段部分与x 轴所形成的曲边梯形Dx 64.xydxdy , D: y x及1 x2+ y22 x2y2D六. 计算下列二重积分 :x222y 21.yx 1 .1dxdy , D:22 Da b a b2.ln( x2y 2 )dxdy , D:2x 2y 21 , 并求上述二重积分当0 时的极限 .Dax f ' ( y)3.dxdy(a x)( x y)1 x 2y 24.2 2 dxdy , D: x 2 + y 2 1, x 0, y 0. D1 x y2七. 求证 :f ( xy)dxdy ln 2 f ( u) du , 其中 D 是由 xy = 1, xy = 2, y = x 及 y = 4x(x > 0, y > 0) 所围成之区域 .1Df ( x y)dxdy2 2f (u)du八 . 求证 :2 u x 2y 2121x2y 21t 2e2 dxdy a九 . 设 f(t)是半径为 t 的圆周长 , 试证 : f (t) e 2 dt2x 2 y2 a220m y n dxdy 0十 . 设 m, n 均为正整数 , 其中至少有一个是奇数, 证明xx 2y2 a2十一.设平面区域 D {( x, y) | x 3y 1, 1 x 1}, f (x) 是定义在 [ a, a] (a1) 上的任意连续函数试求: I 2 y[( x 1) f ( x) (x1) f ( x)] dxdyDLy x 3第八章无穷级数一. 填空题x 1n a n1(1) 设有级数a n, 若lim2a n 1, 则该级数的收敛半径为 ______.n 1n3(2) 幂级数n n3)n x2n 1的收敛半径为 ______.n 1 2((3) 幂级数x n的收敛区间为 ______. n 1n 1(4) 幂级数x n 1的收敛区间为 ______. n 1 n2n(5)幂级数(n1)x n的和函数为______.n1二. 单项选择题(1)设 a n0(n1,2,),且a n收敛,常数(0,) ,则级数( 1)n (n tan ) a2 nn 12n 1n(A) 绝对收敛(B) 条件收敛(C)发散(D) 收敛性与有关(2)设 u n( 1)n ln(11) ,则n(A)u n与u n2都收敛. (B)u n与u n2都发散. (C)u n收敛,而u n2发散. (D)u n发散,u n2收敛.n 1n 1n 1n 1n 1n 1n 1n 1(3)下列各选项正确的是(A) 若u n2与v n2都收敛 , 则(u n v n ) 2收敛n 1n 1n 1(B) 若| u n v n | 收敛,则u n2与v n2都收敛n 1n 1n 1u n 1(C) 若正项级数发散 ,则u nn 1n(D) 若级数u n收敛,且 u n v n ( n 1,2, ) ,则级数v n收敛.sin n1(4) 设为常数 , 则级数nn 1 n2(A)绝对收敛 . (B) 发散 . (C) 条件收敛 . (D) 敛散性与取值有关 .三. 判断下列级数的敛散性:11(1)sinn 1 ln( n 2)n(2)1( a 0) n 1 ( a n 1)( a n)( a n 1)3n n!(3)n 1 n nn2(4)n 1 ( n 1 / n) n( n! )2(5)n1 ( 2n)!(6)(1ln n)nn 1n四. 判断下列级数的敛散性n(1)( 1)n 2n1n 13n1(2)( 1)n n1n 1(n 1) n 1 1(3)sin( n)n 1n(4)( 1)n 1 tan1n 1n n五. 求下列级数的收敛域:( x2x1)n (1)n 1n( n1) (2)( 1)n x2 n 1n 12n 1 (3)2n 1 x2 n 1n 12n( x1)2 n(4)n 1n 9n六. 求下列级数的和:(1)( 1)n 1 x2 n 12n 1n 1(2)n(n 1)xn 1( x1)n (3)n 1n2nn七. 把下列级数展成x 的幂级数 :(1) f ( x)1ln1x1arctan x 21x2x ln(1x)(2) f ( x)x dx第九章常微分方程及差分方程简介一. 填空题1. 微分方程y' y tan x cos x 的通解为_________.2.微分方程 ydx( x24x)dy0的通解为 ________.3.微分方程 y' 'y 2 x 的通解为________.4.微分方程 y' ' 2 y' 2 y e x的通解为________.5.已知曲线 y f ( x) 过点(0,1),且其上任一点 (x, y) 处的切线斜率为x ln(1x2 ) ,则 f ( x) =_______.2二. 单项选择题2 x 1. 若函数 f (x) 满足关系式 f ( x)tf ( )dt ln 2 ,则 f (x) 等于(A)e x ln 2(B)e2 x ln 2(C)e x ln 2(D)e2 x ln 22.微分方程 y' 'y e x1的一个特解应具有形式(式中 a、 b 为常数 )(A)ae x b(B)axe x b (C) ae x bx(D) axe x bx三. 解下列微分方程:dy3( x 1) 2 (1 y 2 )1. dxy| x 012. (1y2 )dx x(1 x) ydy0dy13.1dx x y四. 解下列微分方程:yy1. y' e xx2.xdy ydx x2y 2 dxy y3. ( x y cos )dx x cos dy0x x五. 解下列微分方程:1.y' y cos x e sin x1x2.x2 y' y x2 e x3.xy' ln x y ax(ln x1)4.y' sin x cos x y sin3 x0六. 解下列微分方程:1.y' y tan x sec x, y(0)02.y' y cos x sin x cos x, y(0)13.y' x sin 2 y xe x2 cos2 y, y( 0)4七. 解下列方程 :1.y' ' 2 2 y' 2 y02.y' ' 2 y' 3y03.y' ' 2 y' 3y0八. 解下列方程 :x 23 )e2x 1. y' ' 4 y' 4y (1 x2.y' ' 3 y' 2y cos 2x3.y' ' 2 y' y5xe x4. 2 y' ' 2 y' 3 y x22x 15.y' ' y' x21第十章函数方程与不等式证明11aa n 1a n一. 证明不等式ln a( n 1) 21 1n 1 a n. (a > 1, n 1)n 2二. 若 a0, b 0, 0 < p < 1, 证明( ab) p a p b p三. 设函数 f(x) 在[0, 1] 上有连续导数 , 满足 0f ' ( x) 1且 f (0)0. 求证1 213( x)dxf ( x)dxf四. 求证| a |p | b |p 21 p (| a | | b |) p , (0 < p < 1).五. 求证 : 若 x + y + z = 6,则 x2y 2 z 2 12 , (x 0, y 0, z0).六.证明 : 1 若 f(x) 在[a, b] 上是增加的,且在其上2 若 f(x) 在[a, b] 上是增加的,且在其上f ' ' ( x) 0,则 (b a) f ( a) f ( x) dx (b a)f (a)f (b)ba2f ' ' ( x) 0 ,则 ( b a) f (b) f ( x)dx ( b a) f (a) f (b)ba2x1x2x n x12x22x n2七. 证明 : 1n nx1x2x n nx1 x2x n2n八. 设f ' ' ( x)c[ a, b] , 且f (a)f (b) 0, 求证f (x) dx(b a) 3ba12a x b九. 若 f ' ( x) 在 [0, 2 ] 上连续 , 且 f ' (x)2 2[ f (2 ) f (0)]0, n(正整数 )有f ( x) sin nxdxn十. 设在 [a, b] 上 f ' ' ( x) 0 , a < x 1 < x 2 < b, 0 << 1, 试证 :f ( x 1 ) (1 ) f ( x 2 ) f [ x 1 (1) x 2 ]第十一章微积分在经济中的应用一.生产某产品的固定成本为10, 而当产量为 x 时的边际成本函数为 C ' 40 20 x3x 2, 边际收益为R'32 10x ,试求: ( 1 )总利润函数 ; ( 2 ) 使总利润最大的产量 .二. 设某商品的需求量Q 是单价 P(单位 : 元 )的函数 : Q = 12000 -80P; 商品的总成本 C 是需求量 Q 的函数 : C = 25000 + 50Q; 每单位商品需要纳税 2 元, 试求使销售利润最大的商品单价和最大利润额.三. 一商家销售某种商品的价格满足关系P = 7- 0.2x(万元 / 吨), x 为销售量 ( 单位 :吨 ), 商品的成本函数C3x 1(万元). (1)若每销售一吨商品政府要征税 t ( 万元 ), 求该商家获最大利润时的销售量; (2) t 为何值时 , 政府税收总额最大 .四 . 设某企业每月需要使用某种零件2400 件 , 每件成本为150 元, 每年库存费为成本的 6 , 每次订货费为100 元, 试求每批订货量为多少时, 方使每月的库存费与订货费之和最少, 并求出这个最少费用(假设零件是均匀使用).。
考研数学-陈文登复习指南习题详解
又 ,且单调递减,故当 时, 47 所以 即 2. 设 在 上二阶可导,且 证明: 证明:由泰勒公式有 又 ,则 两边积分可得 7.设 在 上连续,且单调不增,证明:任给 ,有 证明: , 所以 48 又 , , 单调不增,当 时, 所以 8.设 存在 一点 ,使 在 上具有连续的二阶导数,且 ,证明:在 内 证明:由泰勒公式有 , 其中 具有二阶导数,设 最大值为 ,最小值为 ,即 则 49 即 ,
[解答] 原式 ,由 可得 ,所以应该选 . ⑻设 则当 时, 是 的等价无穷小 与是 同阶但非等价无穷小 是比 较低阶的无穷小 是比 较高阶无穷小 [解答] 原式 ,所以应该选 . ⑼设 则 的值是 [解答] 若原式极限存在,当 时,由 可得 ,所以应该选 . ⑽设 其中 则必有 [解答] 原式 6 可得 ,所以应该选 . 3.计算题 ⑴ 求下列极限 ① [解答] 原式 ② [解答] 原式 ③ [解答] 原式 ④ 7
在 上可导,则 当 时,必有 当 时,必有 当 时,必有 当 时,必有 [解答] 若设 时, 均错误,若设 时, 错误,故选 . 10.设函数 在 处可导,则函数 在 处不可导的充分条件是 19 且 且 且 且 [解答] 令 ,由导数定义可得 若 ,由 的连续性及保号性可得 ,此时 若 ,同理可得 . 故若 不存在,则 若 ,且 ,设 ,由于 所以当 时, ,
为第一类跳跃间断点. 不存在,所以 为第二类间断点. 当 时, 所以 为第一类可去间断点. 当 时, 所以 为第二类无穷间断点. 13 6.试确定常数 的值,使极限 存在,并求该极限值. [解答] 原式 存在 由 可得 ,即 则原式 同理由 可得 ,即 所以原式 7.设 点,求 的值. ,且 是 的可去间断 [解答] 存在,由 可得 . 原式 存在,同理由 可得 . 8.设 求 的值. [解答] 原式 ( ) 14 由 可得
高等数学考研复习试题及答案
高等数学考研复习题与答案一、填空题1.设2)(xx a a x f -+=,则函数的图形关于对称。
2.若⎩⎨⎧<≤+<<-=20102sin 2x x x x y ,则=)2(πy . 3. 极限limsinsin x x x x→=021。
4.已知22lim 222=--++→x x bax x x ,则=a _____,=b _____。
5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂=。
7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。
8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z2 。
9.函数y x xy xy y x f 22),(--=的可能极值点为和。
10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f .11.=⎰xdx x 2sin 2.12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π. 13.若21d e 0=⎰∞+-x kx ,则_________=k 。
14.设D:122≤+y x ,则由估值不等式得⎰⎰≤++≤Ddxdy y x )14(22 15.设D 由22,2,1,2y x y x y y ====围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为_______________和_______________. 16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为____. 17.设级数∑∞=+121n pn收敛,则常数p 的最大取值围是.18.=+-+-⎰10 642)!3!2!11(dx x x x x . 19. 方程01122=-+-ydy xdx 的通解为20.微分方程025204=+'-''y y 的通解为.21.当n=_________时,方程n y x q y x p y )()('=+ 为一阶线性微分方程。
高等数学考研试题及答案
高等数学考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,下列说法正确的是:A. 函数f(x)的图像是开口向上的抛物线B. 函数f(x)的图像是开口向下的抛物线C. 函数f(x)的图像与x轴有两个交点D. 函数f(x)的图像与x轴无交点答案:D2. 已知数列{an}满足a1=1,an+1=2an+1,n∈N*,则a3=:A. 3B. 5C. 7D. 9答案:C3. 设函数f(x)=x^3-3x+1,求f'(x):A. 3x^2-3B. x^2-3xC. 3x^2-3x^2D. x^3-3答案:A4. 已知函数f(x)=x^2+2x-3,求f(-1)的值:A. 0B. 2C. -2D. 4答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-3x^2+2,求f'(x)=______。
答案:3x^2-6x2. 设数列{an}满足a1=2,an+1=an+n,n∈N*,则a5=______。
答案:103. 设函数f(x)=e^x+lnx,求f'(x)=______。
答案:e^x+1/x4. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)=______。
答案:3x^2-12x+11三、解答题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在x=1处的导数。
答案:将x=1代入f'(x)=3x^2-12x+11,得到f'(1)=3*1^2-12*1+11=2。
2. 设函数f(x)=x^3-3x^2+2,求f(x)在区间[0,2]上的最大值和最小值。
答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
计算f(0)=2,f(2)=2,f(1)=0。
因此,f(x)在区间[0,2]上的最大值为2,最小值为0。
四、证明题(每题10分,共20分)1. 证明:若x>0,则e^x>1+x。
文登专升本数学基础班答案
文登专升本数学基础班答案1、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)2、二次函数y=3x2-4x+5的一次项系数是()。
[单选题] *34(正确答案)513、下列计算正确是()[单选题] *A. 3x﹣2x=1B. 3x+2x=5x2C. 3x?2x=6xD. 3x﹣2x=x(正确答案)4、下列说法中,正确的是[单选题] *A.一个有理数不是正数就是负数(正确答案)B.正分数和负分数统称分数C.正整数和负整数统称整数D.零既可以是正整数也可以是负整数5、12.如图,数轴上的两个点分别表示数a和﹣2,则a可以是()[单选题] * A.﹣3(正确答案)B.﹣1C.1D.26、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)7、1.计算-20+19等于()[单选题] *A.39B.-1(正确答案)C.1D.398、24、在▲ABC中中, ∠A=∠C=55°, 形内一点使∠PAC=∠PCA, 则∠ABP为()[单选题] *A. 30°B. 35°(正确答案)C. 40°D. 45°9、12、下列说法: (1)等腰三角形的底角一定是锐角; (2)等腰三角形的内角平分线与此角所对边上的高重合; (3)顶角相等的两个等腰三角形的面积相等; (4) 等腰三角形的一边不可能是另一边的2 倍. 其中正确的个数有( ). [单选题] *A. 1 个(正确答案)B. 2 个C. 3 个D. 4 个10、23.若A、B是火车行驶的两个站点,两站之间有5个车站,在这段线路上往返行车,需印制()种车票.[单选题] *A.49B.42(正确答案)C.21D.2011、下列说法正确的是[单选题] *A.两个数的和必定大于每一个加数B.两个数的和必定不大于每一个加数C.两个有理数和的绝对值等于这两个有理数绝对值的和D.如果两个数的和是负数,那么这两个数中至少有一个是负数(正确答案)12、4、已知直角三角形的直角边边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()[单选题] *A、6B、10(正确答案)C、8D、213、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)14、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数15、28.下列计算结果正确的是()[单选题] *A.(a3)4=a12(正确答案)B.a3?a3=a9C.(﹣2a)2=﹣4a2D.(ab)2=ab216、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)17、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}18、下列语句中,描述集合的是()[单选题] *A、比1大很多的实数全体B、比2大很多的实数全体C、不超过5的整数全体(正确答案)D、数轴上位于原点附近的点的全体19、下列各式计算正确的是()[单选题] *A. 2a2+3a2=5a?B. (-2ab)3=-6ab3C. (3a+b)(3a-b)=9a2-b2(正确答案)D. a3·(-2a)=-2a320、-120°用弧度制表示为()[单选题] *-2π/3(正确答案)2π/3-π/3-2π/521、11.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()[单选题] *A.27℃(正确答案)B.19℃C.23℃D.不能确定22、29.若(2,a)和(3,b)是直线y=x+k上的两点,那么这两点间的距离为()[单选题] *A.8B.10C.√2(正确答案)D.223、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限24、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数·极限·连续一. 填空题 1. 已知,__________)(,1)]([,sin )(2=-==x x x f x x f ϕϕ则 定义域为___________.解.21)(sin )]([x x x f -==ϕϕ, )1arcsin()(2x x -=ϕ1112≤-≤-x, 2||,202≤≤≤x x2.设⎰∞-∞→=⎪⎭⎫ ⎝⎛+a taxx dt te x x 1lim , 则a = ________. 解. 可得⎰∞-=at a dt te e =a a tt e ae ae te -=∞--)(, 所以 a = 2.3. ⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =________. 解. nn n nn n n n n n +++++++++22221 <n n n nn n n n +++++++++2222211 <11211222+++++++++n n n n n n n 所以 n n n n +++++221 <n n n n n n n n +++++++++2222211 <1212+++++n n n 212)1(2122→+++=+++++n n n n n n n n n , (n →∞) 2112)1(12122→+++=+++++n n n n n n n , (n →∞) 所以 ⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =214. 已知函数⎩⎨⎧=01)(x f 1||1||>≤x x , 则f[f(x)] _______.解. f[f(x)] = 1. 5. )3(lim n n n n n --+∞→=_______.解. nn n n n n n n n n n n n n n n n n -++-++--+=--+∞→∞→3)3)(3(lim)3(lim=233lim=-+++-+∞→nn n n nn n n n6. 设当x bxax e x f x x为时++-=→11)(,0的3阶无穷小, 则.___________,==b a解. 3030301lim )1(1lim 11lim x ax bxe e bx x ax bxe e x bx ax e k x x x x x x x x --+=+--+=++-=→→→203lim xa bxe be e x x x x -++=→ ( 1 ) 2062lim x bxe be e xx x x ++=→ ( 2 )由( 1 ): 01)(lim 0=-+=-++→a b a bxe be e xx x x由( 2 ): 021)2(lim 0=+=++→b bxe be ex x xx21,21=-=a b7. ⎪⎭⎫ ⎝⎛-→x x x x 1sin 1cot lim=______. 解. 616sin lim 3cos 1lim sin lim sin sin sin cos lim 020300==-=-=-⋅→→→→x x x x x x x x x x x x x x x x x8. 已知A n n n kkn =--∞→)1(lim 1990(≠ 0 ≠ ∞), 则A = ______, k = _______. 解. A kn n n n n k n k kn =+=---∞→∞→119901990lim )1(lim 所以 k -1=1990, k = 1991; 1991111===k A A k ,二. 选择题1. 设f (x )和ϕ(x )在(-∞, +∞)内有定义, f (x )为连续函数, 且f (x ) ≠ 0, ϕ(x )有间断点, 则 (a) ϕ[f (x )]必有间断点 (b) [ ϕ(x )]2必有间断点 (c) f [ϕ(x )]必有间断点 (d))()(x f x ϕ必有间断点 解. (a) 反例 ⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则ϕ[f (x )]=1 (b) 反例 ⎩⎨⎧-=11)(x ϕ 1||1||>≤x x , [ ϕ(x )]2 = 1(c) 反例 ⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则f [ϕ(x )]=1 (d) 反设 g(x ) = )()(x f x ϕ在(-∞, +∞)内连续, 则ϕ(x ) = g (x )f (x ) 在(-∞, +∞)内连续, 矛盾. 所以(d)是答案.2. 设函数xe x x xf sin tan )(⋅⋅=, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数 解. (b)是答案. 3. 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界(a) (-1, 0) (b) (0, 1) (c ) (1, 2) (d) (2, 3) 解. 42sin )0(,42sin )0(,)(lim ,)(lim1-=-=+∞=∞=→→f f x f x f x x 所以在(-1, 0)中有界, (a) 为答案.4. 当11211,1---→x e x x x 函数时的极限 (a) 等于2 (b) 等于0 (c ) 为∞ (d) 不存在, 但不为∞解. ⎩⎨⎧-→+→∞+=+=---→-→01001)1(lim 11lim 1111121x x e x e x x x x x x . (d)为答案. 5. 极限⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n 的值是 (a) 0 (b) 1 (c) 2 (d) 不存在 解. ⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n =1)1(11lim )1(1131212111lim 2222222=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+-++-+-∞→∞→n n n n n , 所以(b)为答案. 6. 设8)1()1()1(lim 502595=+++∞→x ax x x , 则a 的值为 (a) 1 (b) 2 (c)58 (d) 均不对解. 8 = 502595)1()1()1(lim +++∞→x ax x x =100502559595/)1(/)1(/)1(limx x x ax x x x +++∞→=5502595)/11()/1()/11(lim a x x a x x =+++∞→, 58=a , 所以(c)为答案. 7. 设βα=------∞→)23()5)(4)(3)(2)(1(lim x x x x x x x , 则α, β的数值为 (a) α = 1, β = 31 (b) α = 5, β = 31 (c) α = 5, β = 531(d) 均不对解. (c)为答案. 8. 设232)(-+=x x x f , 则当x →0时(a) f(x)是x 的等价无穷小 (b) f(x)是x 的同阶但非等价无穷小(c) f(x)比x 较低价无穷小 (d) f(x)比x 较高价无穷小解. x x x x 232lim 0-+→=3ln 2ln 13ln 32ln 2lim0+=+→x x x , 所以(b)为答案. 9. 设6)31)(21)(1(lim 0=++++→xax x x x , 则a 的值为(a) -1 (b) 1 (c) 2 (d) 3 解. 0)31)(21)(1(lim 0=++++→a x x x x , 1 + a = 0, a = -1, 所以(a)为答案.10. 设02)1()21ln()cos 1(tan lim2202≠+=-+--+-→c a e d x c x b x a x x ,其中, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c解. 2 =)1()21ln()cos 1(tan lim 20x x e d x c x b x a -→-+--+=c axde xc x b x ax x 22212sin cos lim 220-=+--+-→, 所以a =-4c, 所以(d)为答案.三. 计算题 1. 求下列极限 (1)x xx e x 1)(lim ++∞→解.e e e eee x xxx x x x e x e x e x xe x x xx x =====++++++∞→+∞→+∞→+∞→11lim)ln(lim)ln(1lim )(lim(2) x x xx )1cos 2(sinlim +∞→ 解. 令xy 1=y y x x y y xx 10)cos 2(sin lim )1cos 2(sin lim +=+→∞→=2cos 2sin sin 2cos 2lim )cos 2ln(sin lim 00e e e y y yy yy y y y ==+-+→→ (3) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→解. =⎪⎭⎫ ⎝⎛++→310sin 1tan 1lim x x x x 310sin 1sin tan 1lim x x x x x ⎪⎭⎫ ⎝⎛+-+→3)sin 1(sin tan sin tan sin 10sin 1sin tan 1lim x x xx xx xx x x x +--+→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+==30sin tan lim x xx x e -→=3)cos 1(sin limxx x x e-→=212sin 2sin lim32eexx x x =⋅→.2. 求下列极限(1) 323112arcsin )11ln(lim--+→x x x解. 当x →1时,331~)11ln(--+x x ,323212~12arcsin --x x . 按照等价无穷小代换33132313231221121lim121lim12arcsin )11ln(lim=+=--=--+→→→x x x x x x x x(2) ⎪⎭⎫ ⎝⎛-→x x x 220cot 1lim解. 方法1:⎪⎭⎫⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫ ⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎭⎫⎝⎛++-→32204sin cos )1(2cos 2lim x x x x x x x =3203204sin cos 2lim 42sin cos 2lim xxx x x x x x x x →→++- =21122cos 2sin cos 4cos 2lim220+++-→x x x x x x x =2131242sin 4sin cos 4lim 2131122cos 2cos 2lim0220++-=+++-→→x x x x x x x x x =322131612131242sin 2lim 0=++-=++-→x x x方法2:⎪⎭⎫ ⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫ ⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-→420)12)(cos 1(211lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-++-→444220)(0!4)2(!2)2(11)(1(211lim x x x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-+--→4442420))(024162222(211lim x x x x x x x =3232lim 440=→x xx 3. 求下列极限(1) )1(ln lim-∞→nn n nn解. n nn n n nn n n n ln 1lim )1(ln lim -=-∞→∞→ x n n =-1令 1)1ln(lim0=+→x x x (2) nxnxn e e --∞→+-11lim解. ⎪⎩⎪⎨⎧-=+---∞→10111lim nxnxn e e 000<=>x x x(3) nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim , 其中a > 0, b > 0解. nnnn b a ⎪⎪⎭⎫⎝⎛+∞→2lim a b c n x/,/1== x c xxx x x ae ca 2ln )1ln(lim10021lim -+→+→+=⎪⎪⎭⎫⎝⎛+=ab abac a ae aexx x x x c c c x c ====+-++→+→1ln lim2ln )1ln(lim00 4. 设⎪⎪⎩⎪⎪⎨⎧>=<-=⎰0cos 1010)cos 1(2)(022x dt t x x x x x x f x试讨论)(x f 在0=x 处的连续性与可导性.解. 20200200cos lim 1cos 1lim )0()(lim )0('xx dt t x dt t x x f x f f x x x x x -=-=-=⎰⎰+++→→→+ 0221lim 21cos lim 2020=-=-=++→→xx x x x x320200)cos 1(2lim 1)cos 1(2lim )0()(lim )0('x x x x x x x f x f f x x x --=--=-=++-→→→-06)1(cos 2lim 32sin 2lim 020=-=-=++→→x x xx x x x 所以 0)0('=f , )(x f 在0=x 处连续可导.5. 求下列函数的间断点并判别类型 (1)1212)(11+-=xxx f解.11212lim )0(110=+-=+→+xxx f , 11212lim )0(110-=+-=-→-xxx f所以x = 0为第一类间断点.(2)⎪⎪⎩⎪⎪⎨⎧-+=11sin cos 2)2()(2x x x x x f π 00>≤x x解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点;11sinlim )(lim211-=→→x x f x x 不存在. 所以x = 1为第二类间断点; )2(π-f 不存在, 而2cos 2)2(lim 2πππ=+-→x x x x ,所以x = 0为第一类可去间断点;∞=+--→xx x k x cos 2)2(lim2πππ, (k = 1, 2, …) 所以x =2ππ--k 为第二类无穷间断点.6. 讨论函数⎪⎩⎪⎨⎧+=βαx e x x x f 1sin )(00≤>x x 在x = 0处的连续性. 解. 当0≤α时)1sin (lim 0xx x α+→不存在, 所以x = 0为第二类间断点;当0>α, 0)1sin (lim 0=+→xx x α, 所以1-=β时,在 x = 0连续, 1-≠β时, x = 0为第一类跳跃间断点.7. 设f(x)在[a, b]上连续, 且 a < x 1 < x 2 < … < x n < b, c i (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个ξ, 使nnc c c c x f c x f c f ++++++=212211)()()(ξ.证明: 令M =)}({max 1i ni x f ≤≤, m =)}({min 1i ni x f ≤≤所以 m ≤nnc c c c x f c x f c ++++++ 212211)()(≤ M所以存在ξ( a < x 1 ≤ ξ ≤ x n < b), 使得nnc c c c x f c x f c f ++++++=212211)()()(ξ8. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ.9. 设f(x)在[0, 1]上连续, 且0 ≤ f(x) ≤ 1, 试证在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ. 证明: (反证法) 反设0)()(],1,0[≠-=∈∀x x f x x ϕ. 所以xx f x -=)()(ϕ恒大于0或恒小于0. 不妨设0)()(],1,0[>-=∈∀x x f x x ϕ. 令)(min 10x m x ϕ≤≤=, 则0>m .因此m x x f x x ≥-=∈∀)()(],1,0[ϕ. 于是01)1(>+≥m f , 矛盾. 所以在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ.10. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个ξ, 使f(ξ) = g(ξ).证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 11. 证明方程x 5-3x -2 = 0在(1, 2)内至少有一个实根. 证明: 令F(x) = x 5-3x -2, 则F(1) =-4 < 0, F(2) = 24 > 0 所以 在(1, 2)内至少有一个ξ, 满足F(ξ) = 0.12. 设f(x)在x = 0的某领域内二阶可导, 且0)(3sin lim 230=⎪⎭⎫⎝⎛+→x x f x x x , 求)0(''),0('),0(f f f 及203)(lim x x f x +→. 解. 0)(3sin lim )(3sin lim )(3sin lim 2030230=+=+=⎪⎭⎫⎝⎛+→→→x x f x xx x xf x x x f xx x x x . 所以 0)(3sin lim 0=⎪⎭⎫⎝⎛+→x f x x x . f(x)在x = 0的某领域内二阶可导, 所以)('),(x f x f 在x = 0连续. 所以f(0) = -3. 因为 0)(3sin lim 20=+→xx f x x x , 所以03)(33sin lim 20=++-→x x f x xx , 所以 2030202033cos 33lim 3sin 3lim 3sin 3lim 3)(lim x x x x x x x x x x f x x x x -=-=-=+→→→→=2923sin 3lim 0=→x x x02903)(lim 3)(lim 0)0()(lim )0('2000=⨯=+⋅=+=--=→→→x x f x x x f x f x f f x x x由293)(lim 20=+→x x f x , 将f(x)台劳展开, 得 293)(0)0(''!21)0(')0(lim 2220=++++→x x x f x f f x , 所以29)0(''21=f , 于是 9)0(''=f .(本题为2005年教材中的习题, 2008年教材中没有选入. 笔者认为该题很好, 故在题解中加入此题)第二章 导数与微分一. 填空题1 . 设)('31)()(lim0000x f x x f x k x f x =∆-∆+→∆, 则k = ________.解. )('31)()(lim0000x f x k x f x k x f k x =∆-∆+→∆, 所以)('31)('00x f x kf =所以 31=k 2. 设函数y = y(x)由方程0)cos(=++xy e yx 确定, 则=dxdy______. 解. 0sin )'()'1(=+-++xy xy y y eyx , 所以xyx e e xy y y y x yx sin sin '--=++3. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ______.解. 由f(-x) =-f(x)得)(')('x f x f -=--, 所以)(')('x f x f =- 所以 k x f x f =-=)(')('004. 设f(x)可导, 则=∆∆--∆+→∆xx n x f x m x f x )()(lim 000_______.解. xx n x f x f x f x m x f x ∆∆--+-∆+→∆)()()()(lim 00000=x m x f x m x f m x ∆-∆+→∆)()(lim 000+xn x f x n x f n x ∆--∆-→∆)()(lim 000=)(')(0x f n m +5. xx x f +-=11)(, 则)()(x fn = _______. 解. 1112)1(!12)1()1(11)('++⋅-=++---=x x x x x f , 假设1)()1(!2)1(++⋅-=k k k x k f , 则111)1()1()!1(2)1(++++++⋅-=k k k x k f, 所以1)()1(!2)1(++⋅-=n n n x n f 6. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫⎝⎛21'f _______. 解. x x x f 121'32=⋅⎪⎭⎫ ⎝⎛-, 所以21'22x x f -=⎪⎭⎫ ⎝⎛. 令x 2 = 2, 所以11'2-=⎪⎭⎫⎝⎛x f7. 设f 为可导函数, )]}([sin sin{x f f y =, 则=dxdy_______.解. )]}([sin cos{)]([sin ')(cos )('x f f x f f x f x f dxdy =8. 设y = f(x)由方程1)cos(2-=-+e xy e yx 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______. 解. 上式二边求导0)sin()'()'2(2=+-++xy xy y y eyx . 所以切线斜率 2)0('-==y k . 法线斜率为21, 法线方程为x y 211=-, 即 x -2y + 2 = 0.二. 选择题1. 已知函数f(x)具有任意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的正整数时, f(x)的n 阶导数是(a) 1)]([!+n x f n (b) 1)]([+n x f n (c) n x f 2)]([ (d) n x f n 2)]([!解. 3)]([!2)(')(2)(''x f x f x f x f ==, 假设)()(x f k =1)]([!+k x f k , 所以)()1(x f k +=2)]([)!1()(')]([!)1(++=+k k x f k x f x f k k , 按数学归纳法)()(x f n =1)]([!+n x f n 对一切正整数成立. (a)是答案.2. 设函数对任意x 均满足f(1 + x) = af(x), 且=)0('f b, 其中a, b 为非零常数, 则 (a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且=)1('f a(c) f(x)在x = 1处可导, 且=)1('f b (d) f(x)在x = 1处可导, 且=)1('f ab解. b =0)0()(lim )0('0--=→x f x f f x =)1('1)1(1)1(1lim 0f ax f a x f a x =-+→, 所以=)1('f ab. (d)是答案注: 因为没有假设)(x f 可导, 不能对于)()1(x af x f =+二边求导.3. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为(a) 0 (b) 1 (c) 2 (d) 3解. ⎩⎨⎧=3324)(x x x f 00<≥x x . ⎩⎨⎧=x x x f 1224)('' 00<≥x x24024lim 0)0('')(''lim )0('''00=-=--=++→→+xx x f x f f x x12012lim 0)0('')(''lim )0('''00=-=--=--→→-xx x f x f f x x所以n = 2, (c)是答案.4. 设函数y = f(x)在点x 0处可导, 当自变量x 由x 0增加到x 0 + ∆x 时, 记∆y 为f(x)的增量, dy 为f(x)的微分, x dyy x ∆-∆→∆0lim等于(a) -1 (b) 0 (c) 1 (d) ∞ 解. 由微分定义∆y = dy + o (∆x), 所以0)(lim lim00=∆∆=∆-∆→→∆x x o x dy y x x . (b)是答案.5. 设⎪⎩⎪⎨⎧+=bax x x x f 1sin)(200≤>x x 在x = 0处可导, 则 (a) a = 1, b = 0 (b) a = 0, b 为任意常数 (c) a = 0, b = 0 (d) a = 1, b 为任意常数解. 在x = 0处可导一定在x = 0处连续, 所以)(lim 1sinlim 020b ax x x x x +=-+→→, 所以b = 0.)0(')0('-+=f f , x ax xx x x x -+→→=020lim 1sinlim, 所以 0 = a. (c)是答案. 三. 计算题 1.')]310ln[cos(2y x y ,求+=解. )310tan(6)310cos(6)310sin('222x x x xx y +-=+⋅+-= 2. 已知f(u)可导, ')][ln(2y x a x f y ,求++=解. ='y ⎪⎪⎭⎫⎝⎛++++⋅++2222211)][ln('x a x x a x x a x f =22)][ln('xa x a x f +++3. 已知20sin cos 22y tdt dt e x yt +=⎰⎰, 求'y .解. 22cos '2cos 2'2y yy x x y ey+=22cos 2cos 2'2yy e x x y y -=4. 设y 为x 的函数是由方程xyy x arctanln22=+确定的, 求'y . 解. 22222221'2'22x y x y x y y x y x yy x +-=+++ y x y yy x -=+'', 所以yx yx y -+='四. 已知当x ≤ 0时, f (x )有定义且二阶可导, 问a, b, c 为何值时⎩⎨⎧++=c bx ax x f x F 2)()( 0>≤x x 二阶可导. 解. F(x )连续, 所以)(lim )(lim 00x F x F x x +-→→=, 所以c = f (-0) = f (0);因为F(x )二阶可导, 所以)('x F 连续, 所以b =)0(')0('f f =-, 且⎩⎨⎧+=-)0('2)(')('f ax x f x F 00>≤x x)0(''F 存在, 所以)0('')0(''+-=F F , 所以a xf f ax x f x f x x 2)0(')0('2lim )0(')('lim 00=-+=--→→+-, 所以 )0(''21f a =五. 已知)0(1)()(22n f x x x f ,求-=. 解. x x x f +⋅+-⋅+-=112111211)( 11)()1()1(21)1(!21)(+++-⋅+-⋅=n n n n x x n x f0)0()12(=+k f, k = 0, 1, 2, …!)0(2n f k =, k = 0, 1, 2, …六. 设x x y ln =, 求)1()(n f .解. 使用莱布尼兹高阶导数公式121)1()()()!2()1()!1()1()(ln )(ln )(------+--=+⋅=n n n n n n n xn n x n x x n x x x f =121121)!2()1()1()!2()1(-------=⎥⎦⎤⎢⎣⎡+----n n n n n x n x n x n n 所以 )!2()1()1(2)(--=-n fn n第三章 一元函数积分学(不定积分)一. 求下列不定积分: 1.⎰-+-dx x x x 11ln 112解. =-+-⎰dx x x x 11ln 112c x x x x d x x +⎪⎭⎫⎝⎛-+=-+-+⎰211ln 4111ln 11ln 21 2. c x x x x d x x dx x x x +⎪⎭⎫ ⎝⎛-+=-+-+=-++⎰⎰2211arctan 2111arctan 11arctan 11arctan 11 3. ⎰++⋅+++dx xxx x x cos 1sin 1)cos 1(1sin cos 2解. c x x x x d x x dx x x x x x +⎪⎭⎫ ⎝⎛++=++++=++⋅+++⎰⎰22cos 1sin 121cos 1sin 1cos 1sin 1cos 1sin 1)cos 1(1sin cos 4. ⎰+)1(8x x dx 解. 方法一: 令t x 1=, c t t dt t dt t t t x x dx ++-=+-=⎪⎭⎫⎝⎛+-=+⎰⎰⎰)1ln(8111111)1(887828 = c x +⎪⎭⎫⎝⎛+-811ln 81方法二:⎰⎰⎰+--=+=+dx x x x x x dx x x x dx )111()1()1(8878878 =c x x x x d x dx ++-=++-⎰⎰)1ln(81||ln 1)1(81888=c x +⎪⎭⎫ ⎝⎛+-811ln 815.dx xx x x x x dx x x x ⎰⎰+++-+++=+++cos sin 121)cos (sin 21)cos sin 1(21cos sin 1sin 1⎰⎰⎰+++++--=dx x x dx x x x x dx cos sin 1121cos sin 1sin cos 2121dx x x x x x x x d x ⎰⎰++++++-=2cos 22cos 2sin 2121cos sin 1)cos sin 1(212122tan 12tan 121|cos sin 1|ln 2121x d x x x x ⎰++++-=c xx x x +++++-=|12tan |ln 21|cos sin 1|ln 2121二. 求下列不定积分: 1.⎰+++22)1(22x x x dx解.⎰⎰++++=+++1)1()1()1(22)1(2222x x x d x x x dx t x tan 1=+令 ⎰t t t dtsec tan cos 22=⎰++++-=+-=c x x x c t t tdt 122sin 1sin cos 222.⎰+241xxdx解. 令x = tan t,⎰⎰⎰⎰⎰++-=-===+c t t t t d t t d dt t t t t t dt xxdx sin 1sin 31sin sin sin sin sin cos sec tan cos 1324434224=c x x x x+++⎪⎪⎭⎫⎝⎛+-2321131 3.⎰++221)12(xxdx解. 令t x tan =⎰⎰⎰⎰+=+=+=++t td dt t t t dt t t t x x dx2222222sin 1sin cos sin 2cos sec )1tan 2(sec 1)12(=c xxc t ++=+21arctansin arctan 4.⎰-222x a dxx (a > 0)解. 令t a x sin =⎰⎰⎰+-=-=⋅=-c t a t a dt t a t a tdt a t a x a dx x 2sin 412122cos 1cos cos sin 22222222 =c x a a x a x a +⎪⎭⎫ ⎝⎛--2222arcsin 25.⎰-dx x 32)1(解. 令t x sin =⎰⎰⎰⎰++=+==-dt tt dt t tdt dx x 42cos 2cos 214)2cos 1(cos )1(22432 =⎰+++=+++c t t t dt t t t 4sin 3212sin 4183)4cos 1(812sin 4141=c t t x +++)2cos 411(2sin 41arcsin 83=c tt t x +-++)4sin 214(cos sin 241arcsin 832 =c x x x x +--+)25(181arcsin 83226. ⎰-dx x x 421解. 令tx 1=⎰⎰⎰--=⎪⎭⎫ ⎝⎛--=-dt t t dt t t t t dx xx 224224211111u t sin =令⎰-udu u 2cos sin =c x x c u +-=+33233)1(cos 31 7. ⎰-+dx x x x 1122 解. 令 tdt t dx t x tan sec ,sec ==⎰⎰⎰++=+=+=-+c t t dt t tdt t t t t dx x x x sin )cos 1(tan sec tan sec 1sec 11222 c xx x+-+=11arccos 2 三. 求下列不定积分:1. ⎰+-+dx e e e e xxxx 1243 解. ⎰⎰⎰+-=+--=+-+=+-+-----c e e e e e e d dx e e e e dx e e e e x x x x x x x x x x x xx x )arctan(1)()(11222243 2. ⎰+)41(2xx dx解. 令xt 2=, 2ln t dt dx =c tt dt t t t t dt dx x x +--=⎪⎭⎫ ⎝⎛+-=+=+⎰⎰⎰2ln arctan 2ln 11112ln 12ln )1()41(22222 =c x x ++--)2arctan 2(2ln 1四. 求下列不定积分:1. ⎰-dx x x 1005)2( 解. ⎰⎰⎰---+--=--=-dx x x x x x d x dx x x 9949959951005)2(995)2(99)2(991)2(=⎰--⋅⋅+-⨯---dx x x x x x x 983984995)2(989945)2(98995)2(99 =962973984995)2(96979899345)2(97989945)2(98995)2(99-⋅⋅⋅⋅⋅--⋅⋅⋅--⋅---x x x x x x x xc x x x +-⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅-9495)2(95969798992345)2(95969798992345 2.⎰+41xxdx解.⎰⎰⎰⎰+-=+-=+-=+22244424)(1211111/11t dt t tdt t t t dt t t x x x dx 令c xx c u u du u u u t ++-=++-=-=⎰24221ln 21|sec tan |ln 21sec sec 21tan 令五. 求下列不定积分: 1.⎰xdx x 2cos解.⎰⎰⎰+=+=x xd x dx x x xdx x 2sin 4141)2cos 1(21cos 22⎰-+=xdx x x x 2sin 412sin 41412c x x x x +++=2cos 812sin 414122. ⎰xdx 3sec解.⎰⎰⎰-==xdx x x x x x xd xdx tan sec tan tan sec tan sec sec3=⎰⎰-++=--xdx x x x x xdx x x x 32sec |tan sec |ln tan sec sec )1(sectan secc x x x x xdx +++=⎰|tan sec |ln 21tan sec 21sec 3 3. ⎰dx x x 23)(ln 解. ⎰⎰⎰+-=-=dx x x x x x d x dx x x 223323)(ln 3)(ln 11)(ln )(ln ⎰+--=dx x x x x x x 223ln 6)(ln 3)(ln ⎰+---=dx x x x x x x x 2236ln 6)(ln 3)(ln c xx x x x x x +----=6ln 6)(ln 3)(ln 23 4. ⎰dx x )cos(ln解.⎰⎰⎰-+=+=dx x x x x dx x x x dx x )cos(ln )]sin(ln )[cos(ln )sin(ln )cos(ln )cos(ln∴c x x xdx x ++=⎰)]sin(ln )[cos(ln 2)cos(ln 5. ⎰⎰⎰⎰---+-=-==dx x x x x xd dx x x x x dx x x x 2sin 812sin 812sin 812cos2sin 2cos 81sin 2cos 22233434c x x x xd x x x +--=+-=---⎰2cot 412sin 8122sin 412sin 81222 六. 求下列不定积分:1.⎰-++dx x x x x 222)1()1ln(解. ⎰⎰-++=-++2222211)1ln(21)1()1ln(x d x x dx x x x x=⎰+⋅---++dx x x x x x 222211112111)1ln(21 t x tan =令 tdt tt x x x 2222sec sec 1tan 1121)1(2)1ln(⋅⋅---++⎰ =dt t t x x x ⎰---++222sin 21cos 21)1(2)1ln( =⎰---++t t d x x x 222sin 21sin 2221)1(2)1ln( =c tt x x x +-+--++sin 21sin 21ln 241)1(2)1ln(22=c xx x x x x x +-+++--++2121ln 241)1(2)1ln(22222. ⎰+dx xxx 21arctan 解.⎰⎰⎰++-+=+=+dx x x x x x xd dx xx x 2222211arctan 11arctan 1arctan=c x x x x dx x x x +++-+=+-+⎰)1ln(arctan 111arctan 122223. ⎰dx e e xx2arctan 解. dx e e e e e de e dx e e xx x xx x x x x ⎰⎰⎰++-=-=---22222121arctan 21arctan 21arctan dx e e e e x x x x ⎰++-=--22121arctan 21⎰++-=-dx e e e e x x xx )1(121arctan 2122 c x e e e dx e e e e e x x x xx x xx +++-=+-+-=---⎰)arctan arctan (21)11(21arctan 21222 七. 设⎩⎨⎧-+-+=-xex x x x x f )32(3)1ln()(22 00<≥x x , 求⎰dx x f )(.解. ⎪⎩⎪⎨⎧-+-+=-⎰⎰⎰dx e x x dx x x dx x f x )32()3)1ln(()(22⎪⎩⎪⎨⎧+++-+-+--+=-122222)14(3)]1ln([21)1ln(21c e x x c x x x x x x 00<≥x x 考虑连续性, 所以c =-1+ c 1, c 1 = 1 + c ⎰dx x f )(⎪⎩⎪⎨⎧++++-+-+--+=-c e x x c x x x x x x 1)14(3)]1ln([21)1ln(2122222 00<≥x x 八. 设x b x a e f x cos sin )('+=, (a, b 为不同时为零的常数), 求f(x).解. 令t x e tx ln ==,, )cos(ln )sin(ln )('t b t a t f +=, 所以⎰+=dx x b x a x f )]cos(ln )sin(ln [)(=c x a b x b a x+-++)]cos(ln )()sin(ln )[(2九. 求下列不定积分: 1.⎰++dx x xx )32(332解. ⎰⎰+=+=++++c x d dx x x x x x x x 3ln 3)3(3)32(332332222.⎰-+-dx x x x)13()523(232解. )523()523(21)13()523(2232232+-+-=-+-⎰⎰x x d x x dx x x xc x x ++-=252)523(513.dx xx x ⎰+++221)1ln(解.⎰⎰+++=++++=+++c x x x x d x x dx x x x )1(ln 21)1ln()1ln(1)1ln(222222 4.⎰+++++)11ln()11(222x x xxdx解.c x x xd x x xxdx+++=++++=+++++⎰⎰|)11ln(|ln )11ln()11ln()11ln()11(222222十. 求下列不定积分:1.⎰+dx x x x )1(arctan 2 解. ⎰⎰⎰-+-=++=+1222222)1(arctan 21)1()1(arctan 21)1(arctan x xd x d x x dx x x x ⎰⎰+++-=+++-=dx x x x x d x x x 22222)1(1211arctan 21arctan 11211arctan 21 dt t x x tdt x x t x ⎰⎰+++-=++-=22cos 1211arctan 21cos 211arctan 21tan 222令c t t x x x aex c t t x x ++++-=++++-=cos sin 41arctan 411tan 212sin 81411arctan 2122 c x xx x x aex +++++-=22141arctan 411tan 212. ⎰+dx xx1arcsin解. 令t x t xx2tan ,1arcsin==+则⎰⎰⎰++-=-==+c t t t t tdt t t t d t dx xxtan tan tan tan tan 1arcsin2222 c x xx x c x x x x x x +-++=+++-+=1arcsin )1(1arcsin 1arcsin3. ⎰-+⋅dx xx x x 22211arcsin解. ⎰⎰⎰+=+⋅=-+⋅dt t t tdt t t t t t x dx x x x x )1(csc cos cos sin 1sin sin 11arcsin 222222令⎰⎰⎰+++-=+-=c t tdt t t dt t tdt t 221cot cot cotc t t t t +++-=221|sin |ln cotc x x x x x+++--=22)(arcsin 21||ln 1arcsin 4. dx x x x⎰+)1(arctan 22解. ⎰⎰⎰-==+dt t t dt t tt t t x dx x x x )1(csc sec sec tan tan )1(arctan 222222令 22221cot cot 21cot csc t dt t t t t d t dt t dt t t -+-=--=-=⎰⎰⎰⎰c x x x x x c t t t t +-++-=+-+-=222)(arctan 21|1|ln arctan 21|sin |ln cot c x x x x x +-++-=222)(arctan 211ln 21arctan 十一. 求下列不定积分: 1.⎰-dx x x 234 解.⎰⎰⎰==-dt t t dt t t t t x dx x x 23323cos sin 32cos 2cos 2sin 8sin 24令 c t t t d dt t t ++-=-=⎰5322cos 532cos 332cos cos )cos 1(32c x x +-+--=252232)4(51)4(342.⎰-xa x 22解. ⎰⎰⎰-==-dt t ta dt t t a t a t a t a x xa x 2222cos cos 1tan sec sec tan sec 令c xa a a x c at t a +--=+-=arccos tan 223. dx ee e xx x ⎰-+21)1(解. udu u uu t dt tt t dt t t t t e dx e e e x x x x cos cos sin 1sin 111)1(1)1(222⎰⎰⎰⎰+=-+=-+=-+令令c e e c u u x x +--=+-=21arcsin cos4.⎰-dx xa xx2 (a > 0)解. ⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8=⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222 =c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222 =c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222=c t t a t t a t a+--cos sin 2cos sin 333222=c axa a x ax a a x a a x a a x a +----2222222232arcsin3222=c x a x x a a x a+-+-)2(232arcsin32十二. 求下列不定积分: 1.⎰+xxdx cos 1sin解.⎰⎰⎰⎰-+-=++-=+=+xxd xx x d x x dxx xxdx222cos 1cos 12cos 1sin )cos 1(cos 1sin sin cos 1sin ⎰⎰--=---=+)2(2)1(12cos 12222u u duu du u x 令 ⎰+-++=-+-=c uu u du u u |22|ln 2211)211(22 c x xx ++-++++=|cos 12cos 12|ln 221cos 112. ⎰+-dx x x cos 2sin 2解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2 t x =2tan 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt=c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 34 3. ⎰+dx x x x x cos sin cos sin解. ⎰⎰+-+=+dx x x x x dx x x x x cos sin 1cos sin 2121cos sin cos sin=⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π十三. 求下列不定积分: 1.dx xx x ⎰-1解.c t t td dt t t tx dx xx x+--=---=-=-⎰⎰⎰333321341)1(32121令c x +--=231342. ⎰+-dx e e xx 11 解.⎰⎰⎰⎰-=-=--=+-dt t dt t t t t e dx e e dx e e x x x xx )1(sec tan tan 1sec sec 11112令c ee e c t t t x x x +-++=+--=1arccos )1ln(|tan sec |ln 23.dx xx x ⎰--1arctan 1 解. 令t t dx t x x t x t tan sec 2,sec ,1tan ,1arctan 22==-=-=⎰⎰⎰⎰-===--dt t t t dt t t dt t t t t t dx x x x 22222cos cos 12tan 2tan sec 2sec tan 1arctan 1 ⎰⎰⎰⎰--=-=-=222tan 2tan 2tan 22cos 2t dt t t t t t d t dt t dt ttc t t t t +-+=2|cos |ln 2tan 2c x x x x +-----=2)1(arctan ||ln 1arctan 12第三章 一元函数积分学(定积分)一.若f(x)在[a ,b]上连续, 证明: 对于任意选定的连续函数Φ(x), 均有0)()(=Φ⎰badx x x f , 则f(x) ≡ 0.证明: 假设f(ξ)≠ 0, a < ξ < b, 不妨假设f(ξ) > 0. 因为f(x)在[a ,b]上连续, 所以存在δ > 0, 使得在[ξ-δ, ξ + δ]上f(x) > 0. 令m =)(minx f x δξδξ+≤≤-. 按以下方法定义[a ,b]上Φ(x): 在[ξ-δ, ξ + δ]上Φ(x) =22)(ξδ--x , 其它地方Φ(x) = 0. 所以02)()()()(2>≥Φ=Φ⎰⎰+-πδδξδξmdx x x f dx x x f ba.和0)()(=Φ⎰badx x x f 矛盾. 所以f(x) ≡ 0.二. 设λ为任意实数, 证明: ⎰+=20)(tan 11πλdx x I =4)(cot 1120ππλ=+⎰dx x . 证明: 先证:4)(cos )(sin )(sin 2ππ=+⎰dx x f x f x f =⎰+2)(cos )(sin )(cos πdx x f x f x f令 t =x -2π, 所以=+⎰20)(cos )(sin )(sin πdx x f x f x f ⎰-+02)()(sin )(cos )(cos πt d t f t f t f= =+⎰20)(sin )(cos )(cos πdt t f t f t f ⎰+20)(sin )(cos )(cos πdx x f x f x f于是=+⎰2)(cos )(sin )(sin 2πdx x f x f x f ++⎰20)(cos )(sin )(sin πdx x f x f x f ⎰+20)(sin )(cos )(cos πdx x f x f x f=2)(cos )(sin )(cos )(sin 2020πππ==++⎰⎰dx dx x f x f x f x f所以4)(cos )(sin )(sin 2ππ=+⎰dx x f x f x f =⎰+2)(cos )(sin )(cos πdx x f x f x f .所以 ⎰+=20)(tan 11πλdx x I4)(sin )(cos )(cos cos sin 11220ππλλλπλ=+=⎪⎭⎫⎝⎛+=⎰⎰x x x dx x x同理 4)(cot 112ππλ=+=⎰dx x I.三.已知f(x)在[0,1]上连续, 对任意x, y 都有|f(x)-f(y)| < M |x -y|, 证明n Mn k f n dx x f n k 21)(110≤⎪⎭⎫ ⎝⎛-∑⎰=证明:∑⎰⎰=-=nk n k n k dx x f dx x f 111)()(, =∑=n k nkf n 1)(1dx nk f nk n k n k ∑⎰=-11)(nMnM dx x n k M dxn kx M dx n k f x f dx n k f x f n k f n dx x f nk nk n knk nk n knk nk n kn k nk n kn k n k 212)()()(|)()(|)(1)(1211111111110==⎪⎭⎫⎝⎛-=-≤-≤⎥⎦⎤⎢⎣⎡-=-∑∑⎰∑⎰∑⎰∑⎰∑⎰==-=-=-=-=四. 设⎰=40tan πxdx I n n, n 为大于1的正整数, 证明:)1(21)1(21-<<+n I n n .证明: 令t =x tan , 则⎰⎰+==102401tan dt t txdx I nnn π因为 222'2)1(11t t t t +-=⎪⎭⎫⎝⎛+> 0, (0 < t < 1). 所以21111122=+<+t t 于是 ⎰⎰⎰-<+<1011021021121dt t dt t t dt t n n n 立即得到 )1(2121)1(21-<<<+n n I n n .五. 设f(x)在[0, 1]连续, 且单调减少, f(x) > 0, 证明: 对于满足0 < α < β < 1的任何 α, β, 有 ⎰⎰>βαααβdx x f dx x f )()(0证明: 令⎰⎰-=x dt t f dt t f x x F ααα)()()(0(x ≥ α), 0)()(0>=⎰αααdt t f F .=-=⎰)()()('0x f dt t f x F αα⎰>-α0)]()([dt x f t f , (这是因为t ≤ α, x ≥ α, 且f(x)单减).所以 0)()(>>αβF F , 立即得到⎰⎰>βαααβdx x f dx x f )()(0六. 设f(x)在[a, b]上二阶可导, 且)(''x f < 0, 证明:⎪⎭⎫⎝⎛+-≤⎰2)()(b a f a b dx x f ba证明: ∀x, t ∈[a, b],2)(!2)(''))((')()(t x f t x t f t f x f -+-+=ξ≤))((')(t x t f t f -+ 令2b a t += , 所以⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+≤22'2)(b a x b a f b a f x f二边积分 ⎰⎰⎰⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+≤b a b a b a dx b a x b a f dx b a f dx x f 22'2)(=⎪⎭⎫⎝⎛+-2)(b a f a b .七. 设f(x)在[0, 1]上连续, 且单调不增, 证明: 任给α ∈ (0, 1), 有⎰⎰≥1)()(dx x f dx x f αα证明: 方法一: 令⎰⎰-=xx dt t f dt t f x F 0)()()(ααα(或令⎰⎰-=xdt t f dt t f x x F 0)()()(αα)0)()()('≥-=x f x f x F ααα, 所以F(x)单增;又因为F(0) = 0, 所以F(1) ≥ F(0) = 0. 即0)()(101≥-⎰⎰dt t f dt t f ααα, 即 ⎰⎰≥1)()(dx x f dx x f αα。