高数答案第十二章第九次作业

合集下载

厦门理工学院高数作业第十二章答案

厦门理工学院高数作业第十二章答案
6
8.3 二阶常系数齐次线性微分方程
一、选择题:DABC
二、 1.y y 2 y 0
2. y 2 y 5 y 0
三、 1、解:特征方程为r 2 6r 9 a 2 0,得特征根为r1,2 3 ai 所以方程的通解为 y e 3 x (C1 cos ax C 2 sin ax ) 2、解:特征方程为r 2 r,得特征根为r1 0, r2 1 所以方程的通解为 y C1 C 2e x
9
2、解:特征方程为 : r 2 4 0, r1,2 2i 所以对应的齐次方程的通解为y C1 cos 2 x C 2 sin 2 x 设微分方程的特解为y* (ax b)cos x (cx d )sin x , 1 2 代入微分方程得 a , b 0, c 0, d 3 9 1 2 故所求方程的通解为y C1 cos 2 x C 2 sin 2 x x cos x sin x 3 9 3、解:特征方程为 : r 2 3r 2 0, r1 2, r2 1 所以对应的齐次方程的通解为y C1e x C 2 e 2 x 设微分方程的特解为y* x (ax b )e x (ax 2 bx )e x 1 代入微分方程得 a , b 1 2 1 x 2x 故所求方程的通解为y C1e C 2 e x ( x 1)e x 2
8
8.3 二阶常系数非齐次线性微分方程
1 2 x 一、选择题:DAD 二、 1.y C1 cos 2 x C 2 sin 2 x e 8 1 2 5 23 6x x 2. y C1e C 2e x x 6 18 108 三、 1、解:由题意知:y | x 0 1, y | x 0 1

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_第十二章微分方程内容概要§12.1微分方程的基本概念内容概要课后习题全解1.指出下列微分方程的阶数:知识点:微分方程阶的定义★(1)某(y)24yy3某y0;解:出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

注:通常会有同学误解成未知函数y的幂或y的导数的幂。

例:(错解)方程的阶数为2。

((y))★(2)2某y2y某2y0;解:出现的未知函数y的最高阶导数的阶数为2,∴方程的阶数为2。

★(3)某y5y2某y0;解:出现的未知函数y的最高阶导数的阶数为3,∴方程的阶数为3。

★(4)(7某6y)d某(某y)dy0。

(n)思路:先化成形如F(某,y,y,,y解:化简得)0的形式,可根据题意选某或y作为因变量。

dy6y7某,出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

d某某y2指出下列各题中的函数是否为所给微分方程的解:知识点:微分方程的解的定义思路:将所给函数及其相应阶导数代入方程验证方程是否成立。

★(1)某y2y,y5某2;2解:将y10某,y5某代入原方程得左边所以某10某25某22y右边,y5某2是所给微分方程的解。

y2y0,yC1co某C2in某;解:yC1in某C2co某,将y2C1co某2C2in某,yC1co某C2in某,代入原方程得:左边所以★(3)y2y2C1co某2C2in某2(C1co某C2in某)右边,yC1co某C2in某是所给微分方程的解。

y22yy20,yC1某C2某2;某某2解:将yC1某C2某,yC12C2某,y2C2,代入原方程得:2C14C2某2(C1某C2某2)22y左边=yy22C20右边2某某某某所以yC1某C2某2是所给微分方程的解。

y(12)y12y0yC1e1某C2e2某;1某解:将yC1eC2e2某,yC11e1某C22e2某,yC112e1某C222e2某,代入原方程得:左边y(12)y12y22C11e1某C22e2某(12)(C11e1某C22e2某)12(C1e1某C2e2某) 0所以右边,yC1e1某C2e2某是所给微分方程的解。

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

高等数学第12章课后习题答案(科学出版社).

高等数学第12章课后习题答案(科学出版社).

习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。

高等数学习题册 第十二章 参考答案

高等数学习题册 第十二章  参考答案

1第十二章 无穷级数第一节 常数项级数的概念与性质1.填空: (1)1+1(-1)n n n -.(2)__0__.(3)111+-n , _1_. (4)11+-n a a ,1a a -.(5) 收敛 ,12-s u .(6) 发散_. 2.根据级数收敛与发散的定义判断下列级数的敛散性,如果收敛,则求级数的和:(1)解:级数的部分和为...n s +++1-.因为lim 1)n n n s →∞→∞=-=+∞,即部分和数列不存在极限,所以原级数发散. (2)解:将级数的一般项进行分解得211111()(1)(1)2111n u n n n n n ===-+--+-, 所以,级数的部分和为111111111[()+()()...()]213243511n s n n =--+-++--+1111(1)221n n =+--+. 因为11113lim lim (1)2214n n n s n n →∞→∞=+--=+, 即部分和数列存在极限,且极限值为34,根据定义可得,原级数收敛,且收敛于34.(3)解: 因为lim lim sin 6n n n n u π→∞→∞=不存在,根据收敛级数的必要性条件可知,级数的一般项极限不为零,则原级数必定发散.3.判断下列级数的敛散性,如果收敛,则求级数的和: (1)解:这是一个公比为34-的等比级数,因为314-<,所以收敛.其和为13343171()4u s q-===----. (2)解:这是公比为32-的等比级数,因为3>12-,所以发散.(3)解:因为1lim lim=0100+1100n n n n u n →∞→∞=≠,根据收敛级数的2必要性条件可知,原级数发散. (4)解:因为级数123nnn ∞=∑是公比为23的等比级数,所以收敛,而级数1131=3n n n n∞∞==∑∑是发散级数,根据收敛级数的性质可知,原级数发散.(5)解:原级数的一般项ln (1)-ln n u n n =+,所以原级数的部分和(ln 2-ln1)(ln 3-ln 2)...[(ln(1)-ln ]n s n n =++++ln(1)-ln1ln(1)n n =+=+,因为lim limln(1)n n n s n →∞→∞=+不存在,所以原级数发散.(6)解:原级数变形为111[()()]32n n n ∞=+∑,因为级数11()3nn ∞=∑和11()2n n ∞=∑均为公比1q <的等比级数,所以原级数收敛. 其和为113321121132s =+=--.(7)解:因为313lim =3lim()3lim011+(1+)(1+)n nn n n n nn n n e n n→∞→∞→∞==≠,根据收敛级数的必要条件可知,原级数发散.第二节 常数项级数的审敛法1.填空: (1) 收敛 .(2) 发散 ; 收敛 ;可能收敛也可能发散 . (3)1k <;1k >时,1k =.(4)1p >;1p ≤时.(5)发散 . (6)可能发散也可能收敛 . 2.选择:(1)D .(2)C .(3)B .(4)C .3.用比较审敛法及其极限形式判断下列级数的敛散性:(1)解:因为222+1++2lim lim 11+2n n n n n n n n→∞→∞==,而级数11n n∞=∑发散,根据比较审敛法的极限形式(或者极限审敛法),原级数一定发散.(2)解:因为2211(1)(21)limlim 1(1)(21)2n n n n n n n n →∞→∞++==++,而3 级数211n n∞=∑收敛,根据比较审敛的极限形式(或者极限审敛法),原级数一定收敛.(3)解:因为0sin 22n n ππ≤≤,而12n n π∞=∑是公比为12的等比级数,根据比较审敛法,原级数一定收敛.(4)解:当>1a 时,110<1n na a ≤+而11n n a∞=∑是公比为1<1a 的等比级数,根据比较审敛法,级数111nn a ∞=+∑一定收敛; 当0<1a <时,因为1lim=101nn a →∞≠+,根据级数收敛的必要性条件,级数111nn a ∞=+∑发散; 当=1a 时,原级数即112n ∞=∑,发散. (5*)解:因为ln (1+)(0,1)x x x x <≠-<<+∞,所以111ln =ln(1+)n n n n +<,即原级数为正项级数; 同时,111ln =ln ln(1)111n n n n n n +-=-->+++, 则:21111110<ln 1(1)n n n n n n n n+-<-=<++, 而211n n∞=∑收敛,所以原级数也收敛. 4.用比值审敛法判断下列级数的敛散性:(1)解:2+122(1)1113lim lim(1)1333n n n nn n n →∞→∞+=+=<,根据比值审敛法,原级数收敛.(2)解:135(2+1)2+1(+1)!limlim 2>1135(21)+1!n n n n n n n n →∞→∞⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅-,根据比值审敛法,原级数发散.4(3)解:+2+2+1+1(+1)tan+1122limlim 12tan 22n n n n n n n n n n ππππ→∞→∞=⋅=<,根据比值审敛法,原级数收敛.(4)解:1+12(1)!12(+1)lim 2lim()2lim <1112!(1+)n n n n n n n nnn n n n e n n n +→∞→∞→∞+===+, 根据比值审敛法,原级数收敛.5.用根值审敛法判别下列级数的敛散性:(1)解:1lim 12+12n n n n →∞=<,根据根值审敛法,原级数收敛. (2)解:1lim 01ln(+1)n n n →∞=<,根据根值审敛法,原级数收敛. (3)解:n b a, 当1ba<,即>a b 时,原级数收敛; 当>1ba ,即ab <时,原级数发散; 当1ba=,即=a b 时,原级数可能收敛也可能发散. 6.判别下列级数的敛散性: (1)解:10n n ==≠,根据收敛级数的必要条件可知,原级数发散.(2)解:原级数显然为正项级数,根据比较审敛法的极限形式,111lim =lim 1n n na b b aa n n→∞→∞+=+,所以原级数发散. (3)解:因为11lim 1>122nn n e n →∞⎛⎫+= ⎪⎝⎭, 所以原级数发散.7.判别级数的敛散性,若收敛,指出条件收敛还是绝对收敛: (1)解:因为11111(1)=33n n n n n n n ∞∞---==-∑∑,而1+11+113lim =lim <1333n n n n n n n n →∞→∞-=,所以级数113n n n ∞-=∑收敛,5因此原级数绝对收敛.(2)解:因为22(21)(21)cos 22n nn n n π++≤,又因为: 22+122(23)(23)12lim =lim 12(21)2(21)2n n n nn n n n →∞→∞++=<++,所以级数21(21)2nn n ∞=+∑收敛,因此原级数绝对收敛. (3)解:级数的一般项为:11(1)(1)10n n n u -=-+,因为1lim||lim(1)1010n n n n u →∞→∞=+=≠,所以原级数的一般项不趋近 于0,原级数发散. (4*)解:这是一个交错级数11(1)n n n u ∞-=-∑,因为级数1n ∞=-∑发散(见第一节习题2(1)),所以原级数不是绝对收敛,又因为:0n n =,1n n u u +-=---==-,根据莱布尼兹定理可知,原级数收敛且是条件收敛.8*.解:先讨论0x >的情形. 当=1x 时,级数为112n ∞=∑,显然发散;当0<<1x 时,级数为正项级数,利用比值审敛法,1221+122221lim =lim lim 111n n n n n n n n n n nu x x x x x u x x x ++++→∞→∞→∞++⋅==<++, 所以此时级数211+n nn x x ∞=∑收敛且是绝对收敛; 当1x >时,同样利用比值审敛法,2121+12222111lim =lim lim1111n n n n n n n nn u x x x x u x x x +++→∞→∞→∞+++==<++,6 所以此时级数211+nnn x x∞=∑收敛且是绝对收敛; 再看<0x 的情形.当1x =-,级数为1(1)2nn ∞=-∑,显然发散;当10x -<<和1x <-时,级数为21()(1)1nn n n x x ∞=--+∑,这是一个交错级数,对其一般项取绝对值得到正项级数21()1nnn x x ∞=-+∑,按照同样的方法可知21()1nnn x x∞=-+∑收敛,也即原级数绝对收敛; 而当0x =时,级数显然收敛且绝对收敛;综合得,原级数在1x =±时发散,其他均为绝对收敛. 9*.证明:设111(1)n n n a S ∞-=-=∑,若∑∞=-112n n a 收敛,设2121n n aS ∞-==∑,则122121111(1)n n n n n n n a a a S S ∞∞∞--====--=-∑∑∑,即21nn a∞=∑收敛,所以22-111(+)nn n n n aa a ∞∞===∑∑收敛,与11(1)n n n a ∞-=-∑条件收敛矛盾,所以∑∞=-112n n a 发散.因为11(1)n n n a ∞-=-∑条件收敛,所以∑∞=1n n a 发散.10*证明:因为222||0nnn n a b a b +≥≥,所以∑∞=1n nnba 收敛;因为2220()2||n n n nn n a b a b a b ≤+≤++,所以∑∞=+12)(n n nb a收敛;令1n b n =,因为∑∞=12n n b 收敛,所以∑∞=1n n n b a 收敛,即∑∞=1n n na 收敛.第三节 幂级数1.填空:(1)绝对收敛 ; 绝对收敛 .(2)1ρ;+∞;_0_.(3)_1_,7 (-1,1).(4)12=R R ;(5) (),R R -.2.选择:(1)B .(2)B . (3)A . (4)C . (5*)B (提示:令=1y x -,则1111(1)n n n n n n na x na y ∞∞++==-=∑∑21211=()n n n n n n yna yy a y ∞∞-=='=∑∑).(6)B .(7)D .3. 求下列幂级数的收敛域:(1)解:因为+11=lim lim 02(1)n n n na a n ρ→∞→∞==+,收敛半径为R =+∞,收敛域为(,)-∞+∞.(2)解:因为12121(1)(1)limlim 11(1)n n n n n na n a nρ++→∞→∞-+===-, 所以收敛半径1R =,收敛区间为(1,1)-;当1x =时,级数为211(1)nn n ∞=-∑,这是一个绝对收敛级数; 当1x =-时,级数为211n n∞=∑,这是一个收敛的正项级数; 综合得原级数的收敛域为[1,1]-.(3)解:121limlim 121n n n n a n a n +→∞→∞-==+1R ⇒=, 故当231x -<,即12x <<时级数绝对收敛,当1x =时,11(1)(1)12121n n n n n n ∞∞==--=--∑∑,级数发散,当2x =时, 1(1)21nn n ∞=--∑为收敛的交错级数,所以原级数的收敛域为(1,2].(4)解:这是一个缺奇次项的幂级数,直接使用比值审敛法得:1()lim ()n n n nu x u x +→∞=2222n x x =⋅=,8 所以当22<1x,即x <<时,级数绝对收敛;当22>1x时,即x >或<x -时,原级数发散;当x =时,级数为1n ∞=∑,发散;当x =时,级数为21(1)nn ∞=--∑,发散(见第一节习题2(1));所以,级数的收敛域为(-.(5*)解:因为+111111+231=limlim 111123n n n na n n a nρ→∞→∞+++⋅⋅⋅++=+++⋅⋅⋅+11lim(1)111123n n n→∞+=++++⋅⋅⋅+,因为正项级数11n n ∞=∑发散,因此111lim(1)23n n →∞+++⋅⋅⋅+=+∞,所以上述的=1ρ,即级数的收敛半径为1,收敛区间为(1,1)-.当1x =±时,级数为∑∞=+⋅⋅⋅+++1)131211(n n x n,因为 111=1()23n u n n+++⋅⋅⋅+→∞→∞, 所以发散,综合得原级数的收敛域为(1,1)-. 4.求下列幂级数的收敛域与和函数:(1)解:先求收敛域:利用比值审敛法可得454141()45lim lim =()41n n n n n nx u x n x u x x n +++→∞→∞+=+, 因此,当41x <,即||1x <时,级数收敛; 当1x =时,级数为141n n ∞=+∑,发散;当1x =-时,级数为1()41n n ∞=-+∑,发散,所以级数的收敛域为(1,1)-.9为求和函数,令410()=41n n x s x n +∞=+∑,两端同时求导得:4141440001()==,(1,1)41411-n n n n n n x x s x x x n n x ++∞∞∞===''⎛⎫⎛⎫'==∈- ⎪ ⎪++⎝⎭⎝⎭∑∑∑再两端同时积分得:400111+1()(0)=()==ln arctan 4121-xxx s x s s x dx dx x x x '-+-⎰⎰, 显然(0)=0s ,所以原级数的和函数为11+1()=ln arctan ,(1,1)412x s x x x x +∈--.(2)解:212121(22)lim lim 2n n n n n nu x n x u x n ++-→∞→∞+==, 故当211x x <⇒<时级数绝对收敛,当||1x >时,级数发散. 当1x =-时,21112(1)2n n n n n ∞∞-==-=-∑∑发散,当1x =时,12n n ∞=∑发散,⇒ 收敛域为(1,1)-.令211()2(0)0n n S x nxS ∞-==⇒=∑2212211()21xxn nn n x S t dt ntdt xx ∞∞-==⇒===-∑∑⎰⎰22222()(||1)1(1)x x S x x xx '⎛⎫⇒==< ⎪--⎝⎭. (3)解:先求收敛域:因为1(+1)(+2)limlim 1(+1)n n n n a n n a n n ρ+→∞→∞===, 所以收敛半径为1,明显当1x =±原级数发散,故级数的收敛域为(1,1)-;令1()(1)(0)0nn S x n n xS ∞==+⇒=∑,121111()(1)xx nn n n n n S t dt n n t dt nxxnx∞∞∞+-===⇒=+==∑∑∑⎰⎰222211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭∑ 2232()(||1)(1)(1)x x S x x x x '⎛⎫⇒==< ⎪--⎝⎭.10(4)解:212121(21)lim lim (21)n n n n n nu x n x u x n ++-→∞→∞-==+,故当211x x <⇒<时级数绝对收敛, 当||1x >时,级数发散.当1x =-时, 12111(1)(1)(1)2121n n n n n n n +∞∞-==---=--∑∑为收敛的交错级数,当1x =时, 11(1)21n n n +∞=--∑为收敛的交错级数,⇒ 收敛域为[1,1]-.令1211(1)()(0)021n n n x S x S n +-∞=-=⇒=-∑, 122211()(1)1n n n S x x x∞+-='⇒=-=+∑ 201()(0)arctan 1xS x S dt x t ⇒-==+⎰()arctan (11)S x x x ⇒=-≤≤.第四节 函数展开成幂级数1.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)解:利用间接展开法.因为=0=,(,)!nxn x e x n ∞∈-∞+∞∑,所以ln ln 00(ln )(ln ),(,)!!xn n xa x ann n x a a a eex x n n ∞∞======∈-∞+∞∑∑.(2)解:利用间接展开法.因为1(1)ln(1)=,(1,1]1n n n x x x n ∞+=-+∈-+∑,所以 ln()=ln[(1)]ln ln(1)x xa x a a a a++=++110(1)ln ,(,](1)nn n n a x x a a n a∞++=-=+∈-+∑. (3*)解:利用间接展开法.因为2(1)(1)...(1)(1)1...,||12!!m nm m m m m n x mx x x x n ---++=++++<122(1)x x -=⋅+11357113135...,(1,1]224246x x x x x ⋅⋅⋅=-+-+∈-⋅⋅⋅. 注:当1=2m -时,在右端点处收敛.(4)解:利用间接展开法.因为20(1)cos =,(,)(2)!n nn t t x n ∞=-∈-∞+∞∑,所以22100000(1)(1)cos d =[]d d (2)!(2)!n nxxx n n n n t t t t t t t t n n ∞∞+==--=∑∑⎰⎰⎰ 212200(1)(1)=d ,(,)(2)!(2)!(22)n nxn n n n t t t x n n n ∞∞++==--=∈-∞+∞+∑∑⎰. 2. 解:111(1)=,(,)!nx x x x x e ee e e x n ∞-+-=-=⋅=∈-∞+∞∑.3.解:011111(2),(0,4)2422212n n n x x x x ∞==⋅=-∈---∑. 4.解:将sin x 变形为:1sin sin[()])cos()662626x x x x ππππ=-+=-+-, 利用sin x 和cos x 的展开式可得2-121211sin ()()...221!622!6(1))(),(,)622n!6n n n x x x x x x ππππ-=+---++⋅⋅--+-∈-∞+∞⋅.5.解:211=()34154x x x x x x ----+5(5)111=()531(5)414x x x +--⋅-+-+111005111=(1)(1)(5)(1)(1)(5)3344n n nn n n n n x x ∞∞+++==---+---∑∑, 其中第一个展开式的收敛域为|5|<1x -,第二个展开式的收敛域为|5|<14x -,所以原函数的展开式的收敛域为|5|<1x -,即46x <<.第五节 函数的幂级数展开式的应用1.利用函数的幂级数的展开式求下列各数的近似值: (1)解:根据ln (1+)x 的展开式可得:35111ln2(...)(11)135x x x x x x +=+++-<<-(见教材)12令1=51x x +-,解得2(1,1)3x =∈-,带入上述展开式可得 35793579212121212ln 52(...)335793333=+⋅+⋅+⋅+⋅,如果取前五项作为其近似值,则1113151751113151712121212||=2(...)111315173333r ⋅+⋅+⋅+⋅+1123112312114114114=2(1...)111391517399⋅⋅+⋅+⋅+⋅+1123112322444(1...)119399<⋅++++ 111111112212290.00384111153319<⋅⋅=⋅⋅≈-,符合误差要求,因此取前五项作为其近似值,即35793579212121212ln 52() 1.61335793333≈+⋅+⋅+⋅+⋅≈.(2)解:根据cos x 的幂级数展开式可得246111cos18cos1()()() (10)2!104!106!10ππππ==-+-+, 6-61() 1.335106!10π≈⨯,所以取前四项作为近似值,即 246111cos181()()()0.950992!104!106!10πππ=-+-≈.(3)解:根据cos x 的幂级数展开式可得2621cos 111...2!4!6!x x x x -=-++, 于是可得0.50.5262001cos 111d =(...)d 2!4!6!x x x x x x--++⎰⎰ 3511111111=()()...0.123272!24!326!52⋅-⋅⋅+⋅⋅+≈. 2.解:因为sin arctan x x 、的展开式分为可以写为:33sin ()3!x x x o x =-+,33arctan ()3x x x o x =-+,所以3333001()sin arctan 16lim lim 6x x x o x x x x x→→+-==.第七节 傅里叶级数1.填空:(1)其中的任何两个不同函数的乘积在区间[,]ππ-上的积分为130,相同函数的乘积在此区间上积分不为0 . (2)1()d f x x πππ-⎰,1()cos d (1,2,...)f x nx x n πππ-=⎰,1()sin d (1,2,...)f x nx x n πππ-=⎰. (3)02=0,()sin d n n a b f x nx x ππ=⎰.(4)1+π.(5)在一个周期内连续或者只有有限个第一类间断点 , 在一个周期内至多有有限个极值点 , 收敛 ,()f x , 左右极限均值.2.下列函数以π2为周期,且在[,)ππ-上取值如下,试将其展开成傅里叶级数:(1)解:先利用系数公式得出傅里叶级数.2220111()d d ()2x xx a f x x e x e e πππππππ---===-⎰⎰, 22212()(1)()cos ,( 1.2 (4)n e ea f x nxdx n n ππππππ----==⋅=+⎰, 2-2121(1)()sin ,(n=1,2...)4n n e e nb f x nxdx nππππππ+---==⋅+⎰, 所以,函数的傅里叶级数为2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---+-+∑. 再考虑其收敛性.易知函数满足收敛性定理的条件,其不连续点为(21)(0,1,2,...)x k k π=+=±±,在这些点处,上述的傅里叶级数收敛于左右极限的均值,即22(0)(0)22f x f x e e ππ-++-+=,在连续点处,傅里叶级数收敛于函数2()=xf x e ,因此2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---=+-+∑(,),(21)(0,1,2,...)x x k k π∈-∞+∞≠+=±±.(2)解:先根据系数公式求傅里叶级数.40113()d sin d 4a f x x x x ππππππ--===⎰⎰, 41131sin cos (2cos2cos4)cos 422n a x nxdx x x nxdx ππππππ--==-+⎰⎰, 根据三角函数系的正交性,仅当=2,=4n n 时,0n a ≠,易得142411,28a a =-=,由于4()sin f x x =是[,]ππ-的偶函数,故0n b =; 又因为函数4()sin f x x =是连续函数,所以可得:311()cos 2cos 4,<<828f x x x x =-+-∞∞.3.解:(1) ()()f x x x ππ=-<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,,,所以 11sin ()2(1)()n n nxf x x xππ∞+==--<<∑,为所求. (2)()(02)f x x x π=<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,011()d d 0a f x x x x ππππππ--===⎰⎰1n ≥11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰220011()d d 2a f x x x x πππππ===⎰⎰1n ≥22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰15 ,,所以1sin ()2(02)n nxf x x x ππ∞==-<<∑,为所求. 4.解:要展开为余弦级数,需对函数进行偶延拓,即定义函数1cos 02()cos ,02x x f x x x ππ⎧≤≤⎪⎪=⎨⎪-≤≤⎪⎩,,并将1()f x 以2π周期延拓到整个数轴,得到偶函数()g x . 对()g x 进行傅里叶展开,显然有0n b =,且0024cos d 2x a x πππ==⎰,2024(1)cos cos d ()(=1,2,...)241nn x a nx x n n πππ-==--⎰,根据上述系数即可得到()g x 在整个数轴上的傅里叶展开式,由于()g x 连续,所以其傅里叶均收敛于()g x ,最后将展开式限制在[0,]π,既得()cos2xf x =的傅里叶展开式 2124(1)()cos ,[0,]41nn f x nx x n πππ∞=-=--∈-∑.4.解:将函数进行奇延拓,并求傅里叶系数:0(0,1,2,...)n a n ==,021sin [(1)1](1,2,...)42n n b nxdx n nπππ==---=⎰,因此函数()4f x π=的正弦级数展开式为11sin +sin 3sin 5...(0,)435x x x x ππ=++∈, 根据收敛性定理,在端点=0,=x x π处傅里叶级数收敛于零.令上式中的=2x π,即可得到1111 (4357)π=-+-+.第八节 一般周期函数的傅里叶级数1.填空:220011sin sin d 0|x nx nx x n n ππππ=-=⎰220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰16(1)-1()cos (0,1,2...)l n l n xa f x dx n l lπ==⎰-1()sin (1,2...)l n l n x b f x dx n l l π==⎰.(2)02()sin(n=1,2...)l n xf x dx l lπ⎰. 2.解:为展开为正弦级数,先将函数()f x 做奇延拓,其傅里叶系数为0(0,1,2,...)n a n ==;20222sin +(-)sin ll l n n x n xb x dx l x dx l l l lππ=⎰⎰224=sin2l n n ππ, 所以1()=sinn n n xf x b lπ∞=∑ 22224131517=(sin sin +sin sin +...)357l x x x xl l l l πππππ--, 由于()f x 连续,上述展开式对于任意的[0,]x l ∈均成立. 3.解:()2+||f x x =为偶函数,所以展为余弦级数,其系数为0(1,2,...)n b n ==,1002(2)d 5a x x =+=⎰,1222(cos 1)2(2)cos()(1,2,...)n n a x n x dx n n πππ-=+==⎰, 因为函数()2+||f x x =满足狄氏收敛定理,所以22152(cos 1)2||cos 2n n x n x n πππ∞=-+=+∑ 2225411(cos cos3cos5...)()235x x x x ππππ=-+++-∞≤≤∞. 令上式中的=0x ,可得2222111 (8135)π+++=,又2222222=11111111(...)(...)135246n n ∞=+++++++∑ 2222221111111(...)(...)4135123=+++++++所以22222=114111=(...)=36135n nπ∞+++∑.第十二章 自测题1.填空:17 (1)仍收敛于原来的和s .(2) 均收敛 ; 均发散 . (3)_1_;_2__.(4)34, 12, 34. 2.选择:(1)C .(2)A (提示:使用阿贝尔定理).(3)D (提示:ln ln ln 2ln ln 2ln 22()n n n e e n λλλλ--⋅--===). (4)B .(5)A . (6)C .3.判别下列级数的敛散性,若收敛指出绝对收敛或条件收敛: (1)解:根据正项级数的根值审敛法,有(!)lim n n n n →∞=+∞, 所以,原级数发散.(2)解:因为2211sin 4n n n π≤,而211n n∞=∑收敛, 所以原级数收敛且绝对收敛.(3)解:这是一个交错级数,由于(1)11=-ln -ln n n n n n n-≥,所以不是绝对收敛.因为111ln(1)ln n n n n-+-+-1ln(1)10(ln )[1ln(1)]n n n n n +-=<-+-+,且1lim=0ln n n n→∞-,根据莱布尼兹定理,级数收敛,即原级数条件收敛.(4*)解:根据比值审敛法,有1(1)lim ||lim ||1n pp n n n pa n n a a n a n +→∞→∞+⎛⎫== ⎪+⎝⎭, 所以,当||<1a 时,即11a -<<时,级数绝对收敛; 当||1a >,根据罗比达法则可知212+++ln (ln )lim lim lim(1)x x x p p p x x x a a a a a x px p p x --→∞→∞→∞=-, 因为p 是常数,有限次使用罗比达法则,可求出上述极限为无穷,因此lim np n a n→∞=∞,所以原级数发散;当1a =时,级数既为11pn n∞=∑,此时若01p <≤时,原级数18 发散,若1p >原级数收敛且绝对收敛;当1a =-时,级数既为1(1)npn n∞=-∑,此时,若01p <≤时,根据莱布尼兹定理可知,原级数条件收敛,若1p >时,根据比较审敛法可知,原级数绝对收敛.4.解:因为11113+(2)[3+(2)]1lim lim 3+(2)(1)[3+(2)]n n n n n nn n n n n n n n++++→∞→∞--+=-+-12[1+()]3lim 3112(1)[1+()]33n n nn +→∞-==+⋅⋅-,所以,级数的收敛半径为13,收敛区间为42(,)33--;在端点4=3x -处,级数为12(1)+()3nnn n ∞=-∑,因为级数11(1)21,()3n n n n n n ∞∞==-⋅∑∑均收敛,所以在此点处,原级数收敛; 在端点2=3x -处,级数为121+()3nn n ∞=-∑,因为级数11,n n ∞=∑发散,而121()3nn n∞=-⋅∑收敛,所以在此端点处,原级数发散; 综合得,原级数的收敛域为42[,)33--. 5.解:先利用比值审敛法求幂级数的收敛域.因为2+222(2+2)!lim =lim (2+2)(2+1)(2)!n n n n x x n n n xn →∞→∞=+∞, 所以级数的收敛域为(,)-∞+∞;令22420()1......(2)!2!4!(2)!n nn x x x x s x n n ∞===+++++∑, 则3521()+......3!5!(21)!n x x x s x x n -'=++++-,所以 234()()1......2!3!4!!nx x x x x s x s x x e n '+=+++++++=,19 即()()x s x s x e '+=,这是一个一阶线性微分方程,解之得1()+2x x s x ce e -=.又因为(0)1s =,带入求得常数12c =,所以幂级数的和函数为11()(,)22x xs x e e x -=+∈-∞+∞,.6.解:因为2ln(12)ln(1)ln(12)x x x x +-=-++,而11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,所以,=1ln(1)(11)nn x x x n∞-=--≤<∑,1=1(1)211ln(12)()22n n n n x x x n -∞-+=-<≤∑,于是得出原函数的展开式为12=1(1)2111ln(12)=()22n n n n x x x x n -∞--+--<≤∑.7.解:为展开为正弦级数,先将函数()f x 在[,0)π-上做奇延拓,再延拓到整个数轴,并求傅里叶系数0(0,1,2...)n a n ==, 02()sin d n b f x nx x ππ=⎰202sin d x nx x ππ=⎰221sincos (1,2,...)22n n n n n πππ=-=, 因此可得函数()f x 在[0,)π的傅里叶级数2=121()(sincos )sin ([0,),)222n n n f x nx x x n n πππππ∞=-∈≠∑, 由于3=2x π-为函数的不连续点,根据狄氏收敛性定理,和函数在3=2x π-处的值3()2s π-为左右极限的均值,即31()=24s ππ-,而5=4x π是函数的连续点,在此点处,收敛于(延拓后的)函数()f x ,即5()=04s π.8.考研题练练看:(1)C .解析:幂级数1(1)k kk ax ∞=-∑的收敛域中心为1x =,而20 =1(1,2,...)n n k k S a n ==∑无界表明1(1)k k k a x ∞=-∑在2x =发散,因此幂级数的收敛半径1R ≤,同时,根据莱布尼兹定理,数列{}n a 单减且收敛于0,表明1(1)kkk ax ∞=-∑在0x =收敛,因此幂级数的收敛半径1R ≥,综合得收敛半径为=1R ,因此选C . (2)A .解析:若1n n u ∞=∑收敛,则对其任意项加括号后仍收敛,其逆命题不一定成立,所以选A . (3)D .解析:=11(1)a n n ∞-∑绝对收敛,即1=121a n n∞-∑收敛,所以32α>,又由2=1(1)n a n n ∞--∑条件收敛可知12α≤<,所以选D .(4)C .解析:根据题意,将函数在[]1,1-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1,(0,1)2()1,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,其傅里叶级数以2为周期,则当()1,1x ∈-且()f x 在x 处连续时,()()S x f x =,所以 91111()()()()44444S S S f -=-=-=-=-.(5)D .解析:因为1P >时,=11P n n ∞∑收敛,且lim =lim 1Pn n n n Pa n a n →∞→∞存在,所以=1nn a∞∑收敛.(6)解:先求收敛域.222212(1)212+1lim lim 12+1(1)21n n n n n nxn n x x n x n +-→∞→∞--==<--,即11x -<<时级数绝对收敛;当=1x ±时,级数为1=1(1)21n n n -∞--∑,根据莱布尼兹定理,可知21此级数收敛,因此原级数的收敛域为[1,1]-.为求和函数,设112211=1(1)(1)()2121n n n n n n s x x x xn n --∞∞-=--==--∑∑, 令1211=1(1)()21n n n s x xn -∞--=-∑,则 1212112=1=1(1)1()=() (11)211n n n n n s x x x x n x -∞∞--'⎛⎫-'=-=-<< ⎪-+⎝⎭∑∑, 两端同时积分,得11201()(0)d arctan (11)1xs x s x x x x -==-<<+⎰,明显1(0)0s =,所以1()arctan (11)s x x x =-<<,既得()arctan (11)s x x x x =-<<,又因为=1x ±时,()arctan s x x x ,都有定义,且连续,所以()arctan (11)s x x x x =-≤≤.(7)B.(8)解:先求收敛域.22224(+1)4(+1)321lim 12(1)1443n n n n x x n n n →∞+++⋅⋅=<++++, 即11x -<<时级数绝对收敛;当=1x ±时,级数为2=044321n n n n ∞+++∑,发散,因此幂级数的收敛域为11x -<<.为求和函数,设2222=0=0443(21)2()==2121n nn n n n n S x x x n n ∞∞++++++∑∑,所以22=0=02()=(21)21nn n n S x n xx n ∞∞+++∑∑,令2212=0=02()=(21)()21nn n n S x n x S x x n ∞∞+=+∑∑,,对1()S x 两端积分得210=0()d =(21)d xx nn S x x n x x ∞+∑⎰⎰212=0= (11)1n n xx x x∞+=-<<-∑, 两端求导得212221()= (11)1(1)xx S x x xx '+⎛⎫=-<< ⎪--⎝⎭;22因为212=02()21n n xS x x n ∞+=+∑,两边求导得 222=02[()]2 (11)1n n xS x x x x ∞'==-<<-∑, 再对两端积分得22021()0(0) ln (11)11xxxS x S dx x xx +-⋅==-<<--⎰,所以211()ln((1,0)(0,1))1xS x x x x+=∈-⋃-, 又因为=0x 时,12(0) 1.(0)2S S ==,综合可得和函数为222111ln ,(1,0)(0,1)()1(1)3, 0x xx S x x xx x ⎧+++∈-⋃⎪=--⎨⎪=⎩. (9)(i)证明:由题意得1=1()n nn S x na x∞-'=∑,22=2=0()(1)(1)(2)n nn n n n S x n n a xn n a x ∞∞-+''=-=++∑∑,2(1)0n n a n n a ---=,2=(1)(2)(0,1,2...)n n a n n a n +∴++=, ()=()S x S x ''∴,即()()0S x S x ''-=.(ii) 解:()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而特征根为1λ=±,于是其通解为12()x xS x C e C e -=+,由0(0)3S a ==,1(0)1S a '==得1212123121C C C C C C +=⎧⇒==⎨-+=⎩,,所以()2x x S x e e -=+. (10)解:(1)证明:由cos cos n n n a a b -=,及0,022n n a b ππ<<<<可得0cos cos 2n n n a a b π<=-<,所以02n n a b π<<<,由于级数1nn b∞=∑收敛,所以级数1nn a∞=∑也收敛,由收敛的必要条件可得lim 0n n a →∞=.(2)证明:由于0,022n n a b ππ<<<<,23 所以sin ,sin 2222n n n n n n n na b a b b a b a ++--≤≤2222sin sin cos cos 22222222n n nnn n n n n nn n n nn n n nn n n a b b a a a b b b b a b b a b a b b b b b +--==+--≤=<=由于级数1nn b∞=∑收敛,由正项级数的比较审敛法可知级数1nn na b ∞=∑收敛. (11)解:由于1lim1n n na a +→∞=,所以得到收敛半径1R =. 当1x =±时,级数的一般项不趋于零,是发散的,所以收敛域为()1,1-.令和函数)(x S =0(1)(3)n n n n x ∞=++∑,则2111()(43)(2)(1)(1)nn n nn n S x n n x n n x n x ∞=∞∞===++=++++∑∑∑211123"'3"'11(1)n n n n x x x x x x x x ∞∞++==⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-⎛⎫=+= ⎪ ⎪---⎝⎭⎝⎭∑∑。

高数第十二章常系数齐次线性微分方程

高数第十二章常系数齐次线性微分方程
yC1er1xC2er2x
C1,C2是 任 意 常 数 .
6
2 .特 征 根 是 实 重 根 的 情 形
r p (二重), 2
则 y 1 e r x 是 微 分 方 程 的 一 个 解 ,要 求 方 程 的 通 解 , 只 令 需 y y再 1 2 求 u 一 (x 个 ),解 则 y2y ,2 且 y yy 1 21不 u(是 x)常 数 erx .u(x),
12
例 1 求 微 分 方 程 y 2 y 3 y 0 的 通 解 . 解 特征方程为
r2 2r30,
解 得 特 征 根 r 1 1 ,r 2 3 , 故 所 求 方 程 的 通 解 为
yC1exC2e3x. C1,C2是 任 意 常 数 .
13
例 2 求 方 程d2s2dss0满 足 初 始 条 件 dt2 dt
y1

1 2 ( y1

y2 )
ex cosx
y2

1 2i ( y1
y2 )
ex sinx
9
y1,y2仍 是 微 分 方 程 的 解 .且
y1 y2
eexxcsoinsxxcotx
不是常数. 于 是 微 分 方 程 的 通 解 为
y e x (C 1c o sx C 2s inx )
则 (1 )的 通 解 即 可 求 得 :
yC1y1C2y2
2
分 析 : 一 阶 常 系 数 齐 次 线 性 微 分 方 程
dy ay 0 dx 有 形 如 y e a x 的 解 ( 通 解 y C e a x 中 C 1 ) ,
猜 想 : 假 如 方 程 ( 1 ) 也 有 指 数 形 式 的 解

张宇2013考研数学辅导讲义高等数学12章习题详解理工类

张宇2013考研数学辅导讲义高等数学12章习题详解理工类

" $
" "4
%"!
" $
!
'1!
" $
%
+ + !("分析!显然 !!*!或 !!"! #!" #!*%
当"!"时!为可去间断点!'+,-"*"###!(! "("
'#!*!!!"%
!)"分析!+,"((#
$""#!"+,(-(#&0,&1"&"%"+,(-(#&"!"!&%&!!
+,-
"((%
当$'"%"!''%""#'%""'!''%""#'"%"'%"#"
当'()得 ('!*#"%
&"分析!令)!
" "
则原式!+,)(%)
)""#%**))!+),(-)"#*)*)!#"%
'"分析!原式!+",(-("*""##."/0#"&%*"&.#/"0"!+",(-("*"#"" &#"&$%&./0"

华东理工大学高等数学作业答案第12章

华东理工大学高等数学作业答案第12章

第 12 章 (之1)(总第67次)教学内容: §12.1二重积分概念与性质 **1.解下列各题:(1) 若D 是以)1,0(),0,1(),0,0(===B A O 为顶点的三角形区域,利用二重积分的几何意义可得到y x y x Dd d )1(⎰⎰--=___________.答:61(2) 设f (t )为连续函数,则由平面 z =0,柱面122=+y x 和曲面)(2xy f z= 所围立体的体积可用二重积分表示为___________________________________________. 答:⎰⎰≤+1222d d )(y x y x xy f .(3) 设⎰⎰≤+++=122sin cos 1d d y x y x yx I 则I 满足 ( ) (A) 232≤≤I (B) 32≤≤I(C) 21≤≤I D (D)01≤≤-I答:(A).(4) 设σd y x I D⎰⎰+=)ln(1,σd y x I D⎰⎰+=22)(及σd y x I D⎰⎰+=)(3其中D 是由直线 x =0,y =0,21=+y x 及1=+y x 所围成的区域,则I 1,I 2,I 3的大小顺序为 ( )(A) I 3<I 2<I 1; (B) I 1<I 2<I 3; (C) I 1<I 3<I 2; (D) I 3<I 1<I 2.答:(B ).(5) 设),0(:222>≤+a a y x D 当________=a 时,π=--⎰⎰dxdy y x a D222.(A ) 1; (B) 323; (C) 343; (D) 321 .答:(B ).**2.解下列问题:(1) 利用二重积分性质,比较二重积分的大小:⎰⎰+Dy x e σd 22与⎰⎰++Dy x σd )1(22,其 中,D 为任一有界闭区间.解:令 22y x u +=,且()()u e u f u +-=1,则有()1'-=ue uf .∵0≥u ,∴ ()0',01≥≥-u f e u即, ()u f 是增函数.∵ ()0100=-=e f , ∴ ()()00≥-f u f 即 ()01≥+-u e u,∴22122y x e y x++≥+, 因此()⎰⎰⎰⎰++≥+DDy x d y x d e σσ22122.(2) 利用二重积分性质,估计二重积分的值:⎰⎰++Dy x σd )1(22,}144169),{(22≤+=y x y x D . 解:先求出目标函数()1,22++=y x y x f 在区域()⎭⎬⎫⎩⎨⎧≤+=1916,22y x y x D 上的最小值和最大值,由于区域D 上的点到坐标原点()0,0=O 的距离为22y x +,∴4040222=+≤+≤y x ,∴()17,1≤≤y x f ,又因为该区域的面积为 ππ1243=⨯⨯=D ,∴ ()ππσπ2041217,12=⨯≤≤⎰⎰Dd y x f .***3.试利用积分值与积分变量名称无关,解下列问题: (1)⎰⎰≤+-1322d d )sin(y x y x y x ;解:因为I x y x y y x y x I x y y x -=-=-=⎰⎰⎰⎰≤+≤+13132222d d )sin(d d )sin(,所以0=I .(2) ⎰⎰≤≤++1,122d d e e e e y x yx yx y x b a . 解:⎰⎰⎰⎰≤≤≤≤++=++=1,11,12222d d e e e e d d e e e e x y x y xy y x yx yx x y b a y x b a I , ⎥⎥⎦⎤⎢⎢⎣⎡+++++=⎰⎰⎰⎰≤≤≤≤1,11,12222d d e e e e d d e e e e 21x y xy xy y x y x y x x y b a y x b a I )(2d d 2d d e e e )(e )(211,11,12222b a y x b a y x b a b a y x y x y x y x +=+=++++=⎰⎰⎰⎰≤≤≤≤.***4. 设),(y x f 是连续函数,试利用积分中值定理求极限⎰⎰≤+→222d ),(1lim20r y x r y x f r σπ.解:积分区域 222:r y x D ≤+ 为有界区域,且 ()y x f , 连续, ∴ 由积分中值定理可知:存在点()D ∈ηξ,,使得()()DDSf d y x f ηξσ,,=⎰⎰,即:()()ηξπσ,,2222f r d y x f r y x =⎰⎰≤+,又 ∵ 当0→r 时,()()0,0,→ηξ,且()y x f ,在()0,0连续.∴ ()()0,0,1lim22220f d y x f r r y x r =⎰⎰≤+→σπ.第 12 章 (之2)(总第68次)教学内容 : §12.2.1 二重积分在直角坐标系下的计算方法 1.解下列各题:**(1)设),(y x f 是连续函数,则()+⎰⎰--x y x f y y a aya ad ,d 222220()y y x f dy y a a a d ,2202⎰⎰-()0>a 可交换积分次序得___________________________.答:原式=⎰⎰--ax a ax a y y x f x22222d ),(d .**(2)设),(y x f 是连续函数,则二次积分⎰⎰++-2111d ),(d x x y y x f x ( )(A )⎰⎰--1110d ),(d y x y x f y ⎰⎰--+11212d ),(d y x y x f y ; (B )⎰⎰--1110d ),(d y x y x f y ;(C) ⎰⎰--1110d ),(d y x y x f y ⎰⎰---+11212d ),(d y x y x f y ; (D)⎰⎰---11202d ),(d y x y x f y .答:(C)**(3)设()y x f ,是连续函数,交换二次积分()dy y x f dx x e⎰⎰ln 01,的积分次序的结果为( )(A )()dx y x f dy xe ⎰⎰ln 01,; (B) ()dx y x f dy xe ⎰⎰ln 01,;(C) ()dx y x f dy xe ⎰⎰ln 01,; (D)()dx y x f dy eey ⎰⎰,1.答:(D)**(4)设),(y x f 是连续函数,则积分⎰⎰⎰⎰-+xx y y x f x y y x f x 20211d ),(d d ),(d 2可交换积分次序为 ( ) (A )()+⎰⎰dx y x f dy y 010,()dx y x f dy y⎰⎰-2021,; (B )()+⎰⎰dx y x f dy x 21,()dx y x f dy x⎰⎰-2021,;(C )⎰⎰-yydx y x f dy 210),(;(D )()dx y x f dy xx ⎰⎰-212,.答: (C )**(5)设函数()y x f ,在122≤+y x 上连续,使()()dyy x f dx dxdy y x f x y x ⎰⎰⎰⎰-≤+=2221011,4,成立的充分条件是 ( ) (A )),(),(y x f y x f =-, ),(),(y x f y x f -=-;(B )),(),(y x f y x f -=-,),(),(y x f y x f =-; (C )),(),(y x f y x f -=-,),(),(y x f y x f -=-; (D )),(),(y x f y x f =-,),(),(y x f y x f =-. 答:(D ).2.画出下列各题中给出的区域D ,并将二重积分化成两种不同顺序的二次积分(假定 在区域上连续). **(1)D 由曲线2,,1===x x y xy 围成;解:()()()dx y x f dy dx y x f dy dy y x f dx I yx yx⎰⎰⎰⎰⎰⎰+==2212121,,,1211**(2)()(){}11,1max ,≤≤--=y x x y x D解:()()()dxy x f dy dy y x f dx dy y x f dx I yyx x⎰⎰⎰⎰⎰⎰+---=+=1111121111,,,**(3) D :1≤+y x ,1≤-y x ,0≥x .解:原式=⎰⎰--xx dy y x f dx111),(=⎰⎰⎰⎰-+-+011110),(),(y ydx y x f dy dx y x f dy .3.计算二次积分: **(1)⎰⎰-422222y xx dx edy .解:22,42:≤≤≤≤x yy D , 变换积分次序得x y x D 22,21:*≤≤≤≤, 原式()⎰⎰⎰-==--212222122222dx x e dy dx e xxxx x()ee x x e x xxx112d 212212222-==-=--⎰.**(2)⎰⎰--+-111221xdy y x x dx . 解:原式=dx y x x dy y⎰⎰-+-111221=dy y )1(31311⎰-- =21.4.计算下列二重积分 **(1)⎰⎰-Dyd 2σ,其中(){}y y x y x D 2,22≤+=;解:原式=238222202=-⎰⎰-y y ydx dy .**(2) 计算二重积分⎰⎰Dx dxdy e 2,其中D 是第一象限中由y =x 和y =x 3所围成的区域. 解:原式=⎰⎰xx x dy dx e 321=dx e x xex x )(2213⎰- =121-e .**(3) 计算二重积分⎰⎰-Dd y x σ12,其中}10),{(2x y y x D -≤≤=. 解:(){}10:10,2≤≤⇒-≤≤=y D x y y x D , 原式⎰⎰----=yydx x dy y 11211()()[]()()()()92192113213211111313111031021021011103=--=---=-=--+---=-=⎰⎰⎰⎰---y y d y dy y dy y y y y y x dy y y y**(4) 计算二重积分⎰⎰-Dy x σd ,其中{}20,10),(≤≤≤≤=y x y x D .解:直线x y =把区域D 分成1D (上)、2D (下)两个部分,⎰⎰⎰⎰⎰⎰-+-=-21)d ()d (d D D Dy x x y y x σσσ⎰⎰⎰⎰⎰⎰---=-+-=10021022100102d )(21d )(21d )(d d )(d x y x x x y y y x x y x y x xx xx 34231)d 22(123102=+-=+-=⎰x x x x x x .**(5) 计算二重积分⎰⎰+Dd y x x σ)sin(,其中D 由直线π=x 、抛物线x x y -=2及其在(0,0)点的切线围成.解:抛物线x x y -=2在(0,0)处切线斜率 1)0('-=y ,此切线方程为 x y -=,区域D:x x y x x -≤≤-≤≤2,0π,⎰⎰+Dd y x x σ)sin(⎰⎰--+=π2)sin(xx x dy y x x dx ⎰⎰--++=π2)()sin(xx xy x d y x x dxxx y xy y x x dx -=-=⎰+-=2)]cos([π⎰-=π2)cos 0(cos dx x x ⎰-=π2)cos 1(dx x x ππ202sin 2121x x -==2π.6.试利用积分区域的对称性和被积函数(关于某个单变量)的奇偶性,计算二重积分: **(1) ()⎰⎰++Dd c by ax σ,其中 (){}222,R y x y x D ≤+=,a ,b ,c 为常数. 解:()⎰⎰⎰⎰⎰⎰⎰⎰++=++DDDDcd byd axd d c by ax σσσσ,∵(){}222,R y x y x D ≤+=,既关于y 轴对称,又关于x 轴对称. 又∵()ax x f =为奇函数,()by y g =也为奇函数. ∴由积分区域对称性及被积函数的奇偶性可知:0,0==⎰⎰⎰⎰DDbyd axd σσ.**(2) ()⎰⎰+++Ddxdy x yx x 652111,其中(){}20,1,≤≤≤=y x y x D .解:()⎰⎰⎰⎰⎰⎰++++=+++DD D dxdy x y x dxdy x x dxdy x y x x 6762652111111,∵(){}20,1,≤≤≤=y x y x D ,关于y 轴对称,又()6711,x y x y x u ++=,关于x 为奇函数, ∴01167=++⎰⎰Ddxdy x yx ,∴ ()⎰⎰⎰⎰⎰⎰+=+=+++-2062116265211111dy x x dx dxdy x x dxdy x y x x DD ()3arctan 34d 1134d 122103103231062π==+=+=⎰⎰xx x x x x .第 12 章(之3)(总第69次)教学内容: §12.2.2 二重积分在极坐标系下的计算方法1. 填空与选择 **(1) 设D :20,10πθρ≤≤≤≤,根据二重积分的几何意义,则___________d θd 1D2=-⎰⎰ρρρ.答:π61.**(2) 设区域D 是x 2+y 2≤1与x 2+y 2≤2x 的公共部分,试写出⎰⎰Ddxdy y x f ),(在极坐标系下先对ρ积分的累次积分_________________.解:记ρθρθρθρ)sin ,cos (),(f F =,则ρθρθρθρθρθρθππθππππθd ),(d d ),(d d ),(d 23cos 2033132cos 20⎰⎰⎰⎰⎰⎰++---F F F .**(3)若区域D 为(x -1)2+y 2≤1,设ρθρθρθρ)sin ,cos (),(f F =, 则二重积分⎰⎰D y x y x f d d ),(化成累次积分为 ( )(A)ρθρθπθd ),(d 0cos 20⎰⎰F ; (B) ρθρθππθd ),(d cos 20⎰⎰-F ;(C)ρθρθππθd ),(d 22cos 20⎰⎰-F ; (D) ρθρθπθd ),(d 220cos 20⎰⎰F .答:(C ).** (4)若区域D 为x 2+y 2≤2x ,则二重积分dxdy y x y x D22)(++⎰⎰化成累次积分为( ) (A)⎰⎰+-θππρρθρθθθcos 2022d cos 2)sin (cos d ;(B)⎰⎰+θπρρθθθcos 2030d d )sin (cos ;(C) ⎰⎰+θπρρθθθcos 2030d d )sin (cos 2; (D)⎰⎰-+θππρρθθθcos 20322d d )sin (cos .答:(D ).2.化下列二重积分为极坐标下的二次积分 **(1)⎰⎰Dd xy f σ)(,其中 }1,10),{(2≤≤≤≤=y x x y x D .解:令θρθρsin ,cos ==y x在区域D1上2)cos (sin θρθρ=即)20(cos sin 2πθθθρ≤≤=,在区域D2上1sin =θρ即)20(sin 1πθθρ≤≤=,ρρθθρρρθθρθσππθπθθd f d f d d xy f D⎰⎰⎰⎰⎰⎰+=24sin 1024cos sin 02)cos sin ()cos sin ()(2.**(2).⎰⎰+Dd y x f σ)(,其中}10,2),{(2≤≤-≤≤=y y x y y x D .解:令θρθρsin ,cos ==y x ,由θθρθρθρ222cos sin )cos (sin =⇒=⇒=x y ,由 2222=⇒=+ρy x ,θθθθ22cos 2sin 2cos sin =⇒=, θθ42cos 2cos 1=-,解得:421cos 2πθθ==,, ⎰⎰⎰⎰+=+402cos sin 2)sin cos ()(πθθρρθρθρθσd f d d y x f D.3. 用极坐标计算下列积分 **(1)dy y x dx x xx ⎰⎰--+22442210;解:将二次积分⎰⎰--+2244221x x x dy y x dx 看作二重积分⎰⎰Dd y x f σ),(化来,224410:x y x x x D -≤≤-≤≤,,令θρθρsin ,cos ==y x ,则: 2cos 4≤≤ρθ, 如图,两圆交点)3,1(),(=y x ,即)3,2(),(πθρ=,所以⎰⎰--+2244221x x x dy y x dx ⎰⎰⋅=232cos 4ππθρρρθd d⎰⎰-==233232cos 43)cos 36438()31(ππππθθθθρd d ⎰--⨯=232sin )sin 1(364638ππθθπd ]3sin 2sin [31364)3sin 2(sin 3649433)()(πππππ-⋅+--=38912894+-=π.**(2)⎰⎰-2122arctany ydx xydy . 解:()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤-≤≤=220,1,2y y x y y x D ()⎭⎬⎫⎩⎨⎧≤≤≤≤=40,10,πθρθρ,∴64arctan 2104012202πθρρθθπ=⋅=⎰⎰⎰⎰-d d d dx x y dy y y.**4.设),(y x f 是连续函数,将二次积分ρρθρθρθρρθρθρθππππd )sin ,cos (d d )sin ,cos (d 43222⎰⎰⎰⎰+-aa f f ,)0(>a化为在直角坐标系下先对y 后对x 的二次积分.解:原式=⎰⎰⎰⎰------+0220222222),(),(a x a xax a x a dy y x f dxdy y x f dx.5. 计算下列二重积分***(1)⎰⎰+Dx y d yx eσ22arctan ,其中}3,41),{(22x y x y x y x D ≤≤≤+≤=. 解:在极坐标变换θρθρsin ,cos ==y x 下,x y x 3≤≤,有3tan 1≤≤θ,即34πθπ≤≤,又 4122≤+≤y x , 则 412≤≤ρ,即21≤≤ρ,所以⎰⎰+Dxy d y x eσ22arctan⎰⎰⎰==3421)arctan(tan 34ππθθππθρρθd e d e d 4334ππππθe e e -==. ***(2)⎰⎰Dxydxdy e,其中(){}x y x xy y x D 2,21,≤≤≤≤=.解:⎰⎰=θθθθθθρπρρθsin cos 2sin cos 1cos sin 2arctan 42d ed I⎰⎥⎥⎦⎤⎢⎢⎣⎡=2arctan 4sin cos 2sin cos 1sin cos 2sin cos 121πθθθθθθρθθθd e()⎰-=2arctan 421sin cos 121πθθθd e 2ln 22e e -=6. 计算下列平面区域的面积:*(1) 计算由抛物线y =x 2及直线y =x +2围成区域的面积.解: ∵x 2 = x +2 即 x =-1, x =2. ∴交点为(-1,1)与(2,4)A=⎰⎰-+2122x xdy dx=⎰--+212)2(dx x x =214.**(2) }cos 121|}cos ,cos {(ϕρϕρϕρ+≤≤=D . 解:⎰⎰=Dd A σ。

高等数学-课后习题答案第十二章

高等数学-课后习题答案第十二章

习题十二1.写出下列级数的一般项:(1)1111357++++;(2)2242468x x ++++⋅⋅⋅⋅;(3)35793579a a a a -+-+;解:(1)121n U n =-;(2)()2!!2nn xU n =;(3)()211121n n n a U n ++=-+;2.求下列级数的和:(1)()()()1111n x n x n x n ∞=+-+++∑;(2)1n ∞=∑;(3)23111555+++;解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n Sx x x x x x xx x n xn x n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-= ⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x + (2)因为n U =-从而(11n S n =-+-+-++-+=-=+-所以lim 1n nS →∞=1(3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14.3.判定下列级数的敛散性:(1)1n ∞=∑;(2) ()()11111661111165451nn +++++⋅⋅⋅-+;(3)()23133222213333nn n --+-++-;(4)155n +++;解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2) 1cos 2nn nx∞=∑;(3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+,∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛. (3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性.(1)()()111465735n n ++++⋅⋅++;(2)22212131112131n n +++++++++++(3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a ∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵()()21135n U nn n =<++而211n n∞=∑收敛,由比较审敛法知1nn U∞=∑收敛.(2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n →∞→∞=⋅=而1π3nn ∞=∑收敛,故1πsin 3n n ∞=∑也收敛. (4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛.当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121limln 211nx n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1)213nn n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333331222322nnn +++++⋅⋅⋅⋅;(1) 12!n nn n n ∞=⋅∑解:(1)23n nn U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2)()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3)()()11132lim lim 2313lim 21312n n n n nn n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=>所以原级数发散.(4)()()1112!1lim lim 2!1lim 21122lim 1e 11n n n n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4)1nn n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散.(2)()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==< ⎪-⎝⎭,故原级数收敛.(4) lim n n n b b a a →∞==,当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,b a=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1-+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 234111*********5353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑.解:(1)()11n n U -=-,级数1nnU ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121n n n U n∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1limln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅民,显然1111115353n nn n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n n U U n ++→∞→∞==+∞+.故可得1n nU U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛.当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n n n ⎛⎫⋅>++++ ⎪⎝⎭而11n n ∞=∑发散,由此较审敛法知级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散.记1111123n U n n ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x →∞→∞⎛⎫=++++ ⎪⎝⎭=⎰由0111lim d lim 01t t t t x t x →+∞→+∞==⎰知lim 0nn U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1)()1!1nn x n ∞=-∑,x ∈[-3,3];(2)21n n x n ∞=∑,x ∈[0,1];(3) 1sin 3nn nx∞=∑,x ∈(-∞,+∞);(4) 1!nxn e n -∞=∑,|x |<5;(5)1n ∞=,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx nn ≤,x ∈[0,1],而211n n ∞=∑收敛,所以原级数在[0,1]上一致收敛.(3)∵1sin 33n nnx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛.(4)因为5!!n nx ee n n -≤,x ∈(-5,5),由比值审敛法可知51!n n e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)531n≤,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1nn Vx ∞=∑在Ⅰ上一致收敛时,级数()1nn Ux ∞=∑在这区间Ⅰ上也一致收敛.证:由()1nn Vx ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1nn Ux ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知()1nn Ux ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑;解:(1)因为11lim lim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n∞=-∑,由lim(1)0n x nn →-≠知级数1(1)nn n∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1eR ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n n n n n ∞=∑;应用洛必达法则求得()10e e1lim 2x x x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+=所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212nn t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]12.利用幂级数的性质,求下列级数的和函数:(1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑; 解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑则()1011xn n x S x x x ∞===-∑⎰于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x ++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑,故()1011d ln 21xx S x x x +'=-⎰即()()1111ln 021x S S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x +==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)f (x )=ln(2+x ); (2)f (x )=cos 2x ;(3)f (x )=(1+x )ln(1+x );(4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-;(7)f (x )=e x cos x ; (8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1) 故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()110ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞) 得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞)(3)f (x )=(1+x )ln(1+x )由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()11200111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n nn n x n ∞=-=+-∑(-1≤x ≤1)故()()()()221!!2111!!2nn n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n xf x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞) 得()01e!n n xn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()000211e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为ecos xx 为()()1e cos sin xxi ex i x +=+的实部,而()()[]()10002011!1!ππcos sin !44ππ2cos sin !44n xi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎤⎫=+⎪⎥⎭⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑取上式的实部.得20π2cos4cos !nx nn n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2)14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑ 所以()()()()()2110011013244321146223n nn n n n n n n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()f x =(x -1)的幂级数.解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nn n nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x xn -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-,故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.50arctan d xx x ⎰(误差不超过0.001)的近似值.解:由于()3521arctan 13521n n x x x x x n +=-+-++-+,(-1≤x ≤1)故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x xx n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈.因此0.5350arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑; (2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑;(3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnn nnn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭而()22211221lim lim 10111nnn n n n n n n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥ ⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn n n ∞=⎛⎫⎪+⎝⎭∑发散,由比较审敛法知原级数发散.(2)∵2cos 3022n nnx n n ⎛⎫ ⎪⎝⎭<≤由比值审敛法知级数12nn n ∞=∑收敛,由比较审敛法知,原级数21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑收敛.(3)∵()()ln ln 220313nn n n n ++<<⎛⎫+ ⎪⎝⎭由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=<知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛.19.若2lim n n n U →∞存在,证明:级数1nn U∞=∑收敛.证:∵2lim nn n U →∞存在,∴∃M >0,使|n 2U n |≤M ,即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛.20.证明,若21nn U ∞=∑收敛,则1nn U n∞=∑绝对收敛.证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n ∞=∑收敛,知22111122nn U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛,因而1nn U n∞=∑绝对收敛.21.若级数1nn a∞=∑与1nn b∞=∑都绝对收敛,则函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n nU a nx b nx a nx b nx a b x =+≤+≤+由于1nn a∞=∑与1nn b∞=∑都绝对收敛,故级数()1nnn ab ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 111nnn x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12n n n x ∞=+∑;(3)()2112nnn x n ∞=-⋅∑解:(1)111limlim 11lim lim lim 22e e n n nn nn nnn n n a a n n n ρ+→∞+→∞→∞→∞→∞-==⋅⎝⎭⎛⎫+++⎛⎫=⋅⋅ ⎪++⎝⎭=⋅=∴1R ρ==,又当x =时,级数变为()111311333n nnn n n n n n ∞∞==⎛⎫⎛⎛++=±± ⎪ ++⎝⎭⎝⎭⎝⎭∑∑,因为3lim 033nn n n →∞⎛⎫+=≠ ⎪+⎝⎭所以当3x =±,级数发散,故原级数的收敛半径3R =,收敛域(-3,3).(2)111ππsin122lim limlim ππ2sin 22n n n n n n nnn aa ρ+++→∞→∞→∞====故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n →∞→∞⋅==≠.所以当(x +1)=±2时,级数()1πsin 12n n n x ∞=+∑发散,从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3)()212121lim lim 221n n n n n n a n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3.当x =-1时,级数变为()2111nn n ∞=-∑,其绝对收敛,当x =3时,级数变为211n n∞=∑,收敛.因此原级数的收敛域为[-1,3].23.将函数()0arctan d xtF tx t =⎰展开成x 的幂级数.解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n n n x ∞=-+∑,x ∈[-3,+∞);(2)1n n n x∞=∑,x ∈(2,+∞);(3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113nn n x ∞=-+∑在[-3,+∞)上一致收敛.(2)当x >2时,有2n nn nx =<由1112lim 122n n nn n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1nn nx∞=∑在(2,+∞)上一致收敛.(3)∀x ∈R 有()()()22224322111nn n x n n n x n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛.25.求下列级数的和函数:(1)()211121nn n x n ∞-=--∑;(2)21021n n x n +∞=+∑;(3)()11!1n n nxn ∞-=-∑;(4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1]记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑所以()()11201d arctan 01xS S x xx x -==+⎰即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121x x x S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x +-=-,S (0)=0所以()11ln21xS x x +=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n nan +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n nS xx n ∞-==-∑则()()()111d e !!11nn xxn n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim 111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑, ()[]1111n n x xS x x ∞-=''==-∑ (x ≠1) 所以()[]()d ln 1xxS x x x ''=--⎰即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x'=--=--+⎰⎰即()()()1ln 1xSx x x x =--+当x ≠0时,()()111ln 1S x x x ⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1(∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭)综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+27.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n xn ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nxn ∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π(n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nxn n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()π0π12π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x n x x n x n x n n n n +⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42xf x x =--<<(2)()()sin 02πf x x x =≤≤解:(1)()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n --⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx xn -⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n ∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续,因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()π022ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1nn x n x x n n n n =+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑(0≤x ≤2π)30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx xn ==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n ∞=--+=∑(0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑(0≤x ≤π)31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑所以211π6n n ∞==∑ 32.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰故()()()22121π81cos π221n n xf x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n xx x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()102cos πd n a f x n x x=⎰,求52s ⎛⎫- ⎪⎝⎭.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1sin πn n s x b n x∞==∑,-∞<x <+∞,其中()102sin πd n b f x n x x=⎰(n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 21122x ⎛⎫-≤< ⎪⎝⎭; (2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩ 解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰,()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n xn +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn x a f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n x b f x xn x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑(x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2Tl T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211ed ed 212πe d e d 2ππsin e 2ππn T n i t li t lTT n ln n i t i t T T n i t T c u t t u t tl Th T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t Tn n h h n u t T n Tττ∞-=-∞≠=+∑(-∞<t <+∞,且3,22t ττ≠±±,…)37.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x ,试将f (x )展成傅里叶级数的复数形式. 解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n cf x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)38.求矩形脉冲函数(),00,A t T f t ≤≤⎧=⎨⎩其他的傅氏变换 解:()()()01e ed ed i x Ti xi xA F f t A t t i ωωωωω-+∞---∞-===⎰⎰39.求下列函数的傅里叶积分:(1)()e ,00,0t t f t t -⎧≥=⎨<⎩。

高数第十二章习题答案

高数第十二章习题答案
2 2
y 2 x 2 0 ( y y 2 x 2 Cx 2 )
2
2. x y x xy y
( y x tan(ln x C ) )
3.
( xy y ) cos 2
y
y 1 2y y x0 sin C ln x 2 ( x 2 ) x x
3 x2
D. 是特解
4. y 3 xy, y Ce 2 A. 是解
( C ) C. 是通解 D. 是特解
B. 不是解
四、求下列可分离变量的微分方程解: 1. ( xy x)dx ( y x y )dy 0 ( y 1 C ( x 1) )
2 2 2 2
2. y e
2
( D ) C. 是通解 D. 是特解
B. 不是解
2. y y 0, y 3sin x 4 cos x ( B ) A. 是解 B. 不是解
2 x
C. 是通解 ( B ) C. 是通解
D. 是特解
3. y 2 y y 0, y x e A. 是解 B. 不是解
2
二、指出下列微分方程的阶,同时指出它是线性的,还是非线性的: 1. x( y) 2 yy x 1 (一n x
2
(二阶线性微分方程)
1 y2 dy 3. dx 1 x 2 (一阶非线性微分方程)
4. (7 x 3 y ) dx ( x y ) dy 0 (一阶非线性微分方程) 三、指出下列各题中的函数是否为所给微分方程的解,如果是解,是通解,还是特解? 1. xy 2 y, y 5 x A. 是解
x y
5. (e
e x )dx (e x y e y )dy 0 ( (e x 1)(e y 1) C )

高数下第十二章级数

高数下第十二章级数
所有发散点的全体称为发散域.
3.和函数:
在收敛域上,函数项级数的和是x 的函数s( x) ,
称s( x)为函数项级数的和函数.
s( x) u1( x) u2 ( x) un ( x)
函数项级数旳部分和 sn ( x),
lim
n
sn( x)
s( x)
例 1
求级数
(1)n (
1
)n 的收敛域.
(2) n1 10n ; 1
1
(3)
.
n1 (2n 1) 2n

(1)
un1 un
(n 1)! 1
1
n1
0
(n ),
n!
故级数 1 收敛.
n1 n!
(2)
un1 un
(
n 1)! 10n1
10n n!
n1 10
(n ),
故级数
n! n1 10n
发散.
(3) lim un1 lim (2n 1) 2n 1, n un n (2n 1) (2n 2)
23
n

lim
n
un
0,
但发散.
练习:判别下列级数的敛散性
1. 1 1 1
1
13 35 57
(2n 1)(2n 1)
2、 1 1 1 1 ;
369
3n
3、(1 2
1) 3
1 (22
1 32
)
(
1 23
1 33
)
1 (2n
1 3n
) ;
4、 1 1 1 1 1 1 .
证明 (u1 u2 ) (u3 u4 u5 )
1 s2 , 2 s5 , 3 s9 ,

工科类本科《高等数学》第11,12章自测题参考答案

工科类本科《高等数学》第11,12章自测题参考答案

工科类本科《高等数学》第11,12章自测题参考答案1. 若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则()Lx y dx +=⎰43;(3)Lx y dy -=⎰ 2 . 解:L 的方程为2,x y y =从-1变到1,而2dx ydy =,于是()1111232211104()222043Lx y dx yy ydy y dy y dy y dy ---+=+⋅=+=+=⎰⎰⎰⎰⎰.()1111222111(3)33602Lx y dy y y dy y dy ydy y dy ----=-=-=-=⎰⎰⎰⎰⎰.注意:定积分的积分区间关于原点对称,考虑被积函数的奇偶性可以简化计算. 2.已知L 为圆周 122=+y x 沿逆时针方向,则曲线积分()(sin )xLey dx y x dy -++⎰=2π.解:计算封闭曲线积分,一般考虑用格林公式,这里(),sin ,112x Q P P e y Q y x x y ∂∂=-=+-=--=∂∂.于是()222211(sin )222xLx y x y ey dx y x dy dxdy dxdy π+≤+≤-++===⎰⎰⎰⎰⎰.注意:221x y dxdy +≤⎰⎰等于圆域221x y+≤的面积.3.若曲线积分()3222(cos )1sin 30Laxy y x dx ay x x y dy -+-+=⎰,则a =__2___.解:依题意,有Q P x y∂∂=∂∂,这里3222cos ,1sin 3,P axy y x Q ay x x y =-=-+2232cos ,cos 6.P Q axy y x ay x xy y x ∂∂=-=-+∂∂比较可得2a =. 4.若22xdy aydxx y-+在右半平面0x >内是某个函数的全微分,则a =__1__. 解:依题意,有Q P x y∂∂=∂∂,这里2222,,ay xP Q x y x y -==++ ()()()()()()2222222222222222222222,.a x y ay y x y x x P ax ay Q x y y x x y x y x y x y -++⋅+-⋅∂-+∂-+====∂∂++++ 比较可得1a =. 5.将()1x f x x +=展开为x 的幂级数1xx=+()1231, 1.n n x x x x x --+-+-+<或1xx=+()111,1n n n x x ∞-=-<∑.解:当1x <时,()()11x x f x x x =+--=为首项是x 公比为x -的等比级数,所以()()1123111, 1.1n n nn n xx x x x x x x∞--==-+-+-+=-<+∑6. 幂级数∑∞=1n 3n n x n的收敛半径R= 13,收敛域是11-33⎡⎫⎪⎢⎣⎭,.解:n n 113311,lim lim 33n n n n n n a n a R n a n +→∞→∞++===⋅=收敛半径,收敛区间是11-33⎛⎫⎪⎝⎭,,而当13x =-时,级数n 1131(1)n n n n x n n ∞∞===-∑∑是条件收敛的交错级数;当13x =时,级数n 1131n n n x n n∞∞===∑∑是发散的调和级数.故收敛域是11-33⎡⎫⎪⎢⎣⎭,.7.下列级数发散的是( A ).A.11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑; B. 211n n∞=∑; C. 115n n ∞=∑; D. 111(1)2n nn ∞-=-∑. 解:A.1ln 1n u n ⎛⎫=+ ⎪⎝⎭,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑发散.B 选项是p 级数,21p =>,故211n n∞=∑收敛.C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛.D选项是交错级数,而正项级数11111(1)22n n n n n ∞∞-==-=∑∑115q ⎛⎫=< ⎪⎝⎭是收敛的等比级数,故111(1)2n n n ∞-=-∑绝对收敛.8.下列级数收敛的是( C ). A.11sin n n ∞=∑; B. 1n ∞= C. 115n n ∞=∑;D. n ∞=解:A 选项1sin n u n =,取1n v n =,由lim 1n n nu v →∞=,而调和级数11n n ∞=∑发散,故11sin n n ∞=∑发散.B选项15nn u -==,由0lim 510n n u →∞==≠知级数n ∞=. C 选项是公比为15q =的等比级数,由115q =<知115n n ∞=∑收敛. D选项1151n n n∞∞===∑是p 级数,115p =<,故n ∞=. 9.计算曲线积分22(3)(3),Lx y dx y x dy +++⎰其中L 是从O(0, 0)沿上半圆224(0)x y x y +=≥到A(4,0)的曲线段.解:已知22(,)3,(,)3P x y x y Q x y y x =+=+,则3,3P Qy x∂∂==∂∂.因为P Qy x∂∂=∂∂,所以曲线积分与路径无关.选取x 轴上直线段OA 路径,此时0,y x =从0 到4,0dy =,于是44222300164(3)(3)33Lx y dx y x dy x dx x +++===⎰⎰. 10.计算曲线积分3(2)(2)Ly x dy x y dx +-+⎰其中L 是从A(2, 0)沿上半圆222(0)x y x y +=≥到O(0,0)的曲线段.解: 已知3(,)(2),(,)2P x y x y Q x y y x =-+=+,则2,2,4P Q Q P y x x y∂∂∂∂=-=-=∂∂∂∂. 为了使用格林公式,添加辅助直线段OA ,记它与L 所围成的区域为D,D 是上半圆域222,0x y x y +≤≥,且边界封闭曲线方向是规定的正向. 而直线段OA 方程为:0,y x =从0到2,此时0dy =.则 3(2)(2)Ly x dy x y dx +-+⎰33(2)(2)(2)(2)L OAOAy x dy x y dx y x dy x y dx +=+-+-+-+⎰⎰()2342001444D Ddxdy x dx dxdy x =--=+⎰⎰⎰⎰⎰1442 4.2ππ=⋅+=+(注Ddxdy ⎰⎰等于上半圆域D 的面积)11.设dy y xy x dx y xy x du )32()23(2222+--+-=,求原函数),(y x u . 解法一:已知2222(,)32,(,)(23)P x y x xy y Q x y x xy y =-+=--+, 而22,22P Q x y x y y x ∂∂=-+=-+∂∂.因为P Qy x∂∂=∂∂,所以曲线积分L Pdx Qdy +⎰与路径无关.取折线路线0AB :(0,0)(,0)(,)O A x B x y →→.其中直线段OA 方程为:0,y x =从0到x ,此时0dy =;直线段AB 方程为:,x x y =从0到y ,此时0dx =.则原函数 (,)OAB OAABu x y Pdx Qdy C Pdx Qdy Pdx Qdy C =++=++++⎰⎰⎰22203(23)xy x dx x xy y dy C =+--++⎰⎰3223x x y xy y C =-+-+解法二:已知2222(32),(23)u ux xy y x xy y x y∂∂=-+=--+∂∂,两式子分别对,x y 两边积分,有 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰,22223(,)(23)()u x y x xy y dy x y xy y x ψ=--+=-+-+⎰.从而,有 322223()()x x y xy y x y xy y x ϕψ-++=-+-+, 比较上式两边,有 33(),()y y C x x C ϕψ=-+=+.故 3223(,)u x y x x y xy y C =-+-+. 解法三:依题意,知2232u x xy y x ∂=-+∂(1), 22(23)ux xy y y∂=--+∂(2).(1)式两边对x 积分,得 22322(,)(32)()u x y x xy y dx x x y xy y ϕ=-+=-++⎰(3)(3)式两边对y 求偏导,得22()ux xy y yϕ∂'=-++∂ (4). 比较(2)、(4)式,得 2()3y y ϕ'=-,两边对y 积分,得 3()y y C ϕ=-+. 故 3223(,)u x y x x y xy y C =-+-+. 12.判别下列正项级数的敛散性:(1)12sin 3nn n π∞=∑;(2)2121n n n n ∞=+-∑;(3)13!n nn n n ∞=⋅∑;(4)121nn n n ∞=⎛⎫ ⎪+⎝⎭∑. 解:(1)()22sin2333nnn n nn u n πππ⎛⎫=⋅=→∞ ⎪⎝⎭,取23nn v ⎛⎫= ⎪⎝⎭.由23lim lim 23nn n n n nu v ππ→∞→∞⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,又已知等比级数122133n n q ∞=⎛⎫⎛⎫=< ⎪ ⎪⎝⎭⎝⎭∑收敛. 因此根据正项级数的比较判别法知 级数2sin3n nπ∑收敛.(2)221n n u n n =+-,取1n v n =. 由22lim lim 121n n n nu n v n n →∞→∞==+-,又已知调和级数1n ∑发散.因此根据正项级数的比较判别法知 级数221nn n +-∑发散.(3)13!n nn n n∞=⋅∑ 解:3!n n n n u n ⋅=,因为 ()()11131!13lim lim 3lim 3lim 13!1111nn n n n n n n n n n nn u n n u n n e n n +++→∞→∞→∞→∞⋅+⎛⎫=⋅===> ⎪⋅+⎝⎭+⎛⎫+ ⎪⎝⎭, 所以根据正项级数的比值判别法知 级数3!n nn n ⋅∑发散.(4)21n n n ⎛⎫ ⎪+⎝⎭∑ 解:21nn n u n ⎛⎫= ⎪+⎝⎭,因为1lim 1212n n n n →∞==<+, 所以根据正项级数的根值判别法知 级数21nn n ⎛⎫⎪+⎝⎭∑收敛.13.求下列幂级数的和函数:(1)111n n x n -∞=+∑;(2)11n n nx ∞-=∑. 解:(1)此幂级数的收敛半径为1,收敛区间为(1,1)-.设幂级数的和函数为()s x ,则11()1n n x s x n -∞==+∑ (1x <), 1(0)2s =对121()1n n x x s x n +∞==+∑逐项求导,得()1211()11n n n n x x x s x x n x +∞∞=='⎛⎫'=== ⎪+-⎝⎭∑∑ ()11x -<< 对上式从0到x 积分,得 ()[]2000111()1ln(1).111xx x t t x s x dt dt dt x x t t t --⎛⎫⎛⎫==-=--=-+- ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 于是当0x ≠时,有 2ln(1)()x x s x x +-=-.从而 和函数2ln(1),01;()1,0.2x x x xs x x +-⎧-<<⎪⎪=⎨⎪=⎪⎩.特殊的,当1x =-时,级数()()112111n nn n n n-∞∞==--=+∑∑收敛.所以2ln(1)()x x s x x +-=-在1x =-也成立.(2)此幂级数的收敛半径为1,收敛区间为(1,1)-.设和函数为()s x ,则11()n n s x nx∞-==∑ (1x <).对上式从0到x 逐项积分,得111()1x xn n n n xs t dt nt dt x x∞∞-=====-∑∑⎰⎰ 对上式求导,得22(1)(1)1()1(1)(1)x x x s x x x x '--⋅-⎛⎫=== ⎪---⎝⎭,1x <.。

高等数学同济第七版第十二章课后习题答案

高等数学同济第七版第十二章课后习题答案

…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;

・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解

高等数学练习答案12-9

高等数学练习答案12-9

习题12-91. 求下列各微分方程的通解:(1)2y ''+y '-y =2e x ;解 微分方程的特征方程为2r 2+r -1=0, 其根为211=r , r 2=-1, 故对应的齐次方程的通解为 x x e C e C Y -+=2211.因为f (x )=2e x , λ=1不是特征方程的根,故原方程的特解设为y *=Ae x ,代入原方程得2Ae x +Ae x -Ae x =2e x ,解得A =1, 从而y *=e x .因此, 原方程的通解为x x x e e C e C y ++=-2211.(2)y ''+a 2y =e x ;解 微分方程的特征方程为r 2+a 2=0,其根为r =±ai , 故对应的齐次方程的通解为Y =C 1cos ax +C 2sin ax .因为f (x )=e x , λ=1不是特征方程的根,故原方程的特解设为y *=Ae x ,代入原方程得Ae x +a 2Ae x =e x , 解得211aA +=, 从而21*a ey x +=. 因此, 原方程的通解为2211s i n c o s a e a x C a x C y x +++=.(3)2y ''+5y '=5x 2-2x -1;解 微分方程的特征方程为2r 2+5r =0,其根为r 1=0, 252-=r , 故对应的齐次方程的通解为 x e C C Y 2521-+=.因为f (x )=5x 2-2x -1, λ=0是特征方程的单根,故原方程的特解设为y *=x (Ax 2+Bx +C ),代入原方程并整理得15Ax 2+(12A +10B )x +(4B +5C )=5x 2-2x -1, 比较系数得31=A , 53-=B , 257=C , 从而x x x y 2575331*23+-=. 因此, 原方程的通解为x x x e C C y x 2575331232521+-++=-. (4)y ''+3y '+2y =3xe -x ;解 微分方程的特征方程为r 2+3r +2=0,其根为r 1=-1, r 2=-2, 故对应的齐次方程的通解为Y =C 1e -x +C 2e -2x .因为f (x )=3xe -x , λ=-1是特征方程的单根,故原方程的特解设为y *=x (Ax +B )e -x ,代入原方程并整理得2Ax +(2A +B )=3x , 比较系数得23=A , B =-3, 从而)323(*2x x e y x -=-. 因此, 原方程的通解为)323(2221x x e e C e C y x x x -++=---. (5)y ''-2y '+5y =e x sin2x ;解 微分方程的特征方程为r 2-2r +5=0,其根为r 1, 2=1±2i , 故对应的齐次方程的通解为Y =e x (C 1cos2x +C 2sin2x ).因为f (x )=e x sin2x , λ+i ω=1+2i 是特征方程的根,故原方程的特解设为y *=xe x (A cos2x +B sin2x ),代入原方程得e x [4B cos2x -4A sin2x ]=e x sin2x , 比较系数得41-=A , B =0, 从而x xe y x 2cos 41*-=. 因此, 原方程的通解为x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=. (6)y ''-6y '+9y =(x +1)e 3x ;解 微分方程的特征方程为r 2-6r +9=0,其根为r 1=r 2=3, 故对应的齐次方程的通解为Y =e 3x (C 1+C 2x ).因为f (x )=(x +1)e 3x , λ=3是特征方程的重根,故原方程的特解设为y *=x 2e 3x (Ax +B ),代入原方程得e 3x (6Ax +2B )=e 3x (x +1), 比较系数得61=A , 21=B , 从而)2161(*233x x e y x +=. 因此, 原方程的通解为)2161()(233213x x e x C C e y x x +++=. (7)y ''+5y '+4y =3-2x ;解 微分方程的特征方程为r 2+5r +4=0,其根为r 1=-1, r 2=-4, 故对应的齐次方程的通解为Y =C 1e -x +C 2e -4x .因为f (x )=3-2x =(3-2x )e 0x , λ=0不是特征方程的根,故原方程的特解设为y *=Ax +B ,代入原方程得4Ax +(5A +4B )=-2x +3, 比较系数得21-=A , 811=B , 从而81121*+-=x y . 因此, 原方程的通解为81121421+-+=--x e C e C y x x . (8)y ''+4y =x cos x ;解 微分方程的特征方程为r 2+4=0,其根为r =±2i , 故对应的齐次方程的通解为Y =C 1cos2x +C 2sin2x .因为f (x )= x cos x =e 0x (x ⋅cos x +0⋅sin x ), λ+i ω=i 不是特征方程的根, 故原方程的特解设为y *=(Ax +B )cos x +(Cx +D )sin x ,代入原方程得(3Ax +3B +2C )cos x +(3Cx -2A +3D )sin x =x cos x , 比较系数得31=A , B =0, C =0,92=D , 从而x x x y sin 92cos 31*+=. 因此, 原方程的通解为x x x x C x C y s i n 92c o s 31s i n 2c o s 21+++=. (9)y ''+y =e x +cos x ;解 微分方程的特征方程为r 2+1=0,其根为r =±i , 故对应的齐次方程的通解为Y =C 1cos x +C 2sin x .因为f (x )=f 1(x )+f 2(x ), 其中f 1(x )=e x , f 2(x )=cos x , 而方程y ''+y =e x 具有Ae x 形式的特解;方程y ''+y =cos x 具有x (B cos x +C sin x )形式的特解,故原方程的特解设为y *=Ae x +x (B cos x +C sin x ),代入原方程得2Ae x +2C cos x -2B sin x =e x +cos x , 比较系数得21=A , B =0,21=C , 从而x x e y x sin 221*+=. 因此, 原方程的通解为x x e x C x C y x s i n 221s i n c o s 21+++=. (10)y ''-y =sin 2x .解 微分方程的特征方程为r 2-1=0,其根为r 1=-1, r 2=1, 故对应的齐次方程的通解为Y =C 1e -x +C 2e x .因为x x x f 2cos 2121sin )(2-==, 而方程21=-''y y 的特解为常数A ; 方程x y y 2cos 21-=-''具有B cos2x +C sin2x 形式的特解, 故原方程的特解设为y *=A +B cos2x +C sin2x ,代入原方程得x x C x B A 2cos 21212sin 52cos 5-=---, 比较系数得21-=A ,101=B , C =0, 从而x y 2cos 10121*+-=. 因此, 原方程的通解为212c o s 10121-++=-x e C e C y x x . 2. 求下列各微分方程满足已给初始条件的特解:(1)y ''+y +sin x =0, y |x =π=1, y '|x =π=1;解 微分方程的特征方程为r 2+1=0,其根为r =±i , 故对应的齐次方程的通解为Y =C 1cos x +C 2sin x .因为f (x )=-sin2x =e 0x (0⋅cos2x -sin2x ), λ+i ω=i 是特征方程的根,故原方程的特解设为y *=A cos2x +B sin2x ,代入原方程得-3A cos 2x -3B sin2x =-sin2x ,解得A =0, 31=B , 从而x y 2sin 31*=. 因此, 原方程的通解为x x C x C y 2s i n 31s i n c o s 21++=. 由y |x =π=1, y '|x =π=1得C 1=-1, 312-=C , 故满足初始条件的特解为x x x y 2s i n 31s i n 31c o s +-+-=. (2)y ''-3y '+2y =5, y |x =0=1, y '|x =0=2;解 微分方程的特征方程为r 2-3r +2=0,其根为r 1=1, r 2=2, 故对应的齐次方程的通解为Y =C 1e x +C 2e 2x .容易看出25*=y 为非齐次方程的一个特解, 故原方程的通解为25221++=x x e C e C y . 由y |x =0=1, y '|x =0=2得⎪⎩⎪⎨⎧=+=++221252121C C C C , 解之得C 1=-5, 272=C . 因此满足初始条件的特解为 2527521++-=x x e e y . (3)y ''-10y '+9y =e 2x , 76|0==x y , 733|0='=x y ; 解 微分方程的特征方程为r 2-10r +9=0,其根为r 1=1, r 2=9, 故对应的齐次方程的通解为Y =C 1e x +C 2e 9x .因为f (x )=e 2x , λ=2不是特征方程的根,故原方程的特解设为y *=Ae 2x ,代入原方程得(4A -20A +9A )e 2x =e 2x , 解得71-=A , 从而x e y 271*-=. 因此, 原方程的通解为x x x e e C e C y 292171-+=. 由76|0==x y , 733|0='=x y 得2121==C C . 因此满足初始条件的特解为x x x e e e y 29712121-+=.(4)y ''-y =4xe x , y |x =0=0, y '|x =0=1;解 微分方程的特征方程为r 2-1=0,其根为r 1=-1, r 2=1, 故对应的齐次方程的通解为Y =C 1e -x +C 2e x .因为f (x )=4xe x , λ=1是特征方程的单根,故原方程的特解设为y *=xe x (Ax +B ),代入原方程得(4Ax +2A +2B )e x =4xe x ,比较系数得A =1, B =-1, 从而y *=xe x (x -1).因此, 原方程的通解为y *=C 1e -x +C 2e x +xe x (x -1).由y |x =0=0, y '|x =0=1得⎩⎨⎧=--=+1102121C C C C , 解之得C 1=1, C 2=-1. 因此满足初始条件的特解为y =e -x -e x +xe x (x -1).(5)y ''-4y '=5, y |x =0=1, y '|x =0=0.解 微分方程的特征方程为r 2-4r =0,其根为r 1=0, r 2=4, 故对应的齐次方程的通解为Y =C 1+C 2e 4x .因为f (x )=5=5e 0⋅x , λ=0是特征方程的单根,故原方程的特解设为y *=Ax ,代入原方程得-4A =5, 45-=A , 从而x y 45*-=. 因此, 原方程的通解为x e C C y x 45421-+=. 由y |x =0=1, y '|x =0=0得16111=C , 1652=C . 因此满足初始条件的特解为x e y x 4516516114-+=. 3. 大炮以仰角α、初速度v 0发射炮弹, 若不计空气阻力, 求弹道曲线. 解 取炮口为原点, 炮弹前进的水平方向为x 轴, 铅直向上为y 轴, 弹道运动的微分方程为⎪⎩⎪⎨⎧=-=022dtdx g dt y d ,且满足初始条件⎩⎨⎧='=='=====ααc o s | ,0|s i n | ,0|000000v x x v y y t t t t . 易得满足方程和初始条件的解(弹道曲线)为⎪⎩⎪⎨⎧-⋅=⋅=20021s i n c o s gt t v y t v x αα. 4. 在R 、L 、C 含源串联电路中, 电动势为E 的电源对电容器C 充电. 已知E =20V , C =0.2μF(微法), L =0.1H(亨), R =1000Ω, 试求合上开关K 后电流i (t )及电压u c (t ).解 (1)列方程. 由回路定律可知E u u C R u C L c c c=+'⋅⋅+''⋅⋅, 即 LCE u LC u L R u c c c =+'+''1, 且当t =0时, u c =0, u c '=0.已知R =1000Ω, L =0.1H , C =0.2μF , 故4101.01000==L R , 76105102.01.011⨯=⨯⨯=-LC , 9771020105105=⨯⨯=⨯=E LCE . 因此微分方程为9741010510=⨯+'+''c c cu u u . (2)解方程. 微分方程的特征方程为r 2+104r +5⋅107=0,其根为r 1, 2=-5⨯103±5⨯103i . 因此对应的齐次方程的通解为])105sin()105cos([32311053t C t C e u t c ⨯+⨯=⨯-.由观察法易知y *=20为非齐次方程的一个特解.因此非齐次方程的通解为20])105sin()105cos([32311053+⨯+⨯=⨯-t C t C e u t c .由t =0时, u c =0, u c '=0, 得C 1=-20, C 2=-20. 因此])105sin()105[cos(2020331053t t e u t c ⨯+⨯-=⨯-(V), )]105sin(104102.0)(3105263t e u u C t i t c c⨯⨯='⨯='=⨯---(A).5. 一链条悬挂在一钉子上, 起动时一端离开钉子8m 另一端离开钉子12m , 分别在以下两种情况下求链条滑下来所需的时间:(1)若不计钉子对链条所产生的摩擦力;解 设在时刻t 时, 链条上较长的一段垂下x m , 且设链条的密度为ρ, 则向下拉链条下滑的作用力F =x ρg -(20-x )ρg =2ρg (x -10).由牛顿第二定律, 有20ρx ''=2ρg (x -10), 即g x g x -=-''10. 微分方程的特征方程为0102=-g r , 其根为101g r -=,102g r =, 故对应的齐次方程的通解为 t g t g e C e C x 102101+=-.由观察法易知x *=10为非齐次方程的一个特解, 故通解为10102101++=-t g t g e C e C x .由x (0)=12及x '(0)=0得C 1=C 2=1. 因此特解为101010++=-t g t g e e x .当x =20, 即链条完全滑下来时有101010=+-t g t g e e,解之得所需时间)625l n (10+=gt s. (2)若摩擦力为1m 长的链条的重量. 解 此时向下拉链条的作用力变为F =x ρg -(20-x )ρg -1ρg =2ρgx -21ρg 由牛顿第二定律, 有20ρx ''=2ρgx -21ρg , 即g x g x 05.110-=-''. 微分方程的通解为5.10102101++=-t g t g e C e C x .由x (0)=12及x '(0)=0得4321==C C . 因此特解为 5.10)(431010++=-t g t g e e x .当x =20, 即链条完全滑下来时有5.9)(431010=+-t g t g e e ,解之得所需时间)3224319ln(10+=g t s. 6. 设函数ϕ(x )连续, 且满足⎰⎰-+=xx x dt t x dt t t e x 00)()()(ϕϕϕ, 求ϕ(x ).解 等式两边对x 求导得⎰-='xx dt t e x 0)()(ϕϕ, 再求导得微分方程ϕ''(x )=e x -ϕ(x ), 即ϕ''(x )+ϕ(x )=e x . 微分方程的特征方程为r 2+1=0,其根为r 1, 2=±i , 故对应的齐次方程的通解为 ϕ=C 1cos x +C 2sin x .易知x e 21*=ϕ是非齐次方程的一个特解, 故非齐次方程的通解为x e x C x C 21s i n c o s 21++=ϕ. 由所给等式知ϕ(0)=1, ϕ'(0)=1, 由此得2121==C C . 因此)s i n (c o s 21x e x x ++=ϕ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 第九次作业
1.方程032
=+'+''y y x y x
的通解是 。

解 填:()x C C x
y ln 121+=,作变换t
e x =或x t ln =,
原方程可化为022
2
=++y dt
dy
dt y d ,所以 ()()x C C x
e t C C y t
ln 12121+=+=-。

2.方程0=+'+''xy y y x 满足条件0,10
0='
===x x y y 的
解是 。

解 填: +⋅⋅-⋅+-=2226
2
24
22
6
424221x
x x y 。

由条件0,100='===x x y y ,可令
∑∞
=+++==03
32
21n n
n x C x C x C y 代入原方程后,比较
x 的同幂项的系数即可得。

3.方程02223
2
=-++'-''x x y y x y x 的通解是()。

A .x x x C x C y ln 3
21++=;
B .23
12ln y
C x C x x x x =+++;
C .x x x C x C y ln 3
221++=;
D .x x C x C y
ln 21+=。

解 选(B ),此为欧拉方程,作变换t
e
x
=或x t ln =,原方程
可化为2
32
322t t d y dy y e e dt dt
-+=-+,所以 232
3
1212ln t
t
t
t
y C e C e te e C x C x x x x
=+++=+++。

4.方程0cos 2
2
=+t x dt
x d 满足条件0,
10
====t t dt
dx
x 的解
是()。

A . -+
-+-=8
642!855!69!42!211t t t t x ; B . -+
-+-=4
32!855!69!42!211t t t t x ; C . ++
+++=8
642!855!69!42!211t t t t x ; D . -+
-+-=7
53!
855!69!42!211t t t t x 。

解 选(A ),由条件0,100====t t dt
dx
x ,可令
2
3
230
1n
n n y C t C t C t ∞
===+++
∑代入原方程后,比较t 的
同幂项的系数即可得。

5. 求方程2
2ln x
y xy y x x '''-+=的通解。

解 作变换
t
x e
=或
ln t x
=,原方程可化成
2
222t d y dy y te dt dt
-+=,特征方程是2
220
r r -+=,解得1,21r i =±。

于是对应的齐次方程的通解是
12[cos sin ].t
y e C t C t =+

*()t
y At B e
=+,代入原方程中,得
1,0A B ==,即
*t
y te
=。

所以原方程的通解是:
12[cos sin ]t
t
y e C t C t te =++
12[cos(ln )sin(ln )]ln x C x C x x x =++。

6.用幂级数解法解方程y x y +='。

解 令∑∞
==0
n n
n x
C y
代入原方程,可得
x C C x x C x C C 102
32132++=+++ ++2
2x C ,
解之得(),,1!
21
,0201 C C C C +==
()()01
1!
1C n C n ++=
+,所以得到 ()n n x n C x C C y ∑∞
=+++=2000!
111--=x Ce x
7.用幂级数解法解方程x
e y y =+'。

解 令∑∞
==0
n n
n x
C y
代入原方程,可得
+++++++2
2102
32132x C x C C x C x C C +++=2
!
211x x ,于是得到
() ,121,11201C C C C -=-=⎪


⎝⎛-+=+n n C n n C !1111即01
1C C -=,
02!21
C C =,
23!
31!31!2131C C C -=⎪⎭⎫ ⎝⎛-=,
()()01
2!
121!121C n n C n ---=-,
()02!
2C n C n
= 故所求的解是
!
5!3!1!3!2!115
3
3
2
0x x x x x x C y +++⎪⎪⎭
⎫ ⎝⎛+-+-= shx e C x x
+=++-07
!
7 。

相关文档
最新文档