The two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 4

合集下载

张小三在食堂的饭桌上写了“咂”吗...

张小三在食堂的饭桌上写了“咂”吗...
us gratitude to Prof. Kong Jiangping who have taught me acoustics, Matlab programming to analyze phonation and provided a lab setting and technical guidance to make my experiments possible, Prof. Wang Hongjun for her nonlinear phonology and historical linguistics lectures, especially Chapter Six of this dissertation benefits greatly from her lectures, my idol Prof. Wang Yunjia for her L2 phonetics acquisition, phonetics research lectures that have provided sound knowledge for this dissertation, Prof. Lin Youjing for her brilliant grammar fieldwork lectures and generous consulting on my paper, and Prof. Li Xiaofan and Prof. Xiang Mengbing for their brilliant Chinese Dialect lectures, especially Prof. Li Xiaofan who has approved my dialect fieldwork application at PKU. Most of my knowledge on phonation, phonetics and phonology are from you. Words cannot tell how I appreciate what you have taught me. Your insights will benefit me for a lifetime. Among my pals at PKU, Dong Li, Yang Feng and Ruifeng have provided me with most unselfish help and support. Thank Junru for helping me to contact her PhD supervisor about my visiting application. Thank Yinhao to help me combating with my laptop for Kay program. I’m also deeply appreciative of Yudai, Hongling, Hanna, Yu Qian, Siwei, Chen Ying, Mengxiao, Yixuan, Lijun and Sun Shun, because of whom my life at PKU becomes unforgettable and meaningful. I’m deeply impressed by my fellow visiting scholar Prof. Guan Yingwei, who had devoted most time researching. I would also thank my roommate, Pan Qiong, Sun Yanjie and Liu Xiaoxia, for their help, care and friendship when I was crazy not being able to find subjects and was burdened by clipping and trimming of sounds. Pan Qiong has helped me in understanding matrix and I sincerely hope she will soon pursue her PhD study in mathematics.

DYNAMIC ANALYSIS OF OFFSHORE FLOATING

DYNAMIC ANALYSIS OF OFFSHORE FLOATING

A detailed study on offshore floating wind turbines and the working principle of various floater concepts and the conceptual designs for floating platforms used for floating wind turbines are presented. In the case of fixed wind turbine, the influence of the environmental conditions on wind turbine design loads for a monopole foundation is studied by analyzing the bending moment at the tower base and tower root for various values of water depth, tower height, pile diameter and turbulence model. The analysis is done using FAST code for 5MW wind turbine with a monopile foundation. In the study of offshore floating wind turbine, a numerical time-domain model is used for the fully coupled dynamic analysis of deep water offshore floating wind turbines such as spar-type, barge-type and semi-submersible-type floating wind turbine. The hydrodynamic behaviour of the floaters is analysed using panel method. Hydrodynamic added mass, damping and exiting force are obtained in frequency domain and are validated with the available results. The hydrodynamic study of the floater is combined with and aerodynamic model to obtain a coupled aero-servo-hydro-elastic model. The performance of spar-type and barge-type floating wind turbine designed by the National Renewable Energy Laboratory (NREL) and semi-submersible type floating wind turbine designed by Principle Power are analyzed in detail. The mooring system attached to WindFloat semi-submersible floating wind turbine is also examined for six and eight mooring lines and the platform rotations along with motions results obtained are also compared. Keywords: Renewable energy; Monopile wind turbine; Offshore floating wind turbine; Added mass; Damping coefficient; Mooring system.

投影ESOR迭代求解双边障碍问题

投影ESOR迭代求解双边障碍问题

本 文将 E O S R算法 进一 步推 广应 用 到求 解 下 面 变分 不等式 ( 称双边 障碍 问题 )求 ∈ 使 得 又 : X,
( x+bY— A , )≥ 0 VY∈X , () 1
(i ( 1 i ) E( + ) ( ) ; A 6 ) +:


(i i )G( , , )= . i A, b ,
’ y ‘ y 厶
0 (一 + 。 一 = 吉( 6 邓 )

: 一
- -

( E( +6 一 )+y L( ) ( E一 ) 一 E 一 ) y ( )+

 ̄( +6 j 0, a )>

( ) L ) 一 一 (一 ( )+( 一 A( 一 ) ) - ( E( +b )+y L 一 ) y ) 一 E ( ) ( E ( )+


矛盾 , 以证得 所
A +6I 0. >

当 = 时 , 若有
( +6 』 0 A )> , 那么
b ) -) ,显然 ≤ ≤ ) ( ,+ t 3 .
C( , , ) A, b , )
) .
且 等号 成立 当且 仅 当 为 ( ) 2 的一个 解 .
证 明 ( ) (i 可 由 ( ) 接 得 出.现 证 明 i 和 i) 3直 (i , =C( , , ) 则 i ) 令 i A, 6 , ,
当 = 时 ,பைடு நூலகம்有 若
( +6 J 0 )< ,
那么

) = + 一 一 一 丢 6 6 )

( +6 , )>
( +6 一 ) ( )+( ) 一

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

Glider Flying Handbook说明书

Glider Flying Handbook说明书

Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。

丽讯D5系列投影仪说明书

丽讯D5系列投影仪说明书

3H
86H
投影机部件图 .................................................................................................................................................................... 2
17H
10H
调节缩放、焦距和梯形校正........................................................................................................................................... 16
18H
10H
调节音量 .......................................................................................................................................................................... 17
8H
91H
遥控器部件 ........................................................................................................................................................................ 6
9H
92H
遥控器操作范围 ................................................................................................................................................................ 8

A compact algorithm for rectification of stereo pairs中文版翻译

A compact algorithm for rectification of stereo pairs中文版翻译

Machine Vision and Applications (2000) 12: 16–22机器视觉与应用(2000)12:16-22Machine Vision and Applications©Springer-Verlag 2000机器视觉与应用©施普林格出版社2000Andrea Fusiello1, Emanuele Trucco2, Alessandro Verri31 Dipartimento Scientifico e Tecnologico, Universita d i Verona, Ca’ Vignal 2, Strada Le Grazie, 37134 Verona, Italy; e-mail: fusiello@sci.univr.it `2 Heriot-Watt University, Department of Computing and Electrical Engineering, Edinburgh, UK3 INFM, Dipartimento di Informatica e Scienze dell’Informazione, Univ ersita di Genova, Genova, ItalyReceived: 25 February 1999 / Accepted: 2 March 2000收稿日期:1999年2月25日/接受日期:2000年3月2日Abstract. We present a linear rectification algorithm for general, unconstrained stereo rigs. The algorithm takes the two perspective projection matrices of the original cameras,and computes a pair of rectifying projection matrices. It is compact (22-line MATLAB code) and easily reproducible.We report tests proving the correct behavior of our method,as well as the negligible decrease of the accuracy of 3D reconstruction performed from the rectified images directly.摘要:我们在本篇文章中阐述一个用于通用的不加约束的立体视觉设备的线性修正算法。

立体匹配——SAD算法

立体匹配——SAD算法

立体匹配——SAD算法立体匹配(Stereo matching)是计算机视觉领域中的一个重要任务,它旨在从一对立体图像中寻找对应的像素点。

在立体图像中,同一物体在左右图像中的像素点具有一定的空间上的关系,通过立体匹配算法可以找到这些对应点的位置,从而实现深度感知、三维重建等应用。

SAD(Sum of Absolute Differences)算法,是立体匹配中最简单且广泛使用的算法之一、其基本思想是对于左视图中的每个像素点,分别在右视图中最匹配的像素点,然后计算它们的绝对差值之和。

通过比较这些和值,确定两幅图像中像素点的匹配程度。

SAD算法的步骤如下:1.首先,读取左右视图的灰度图像,并初始化匹配代价图。

匹配代价图的大小与左、右视图的大小相同,每个像素点的值用于表示该点与左视图中对应位置的像素点进行匹配时的匹配代价,初始值设为无穷大。

2.对于左视图中的每个像素点,依次遍历右视图中与之对应的像素点。

计算两幅图像中对应的两个像素点的绝对差值之和,得到匹配代价。

3.比较右视图中与左视图中当前像素点最匹配的像素点的匹配代价与现有的匹配代价图中对应位置的值。

若当前匹配代价小于已有值,则更新匹配代价图。

4.完成一轮遍历后,匹配代价图中的像素值即为左、右视图中像素点的匹配程度。

5.进行后处理过程,例如基于匹配代价图进行视差估计,通过视差估计可以得到物体在图像中的深度信息。

SAD算法的优点是简单易实现,并且对计算资源需求较低。

然而,SAD算法也存在一些缺点。

首先,由于只考虑了像素的绝对差值之和,没有考虑像素之间的空间关系,容易受到光照变化、纹理差异等因素的影响。

其次,由于立体图像中存在视差,即左、右视图中同一物体像素点之间的距离,而SAD算法只考虑了像素值的相似性,没有考虑到该距离信息,因此在处理视差较大的情况时,SAD算法的性能较差。

为了克服SAD算法的缺点,研究者们提出了很多改进的算法,如基于代价聚合的动态规划算法、块匹配算法、半全局匹配算法等。

DS2208数字扫描器产品参考指南说明书

DS2208数字扫描器产品参考指南说明书
- Updated 123Scan Requirements section. - Updated Advanced Data Formatting (ADF) section. - Updated Environmental Sealing in Table 4-2. - Added the USB Cert information in Table 4-2.
-05 Rev. A
6/2018
Rev. B Software Updates Added: - New Feedback email address. - Grid Matrix parameters - Febraban parameter - USB HID POS (formerly known as Microsoft UWP USB) - Product ID (PID) Type - Product ID (PID) Value - ECLevel
-06 Rev. A
10/2018 - Added Grid Matrix sample bar code. - Moved 123Scan chapter.
-07 Rev. A
11/2019
Added: - SITA and ARINC parameters. - IBM-485 Specification Version.
No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means, without permission in writing from Zebra. This includes electronic or mechanical means, such as photocopying, recording, or information storage and retrieval systems. The material in this manual is subject to change without notice.

Adobe Acrobat SDK 开发者指南说明书

Adobe Acrobat SDK 开发者指南说明书
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
This guide is governed by the Adobe Acrobat SDK License Agreement and may be used or copied only in accordance with the terms of this agreement. Except as permitted by any such agreement, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe. Please note that the content in this guide is protected under copyright law.

Native Instruments MASCHINE MIKRO MK3用户手册说明书

Native Instruments MASCHINE MIKRO MK3用户手册说明书

The information in this document is subject to change without notice and does not represent a commitment on the part of Native Instruments GmbH. The software described by this docu-ment is subject to a License Agreement and may not be copied to other media. No part of this publication may be copied, reproduced or otherwise transmitted or recorded, for any purpose, without prior written permission by Native Instruments GmbH, hereinafter referred to as Native Instruments.“Native Instruments”, “NI” and associated logos are (registered) trademarks of Native Instru-ments GmbH.ASIO, VST, HALion and Cubase are registered trademarks of Steinberg Media Technologies GmbH.All other product and company names are trademarks™ or registered® trademarks of their re-spective holders. Use of them does not imply any affiliation with or endorsement by them.Document authored by: David Gover and Nico Sidi.Software version: 2.8 (02/2019)Hardware version: MASCHINE MIKRO MK3Special thanks to the Beta Test Team, who were invaluable not just in tracking down bugs, but in making this a better product.NATIVE INSTRUMENTS GmbH Schlesische Str. 29-30D-10997 Berlin Germanywww.native-instruments.de NATIVE INSTRUMENTS North America, Inc. 6725 Sunset Boulevard5th FloorLos Angeles, CA 90028USANATIVE INSTRUMENTS K.K.YO Building 3FJingumae 6-7-15, Shibuya-ku, Tokyo 150-0001Japanwww.native-instruments.co.jp NATIVE INSTRUMENTS UK Limited 18 Phipp StreetLondon EC2A 4NUUKNATIVE INSTRUMENTS FRANCE SARL 113 Rue Saint-Maur75011 ParisFrance SHENZHEN NATIVE INSTRUMENTS COMPANY Limited 5F, Shenzhen Zimao Center111 Taizi Road, Nanshan District, Shenzhen, GuangdongChina© NATIVE INSTRUMENTS GmbH, 2019. All rights reserved.Table of Contents1Welcome to MASCHINE (23)1.1MASCHINE Documentation (24)1.2Document Conventions (25)1.3New Features in MASCHINE 2.8 (26)1.4New Features in MASCHINE 2.7.10 (28)1.5New Features in MASCHINE 2.7.8 (29)1.6New Features in MASCHINE 2.7.7 (29)1.7New Features in MASCHINE 2.7.4 (31)1.8New Features in MASCHINE 2.7.3 (33)2Quick Reference (35)2.1MASCHINE Project Overview (35)2.1.1Sound Content (35)2.1.2Arrangement (37)2.2MASCHINE Hardware Overview (40)2.2.1MASCHINE MIKRO Hardware Overview (40)2.2.1.1Browser Section (41)2.2.1.2Edit Section (42)2.2.1.3Performance Section (43)2.2.1.4Transport Section (45)2.2.1.5Pad Section (46)2.2.1.6Rear Panel (50)2.3MASCHINE Software Overview (51)2.3.1Header (52)2.3.2Browser (54)2.3.3Arranger (56)2.3.4Control Area (59)2.3.5Pattern Editor (60)3Basic Concepts (62)3.1Important Names and Concepts (62)3.2Adjusting the MASCHINE User Interface (65)3.2.1Adjusting the Size of the Interface (65)3.2.2Switching between Ideas View and Song View (66)3.2.3Showing/Hiding the Browser (67)3.2.4Showing/Hiding the Control Lane (67)3.3Common Operations (68)3.3.1Adjusting Volume, Swing, and Tempo (68)3.3.2Undo/Redo (71)3.3.3Focusing on a Group or a Sound (73)3.3.4Switching Between the Master, Group, and Sound Level (77)3.3.5Navigating Channel Properties, Plug-ins, and Parameter Pages in the Control Area.773.3.6Navigating the Software Using the Controller (82)3.3.7Using Two or More Hardware Controllers (82)3.3.8Loading a Recent Project from the Controller (84)3.4Native Kontrol Standard (85)3.5Stand-Alone and Plug-in Mode (86)3.5.1Differences between Stand-Alone and Plug-in Mode (86)3.5.2Switching Instances (88)3.6Preferences (88)3.6.1Preferences – General Page (89)3.6.2Preferences – Audio Page (93)3.6.3Preferences – MIDI Page (95)3.6.4Preferences – Default Page (97)3.6.5Preferences – Library Page (101)3.6.6Preferences – Plug-ins Page (109)3.6.7Preferences – Hardware Page (114)3.6.8Preferences – Colors Page (114)3.7Integrating MASCHINE into a MIDI Setup (117)3.7.1Connecting External MIDI Equipment (117)3.7.2Sync to External MIDI Clock (117)3.7.3Send MIDI Clock (118)3.7.4Using MIDI Mode (119)3.8Syncing MASCHINE using Ableton Link (120)3.8.1Connecting to a Network (121)3.8.2Joining and Leaving a Link Session (121)4Browser (123)4.1Browser Basics (123)4.1.1The MASCHINE Library (123)4.1.2Browsing the Library vs. Browsing Your Hard Disks (124)4.2Searching and Loading Files from the Library (125)4.2.1Overview of the Library Pane (125)4.2.2Selecting or Loading a Product and Selecting a Bank from the Browser (128)4.2.3Selecting a Product Category, a Product, a Bank, and a Sub-Bank (133)4.2.3.1Selecting a Product Category, a Product, a Bank, and a Sub-Bank on theController (137)4.2.4Selecting a File Type (137)4.2.5Choosing Between Factory and User Content (138)4.2.6Selecting Type and Character Tags (138)4.2.7Performing a Text Search (142)4.2.8Loading a File from the Result List (143)4.3Additional Browsing Tools (148)4.3.1Loading the Selected Files Automatically (148)4.3.2Auditioning Instrument Presets (149)4.3.3Auditioning Samples (150)4.3.4Loading Groups with Patterns (150)4.3.5Loading Groups with Routing (151)4.3.6Displaying File Information (151)4.4Using Favorites in the Browser (152)4.5Editing the Files’ Tags and Properties (155)4.5.1Attribute Editor Basics (155)4.5.2The Bank Page (157)4.5.3The Types and Characters Pages (157)4.5.4The Properties Page (160)4.6Loading and Importing Files from Your File System (161)4.6.1Overview of the FILES Pane (161)4.6.2Using Favorites (163)4.6.3Using the Location Bar (164)4.6.4Navigating to Recent Locations (165)4.6.5Using the Result List (166)4.6.6Importing Files to the MASCHINE Library (169)4.7Locating Missing Samples (171)4.8Using Quick Browse (173)5Managing Sounds, Groups, and Your Project (175)5.1Overview of the Sounds, Groups, and Master (175)5.1.1The Sound, Group, and Master Channels (176)5.1.2Similarities and Differences in Handling Sounds and Groups (177)5.1.3Selecting Multiple Sounds or Groups (178)5.2Managing Sounds (181)5.2.1Loading Sounds (183)5.2.2Pre-listening to Sounds (184)5.2.3Renaming Sound Slots (185)5.2.4Changing the Sound’s Color (186)5.2.5Saving Sounds (187)5.2.6Copying and Pasting Sounds (189)5.2.7Moving Sounds (192)5.2.8Resetting Sound Slots (193)5.3Managing Groups (194)5.3.1Creating Groups (196)5.3.2Loading Groups (197)5.3.3Renaming Groups (198)5.3.4Changing the Group’s Color (199)5.3.5Saving Groups (200)5.3.6Copying and Pasting Groups (202)5.3.7Reordering Groups (206)5.3.8Deleting Groups (207)5.4Exporting MASCHINE Objects and Audio (208)5.4.1Saving a Group with its Samples (208)5.4.2Saving a Project with its Samples (210)5.4.3Exporting Audio (212)5.5Importing Third-Party File Formats (218)5.5.1Loading REX Files into Sound Slots (218)5.5.2Importing MPC Programs to Groups (219)6Playing on the Controller (223)6.1Adjusting the Pads (223)6.1.1The Pad View in the Software (223)6.1.2Choosing a Pad Input Mode (225)6.1.3Adjusting the Base Key (226)6.2Adjusting the Key, Choke, and Link Parameters for Multiple Sounds (227)6.3Playing Tools (229)6.3.1Mute and Solo (229)6.3.2Choke All Notes (233)6.3.3Groove (233)6.3.4Level, Tempo, Tune, and Groove Shortcuts on Your Controller (235)6.3.5Tap Tempo (235)6.4Performance Features (236)6.4.1Overview of the Perform Features (236)6.4.2Selecting a Scale and Creating Chords (239)6.4.3Scale and Chord Parameters (240)6.4.4Creating Arpeggios and Repeated Notes (253)6.4.5Swing on Note Repeat / Arp Output (257)6.5Using Lock Snapshots (257)6.5.1Creating a Lock Snapshot (257)7Working with Plug-ins (259)7.1Plug-in Overview (259)7.1.1Plug-in Basics (259)7.1.2First Plug-in Slot of Sounds: Choosing the Sound’s Role (263)7.1.3Loading, Removing, and Replacing a Plug-in (264)7.1.4Adjusting the Plug-in Parameters (270)7.1.5Bypassing Plug-in Slots (270)7.1.6Using Side-Chain (272)7.1.7Moving Plug-ins (272)7.1.8Alternative: the Plug-in Strip (273)7.1.9Saving and Recalling Plug-in Presets (273)7.1.9.1Saving Plug-in Presets (274)7.1.9.2Recalling Plug-in Presets (275)7.1.9.3Removing a Default Plug-in Preset (276)7.2The Sampler Plug-in (277)7.2.1Page 1: Voice Settings / Engine (279)7.2.2Page 2: Pitch / Envelope (281)7.2.3Page 3: FX / Filter (283)7.2.4Page 4: Modulation (285)7.2.5Page 5: LFO (286)7.2.6Page 6: Velocity / Modwheel (288)7.3Using Native Instruments and External Plug-ins (289)7.3.1Opening/Closing Plug-in Windows (289)7.3.2Using the VST/AU Plug-in Parameters (292)7.3.3Setting Up Your Own Parameter Pages (293)7.3.4Using VST/AU Plug-in Presets (298)7.3.5Multiple-Output Plug-ins and Multitimbral Plug-ins (300)8Using the Audio Plug-in (302)8.1Loading a Loop into the Audio Plug-in (306)8.2Editing Audio in the Audio Plug-in (307)8.3Using Loop Mode (308)8.4Using Gate Mode (310)9Using the Drumsynths (312)9.1Drumsynths – General Handling (313)9.1.1Engines: Many Different Drums per Drumsynth (313)9.1.2Common Parameter Organization (313)9.1.3Shared Parameters (316)9.1.4Various Velocity Responses (316)9.1.5Pitch Range, Tuning, and MIDI Notes (316)9.2The Kicks (317)9.2.1Kick – Sub (319)9.2.2Kick – Tronic (321)9.2.3Kick – Dusty (324)9.2.4Kick – Grit (325)9.2.5Kick – Rasper (328)9.2.6Kick – Snappy (329)9.2.7Kick – Bold (331)9.2.8Kick – Maple (333)9.2.9Kick – Push (334)9.3The Snares (336)9.3.1Snare – Volt (338)9.3.2Snare – Bit (340)9.3.3Snare – Pow (342)9.3.4Snare – Sharp (343)9.3.5Snare – Airy (345)9.3.6Snare – Vintage (347)9.3.7Snare – Chrome (349)9.3.8Snare – Iron (351)9.3.9Snare – Clap (353)9.3.10Snare – Breaker (355)9.4The Hi-hats (357)9.4.1Hi-hat – Silver (358)9.4.2Hi-hat – Circuit (360)9.4.3Hi-hat – Memory (362)9.4.4Hi-hat – Hybrid (364)9.4.5Creating a Pattern with Closed and Open Hi-hats (366)9.5The Toms (367)9.5.1Tom – Tronic (369)9.5.2Tom – Fractal (371)9.5.3Tom – Floor (375)9.5.4Tom – High (377)9.6The Percussions (378)9.6.1Percussion – Fractal (380)9.6.2Percussion – Kettle (383)9.6.3Percussion – Shaker (385)9.7The Cymbals (389)9.7.1Cymbal – Crash (391)9.7.2Cymbal – Ride (393)10Using the Bass Synth (396)10.1Bass Synth – General Handling (397)10.1.1Parameter Organization (397)10.1.2Bass Synth Parameters (399)11Working with Patterns (401)11.1Pattern Basics (401)11.1.1Pattern Editor Overview (402)11.1.2Navigating the Event Area (404)11.1.3Following the Playback Position in the Pattern (406)11.1.4Jumping to Another Playback Position in the Pattern (407)11.1.5Group View and Keyboard View (408)11.1.6Adjusting the Arrange Grid and the Pattern Length (410)11.1.7Adjusting the Step Grid and the Nudge Grid (413)11.2Recording Patterns in Real Time (416)11.2.1Recording Your Patterns Live (417)11.2.2Using the Metronome (419)11.2.3Recording with Count-in (420)11.3Recording Patterns with the Step Sequencer (422)11.3.1Step Mode Basics (422)11.3.2Editing Events in Step Mode (424)11.4Editing Events (425)11.4.1Editing Events with the Mouse: an Overview (425)11.4.2Creating Events/Notes (428)11.4.3Selecting Events/Notes (429)11.4.4Editing Selected Events/Notes (431)11.4.5Deleting Events/Notes (434)11.4.6Cut, Copy, and Paste Events/Notes (436)11.4.7Quantizing Events/Notes (439)11.4.8Quantization While Playing (441)11.4.9Doubling a Pattern (442)11.4.10Adding Variation to Patterns (442)11.5Recording and Editing Modulation (443)11.5.1Which Parameters Are Modulatable? (444)11.5.2Recording Modulation (446)11.5.3Creating and Editing Modulation in the Control Lane (447)11.6Creating MIDI Tracks from Scratch in MASCHINE (452)11.7Managing Patterns (454)11.7.1The Pattern Manager and Pattern Mode (455)11.7.2Selecting Patterns and Pattern Banks (456)11.7.3Creating Patterns (459)11.7.4Deleting Patterns (460)11.7.5Creating and Deleting Pattern Banks (461)11.7.6Naming Patterns (463)11.7.7Changing the Pattern’s Color (465)11.7.8Duplicating, Copying, and Pasting Patterns (466)11.7.9Moving Patterns (469)11.8Importing/Exporting Audio and MIDI to/from Patterns (470)11.8.1Exporting Audio from Patterns (470)11.8.2Exporting MIDI from Patterns (472)11.8.3Importing MIDI to Patterns (474)12Audio Routing, Remote Control, and Macro Controls (483)12.1Audio Routing in MASCHINE (484)12.1.1Sending External Audio to Sounds (485)12.1.2Configuring the Main Output of Sounds and Groups (489)12.1.3Setting Up Auxiliary Outputs for Sounds and Groups (494)12.1.4Configuring the Master and Cue Outputs of MASCHINE (497)12.1.5Mono Audio Inputs (502)12.1.5.1Configuring External Inputs for Sounds in Mix View (503)12.2Using MIDI Control and Host Automation (506)12.2.1Triggering Sounds via MIDI Notes (507)12.2.2Triggering Scenes via MIDI (513)12.2.3Controlling Parameters via MIDI and Host Automation (514)12.2.4Selecting VST/AU Plug-in Presets via MIDI Program Change (522)12.2.5Sending MIDI from Sounds (523)12.3Creating Custom Sets of Parameters with the Macro Controls (527)12.3.1Macro Control Overview (527)12.3.2Assigning Macro Controls Using the Software (528)13Controlling Your Mix (535)13.1Mix View Basics (535)13.1.1Switching between Arrange View and Mix View (535)13.1.2Mix View Elements (536)13.2The Mixer (537)13.2.1Displaying Groups vs. Displaying Sounds (539)13.2.2Adjusting the Mixer Layout (541)13.2.3Selecting Channel Strips (542)13.2.4Managing Your Channels in the Mixer (543)13.2.5Adjusting Settings in the Channel Strips (545)13.2.6Using the Cue Bus (549)13.3The Plug-in Chain (551)13.4The Plug-in Strip (552)13.4.1The Plug-in Header (554)13.4.2Panels for Drumsynths and Internal Effects (556)13.4.3Panel for the Sampler (557)13.4.4Custom Panels for Native Instruments Plug-ins (560)13.4.5Undocking a Plug-in Panel (Native Instruments and External Plug-ins Only) (564)14Using Effects (567)14.1Applying Effects to a Sound, a Group or the Master (567)14.1.1Adding an Effect (567)14.1.2Other Operations on Effects (574)14.1.3Using the Side-Chain Input (575)14.2Applying Effects to External Audio (578)14.2.1Step 1: Configure MASCHINE Audio Inputs (578)14.2.2Step 2: Set up a Sound to Receive the External Input (579)14.2.3Step 3: Load an Effect to Process an Input (579)14.3Creating a Send Effect (580)14.3.1Step 1: Set Up a Sound or Group as Send Effect (581)14.3.2Step 2: Route Audio to the Send Effect (583)14.3.3 A Few Notes on Send Effects (583)14.4Creating Multi-Effects (584)15Effect Reference (587)15.1Dynamics (588)15.1.1Compressor (588)15.1.2Gate (591)15.1.3Transient Master (594)15.1.4Limiter (596)15.1.5Maximizer (600)15.2Filtering Effects (603)15.2.1EQ (603)15.2.2Filter (605)15.2.3Cabinet (609)15.3Modulation Effects (611)15.3.1Chorus (611)15.3.2Flanger (612)15.3.3FM (613)15.3.4Freq Shifter (615)15.3.5Phaser (616)15.4Spatial and Reverb Effects (617)15.4.1Ice (617)15.4.2Metaverb (619)15.4.3Reflex (620)15.4.4Reverb (Legacy) (621)15.4.5Reverb (623)15.4.5.1Reverb Room (623)15.4.5.2Reverb Hall (626)15.4.5.3Plate Reverb (629)15.5Delays (630)15.5.1Beat Delay (630)15.5.2Grain Delay (632)15.5.3Grain Stretch (634)15.5.4Resochord (636)15.6Distortion Effects (638)15.6.1Distortion (638)15.6.2Lofi (640)15.6.3Saturator (641)15.7Perform FX (645)15.7.1Filter (646)15.7.2Flanger (648)15.7.3Burst Echo (650)15.7.4Reso Echo (653)15.7.5Ring (656)15.7.6Stutter (658)15.7.7Tremolo (661)15.7.8Scratcher (664)16Working with the Arranger (667)16.1Arranger Basics (667)16.1.1Navigating Song View (670)16.1.2Following the Playback Position in Your Project (672)16.1.3Performing with Scenes and Sections using the Pads (673)16.2Using Ideas View (677)16.2.1Scene Overview (677)16.2.2Creating Scenes (679)16.2.3Assigning and Removing Patterns (679)16.2.4Selecting Scenes (682)16.2.5Deleting Scenes (684)16.2.6Creating and Deleting Scene Banks (685)16.2.7Clearing Scenes (685)16.2.8Duplicating Scenes (685)16.2.9Reordering Scenes (687)16.2.10Making Scenes Unique (688)16.2.11Appending Scenes to Arrangement (689)16.2.12Naming Scenes (689)16.2.13Changing the Color of a Scene (690)16.3Using Song View (692)16.3.1Section Management Overview (692)16.3.2Creating Sections (694)16.3.3Assigning a Scene to a Section (695)16.3.4Selecting Sections and Section Banks (696)16.3.5Reorganizing Sections (700)16.3.6Adjusting the Length of a Section (702)16.3.6.1Adjusting the Length of a Section Using the Software (703)16.3.6.2Adjusting the Length of a Section Using the Controller (705)16.3.7Clearing a Pattern in Song View (705)16.3.8Duplicating Sections (705)16.3.8.1Making Sections Unique (707)16.3.9Removing Sections (707)16.3.10Renaming Scenes (708)16.3.11Clearing Sections (710)16.3.12Creating and Deleting Section Banks (710)16.3.13Working with Patterns in Song view (710)16.3.13.1Creating a Pattern in Song View (711)16.3.13.2Selecting a Pattern in Song View (711)16.3.13.3Clearing a Pattern in Song View (711)16.3.13.4Renaming a Pattern in Song View (711)16.3.13.5Coloring a Pattern in Song View (712)16.3.13.6Removing a Pattern in Song View (712)16.3.13.7Duplicating a Pattern in Song View (712)16.3.14Enabling Auto Length (713)16.3.15Looping (714)16.3.15.1Setting the Loop Range in the Software (714)16.3.15.2Activating or Deactivating a Loop Using the Controller (715)16.4Playing with Sections (715)16.4.1Jumping to another Playback Position in Your Project (716)16.5Triggering Sections or Scenes via MIDI (717)16.6The Arrange Grid (719)16.7Quick Grid (720)17Sampling and Sample Mapping (722)17.1Opening the Sample Editor (722)17.2Recording Audio (724)17.2.1Opening the Record Page (724)17.2.2Selecting the Source and the Recording Mode (725)17.2.3Arming, Starting, and Stopping the Recording (729)17.2.5Checking Your Recordings (731)17.2.6Location and Name of Your Recorded Samples (734)17.3Editing a Sample (735)17.3.1Using the Edit Page (735)17.3.2Audio Editing Functions (739)17.4Slicing a Sample (743)17.4.1Opening the Slice Page (743)17.4.2Adjusting the Slicing Settings (744)17.4.3Manually Adjusting Your Slices (746)17.4.4Applying the Slicing (750)17.5Mapping Samples to Zones (754)17.5.1Opening the Zone Page (754)17.5.2Zone Page Overview (755)17.5.3Selecting and Managing Zones in the Zone List (756)17.5.4Selecting and Editing Zones in the Map View (761)17.5.5Editing Zones in the Sample View (765)17.5.6Adjusting the Zone Settings (767)17.5.7Adding Samples to the Sample Map (770)18Appendix: Tips for Playing Live (772)18.1Preparations (772)18.1.1Focus on the Hardware (772)18.1.2Customize the Pads of the Hardware (772)18.1.3Check Your CPU Power Before Playing (772)18.1.4Name and Color Your Groups, Patterns, Sounds and Scenes (773)18.1.5Consider Using a Limiter on Your Master (773)18.1.6Hook Up Your Other Gear and Sync It with MIDI Clock (773)18.1.7Improvise (773)18.2Basic Techniques (773)18.2.1Use Mute and Solo (773)18.2.2Create Variations of Your Drum Patterns in the Step Sequencer (774)18.2.3Use Note Repeat (774)18.2.4Set Up Your Own Multi-effect Groups and Automate Them (774)18.3Special Tricks (774)18.3.1Changing Pattern Length for Variation (774)18.3.2Using Loops to Cycle Through Samples (775)18.3.3Load Long Audio Files and Play with the Start Point (775)19Troubleshooting (776)19.1Knowledge Base (776)19.2Technical Support (776)19.3Registration Support (777)19.4User Forum (777)20Glossary (778)Index (786)1Welcome to MASCHINEThank you for buying MASCHINE!MASCHINE is a groove production studio that implements the familiar working style of classi-cal groove boxes along with the advantages of a computer based system. MASCHINE is ideal for making music live, as well as in the studio. It’s the hands-on aspect of a dedicated instru-ment, the MASCHINE hardware controller, united with the advanced editing features of the MASCHINE software.Creating beats is often not very intuitive with a computer, but using the MASCHINE hardware controller to do it makes it easy and fun. You can tap in freely with the pads or use Note Re-peat to jam along. Alternatively, build your beats using the step sequencer just as in classic drum machines.Patterns can be intuitively combined and rearranged on the fly to form larger ideas. You can try out several different versions of a song without ever having to stop the music.Since you can integrate it into any sequencer that supports VST, AU, or AAX plug-ins, you can reap the benefits in almost any software setup, or use it as a stand-alone application. You can sample your own material, slice loops and rearrange them easily.However, MASCHINE is a lot more than an ordinary groovebox or sampler: it comes with an inspiring 7-gigabyte library, and a sophisticated, yet easy to use tag-based Browser to give you instant access to the sounds you are looking for.What’s more, MASCHINE provides lots of options for manipulating your sounds via internal ef-fects and other sound-shaping possibilities. You can also control external MIDI hardware and 3rd-party software with the MASCHINE hardware controller, while customizing the functions of the pads, knobs and buttons according to your needs utilizing the included Controller Editor application. We hope you enjoy this fantastic instrument as much as we do. Now let’s get go-ing!—The MASCHINE team at Native Instruments.MASCHINE Documentation1.1MASCHINE DocumentationNative Instruments provide many information sources regarding MASCHINE. The main docu-ments should be read in the following sequence:1.MASCHINE MIKRO Quick Start Guide: This animated online guide provides a practical ap-proach to help you learn the basic of MASCHINE MIKRO. The guide is available from theNative Instruments website: https:///maschine-mikro-quick-start/2.MASCHINE Manual (this document): The MASCHINE Manual provides you with a compre-hensive description of all MASCHINE software and hardware features.Additional documentation sources provide you with details on more specific topics:►Online Support Videos: You can find a number of support videos on The Official Native In-struments Support Channel under the following URL: https:///NIsupport-EN. We recommend that you follow along with these instructions while the respective ap-plication is running on your computer.Other Online Resources:If you are experiencing problems related to your Native Instruments product that the supplied documentation does not cover, there are several ways of getting help:▪Knowledge Base▪User Forum▪Technical Support▪Registration SupportYou will find more information on these subjects in the chapter Troubleshooting.Document Conventions1.2Document ConventionsThis section introduces you to the signage and text highlighting used in this manual. This man-ual uses particular formatting to point out special facts and to warn you of potential issues.The icons introducing these notes let you see what kind of information is to be expected:This document uses particular formatting to point out special facts and to warn you of poten-tial issues. The icons introducing the following notes let you see what kind of information canbe expected:Furthermore, the following formatting is used:▪Text appearing in (drop-down) menus (such as Open…, Save as… etc.) in the software andpaths to locations on your hard disk or other storage devices is printed in italics.▪Text appearing elsewhere (labels of buttons, controls, text next to checkboxes etc.) in thesoftware is printed in blue. Whenever you see this formatting applied, you will find thesame text appearing somewhere on the screen.▪Text appearing on the displays of the controller is printed in light grey. Whenever you seethis formatting applied, you will find the same text on a controller display.▪Text appearing on labels of the hardware controller is printed in orange. Whenever you seethis formatting applied, you will find the same text on the controller.▪Important names and concepts are printed in bold.▪References to keys on your computer’s keyboard you’ll find put in square brackets (e.g.,“Press [Shift] + [Enter]”).►Single instructions are introduced by this play button type arrow.→Results of actions are introduced by this smaller arrow.Naming ConventionThroughout the documentation we will refer to MASCHINE controller (or just controller) as the hardware controller and MASCHINE software as the software installed on your computer.The term “effect” will sometimes be abbreviated as “FX” when referring to elements in the MA-SCHINE software and hardware. These terms have the same meaning.Button Combinations and Shortcuts on Your ControllerMost instructions will use the “+” sign to indicate buttons (or buttons and pads) that must be pressed simultaneously, starting with the button indicated first. E.g., an instruction such as:“Press SHIFT + PLAY”means:1.Press and hold SHIFT.2.While holding SHIFT, press PLAY and release it.3.Release SHIFT.1.3New Features in MASCHINE2.8The following new features have been added to MASCHINE: Integration▪Browse on , create your own collections of loops and one-shots and send them directly to the MASCHINE browser.Improvements to the Browser▪Samples are now cataloged in separate Loops and One-shots tabs in the Browser.▪Previews of loops selected in the Browser will be played in sync with the current project.When a loop is selected with Prehear turned on, it will begin playing immediately in-sync with the project if transport is running. If a loop preview starts part-way through the loop, the loop will play once more for its full length to ensure you get to hear the entire loop once in context with your project.▪Filters and product selections will be remembered when switching between content types and Factory/User Libraries in the Browser.▪Browser content synchronization between multiple running instances. When running multi-ple instances of MASCHINE, either as Standalone and/or as a plug-in, updates to the Li-brary will be synced across the instances. For example, if you delete a sample from your User Library in one instance, the sample will no longer be present in the other instances.Similarly, if you save a preset in one instance, that preset will then be available in the oth-er instances, too.▪Edits made to samples in the Factory Libraries will be saved to the Standard User Directo-ry.For more information on these new features, refer to the following chapter ↑4, Browser. Improvements to the MASCHINE MIKRO MK3 Controller▪You can now set sample Start and End points using the controller. For more information refer to ↑17.3.1, Using the Edit Page.Improved Support for A-Series Keyboards▪When Browsing with A-Series keyboards, you can now jump quickly to the results list by holding SHIFT and pushing right on the 4D Encoder.▪When Browsing with A-Series keyboards, you can fast scroll through the Browser results list by holding SHIFT and twisting the 4D Encoder.▪Mute and Solo Sounds and Groups from A-Series keyboards. Sounds are muted in TRACK mode while Groups are muted in IDEAS.。

AE内置特效中英文对照

AE内置特效中英文对照

之邯郸勺丸创作Distort扭曲特效--Bezier warp贝赛尔曲线弯曲--Bulge凹凸镜--CC BendIt 区域卷曲效果--CC Bender 层卷曲效果--CC Blobbylize 融化效果--CC Flo Motion 两点收缩变形--CC Griddler 网格状变形--CC Lens 鱼眼镜头效果,不如Pan Lens Flare Pro--CC Page Turn 卷页效果--CC Power Pin 带有透视效果的四角扯动工具,类似Distort/CornerPin--CC Ripple Pulse 扩散波纹变形,必须打关键帧才有效果--CC Slant 倾斜变形--CC Smear 涂抹变形--CC Split 简单的胀裂效果--CC Split 2 分歧错误称的胀裂效果--CC Tiler 简便的电视墙效果--Corner pin边角定位--Displacement map置换这招--Liquify像素溶解变换--Magnify像素无损放大--Mesh warp液态变形--Mirror镜像--Offset位移--Optics compensation镜头变形--Polar coordinates极坐标转换--Puppet木偶工具--Reshape形容--Ripple波纹--Smear涂抹--Spherize球面化--Transform变换--Turbulent displace变形置换--Twirl扭转--Warp歪曲边框--Wave warp海浪变形Expression Controls 表达式控制特效--Angel control角度控制--Aheckbox control检验盒控制--Color control色彩控制--Layer control层控制--Point control点控制--Slider control游标控制Generate 渲染--4-ccolor gradient四角渐变--Advanced lightning高级闪电--Audio spectrum声谱--Audio waveform声波--Beam光束--CC Glue Gun 喷胶效果--CC Light Burst 2.5 光线缩放--CC Light Rays 光芒放射,加有变形效果--CC Light Sweep 过光效果--Cell pattern单元图案--Checkerboard棋盘格式--Circle圆环--Ellipse椭圆--Eyedropper fill滴管填充--Fill 填充--Fractal万花筒--Grid网格--Lens flare镜头光晕--Paint bucker颜料桶--Radio waves电波--Ramp渐变--Scribble涂抹--Stroke描边--Vegas勾画--Write-on手写效果Keying 抠像特效--CC Simple Wire Removal 简单的去除钢丝工具,实际上是一种线状的模糊和替换效果--Color difference key色彩差抠像--Color key色彩抠像--Color range色彩范围--Difference matte差别蒙版--Extract 提取--Inner/outer key轮廓抠像--Keylight(1.2)--Linear color key线性色彩抠像--Luma key亮度抠像--Spill suppressor溢色抑制Matte 蒙版特效--Matte choker蒙版清除--Simple choker简单清除Noise & Grain 噪波和杂点特效--Add grain添加杂点--Dust & scratches杂点和划痕--Fractal noise不规则噪波--Match grain杂点匹配--Median中性--Noise噪波--Noise alpha alpha噪波--Noise HLS HLS噪波--Noise HLS auto 自动生成HLS噪波--Remove grain减弱杂点Obsolete--Basic 3D 基础三维--Basic text 基本文字--Lightning 闪电--Path text 路径文字Paint 绘画--Paint绘画工具--Vector paint矢量绘画perspective 透视特效--3D glasses立体眼镜--Bevel Alpha Alpha导角--Bevel edges 边沿导角--CC Cylineder 圆柱体贴图--CC Sphere 球化效果--CC Spotlight 点光源效果--Drop shadow 投影--Radial shadow放射状的投影Red Giant--RGS Grow Bounds Simulation 仿真特效--Card dance碎片飘移--Caustics焦散--CC Ball Action小球状粒子化--CC Bubbles 气泡效果--CC Drizzle 雨打水面效果--CC Hair 毛发生成器(较慢)--CC Mr.Mercury 模仿水银流动--CC Particle Systems II 二维粒子运动--CC Particle World 三维粒子运动,优于Simulation/ParticlePlayground --CC Pixel Polly 画面破碎效果--CC Rain (下雨效果)--CC Scatterize 发散粒子化(类似于Stylize/Scatter)--CC Snow(飘雪效果)--CC Star Burst(模拟星团效果)--Foam泡沫--Particle playground粒子--Shatter爆碎--Wave world波纹抖动Stylize 风格化特效--Brush storkes画笔描边--Cartoon--CC Burn Film 胶片烧灼效果--CC Glass 玻璃透视效果--CC Kaleida 不错的万花筒效果--CC Mr Smoothie 像素溶解运动--CC RepeTile 多种方式的叠印效果--CC Threshold 简单的阈值工具--CC Threshold RGB--RGB分色阈值--Color emboss黑色浮雕--Emboss浮雕--Find Edges查找边沿--Glow自发光--Mosaic马赛克--Motion tile运动拼贴--Posterize 多色调分离--Roughen edges粗糙边沿--Scatter 扩散--Strobe light 闪光灯--Texturize 纹理化--Threshold 对比度极限Synthetic Aperture--SA Color Finesse 2Text 文字特效--Numbers数字--Timecode时间码Time 时间特效--CC Force MotionBlur 强力运动模糊--CC Time Blend 带有动态模糊的帧融合--CC Time Blend FX 可自定义的帧融合--CC Wide Time 多重的帧融合效果--Echo重影--Psterize time招贴画--Time difference时间差别--Time displacement时间置换--Timewarp时间收缩Transition 转换特效--Block dissolve快面溶解--Card wipe卡片擦除--CC Glass Wipe 融化过渡--CC Grid Wipe 纺锤形网格过渡--CC Image Wipe 亮度过渡(类似Transition/Gradient Wipe)--CC Jaws 锯齿状过渡--CC LightWipe 边沿加光过渡,带有变形效果--CC Radial Scale Wipe 带有边沿扭曲的圆孔过渡--CC Scale Wipe 扯动变形过渡--CC Twister 扭曲过渡--Gradient wipe渐变擦拭--Iris wipe星形擦拭--Linear wipe线性擦拭--Radial wipe径向擦拭--Venetian blinds百叶窗Utlity 实用特效--Cineon converter Cineon转换--Color profile converter色彩特性描述转换--Grow bounds范围增长--HDR compander HDR压缩扩展--HDR Highlight compression HDR高光压缩。

地下水模拟软件GMS中文使用手册

地下水模拟软件GMS中文使用手册

2.1.1 纲要....................................................................................................................................... 17
2.2 开始.............................................................................................................................................. 18 2.3 属性对象...................................................................................................................................... 18
1.12.1 创建概念模型..................................................................................................................... 13 1.12.2 根据 GIS 数据作图............................................................................................................. 13
2.4 结论.............................................................................................................................................. 24 25 3 MODFLOW—概念模型法................................................................................................................ ................................................................................................................25 3.1 简介.............................................................................................................................................. 26

芯片测试仪设备操作指南说明书

芯片测试仪设备操作指南说明书

MechanicsOscillationsElliptical Oscillation of a String PendulumDESCRIPTION OF ELLIPTICAL OSCILLATIONS OF A STRING PENDULUM AS THE SU-PERIMPOSITION OF TWO COMPONENTS PERPENDICULAR TO ONE ANOTHER.UE1050121 06/15 MEC/UDFig. 1: Experiment set-upGENERAL PRINCIPLESDepending on the initial conditions, a suitable suspended string pendulum will oscillate in such a way that the bob’s motion describes an ellipse for small pendulum deflections. If the motion is resolved into two perpendicu-lar components, there will be a phase difference between those components.This experiment will investigate the relationship by measuring the oscillations with the help of two perpendicularly mounted dynamic force sensors. The amplitude of the components and their phase difference will then be evaluated. The phase shift between the oscillations will be shown directly by displaying the oscillations on a dual-channel oscilloscope.Three special cases shed light on the situation:a) If the pendulum swings along the line bisecting the two force sensors, the phase shift φ = 0°.b) If the pendulum swings along a line perpendicular to that bisecting the two force sensors, the phase shift φ = 180°.c) If the pendulum bob moves in a circle, the phase shift φ =oscillation directions of the string pendulum under in-vestigationLIST OF EQUIPMENT1 SW String Pendulum Set 1012854 (U61025)1 SW Stand Equipment Set 1012849 (U61022)1 SW Sensors Set @230 V 1012850 (U61023-230) or1 SW Sensors Set (@115 V 1012851 (U61023-115) 1 USB Oscilloscope 2x50 MHz 1017264 (U112491)SET-UP∙Screw the stand rods with both external and internal threads into the outer threaded sockets of the base plate. ∙Extend both rods by screwing rods with external thread only onto the ends of them.∙Attach double clamps near the top of both stand rods and turn them to point inwards so that the slots are vertical and facing one another.∙Attach both springs from the spring module to the lugs on the cross bar (angled side).∙Hang the large loop of string from the lug on the flat side.Fig. 3 Assembly of spring module∙Connect the springs and vector plate to the hook of a dynamic force sensor with a small loop of string and care-fully pull everything taut.∙Attach the force sensor with the screw tightened by hand. ∙Attach the second force sensor in the same way.Fig. 4 Attachment of dynamic force sensors to spring module∙Pull the string through the eyelet of the spring module (in the middle of the metal disc).∙Thread the end of the string through the two holes of the length adjustment slider.Fig. 5 Set up of string3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Germany, ∙Clamp the cross bar into the slots of the two double clamps, suspend a weight from the end of the string and set up the height of the pendulum using the length ad-justment slider.Fig. 6 Attachment of cross bar in double clamp ∙ Connect the force sensors to the inputs for channels A and B of the MEC amplifier board.∙ Connect outputs A and B of the MEC control unit to channels CH1 and CH2 of the oscilloscope.EXPERIMENT PROCEDURE∙Set the oscilloscope time base time/div to 1 s, select a vertical deflection for channels CH1 and CH2 of 50 mV DC and set the trigger to “Edge” mode, “Normal” sweep, “Source CH1” and “Slope +”.∙Slightly deflect the string pendulum and allow it to oscil-late in a plane which bisects the alignment of the two force sensors (oscillation path a in Fig. 2). Observe the oscilloscope trace and save it.∙Slightly deflect the string pendulum and allow it to oscil-late in a plane which is perpendicular to the one which bi-sects the two force sensors (oscillation path b in Fig. 2). Observe the oscilloscope trace and save it.∙Slightly deflect the string pendulum and allow it to oscil-late in a circle (oscillation path c in Fig. 2). Observe the oscilloscope trace and save it.SAMPLE MEASUREMENT AND EVALUA-TIONWhen the pendulum is oscillating in the plane of the bisecting angle between the sensors, the two sensors will experience symmetric loading (oscillation path a in Fig. 2). The signals from the two force sensors will be in phase, i.e. the phase shift between them will be φ= 0° (Fig. 7).Fig. 7: Oscillation components for a string pendulum swingingalong the line bisecting the two force sensorsWhen the pendulum is oscillating in the plane perpendicular to the bisecting angle between the sensors, the two sensors will experience asymmetric loading (oscillation path b in Fig. 2). The signals from the two force sensors will be wholly out of phase, i.e. the phase shift between them will be φ= 180° (Fig. 8).Fig. 8: Oscillation components for a string pendulum swingingalong the line perpendicular to that bisecting the two force sensorsThe circular oscillation is a superimposition of the oscillations along the plane of the bisecting angle between the sensors and the angle perpendicular to it with a phase shift of φ = 90°(Fig. 9).Fig. 9: Oscillation components for a string pendulum describ-ing a circle。

非高斯杂波背景中的两个距离扩展目标检测器

非高斯杂波背景中的两个距离扩展目标检测器

ue sm t tel ao fr ai fct rr, n otrsod os n fl lr t eetr T —F R) sdt et ae h ct ni om t no sat es a dat ehls nt ta e a r i dt o ( D C A o i o i n o e w h c a s a m ao c
Two De e t r f Ra e- pr a r e n No ・ u sa ute t c o s o ng ・ S e d Ta g ti n・ Ga s i n Cl t r
G i. n I a U X n f g ,JAN T o ,HE Y u e o ,HA0 Xio l 。 a — n i
题, 先假设 目标 强散 射点 的位置 信息 已知 , 用广 义似 然 比检 验 ( L T) 采 G R 理论 , 出了基 于散 射 点位 置 的 G R 提 LT ( LG R ) S — L T 检测器。然后 , 采用 门限法估计散射点的位置信息 , 出了双 门限恒虚警率 ( T C A 检 测器 , 导了 提 D —F R) 推 虚警概率 与检测 门限关 系 的解析 表达 式 , 给 出 门限 的确定 方法 。与现 有方 法 相 比, 射点 位置 信 息 已知 时 , 并 散 S—L T LG R 具有 最佳 的检测性 能 , 散射点位置信息未知时 , TC A D —F R具有较好 的鲁棒性 。 关键词 :非高斯 杂波 ;距 离扩 展 目标 ;恒虚警率 ;检测
d tr nn h h e h l i gv n T e r s l h w t a h L GL T h s t e e t d t cin p r r a c e h ee mi i g te t r s od s ie . h e u t s o h t e S — R a h b s ee t ef m n e wh n t e s t o o if rmt n o c tee s i k o .a d t e DT C AR i mo e rb s e t su k o n n on i f atr r S n wn n h — F S o s r o u twh n i i n n w .

python解析倾斜摄影模型

python解析倾斜摄影模型

python解析倾斜摄影模型
要解析倾斜摄影模型,可以使用Python中的多种库和工具。

首先,我们可以使用OpenCV库来处理图像,这样可以对倾斜摄影模型
进行图像处理和分析。

另外,可以使用NumPy库来进行数学运算和
数组操作,这对于处理摄影模型的数学数据非常有用。

此外,还可
以使用Matplotlib库来可视化数据和结果,这对于分析和展示摄影
模型的效果非常有帮助。

在解析倾斜摄影模型时,可以首先对摄影模型进行图像处理,
比如去畸变、裁剪、放大缩小等操作。

可以使用OpenCV库中的函数
来实现这些操作,比如cv2.undistort()函数用于去畸变,
cv2.resize()函数用于放大缩小等。

接着,可以利用NumPy库进行
数学运算,比如矩阵运算、向量运算等,这对于摄影模型的数学分
析非常有帮助。

最后,可以使用Matplotlib库来可视化处理后的摄
影模型,比如绘制图像、绘制曲线等,这对于分析和展示摄影模型
的效果非常有帮助。

除了以上提到的库和工具,还可以考虑使用一些专门用于摄影
模型解析的Python库,比如Photogrammetry Toolbox、MicMac等。

这些库提供了丰富的摄影模型解析功能,可以帮助我们更好地理解
和分析摄影模型。

总的来说,要解析倾斜摄影模型,我们可以利用Python中丰富
的图像处理、数学运算和可视化库来进行全面的分析和处理。

通过
综合运用这些库和工具,我们可以更好地理解和分析倾斜摄影模型。

stereocalibrate 源码解析

stereocalibrate 源码解析

一、引言在计算机视觉和机器人领域中,相机标定是一项重要的技术,它能够准确地确定相机的内部参数和外部参数,从而实现三维物体的测量、定位和识别。

在相机标定的过程中,双目相机标定是一种常见的方法,而stereocalibrate就是一个应用广泛的双目相机标定的源码工具。

二、概述1. stereocalibrate的作用stereocalibrate是一个用于双目相机标定的开源工具,它能够根据双目相机拍摄的图片数据,精确地计算出相机的内部参数和外部参数,包括相机的焦距、主点偏移、畸变系数、相机之间的旋转矩阵和位移向量等参数。

2. stereocalibrate的原理stereocalibrate主要基于双目相机成像的几何原理和特征点匹配的算法,通过对双目相机拍摄的图片进行特征点提取和匹配,然后利用计算机视觉的方法来估计相机的内部和外部参数。

三、源码解析1. 主要函数及作用stereocalibrate源码中包含了一些主要的函数,其中最重要的是stereocalibrate_main()函数,该函数是整个双目相机标定过程的主控函数,它调用了一系列的子函数来完成相机标定的各个步骤,包括图像的加载、特征点匹配、标定参数计算和结果保存等。

2. 源码结构stereocalibrate的源码结构清晰,主要包括参数定义、图像处理、特征点提取与匹配、标定参数计算和结果输出等模块。

通过详细阅读源码,可以清晰地了解整个双目相机标定的流程和算法实现细节。

3. 关键算法分析在stereocalibrate的源码中,关键算法主要包括特征点提取和匹配算法、单应矩阵计算算法和摄像机标定参数优化算法等。

这些算法是整个双目相机标定过程中的核心,通过对这些算法的深入分析,可以更好地理解双目相机标定的原理和实现细节。

四、应用实例以某工业机器人双目视觉系统为例,通过stereocalibrate工具对机器人携带的双目相机进行了标定,成功获得了相机的内外参数,为机器人的视觉定位和目标识别提供了可靠的基础支持。

zed 深度原理

zed 深度原理

zed 深度原理Zed深度原理Zed深度原理是一种用于图像处理的算法,其核心思想是通过分析图像中不同像素的灰度值来推断物体的深度信息。

这一原理广泛应用于计算机视觉、机器人导航和虚拟现实等领域,为我们提供了更加真实和逼真的视觉体验。

Zed深度原理的基本原理是利用左右两个摄像头之间的视差来计算物体的深度。

当我们观察一个物体时,左眼和右眼所看到的物体位置会有微小差异,这就是视差。

通过测量这个视差,我们可以推断物体到摄像头的距离。

为了理解Zed深度原理的具体过程,我们可以分为以下几个步骤:1. 图像采集:首先,我们需要使用两个摄像头同时拍摄同一个场景,这两个摄像头之间的距离通常是固定的。

摄像头会将场景转换成数字图像,每个像素的灰度值代表了该位置的亮度。

2. 视差计算:接下来,我们需要对左右两个图像进行匹配,找到相同物体在两个图像中的对应点。

这可以通过比较灰度值来实现,当两个像素的灰度值越接近,它们越有可能是同一个物体的一部分。

3. 深度推断:一旦我们找到了对应点,我们就可以计算它们之间的视差。

通过测量视差的大小,我们可以利用三角测量法来推断物体到摄像头的距离。

具体来说,我们可以使用已知的摄像头之间的距离和视差的比例关系来计算深度值。

Zed深度原理的优点是可以实时计算物体的深度信息,并且对于不同的距离范围有较好的适应性。

此外,它还可以在低光照条件下工作,并且对于不同材质和颜色的物体也能够进行准确的深度推断。

然而,Zed深度原理也存在一些限制。

首先,它对纹理较少或光照不均匀的物体可能无法提供准确的深度信息。

其次,由于视差计算的不确定性,它在较大深度范围内可能存在一定的误差。

此外,由于需要使用两个摄像头,这也增加了硬件成本和复杂性。

为了克服这些限制,研究人员提出了许多改进的方法,如使用多个摄像头、结合其他传感器数据等。

这些方法可以提高深度信息的准确性和鲁棒性,但也会增加系统的复杂性和成本。

总结起来,Zed深度原理是一种基于视差计算的算法,用于推断物体的深度信息。

cvscale 详解

cvscale 详解

cvscale 详解CVScale 是一个用于图像缩放的函数,可以根据指定的比例因子对图像进行放大或缩小。

该函数是计算机视觉领域常用的工具,具有广泛的应用。

在计算机视觉领域,图像缩放是一个重要的任务。

图像缩放可以改变图像的尺寸,使其适应不同的显示设备或应用需求。

例如,在图像处理中,我们可能需要将图像缩小以减少计算复杂度,或者将图像放大以获得更多细节。

此外,在计算机视觉算法中,图像缩放也是常见的预处理步骤,可以改善算法性能和准确度。

CVScale 函数的输入参数包括原始图像、目标图像尺寸和缩放比例。

原始图像是待缩放的图像,可以是彩色图像或灰度图像。

目标图像尺寸是指缩放后图像的尺寸,可以是任意大小。

缩放比例是指原始图像尺寸与目标图像尺寸之间的比值,可以大于1表示放大,小于1表示缩小。

CVScale 函数的实现过程可以分为以下几个步骤:1. 首先,根据缩放比例计算出目标图像的尺寸。

如果缩放比例为1,则目标图像尺寸与原始图像尺寸相同;如果缩放比例大于1,则目标图像尺寸大于原始图像尺寸;如果缩放比例小于1,则目标图像尺寸小于原始图像尺寸。

2. 然后,根据目标图像尺寸创建一个空白图像。

空白图像的大小与目标图像尺寸相同,但像素值为空。

3. 接下来,根据缩放比例和目标图像尺寸,计算出原始图像中每个像素在目标图像中的位置。

这个位置是一个浮点数,表示原始图像中的像素在目标图像中的位置坐标。

4. 然后,根据计算出的位置坐标,在目标图像中找到对应的像素值。

这个过程可以通过插值算法实现,常用的插值算法有最近邻插值、双线性插值和双三次插值等。

5. 最后,将计算出的像素值填充到目标图像中的对应位置。

这样,就完成了图像的缩放过程。

CVScale 函数的输出是缩放后的图像,可以保存到文件或者在计算机视觉算法中进一步处理。

总结起来,CVScale 是一个用于图像缩放的函数,可以根据指定的比例因子对图像进行放大或缩小。

它在计算机视觉领域具有广泛的应用,可以用于图像处理、计算机视觉算法等任务。

orb-slam2尺度因子参数

orb-slam2尺度因子参数

orb-slam2尺度因子参数
ORB-SLAM2没有单一的尺度因子参数。

尺度因子在ORB-SLAM2 中通过建立全局尺度恢复的方法来估计。

具体来说,ORB-SLAM2 使用了基于单应性矩阵的单目SLAM,在全局地图中的关键帧之间建立了单应性矩阵的关系,并通过这些单应性矩阵来估计尺度。

在ORB-SLAM2 中,尺度初始化是通过一个尺度计算因子来完成的。

该因子计算在全局地图初始化的过程中,使用视差关系来对关键帧之间的尺度进行估计。

尺度计算因子的选择通常是在运行时自动完成的,而不是通过手动设定。

总结来说,ORB-SLAM2 的尺度因子参数是通过全局尺度恢复方法来自动估计的,而不是通过手动设置的固定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Proceedings of the 7th European VLBI Network Symposium Bachiller, R. Colomer, F., Desmurs, J.F., de Vicente, P. (eds.) October 12th-15th 2004, Toledo, SpainThe two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 4278G. Giovannini1,2 , M. Giroletti1,2 , and G. B. Taylor3arXiv:astro-ph/0412563v1 21 Dec 20041 2 3Istituto di Radioastronomia, CNR/INAF, via Gobetti 101, 40129, Bologna, Italy Dipartimento di Astronomia, Universit` di Bologna, via Ranzani 1, 40127 Bologna, Italy a National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USAAbstract. We present new Very Long Baseline Interferometry observations of the LINER galaxy NGC 4278 with a linearresolution of < 0.1 pc. Our radio data reveal a two sided structure, with symmetric S -shaped jets emerging from a flat spectrum ∼ core. By comparing the positions of the components in two epochs, we measure motions corresponding to apparent velocities < 0.2 c, and to ages in the range 8.3 − 65.8 years. From our measurements, we derive that NGC 4278 has mildly relativistic jets ∼ (β ∼ 0.75), closely aligned to the line-of-sight (2◦ ≤ θ ≤ 4◦ ). We also present a flux density history for the source with data between 1972 and 2003. All these arguments indicates that the low power radio emission from NGC 4278 is emitted via the synchrotron process by relativistic particles accelerated by a supermassive black hole.1. IntroductionAlthough objects hosting an Active Galactic Nucleus represent only a small fraction of the total number of extragalactic sources, there is growing evidence that some kind of nuclear activity at lower level might be a much more common feature among galaxies. Objects presenting spectral signature of such activity include low-ionization nuclear emission-line region, low luminosity Seyfert galaxies, and “transition nuclei”, i.e. nuclei with spectra intermediate between LINERs and HII regions. These objects are grouped under the name of Low Luminosity Active Galactic Nuclei (LLAGN, Ho et al. 1997). NGC 4278 is a nearby LLAGN. It has been investigated in detail at most wavelengths. In the optical, HST observations reveal a central point source and a large distribution of dust located north-northwest of the core (Carollo et al. 1997). Ionized nuclear gas typical of LINER is found in this galaxy by Goudfrooij et al.(1994), possibly associated to a more external ring of neutral hydrogen in PA 135◦ (Raimond et al. 1981). Radio continuum observations on kpc scale have been carried out at frequencies between 5 and 43 GHz, revealing a compact source (Di Matteo et al. 2001; Nagar et al. 2000, 2001). Compactness and flat radio spectra suggest that the radio emission is non thermal, and in this respect the emission from NGC4278 seems to be very similar to that of powerful radio loud AGNs, such as QSO and BL Lacs; however, the total radio luminosity of the source is only P1.4GHz = 1021.6 W Hz−1 , i.e. at least two orders of magnitude less than those powerful objects. On parsec scale, early VLBI experiments at 18 cm and 6 cm have revealed a core dominated structure, with an elongated feature extending to the north-west and possibly to the south on scales of some 10 mas (Jones et al. 1981, 1982, 1984; Schilizzi et al. 1983). More recent observations with the VLBA at 6 cm reveal an extended core and an elongated region to the southeast on scales of a few milliarcsecond (Falcke et al. 2000). Giovannini et al.(2001) thanks to more short spacingsprovided by a VLA antenna in addition to the full VLBA, have also detected emission on the opposite side of the core. Bondi et al.(2004) also detect a trace of two-sided emission, although heavily resolved. Finally, VLBA phase-referenced observations have succeeded in detecting the source on sub-pc scale even at 43 GHz, but showing only a core and a hint of low level emission to the north (Ly et al. 2004). In the present paper, we consider new VLBA observations at 5 and 8.4 GHz, taken on 2000 August 27 and compare the new 5 GHz image to Giovannini et al. (2001) data, discussing the morphology and the motion of components. For more details we refer to Giroletti et al. (2004). NGC 4278 has a direct distance measurement of 14.9 Mpc (Jensen et al. 2003). At this distance, 1 mas corresponds to a linear scale of 0.071 pc. We define the spectral index α following the convention that S (ν) ∝ ν−α .2. Observations and Data ReductionWe observed NGC4278 at 5 and 8.4 GHz, with an 11 element VLBI array composed by the NRAO Very Long Baseline Array (VLBA) and a single 25 m VLA antenna for 10 hours. The observing run was performed on 2000 August 27, switching between 5 GHz and 8.4 GHz. The correlation was carried out at the AOC in Socorro. The distribution tapes were read into the NRAO Astronomical Image Processing System (AIPS) for the initial calibration and the two frequencies were separated. After that, we followed the same scheme for the data reduction of both 5 GHz and 8.4 GHz data-sets. As a first step, we corrected our data entering the accurate position information obtained by Ly, Walker, & Wrobel(2004) (RA 12h 20m 06 s .825429, Dec 29◦ 16′ 50′′ .71418). We then performed the usual calibration stages (removal of instrumental single band delay, of phase and delay R − L offsets, and bandpass calibration) using scans on 3C279. Thanks to the good data calibration and position information, we could obtain final images with only a few iter-82G. Giovannini et al.: The two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 4278NGC4278 05 GHz 10August 2000 203040NGC4278 08.4 GHz 5August 2000 1015203030202010 MilliARC SEC MilliARC SEC 30 20 10 0 MilliARC SEC -10 -20 -301000-10-10-20-20-30-30 30 20 10 0 MilliARC SEC -10 -20 -30Fig. 1. VLBA+Y1 image of NGC4278 at 5 GHz. Contours are at (1, 2, 4, ..., 128) times the lowest contour which is 0.15 mJy/beam. The HPBW is 3×1.7 mas in PA -7◦Fig. 2. VLBA+Y1 image of NGC4278 at 8.4 GHz. Contours are at (1, 2, 4, ..., 128) times the lowest contour which is 0.15 mJy/beam. The HPBW is 1.8×1.0 mas in PA -4◦MilliARC SECations of phase self-calibration. One cycle of amplitude selfcalibration with a long solution interval (30 minutes) has also been performed before obtaining the final (u, v)−data. We also re-analyzed VLBA+Y1 5 GHz data obtained in 1995 (22 July), taking advantage of the new position (Ly et al. 2004).NGC4278 20 15 10 5 05 GHzAugust 2000Modelfit componentsN2 N3 C S2-5 -10 -15 S13. ResultsThe final images reveal a source dominated by a central compact component, with emission coming from either side (Figs. 1 and 2). To the southeast, a jet-like feature extends for ∼ 6.5 mas in PA 155◦ (measured north to east), then progressively bends into PA 100◦. In total, the jet is almost 20 mas long, which corresponds to ∼ 1.4 pc. On the opposite side, the main component is slightly elongated to the north in the 5 GHz map (Fig. 1), and the 8.4 GHz data clearly show a secondary component in PA −40◦ (Fig. 2). Then, this jet-like feature bends to the west turning into a diffuse, uncollimated, low brightness emitting region. In total, the source extends over ∼ 45 milliarcsecond, i.e. about 3 parsec. The total flux density measured in our images is 120 mJy at 5 GHz and 95 mJy at 8.4 GHz. If we compare these values with those obtained with the VLA in nearby epochs (162 mJy and 114 mJy, respectively), we find about a 20-25% offset, which can be ascribed to the VLBA resolving out some extended emission, probably in the western region. The monochromatic luminosity at 1.4 GHz is 3.18 × 1021 W Hz−1 , and 2.52 × 1021 W Hz−1 at 8.4 GHz. The visibility data are well fitted by a five component model at both frequencies. The position and dimension of the components are illustrated in Fig. 3; our choice for labeling the components is based on their most likely epoch of ejection, as discussed in § 3.1. Besides being the most compact feature,-20 30 20 10 0 -10 MilliARC SEC -20 -30 -40Fig. 3. Model components for epoch 2000.65, overlayed to the lowest contour from the 5 GHz image.component C presents also the flattest spectral index (α = 0.2) and its identification with the core is straightforward. The same five component model that fits the 2000 epoch data has been applied to 1995 data set as well, allowing for the components to change in flux and position.3.1. Component motionIf we compare data taken at the same frequency in different epochs, we can get information on the evolution of the source. Taking the position of the core (component C) as a reference, and assuming it is fixed, we have compared the position of the other components. We report the results in Table 1: column (1) labels the components, column (2) report the apparent velocity in units of c, and the corresponding age in years is given in column (3). The radial distance of each component has increased over the five years lag between the observations. The motionG. Giovannini et al.: The two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 427883Table 1. Component Motion at 5 GHzComponent C S2 S1 N3 N2 βapp reference 0.020 ± 0.006 0.030 ± 0.006 0.055 ± 0.004 0.171 ± 0.030 age (yrs) 29.1 ± 9.3 65.8 ± 12.4 8.3 ± 0.5 25.0 ± 4.8is larger in the northwestern side; in particular, the largest displacement is found for component N2. Assuming that the apparent velocity is constant for each component, we derive ages as reported in column (3) with respect to the 2000.652 epoch. S 2 and N2 have ages that are consistent, and they must have been ejected together about 25 years before epoch 2000.652. S 1 is the oldest component, and its counterpart in the main jet is not detected, probably being too distant and extended. Finally, N3 is the youngest component, ejected only three years before our first epoch of observations; it is likely that a corresponding component S 3 has emerged in the counterjet but that it is still confused with the core. Note that the core is the only component whose flux density is larger in 2000.652 than in 1995.551.Fig. 4. (θ, β) plane for NGC 4278, as discussed in the text.4. Discussion4.1. Jet orientation and velocityOur images detect low level emission to the northwest with unprecedented resolution and sensitivity, both in the inner part of the jet, revealing the compact component N3, and at a larger distance, detecting ∼ 10 mJy of flux in the region N2. Thus, we classify NGC 4278 as a two-sided source, similarly to a few other LLAGN previously studied, e.g. NGC4552 (Nagar et al. 2002), NGC 6500 (Falcke et al. 2000), and NGC 3894 (Taylor et al. 1998). Although the southern jet looks more collimated, the total flux density is larger in the northern components than in the southern ones. Moreover the high resolution 8.4 GHz image (Fig. 2) clearly shows that the inner jet is brighter in its northern part than to the south, and the apparent motion of the northern components are also larger than those of the southern ones. Therefore we assume that the main and approaching jet is the northern one. To estimate the orientation θ and intrinsic velocity β of the jet, we will consider a simple beaming model, which assumes that components are ejected in pairs from the core at the same time, with the same intrinsic velocity and brightness; we apply this model to the components pair N2/S 2, which have been ejected simultaneously according to our motion measurments (Table 1). In this model, the ratio between the arm length r and the proper motion µ of the two components are related by R= rN2 1 + β cos θ µN2 = = µS 2 rS 2 1 − β cos θarm length ratio corresponds to selecting the hatched area between the two solid lines in the (β, θ)-plane (Fig. 4). The dotdash lines represent the possible combination of β and θ resulting from the apparent separation velocity of the two components, which is expressed by the relation βsep = (2β sin θ)/(1 − β2 cos2 θ). Finally, since we measure motion on both sides and we know the source distance, we can directly solve for θ and β as discussed by Mirabel & Rodriguez(1994); this corresponds to the dashed ellipse centered on θ = 2.7◦ , β = 0.79. In principle, one could also consider the brightness ratio between the two components; however, as an effect of relativistic time dilation, we are watching the components at different stages of evolution. Since we know little on the time evolution of jet components, this hinders the possibilty to apply the brightness ratio argument; in any case, S N2 /S S 2 > 1, consistent with our interpretation. Based on the above analysis (Fig. 4), we find mildly relativistic velocities of β ∼ 0.76 (Γ ∼ 1.5), and an orientation close to the line-of-sight (2◦ < θ < 4◦ ). The resultant Doppler factor ∼ ∼ is δ ∼ 2.7; the small viewing angle explains also the bendings visible in both jets, as the amplification caused by projection effects of intrinsically small deviations, which are common in low power radio sources.4.2. History of emissionFrom the result of the modelfit, small to moderate apparent velocities (< 0.2 c) are found for the four jet components. Under ∼ the assumption of constant velocity, we derive that they must have been ejected from the core between 8.1 and 64.5 years before epoch 2000.652 (see Column [3] in Table 1). However, these jet components are not to be confused with the hot spots demarcating the end of the jet as found in more powerful CSOs by Owsianik & Conway(1998), Peck & Taylor(2000), Giroletti et al.(2003). Therefore, a kinematic estimate of the real age of the source is difficult, and that of S 1 can only be taken as a lower limit. The low brightness and large size of N2, as well as the non detection of N1, suggest that components are continually ejected from the core butFrom our modelfits we derive that rN2 /rS 2 = 7.2 ± 0.2 and µN2 /µS 2 = 8 ± 3, so we estimate that 4 < R < 10. The84G. Giovannini et al.: The two sided parsec scale structure of the Low Luminosity Active Galactic Nucleus in NGC 4278the north-west side is the approaching side, and that the jets of NGC 4278 are mildly relativistic with β ∼ 0.75. The central black hole in NGC 4278 is therefore active and able to produce jets, which are responsible for the bulk of emission at radio frequency in this LLAGN. However, the lifetime of components of < 100 years at the present epoch and the lack of large scale emission, suggest that the jets are disrupted before they reach kpc scales. The study of the flux density history at 6 cm between 1972 and 2003 shows a significant variability (> 100%) on time ∼ scales of a few years, which might be related to the ejection of new components. This subject needs to be explored for other LLAGNs as well, as it can give better insight about the state of the central black hole in these sources.Acknowledgements. MG thanks the NRAO for hospitality during his visit to Socorro when much of this work was accomplished. The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. This research has made use of NASA’s Astrophysics Data System Bibliographic Services and of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, Caltech, under contract with NASA. We thank also the Italian Ministry for University and Research (MIUR) for partial support (grant 2003-02-7534).Fig. 5. Light curve for NGC 4278 at 5 GHz that they soon disrupt, without being able to travel long distances and form kpc scale lobes. We do not expect that this source may evolve into a kpc scale radio galaxy but that it will only periodically inflate slowly. The relatively low velocity jets discussed in § 4.1 can not bore through the local ISM and escape, as shown by the lack of hot spots, which are instead found in higher power CSOs. This behavior has to be ascribed to a low power central engine, which can not create highly relativistic jets. In Fig. 5 we plot the flux density history for NGC 4278 at 6 cm, with data taken at the WSRT, the Green Bank 300 ft radio telescope and the VLA. A previous plot was published by Wrobel & Heeschen(1991), to which we add 12 points, from observations obtained between 1972 and 2003. The light curve shows that the source is variable, prone to both outbursts and low states. A burst is certainly present around 1985, while in more recent years the source has been showing less activity. It is difficult to connect the burst with the ejection of new components, both because of the uncertainties related to the age of a single “blob”, and the possible time lag between component ejection and total flux enhancement. It is clear however that the source presents a high degree of variability, possibly related to the presence of an active nucleus. For a more detailed discussion see Giroletti et al. (2004).ReferencesBondi, M., March˜ , M. J. M., Polatidis, A., Dallacasa, D., a Stanghellini, C., & Ant´ n, S. 2004, MNRAS, 352, 112 o Carollo, C. M., Franx, M., Illingworth, G. D., & Forbes, D. A. 1997, ApJ, 481, 710 Di Matteo, T., Carilli, C. L., & Fabian, A. C. 2001, ApJ, 547, 731 Falcke, H., Nagar, N. M., Wilson, A. S., & Ulvestad, J. S. 2000, ApJ, 542, 197 Giovannini, G., Cotton, W. D., Feretti, L., Lara, L., & Venturi, T. 2001, ApJ, 552, 508 Giroletti, M., Giovannini, G., Taylor, G. B., Conway, J. E., Lara, L., & Venturi, T. 2003, A&A, 399, 889 Giroletti, M., Taylor, G. B., & Giovannini, G. 2004, ApJ, submitted Goudfrooij, P., Hansen, L., Jorgensen, H. E., & Norgaard-Nielsen, H. U. 1994, A&AS, 105, 341 Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315 Jensen, J. B., Tonry, J. L., Barris, B. J., Thompson, R. I., Liu, M. C., Rieke, M. J., Ajhar, E. A., & Blakeslee, J. P. 2003, ApJ, 583, 712 Jones, D. L., Terzian, Y., & Sramek, R. A. 1981, ApJ, 246, 28 Jones, D. L., Sramek, R. A., & Terzian, Y. 1982, ApJ, 261, 422 Jones, D. L., Wrobel, J. M., & Shaffer, D. B. 1984, ApJ, 276, 480 Ly, C., Walker, R. C., & Wrobel, J. M. 2004, AJ, 127, 119 Mirabel, I. F. & Rodriguez, L. F. 1994, Nature, 371, 46 Nagar, N. M., Falcke, H., Wilson, A. S., & Ho, L. C. 2000, ApJ, 542, 186 Nagar, N. M., Wilson, A. S., & Falcke, H. 2001, ApJ, 559, L87 Nagar, N. M., Falcke, H., Wilson, A. S., & Ulvestad, J. S. 2002, A&A, 392, 53 Owsianik, I. & Conway, J. E. 1998, A&A, 337, 69 Peck, A. B. & Taylor, G. B. 2000, ApJ, 534, 90 Raimond, E., Faber, S. M., Gallagher, J. S., & Knapp, G. R. 1981, ApJ, 246, 708 Schilizzi, R. T., Fanti, C., Fanti, R., & Parma, P. 1983, A&A, 126, 412 Taylor, G. B., Wrobel, J. M., & Vermeulen, R. C. 1998, ApJ, 498, 619 Wrobel, J. M. & Heeschen, D. S. 1991, AJ, 101, 1485. ConclusionsIn the present paper, we have presented new VLBA data for the nearby (d = 14.9 Mpc) LLAGN NGC 4278. Our data show a two-sided emission on sub-parsec scales, in the form of twin jets emerging from a central compact component (T B = 1.5 × 109 K), in much a similar way to what happens in more powerful radio loud AGNs. By comparison with previous data, we discover proper motion for components in both jets, over a five years time baseline; we find low apparent velocities (< 0.2 c) for the jet components ∼ and estimate the epoch of their ejection as 10 − 100 years before our observations. Based on our analysis, we suggest that。

相关文档
最新文档