专题:小船渡河问题
小船渡河问题
![小船渡河问题](https://img.taocdn.com/s3/m/12cd49e3a32d7375a51780c7.png)
小船渡河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。
3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =d v 1(d 为河宽)。
(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。
(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。
确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。
【题型1】已知某船在静水中的速度为v 1=5 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,水流速度为v 2=3 m/s ,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v 2′=6 m/s ,船在静水中的速度为v 1=5 m/s 不变,船能否垂直河岸渡河?【答案】(1)20 s 2034 m (2)25 s (3)不能【解析】(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t =d v 1=1005s =20 s. 如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移为l =d 2+x 2,由题意可得x =v 2t =3×20 m =60 m ,代入得l =2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v 1=5 m/s ,大于水流速度v 2=3 m/s ,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v 1cos θ=v 2,cos θ=v 2v 1=0.6,则sin θ=1-cos 2 θ=0.8,船的实际速度v =v 1sin θ=5×0.8 m/s =4 m/s ,所用的时间为t =d v =1004s =25 s.(3)当水流速度v 2′=6 m/s 时,则水流速度大于船在静水中的速度v 1=5 m/s ,不论v 1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.【题型2】一小船在静水中的速度为3 m/s ,它在一条河宽为150 m ,水流速度为4 m/s 的河流中渡河,则该小船( )A .能到达正对岸B .渡河的时间可能少于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短位移渡河时,位移大小为150 m【答案】C【解析】因为小船在静水中的速度小于水流速度,所以小船不能到达正对岸,故A 错误;当船头与河岸垂直时渡河时间最短,最短时间t =d v 船=50 s ,故渡河时间不能少于50 s ,故B 错误;以最短时间渡河时,沿水流方向位移x =v 水t =200 m ,故C 正确;当v 船与实际运动方向垂直时渡河位移最短,设此时船头与河岸的夹角为θ,则cos θ=34,故渡河位移s =d cos θ=200 m ,故D 错误。
小船渡河问题归纳总结
![小船渡河问题归纳总结](https://img.taocdn.com/s3/m/41061c444b7302768e9951e79b89680202d86b6b.png)
小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。
以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。
2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。
3. 河流速度:河流的流速,通常记为vs。
4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。
5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。
6. 渡河距离:船只在水面上实际行驶的距离。
二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。
2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。
3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。
三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。
2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。
3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。
-计算合速度的大小,使得船只能够准确到达指定地点。
四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。
2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。
高中物理小船过河问题
![高中物理小船过河问题](https://img.taocdn.com/s3/m/fb5c562f51e79b89680226e4.png)
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
(完整版)小船渡河问题练习题大全
![(完整版)小船渡河问题练习题大全](https://img.taocdn.com/s3/m/356cbdb7aeaad1f347933f1c.png)
小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。
人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。
问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。
高一物理小船渡河问题知识点
![高一物理小船渡河问题知识点](https://img.taocdn.com/s3/m/2744bbabf71fb7360b4c2e3f5727a5e9856a27b3.png)
高一物理小船渡河问题知识点
嘿,朋友们!今天咱来聊聊高一物理里超有意思的小船渡河问题呀!
你想想看,小船在河里要去到对岸,这就好像你要去一个你特别想去的地方,可不能瞎走对吧!这里面的门道可不少呢。
先说最短渡河时间,那就是让船头直直地指向对岸呀,就像你目标明确地直接朝着目的地冲刺一样!比如说,小船速度是 5 米每秒,河宽 20 米,那最短渡河时间不就是 20 除以 5 等于 4 秒嘛!
还有最短渡河位移呢!这就好比你想走最短的路到达目的地。
如果水流速度比较小,那小船可以斜着开,找到那个最合适的角度,让渡河的位移最短。
就好像你要避开一些障碍,找到最佳路线一样!比如水流速度是 3 米每秒,小船速度是 4 米每秒,那通过计算就能找到那个神奇的角度啦!
哎呀,这小船渡河问题是不是特别有趣呀!真的超级神奇的!我觉得学物理就是这么有意思,能发现好多生活中的奇妙现象呢!大家一定要好好学物理呀!。
小船过河问题
![小船过河问题](https://img.taocdn.com/s3/m/df49b804ba1aa8114431d9a0.png)
v水 cos v船
d t v 船 sin
v船
α(
v实际
d v水
【例2】河宽d,船在静水中的速度为v 船 ,水 流速度为v水,v船与河岸的夹角为θ。 v船>v水 ①求渡河所用的时间及横向位移,并讨论θ等 于多少时,渡河时间最短。 ②怎样渡河,船的合位移最小?此时对船速有 何要求? v船 d d v 船 cos v水 t s v 船 sin v 船 sin
小船过河问题
【例1】小船在d=200m宽的河水中行驶,船在 静水中v船=4m/s,水流速度v水=2m/s。求: ①要使船能在最短时间内渡 河,应向何方划船?
演示
v船
d t v船
v实际 d v水
v水 s v水 t d v船
【例1】小船在d=200m宽的河水中行驶,船在 静水中v船=4m/s,水流速度v水=2m/s。求: ②要使船能够垂直地渡过河 演示 去,那么应向何方划船?
α(
S d v船
瀑 布
v实际
v水
A x
【例5】一条河流宽为l,河水以速度v流动, 船以u<v的对水速度渡河,问: (1)为了使船到达对岸的时间最短,船头与河 岸应成多少度角?最短时间是多少?到达对岸 时,船在下游何处? (2)为了使船冲向下游的距离最短,船头与河 岸应成多少度角?到达对岸时,船在下游何处? 需要多少时间?
90
0
d t v船
θ
v水
v合垂直河岸,合位移最短等于河宽d,但必须 v船>v水
重要结论---小船的两种过河方式 1.最短时间过河 v船 d v水 v实际 d v水 过河路径最短; s = d (v船>v水) 2.最短位移过河 v船 v实际
过河时间最短;
小船渡河问题专题分析
![小船渡河问题专题分析](https://img.taocdn.com/s3/m/f5ccb53b0a1c59eef8c75fbfc77da26924c5966b.png)
关键:
运动的轨迹由合初速度和合加速度的 方向关系来决定。
小船渡河
在流动的河水中渡河的轮船的运动可分解为 两个运动:
假设轮船不开动,轮船随水流一起向下游运 动;
假设河水不流动,轮船相对河水的运动。
小船过河专题
小船在220m宽的河中横渡,水流速度为v1= 2m/s,船在静水中的速度是v2=4m/s,求: ⑴如果要求船划到对岸航程最短,则船头应指 向什么方向?最短航程是多少?所用时间多 少? ⑵如果要求船划到对岸时间最短,则船头应指 向什么方向?最短时间是多少?航程是多少?
B
C
v船
v合
d
Aθ
v水
上题中,如果水速V水=4m/s,船在静 水中的速度V船=2m/s,结果如何呢?
如果河水的速度大于船在静水的速度时,这 时船不可能垂直渡河,但仍存在最短位移,求 解的方法如下:
V船 V船
V合
d
V合 θ
V水
小船渡河问题
②渡河的最短位移
v船 < v水的情况
B
v船
θ 上游 A
E
smin θ
1、如果两个分运动都是匀速直线运动,合运动一定是 匀速直线运动。
2、如果一个分运动是匀速直线运动,另一个分运动是 匀变速直线运动,且互成角度,合运动一定是匀变 速曲线运动。
(可见,两直线运动的合运动不一定是直线运动)。
3、如果两个分运动都是匀变速直线运动, 合运动可能是匀变速直线运动(这时合加速 度方向与合初速度方向在同一条直线上如图 1)。合运动也可能是匀变速曲线运动(这时 合加速度方向与合初速度方向不在同一条直 线上如图2)。
基础重温
一、合运动与分运动 1、定义:
如果物体同时参与了几个运动,那么物体实际发 生的运动就叫做那几个运动的合运动,那几个运动叫 做这个实际运动的分运动。
高中物理:题型一:小船渡河问题
![高中物理:题型一:小船渡河问题](https://img.taocdn.com/s3/m/b15e1fccd1d233d4b14e852458fb770bf68a3b5e.png)
小船渡河问题的分析:
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v1,水流速度v2,船的实际速度v.
(3)三种情形
①过河时间最短:船头正对河岸时,过河时间最短,短 =1
(d为河宽)。
②过河路径最短
a. v2<v1时,合速度垂直于河岸,航程最短,短 =d,船头指向上游,与河岸夹
的角度。
D.小船不可能垂直河岸到达对岸。
答案:BD
2.河宽为d,水流速度为v1,小汽艇在静水中航行速度为v2,且v1<v2,如果小
汽艇航向与河岸成夹角,斜向上游,求:
B
A
C
(1)它过河需要多少时间?
(2)到达对岸的位置?
(3)如果它以最短时间渡河,航向应如何?
(4)如果它要直达正对岸,航向又应怎样?
角为a,cosa=2
。
1
b. v2>v1,合速度不可能垂直于河岸,无法垂直渡河。确定方法如下
如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的
始端向圆弧作切线,则合速度沿此切线方向航程最短。
短
v1 d v1
a
2
1
由图可知:cosa=1
,最短航程:
航行方向是实际运动方向,也就是合速度方向。
(2)小船过河最短时间与水流速度无关。
典例
1.小船渡河,河宽90米,船在静水中的速度是3m/s,水流速度是4m/s,那么
(
)(多选)
A.小船渡河最短时间为18s.
B.小船渡河最短时间为30s.
C.要使小船能垂直河岸以最短路程到达对岸,船头要偏向上游与河岸夹一定
15-小船渡河问题
![15-小船渡河问题](https://img.taocdn.com/s3/m/2e62bde0376baf1ffd4fad82.png)
15-小船渡河问题D则的前提下,处理合运动和分运动关系时要灵活采用合适的方法,或用作图法,或用【解析】法,依情况而定。
可以借鉴力的合成和分解的知识,具体问题具体分析。
3. 小船过河:三种过河情况(1)过河时间最短:小船沿着上述不同的方向运动,走到对岸的时间是不相等的,由于运动的等时性知,在垂直于河岸上的速度越大则过河时间越短,所以此时应该调整小船沿着d 的方向运动,则求得最短时间为船v d t=m in(2)过河路径最短:第一种情况:当船速大于水速时从上图可以看出,当我们适当调整船头的方向,使得船在水流方向上的分速度等于水速,即21cos v v =θ此时水流方向上小船是不动的,小船的合速度即为V 向对岸运动,此时小船的最短位移为S d =第二种情况:船速小于水速,那么在水流方向上,船的分速度12cos v v θ<此时无论我们怎么调整船头的方向都没有办法保证水流方向的合速度为零,所以小船一定要向下游漂移,如图当合速度的方向与船相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小;根据几何关系,则有:d s =12v v ,因此最短的航程是:21v s d v = 【典例精讲】1. 求最短位移典例1如图,小船在静水中航行速度为10 m/s ,水流速度为5 m/s ,为了在最短距离内渡河,则小船船头应该保持的方向为(图中任意两个相邻方向间的夹角均为30°)( )A . a 方向B . b 方向C . c 方向D . d 方向典例2船在静水中的航速为v 1,水流的速度为v 2,为使船行驶到河正对岸的码头,则v 1相对v 2的方向应为( )A .B .C .D .2. 求最短时间典例3小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即kx v =水,d v k o4=,x 是各点到近岸的距离.小船划水速度大小恒为v 0,船头始终垂直河岸渡河.则下列说法正确的是( )A .小船的运动轨迹为直线B .水流速度越大,小船渡河所用的时间越长C .小船渡河时的实际速度是先变小后变大D .小船到达离河对岸43d 处,船的渡河速度为02v3. 船速大于水速典例4(多选) 如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,则( )A .船头垂直河岸渡河所用时间最短B .小船到达对岸的位置为正对岸的B 点C .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河时间变长D .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河位移变大典例5(多选) 在宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2v dB .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关4. 水速大于船速典例6 (多选)一船在静水中的速度是6m/s,要渡过宽为180m、水流速度为8 m/s的河流,则下列说法中正确的是( )A.船相对于地的速度可能是15m/sB.此船过河的最短时间是30sC.此船可以在对岸的任意位置靠岸D.此船不可能垂直到达对岸5. 综合题典例7 已知某船在静水中的速度为v1=4 m/s,现让船渡过某条河。
专题一小船渡河问题绳拉物牵连速度问题
![专题一小船渡河问题绳拉物牵连速度问题](https://img.taocdn.com/s3/m/0ef30e660166f5335a8102d276a20029bd646325.png)
目录
• 问题背景与基本概念 • 小船渡河问题分析 • 绳拉物牵连速度问题分析 • 典型例题解析与思路拓展 • 实验设计与验证环节 • 知识拓展与应用领域探讨
01 问题背景与基本概念
小船渡河问题及其实际应用
小船渡河问题
描述了一个小船在静水中和流水 中的运动情况,涉及速度合成与 分解的基本原理。
度之比。
解析
根据题目条件,两小球 做匀速圆周运动,且绳 子与竖直方向的夹角不 同。结合牵连速度的概 念和几何关系,可求解 两小球的线速度之比。
解题思路拓展与技巧总结
小船渡河问题
理解合运动与分运动的关系,明确小船渡河的实 际运动轨迹。
熟练掌握运动的合成与分解方法,能够根据题目 条件选择合适的分解方式。
实际应用
该问题在现实生活中有广泛应用 ,如航空、航海、车辆行驶等领 域中涉及速度合成与分解的问题 。
绳拉物牵连速度问题描述
绳拉物问题
描述了一个通过绳子连接的物体在运 动过程中,由于绳子的牵连作用而产 生的速度变化问题。
牵连速度
指由于物体间的相互作用而产生的附 加速度,与物体本身的运动速度不同 。
相关物理概念及原理
第四季度
例题1
一端固定的绳子,另一 端连接一个小球,小球 在水平面上做匀速圆周 运动,求小球的线速度 和角速度。
解析
根据题目条件,小球做 匀速圆周运动,线速度 大小不变,方向时刻改 变;角速度大小和方向 均不变。结合线速度和 角速度的定义及关系式
,可求解相关问题。
例题2
两根绳子分别连接两个 小球,两小球在水平面 上做匀速圆周运动,且 绳子与竖直方向的夹角 不同,求两小球的线速
02 小船渡河问题分析
高考最新集训试题-小船渡河问题专题(含答案)
![高考最新集训试题-小船渡河问题专题(含答案)](https://img.taocdn.com/s3/m/df593ffc84254b35eefd3481.png)
高考最新集训试题-小船渡河问题专题(含答案)1.某小船在静水中的速度大小保持不变,该小船要渡过一条河,渡河时小船船头垂直指向河岸.若船行至河中间时,水流速度突然增大,则( )A .小船渡河时间不变B .小船渡河时间减少C .小船渡河时间增加D .小船到达对岸地点不变2.如图所示为某人游珠江,他以一定的速度且面部始终垂直于河岸向对岸游去。
设江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )A 、水速大时,路程长,时间长B 、水速大时,路程长,时间不变C 、水速大时,路程长,时间短D 、路程、时间与水速无关3.小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( )A .越接近河岸水流速度越小B .越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响4.一艘小船在静水中的速度为4 m/s ,渡过一条宽200 m ,水流速度为5 m/s 的河流,则该小船A .能到达正对岸B .以最短位移渡河时,位移大小为200mC .渡河的时间可能少于50 sD .以最短时间渡河时,沿水流方向的位移大小为250 m5.在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 ( )2dvl v D.21dv v 6.船在静水中的速度与时间的关系如图甲所示,河水的流速随离河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下面对该船渡河的说法正确的是( )A .船在河水中的最大速度是5 m/sB .船渡河的时间是150sC .船在行驶过程中,船头必须始终与河岸垂直试卷第2页,总8页D210m7.如图所示,MN 是流速稳定的河流,河宽一定,小船在静水中的速度为v.现小船自A 点渡河,第一次船头沿AB 方向,到达对岸的D 处;第二次船头沿AC 方向,到达对岸E 处,若AB 与AC 跟河岸垂线AD 的夹角相等,两次航行的时间分别为t B 、t C ,则( )A .tB >tC B .t B <t CC .t B =t CD .无法比较t B 与t C 的大小8.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船( )A .沿AD 轨迹运动时,船相对于水做匀减速直线运动B .沿三条不同路径渡河的时间相同C .沿AB 轨迹渡河所用的时间最短D .沿AC 轨迹船到达对岸的速度最小9.下列四个选项的图中实线为河岸,河水的流速u 方向如图中箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线,已知船在静水中速度大于水速,则其中正确是( )10.一只小船在静水中的速度为0.3m∕s,它要渡过一条宽度为60m 的河,河水的流速为0.4m∕s , 下列说法正确的是( )A .船不能到达对岸的上游B .船过河的最短位移是60mC .船过河的最短时间是120sD .船过河所需的时间总是200s11.如图所示,船从A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度4m/s ,则船在静水中的最小速度为( ) (sin37°=0.6,cos37°=0.8)A .5 m/sB .2.4 m/sC .3 m/sD .3.2 m/s12.某河流中河水的速度大小v 1=2m/s ,小船相对于静水的速度大小v 2=1m/s .现小船船头正对河岸渡河,恰好行驶到河对岸的B 点,若小船船头指向上游某方向渡河,则小船( )A .到达河对岸的位置一定在B 点的右侧B .到达河对岸的位置一定在B 点的左侧C .仍可能到达B 点,但渡河的时间比先前长D .仍可能到达B 点,但渡河的时间比先前短13.如图所示,一条小船位于200 m 宽的河中央A 点处,从这里向下游m 处有一危险的急流区,当时水流速度为4 m/s ,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为 ( ).m/s.2 m/s D .4 m/s14.如图所示,两次渡河时船对水的速度大小和方向都不变.已知第一次实际航程为A 至B ,位移为S 1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A 至C ,位移为S 2,实际航速为v 2,所用时间为t 2.则( )A .t 2>t 1 2121S v v S = B .t 2>t 1 1122S v v S = C .t 2=t 1 1122S v v S = D .t 2=t 1 2121S v v S = 15.小船从A 码头出发,沿垂直于河岸的方向渡河,若河宽为d ,渡河速度v 船恒定,河水的流速与到河岸的距离成正比,即v 水=kx (x≤d/2,k 为常量),要使小船能够到达距A 正对岸为s 的B 码头,则:A.v 船应为kd 2/4s v 2v 1B.v船应为kd2/2sC.渡河时间为s/kdD.渡河时间为2s/kd16.已知某江水由西向东流,江宽为d,江水中各点水流速度大小与该点到较近岸边的距离成正比,,,x是各点到近岸的距离。
小船渡河问题归纳总结
![小船渡河问题归纳总结](https://img.taocdn.com/s3/m/ffb0bd10eff9aef8941e0698.png)
篇一:小船渡河问题(含知识点、例题和练习)小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
【例1】一条宽度为l的河,水流速度为(1)怎样渡河时间最短?(2)若(3)若v水,已知船在静水中速度为v船,那么:v船?v水v船?v水,怎样渡河位移最小?,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
如右图所示,船头与河岸垂直渡河,渡河时间最短:tmin? l。
v船v船此时,实际速度(合速度)v合?v船?v水2222v合 v水lv船?v水l实际位移(合位移)s? ?sin?v船(2)如右图所示,渡河的最小位移即河的宽度。
为使渡河位移等于l,必须使船的合速度v合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。
这时船头应指向河的上游,并与河岸成一定的角度θ,所以有v船cos??v水,即??v水v船。
因为θ为锐角, 0?cos??1,所以只有在v船?v水时,船头与河岸上游的夹角??arccos能垂直河岸渡河,此时最短位移为河宽,即smin?l。
实际速度(合速度)v合?v船sin?,运动时间t?v水v船,船才有可ll? v合v船sin?(3)若v船?v水,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如右图所示,设船头v船与河岸成θ角。
合速度v合与河岸成α角。
可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以v水的矢尖为圆心,v船为半径画圆,当v合与圆相切时,α角最大,根据cos??v船v水,船头与河岸的夹角应为??arccosv船v水,此时渡河的最短位移:s?lvl?水 cos?v船渡河时间:t?l,v船sin?lv船sin?船沿河漂下的最短距离为:xmin?(v水?v船cos?)?误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。
3小船渡河的问题
![3小船渡河的问题](https://img.taocdn.com/s3/m/260253cd48649b6648d7c1c708a1284ac85005f4.png)
3小船渡河的问题小船渡河的问题在高中物理教学中,往往遇到小船在水有一定流速的河中渡河的问题。
这类问题一般有小船渡河的时间最小,位移最小,速度最小三种情况:问题一:小船如何渡河时间最小,最小时间为多少?分析及解答:设河宽为d ,小船在静水中的速度为V 船,水流速度为V 水,如图1中的甲。
将船对水的速度沿平行河岸方向和垂直河岸方向正交分解。
沿平行河岸方向的速度不影响渡河的快慢,小船渡过河时时间与垂直河岸方向的速度有关,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。
[例题1]:河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s 。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?分析及解答:如图1中的乙,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。
∴t min =d/V 船=60/4=15(s)。
小船实际渡河的位移S AB =V 合t min =5*15=75(m).问题二:小船如何渡河到达对岸的位移最小,最小位移是多少?分析及解答:在小船渡河过程中,将船对水的速度沿平行河岸方向和垂直河岸方向正交分解,如图2中的甲。
当小船沿平行河岸方向的分速度与水速大小相等,方向相反时,即V 1=V 水,小船的合速度(V 2)就沿垂直河岸方向,这时渡河到达对岸的位移最小,S min =d 。
而渡河时间t=d/V 2=d/Vsin θ。
[例题2]:河宽60m,小船在静水中的速度为5m/s,水流速度为3m/s 。
求小船渡河的最小位移是多少,小船实际渡河的时间为多大?分析及解答:如图2 中的乙,当小船沿平行河岸方向的分速度V 1=V 水,小船要垂直河岸方向渡河,这时渡河到达对岸的位移最小,Smin=d=60(m)。
而V 船与河岸的夹角θ=arc cos(V 船/V 水)=530。
这时小船实际渡河的时间t=d/V 2=d/V 船sin θ=60/4=15(s).问题三:小船如何渡河速度最小,最小速度为多少?分析及解答:将小船渡河运动看作水流的运动(水冲船的运动)和小船相对静水的运动(设水流不流动时船的运动)的合运动。
小船渡河问题(含知识点例题和练习)
![小船渡河问题(含知识点例题和练习)](https://img.taocdn.com/s3/m/4d6edf8933d4b14e84246844.png)
小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
【例1】一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短? (2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
如右图所示,船头与河岸垂直渡河,渡河时间最短:船v L t =min 。
此时,实际速度(合速度)22水船合v v v +=实际位移(合位移)船水船v v v L L 22sin s +=∂= (2)如右图所示,渡河的最小位移即河的宽度。
为使渡河位移等于L ,必须使船的合速度v 合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。
这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,即船水v v arccos=θ。
因为θ为锐角,1cos 0<<θ,所以只有在水船v v >时,船头与河岸上游的夹角船水v v arccos =θ,船才有可能垂直河岸渡河,此时最短位移为河宽,即L s =min 。
实际速度(合速度)θsin 船合v v =,运动时间θsin 船合v Lv L t ==(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?V 船V 水V 合如右图所示,设船头v 船与河岸成θ角。
合速度v 合与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据水船v v =θcos ,船头与河岸的夹角应为水船v v arccos=θ,此时渡河的最短位移:船水v Lv Ls ==θcos 渡河时间:θsin 船v Lt =,船沿河漂下的最短距离为:θθsin )cos (min 船船水v Lv v x ⋅-=误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。
小船过河问题专题
![小船过河问题专题](https://img.taocdn.com/s3/m/6a8cf3f3c67da26925c52cc58bd63186bceb92c9.png)
河流宽度对小船过河的影响
河流宽度增加
较宽的河流意味着小船需要更多的航行时间和能量才能到达对岸。
河流宽度减少
河流宽度过窄可能导致小船无法正常通过,需要寻找更宽阔的河道。
应对措施
根据河流的宽度,小船需要选择合适的航道和航速,以确保顺利过 河。
小船过河问题的实际案例分析
案例一
01
某小型船只在河流中遇到湍急的流水和障碍物,通过调整航向
02
考虑风速影响
03
考虑小船的载重
风速可能会影响小船的方向和速 度,进而影响小船过河的时间和 路径。
小船的载重会影响其在水中的浮 力和稳定性,进而影响其过河的 时间和路径。
解决小船过河问题的其他方法
建立数学模型
通过建立小船过河问题的数学模型,可以更 精确地描述小船的运动轨迹和时间。
模拟实验
通过模拟实验可以模拟小船在各种条件下的过河情 况,从而得出更接近实际情况的结论。
问题背景
小船过河问题是物理学中一个非常实际的问题,涉及到日常生活和生产中的许多场 景,如渡口、水上运输等。
解决小船过河问题对于理解物理学中的基本概念和原理,以及在实际生活中应用这 些知识具有重要意义。
•·
02
小船过河问题的基本概念
定义与特点
定义
小船过河问题是指一艘小船需要从一条河的上游渡到下游,或者从下游渡到上 游,同时要克服水流的影响,使小船能够安全到达对岸的问题。
和航速成功过河。
案例二
02
某船只在河流中遇到狭窄的河道和浅水区,需要寻找更合适的
航道才能安全过河。
案例三
03
某船只在河流中遇到漩涡和水流不稳定的情况,采取紧急措施
后成功脱险并顺利过河。
小船过河问题分析与题解
![小船过河问题分析与题解](https://img.taocdn.com/s3/m/7a13eaa282d049649b6648d7c1c708a1284a0a78.png)
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河最短时间是多少船的位移是多大(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河渡河时间多长(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河船的最小航程是多少[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。