2020版高考数学(文)刷题小卷练:25 Word版含解析
2020年高考文数真题试题(新课标Ⅲ)(Word版+答案+解析)
![2020年高考文数真题试题(新课标Ⅲ)(Word版+答案+解析)](https://img.taocdn.com/s3/m/8cfc8a48f524ccbff02184d6.png)
2020年高考文数真题试卷(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共57分)1.已知集合 A ={1,2,3,5,7,11} , B ={x|3<x <15} ,则A∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 52.若 z̅(1+i)=1−i ,则z=( )A. 1–iB. 1+iC. –iD. i3.设一组样本数据x 1 , x 2 , …,x n 的方差为0.01,则数据10x 1 , 10x 2 , …,10x n 的方差为( ) A. 0.01 B. 0.1 C. 1 D. 104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型: I(t)=K 1+e−0.23(t−53),其中K 为最大确诊病例数.当I( t ∗ )=0.95K 时,标志着已初步遏制疫情,则 t ∗ 约为( )(ln19≈3) A. 60 B. 63 C. 66 D. 69 5.已知 sinθ+sin(θ+π3)=1 ,则 sin(θ+π6)= ( )A. 12 B. √33C. 23 D. √226.在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A. 圆 B. 椭圆 C. 抛物线 D. 直线7.设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. ( 14 ,0) B. ( 12 ,0) C. (1,0) D. (2,0) 8.点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( ) A. 1 B. √2 C. √3 D. 2 9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+4 √2B. 4+4 √2C. 6+2 √3D. 4+2 √3 10.设a=log 32,b=log 53,c= 23 ,则( )A. a<c<bB. a<b<cC. b<c<aD. c<a<b11.在△ABC中,cosC= 23,AC=4,BC=3,则tanB=()A. √5B. 2 √5C. 4 √5D. 8 √512.已知函数f(x)=sinx+ 1sinx,则()A. f(x)的最小值为2B. f(x)的图像关于y轴对称C. f(x)的图像关于直线x=π对称D. f(x)的图像关于直线x=π2对称二、填空题:本题共4小题,每小题5分,共20分。
2020年高考真题——数学(文)(全国卷Ⅲ)+Word版含解析
![2020年高考真题——数学(文)(全国卷Ⅲ)+Word版含解析](https://img.taocdn.com/s3/m/4df2f0e888eb172ded630b1c59eef8c75ebf9559.png)
2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 1235711A ,,,,,, 315|B x x ,则A ∩B 中元素的个数为()A.2 B.3 C.4D.5【答案】B 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,{5,7,11}A B ,故A B ∩中元素的个数为3.故选:B【点晴】本题主要考查集合交集运算,考查学生对交集定义的理解,是一道容易题.2.若 11 z i i ,则z =()A.1–iB.1+iC.–iD.i【答案】D 【解析】【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ,所以z i =.故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.1C.1D.10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n L ,的方差是数据(1,2,,)i x i n L ,的方差的2a 倍,所以所求数据方差为2100.01=1 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.已知πsin sin =31,则πsin =6()A.12B.3C.23D.22【答案】B 【解析】【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.【详解】由题意可得:1sin sin cos 122,则:33sin cos 122 ,313sin cos 223,从而有:sin coscos sin 663,即3sin 63.故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC,则点C 的轨迹为()A.圆 B.椭圆C.抛物线D.直线【答案】A 【解析】【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设 20AB a a ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: ,0,,0A a B a ,设 ,C x y ,可得: ,,,AC x a y BC x a y,从而: 2AC BC x a x a y,结合题意可得: 21x a x a y ,整理可得:2221x y a ,即点C 的轨迹是以AB 中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.8.点(0,﹣1)到直线 1y k x 距离的最大值为()A.1B.C.D.2【答案】B 【解析】【分析】首先根据直线方程判断出直线过定点(1,0)P ,设(0,1)A ,当直线(1)y k x 与AP 垂直时,点A 到直线(1)y k x 距离最大,即可求得结果.【详解】由(1)y k x 可知直线过定点(1,0)P ,设(0,1)A ,当直线(1)y k x 与AP 垂直时,点A 到直线(1)y k x 距离最大,即为||AP .故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S △△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设a =log 32,b =log 53,c =23,则()A.a <c <b B.a <b <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】分别将a ,b 改写为331log 23a ,351log 33b ,再利用单调性比较即可.【详解】因为333112log 2log 9333a c ,355112log 3log 25333b c ,所以a c b .故选:A【点晴】本题考查对数式大小的比较,考查学生转化与回归的思想,是一道中档题.11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B. C. D.【答案】C 【解析】【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b22222cos 916234933c a b ab C c2221cos sin tan 299a cb B B B ac 故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.12.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x 对称D.f (x )的图像关于直线2x对称【答案】D 【解析】【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【详解】sin x ∵可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xQ Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x Q 故B 错;()f x 关于直线2x对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z .故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.设双曲线C :22221x y a b(a >0,b >0)的一条渐近线为yx ,则C 的离心率为_________.【解析】【分析】根据已知可得ba,结合双曲线中,,a b c 的关系,即可求解.【详解】由双曲线方程22221x y a b可得其焦点在x 轴上,因为其一条渐近线为y,所以b a ,c e a【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.15.设函数e ()xf x x a.若(1)4e f ,则a =_________.【答案】1【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:221x xx e x a e e x a f x x a x a,则:12211111e a aef a a,据此可得:241aeea,整理可得:2210a a ,解得:1a .故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.16.已知圆锥底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】3【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r 解得:22r =,其体积:34233V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{a n }满足124a a ,318a a .(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S ,求m .【答案】(1)13 n n a ;(2)6m .【解析】【分析】(1)设等比数列 n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列 n a 的公比为q ,根据题意,有1121148a a q a q a ,解得113a q ,所以13 n n a ;(2)令313log log 31n n n b a n ,所以(01)(1)22n n n n n S,根据13m m m S S S ,可得(1)(1)(2)(3)222m m m m m m,整理得2560m m ,因为0m ,所以6m ,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100 ,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED ,12BF FB .证明:(1)当AB BC 时,EF AC ;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ,根据长方体性质得1AC BB ,进而可证AC 平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC ,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D ,所以1BB 平面ABCD 1AC BB ,因为长方体1111,ABCD A B C D AB BC ,所以四边形ABCD 为正方形AC BD 因为11,BB BD B BB BD I 、平面11BB D D ,因此AC 平面11BB D D ,因为EF 平面11BB D D ,所以AC EF ;(2)在1CC 上取点M 使得12CM MC ,连,DM MF ,因为111112,//,=D E ED DD CC DD CC ,所以11,//,ED MC ED MC 所以四边形1DMC E 为平行四边形,1//DM EC 因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF 因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.20.已知函数32()f x x kx k .(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【答案】(1)详见解析;(2)4(0,)27.【解析】【分析】(1)'2()3f x x k ,对k 分0k 和0k 两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k,且(00f f,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k ,当0k 时,'()0f x 恒成立,所以()f x 在(,) 上单调递增;当0k 时,令'()0f x,得x '()0f x,得x ,令'()0f x,得x或x ,所以()f x在(上单调递减,在(,,) 上单调递增.(2)由(1)知,()f x 有三个零点,则0k,且(00f f即22203203k k,解得4027k,当4027k20f k ,所以()f x 在上有唯一一个零点,同理1k ,32(1)(1)0f k k k ,所以()f x 在(1,k 上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范围为4(0,)27.【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.21.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率4c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ 面积为:155252;②当P 点为(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A (6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d,根据两点间距离公式可得:AQAPQ面积为:1522,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)B .AB ;(2)由(1)可知12030(4)AB k,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
2020年高考数学(文)小题速度抢分卷25(含答案)
![2020年高考数学(文)小题速度抢分卷25(含答案)](https://img.taocdn.com/s3/m/0ded4e97a8114431b80dd86a.png)
12020届高三数学(文)“小题速练”2513. 14. 15. 16.一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为( )A.(-∞,1]B.[1,+∞)C.(-∞,3]D.[3,+∞)2.z 是z =1+2i1-i的共轭复数,则z 的虚部为( )A.-12B.12C.-32D.3223.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tanθ=( )A.-13B.±13C.-3D.±34.《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )A.215B.25C.415D.155.设函数f (x )=x ·ln x ,则曲线y =f (x )在点(1,0)处的切线方程为( )A.y =-x -1B.y =x +1C.y =-x +1D.y =x -16.已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )3A.1 121B.1 122C.1 123D.1 1247.两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的可以是( )A.25,26B.33,34C.64,65D.72,738.已知F 1,F 2是双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在双曲线E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=14,则双曲线E 的离心率为( )A.153 B.32C.132D.249.函数f (x )=e x +1x (e x -1)(其中e 为自然对数的底数)的图象大致为( )10.已知函数f (x )=sin(2x +φ)(-π<φ<0).将f (x )的图象向左平移π3个单位长度后所得图象对应的函数为偶函数,则关于函数f (x ),下列命题正确的是( )A.函数f (x )在区间⎝ ⎛⎭⎪⎫-π6,π3上有最小值B.函数f (x )的图象的一条对称轴为直线x =π12C.函数f (x )在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增D.函数f (x )的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,011.如图,已知正方体ABCD A 1B 1C 1D 1的棱长为2,则下列四个结论错误的是( )A.直线A 1C 1与AD 1为异面直线B.A 1C 1∥平面ACD 1C.BD 1⊥AC5D.三棱锥D 1ADC 的体积为8312.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(1,1),b =(-2,3),若k a -b 与b 垂直,则实数k =________.14.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________,z 的最大值是________.15.已知三棱锥P ABC 中,AB ⊥平面APC ,AB =42,PA =PC =2,AC =2,则三棱锥P ABC 外接球的表面积为________.16.在△ABC 中,∠ABC =90°,延长AC 到D ,使得CD =AB =1,若∠CBD =30°,则AC =________.2020届高三数学(文)“小题速练”25(答案解析)一、选择题(本大题共12小题,每小题5分,共60分)61.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为( )A.(-∞,1]B.[1,+∞)C.(-∞,3]D.[3,+∞)解析:选B 法一:集合A ={x |x ≤a },集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1.故选B.法二:集合A ={x |x ≤a },B ={1,2,3},a 的值大于3时,满足A ∩B ≠∅,因此排除A 、C.当a =1时,满足A ∩B ≠∅,排除D.故选B.2.z 是z =1+2i 1-i的共轭复数,则z 的虚部为( )A.-12B.12C.-32D.32解析:选C z =1+2i 1-i =(1+2i )(1+i )(1-i )(1+i )=-1+3i 2=-12+32i ,则z =-12-32i ,所以z 的虚部为-32.故选C.3.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tanθ=( )。
2020高考数学(文科)全国三卷高考模拟试卷(2)
![2020高考数学(文科)全国三卷高考模拟试卷(2)](https://img.taocdn.com/s3/m/70e03b883968011ca2009189.png)
则将韦恩图( Venn)图中的阴影部分表示集合是(
)
A ..{1 , 5}
B .{2 , 3}
C. .{4 , 5}
D. .{0 , 6}
【解答】 解:由 Venn 图中阴影部分可知对应集合为 A∩( ?UB), ∵全集 U = {0 , 1,2, 3,4, 5, 6} ,集合 A= {1 , 2, 3,5} ,B= {2 , 3, 4} ,
5 万居民的光明社区采用
分层抽样方法得到年内家庭人均 GDP 与人均垃圾清运量的统计数据如表:
人均 GDPx(万
3
6
9
12
15
元 /人)
人均垃圾清运
0.13
0.23
0.31
0.41
0.52
量 y(吨 /人)
( 1)已知变量 y 与 x 之间存在线性相关关系,求出其回归直线方程; ( 2)随着垃圾分类的推进,燃烧垃圾发电的热值大幅上升,平均每吨垃圾可折算成上网 电量 200 干瓦时,右图是光明社区年内家庭人均 GDP 的频率分布直方图,请补全 [15 ,
→→→
→
→
→
→→ →→
7.( 5 分)若 ??,??, ??满足, |??| = |??| = 2|??| = 2 ,则 (??- ??) ?(??- ??)的最大值为(
)
A .10
B .12
8.( 5 分)“ x2> y2”是“ x> y”的(
A .充分不必要
C .充分必要
C. 5 √3 )条件
D. 6 √2
球的概率为(
)
3 A.
14
3 B.
7
6 C.
7
2020届山东省高考数学(文)模拟试题(word版,有答案)
![2020届山东省高考数学(文)模拟试题(word版,有答案)](https://img.taocdn.com/s3/m/ec5f4e6a700abb68a982fbf1.png)
普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð= (A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}(2)若复数21iz =-,其中i 为虚数单位,则z = (A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A )56(B )60(C )120(D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )12+π33 (C )123(D )2(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2020 年高考文科数学必刷卷解析版
![2020 年高考文科数学必刷卷解析版](https://img.taocdn.com/s3/m/944f375ea8114431b90dd88d.png)
【点睛】
本题主要考查了几何概型及其概率的求解,对于几何概型及其概率的计算中,注意几何度量,可以
是线段的长度、面积、体积等,而这个“几何度量”只与“大小”有关,而与形状和位置无关,着重考查 了分析问题和解答问题的能力. 6.某正三棱柱的三视图如图所示,正三棱柱表面上的点 M、N 分别对应正视图上的点 A,B,若在 此正三棱柱侧面上,M 经过三个侧面到达 N 的最短距离为 6,则当此正三棱柱的侧面积取得最大值 时,它的高为( )
a2 4
b2 36
1.
∴1 a2 b2 2 a2 b2 ab ,
4 36
4 36 6
即 ab≤6,当且仅当 a2 b2 1 ,即 b 3 2 时, 4 36 2
三棱柱侧面积有最大值 S=3ab=18. 故选:C. 【点睛】 本题考查由三视图求面积、体积,关键是由三视图还原原几何体,考查多面体表面距离最小值的求 法,是中档题.
A. 2
B.2
C.3 2
D.4
【答案】C 【解析】
【分析】
由三视图还原原几何体正三棱柱,设正三棱柱底面边长为 a,高为 b,由已知求得 a2 b2 1.再 4 36
由基本不等式求最值得答案.
【详解】
解:由三视图还原原几何体正三棱柱如图,
设正三棱柱底面边长为 a,高为 b,
则
9a2
b2
6 ,即
7.已知定义在 R 上的函数 f x 满足:(1) f x 1 2 f x , (2)当 x 0, 2, f x x 2 x 1 ,
则有
A.
f
3 2
f
1
f
1
B.
f
1
f
3 2
f
上海市2020〖人教版〗高三数学复习试卷文科25
![上海市2020〖人教版〗高三数学复习试卷文科25](https://img.taocdn.com/s3/m/7bd6bcf0f18583d0486459c7.png)
上海市2020年〖人教版〗高三数学复习试卷文科创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2} B.{1,2,4} C.{1,2,4,6} D.{1,2,3,4,6}2.(5分)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0 B.1 C.2 D.35.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.B.C.D.6.(5分)已知奇函数f(x)在R上是增函数.若a=﹣f (),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b 7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣2,2] B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.11.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.12.(5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为.13.(5分)若a,b∈R,ab>0,则的最小值为.14.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R ),且=﹣4,则λ的值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.16.(13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?17.(13分)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).19.(14分)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.20.(14分)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•天津)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2} B.{1,2,4} C.{1,2,4,6} D.{1,2,3,4,6}【分析】由并集定义先求出A∪B,再由交集定义能求出(A∪B)∩C.【解答】解:∵集合A={1,2,6},B={2,4},C={1,2,3,4},∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.故选:B.【点评】本题考查并集和交集的求法,是基础题,解题时要认真审题,注意交集和交集定义的合理运用.2.(5分)(•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.3.(5分)(•天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【分析】先求出基本事件总数n==10,再求出取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,由此能求出取出的2支彩笔中含有红色彩笔的概率.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数n==10,取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,∴取出的2支彩笔中含有红色彩笔的概率为p==.故选:C.【点评】本小题主要考查概率、古典概型、排列组合等基础知识,考查运算求解能力和推理论证能力,是基础题.4.(5分)(•天津)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0 B.1 C.2 D.3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次N=19,不能被3整除,N=19﹣1=18≤3不成立,第二次N=18,18能被3整除,N==6,N=6≤3不成立,第三次N=6,能被3整除,N═=2≤3成立,输出N=2,故选:C【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.(5分)(•天津)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.B.C.D.【分析】利用三角形是正三角形,推出a,b关系,通过c=2,求解a,b,然后等到双曲线的方程.【解答】解:双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),可得c=2,,即,,解得a=1,b=,双曲线的焦点坐标在x轴,所得双曲线方程为:.故选:D.【点评】本题考查双曲线的简单性质的应用,考查计算能力.6.(5分)(•天津)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b 【分析】根据奇函数f(x)在R上是增函数,化简a、b、c,即可得出a,b,c的大小.【解答】解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.【点评】本题考查了函数的奇偶性与单调性的应用问题,是基础题.7.(5分)(•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【分析】由题意求得,再由周期公式求得ω,最后由若f ()=2求得φ值.【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin (ωx+φ)型函数的性质,是中档题.8.(5分)(•天津)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣2,2] B.C.D.【分析】根据题意,作出函数f(x)的图象,令g(x)=|+a|,分析g(x)的图象特点,将不等式f(x)≥|+a|在R 上恒成立转化为函数f(x)的图象在g(x)上的上方或相交的问题,分析可得f(0)≥g(0),即2≥|a|,解可得a的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=的图象如图:令g(x)=|+a|,其图象与x轴相交与点(﹣2a,0),在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,若不等式f(x)≥|+a|在R上恒成立,则函数f(x)的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.【点评】本题考查分段函数的应用,关键是作出函数f(x)的图象,将函数的恒成立问题转化为图象的上下位置关系.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(•天津)已知a∈R,i为虚数单位,若为实数,则a的值为﹣2 .【分析】运用复数的除法法则,结合共轭复数,化简,再由复数为实数的条件:虚部为0,解方程即可得到所求值.【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.(5分)(•天津)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为1 .【分析】求出函数的导数,然后求解切线斜率,求出切点坐标,然后求解切线方程,推出l在y轴上的截距.【解答】解:函数f(x)=ax﹣lnx,可得f′(x)=a﹣,切线的斜率为:k=f′(1)=a﹣1,切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),l在y轴上的截距为:a+(a﹣1)(﹣1)=1.故答案为:1.【点评】本题考查曲线的切线方程的求法,考查转化思想以及计算能力.11.(5分)(•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.12.(5分)(•天津)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为(x+1)2+=1 .【分析】根据题意可得F(﹣1,0),∠FAO=30°,OA==1,由此求得OA的值,可得圆心C的坐标以及圆的半径,从而求得圆C方程.【解答】解:设抛物线y2=4x的焦点为F(1,0),准线l:x=﹣1,∵点C在l上,以C为圆心的圆与y轴的正半轴相切与点A,∵∠FAC=120°,∴∠FAO=30°,∴OA===1,∴OA=,∴A(0,),如图所示:∴C(﹣1,),圆的半径为CA=1,故要求的圆的标准方程为,故答案为:(x+1)2+=1.【点评】本题主要考查求圆的标准方程的方法,抛物线的简单几何性质,属于中档题.13.(5分)(•天津)若a,b∈R,ab>0,则的最小值为 4 .【分析】【方法一】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【方法二】将拆成+,利用柯西不等式求出最小值.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.14.(5分)(•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【分析】(Ⅰ)由正弦定理得asinB=bsinA,结合asinA=4bsinB,得a=2b.再由,得,代入余弦定理的推论可求cosA的值;(Ⅱ)由(Ⅰ)可得,代入asinA=4bsinB,得sinB,进一步求得cosB.利用倍角公式求sin2B,cos2B,展开两角差的正弦可得sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.【点评】本题考查三角形的解法,考查正弦定理和余弦定理在解三角形中的应用,是中档题.16.(13分)(•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【分析】(Ⅰ)直接由题意结合图表列关于x,y所满足得不等式组,化简后即可画出二元一次不等式所表示的平面区域;(Ⅱ)写出总收视人次z=60x+25y.化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】(Ⅰ)解:由已知,x,y满足的数学关系式为,即.该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z万,则目标函数为z=60x+25y.考虑z=60x+25y,将它变形为,这是斜率为,随z 变化的一族平行直线.为直线在y轴上的截距,当取得最大值时,z的值最大.又∵x,y满足约束条件,∴由图可知,当直线z=60x+25y经过可行域上的点M时,截距最大,即z最大.解方程组,得点M的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【点评】本题考查解得线性规划的应用,考查数学建模思想方法及数形结合的解题思想方法,是中档题.17.(13分)(•天津)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【分析】(Ⅰ)由已知AD∥BC,从而∠DAP或其补角即为异面直线AP与BC所成的角,由此能求出异面直线AP与BC所成角的余弦值.(Ⅱ)由AD⊥平面PDC,得AD⊥PD,由BC∥AD,得PD⊥BC,再由PD⊥PB,得到PD⊥平面PBC.(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角,由PD⊥平面PBC,得到∠DFP为直线DF和平面PBC所成的角,由此能求出直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.【点评】本小题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力、运算求解能力和推理论证能力,是中档题.18.(13分)(•天津)已知{a n}为等差数列,前n项和为S n(n ∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【分析】(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.通过b2+b3=12,求出q,得到.然后求出公差d,推出a n=3n﹣2.(Ⅱ)设数列{a2n b n}的前n项和为T n,利用错位相减法,转化求解数列{a2n b n}的前n项和即可.【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.【点评】本题考查等差数列以及等比数列通项公式的求法,数列求和,考查转化思想以及计算能力.20.(14分)(•天津)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA 的面积为.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.【分析】(Ⅰ)设椭圆的离心率为e.通过.转化求解椭圆的离心率.(Ⅱ)(ⅰ)依题意,设直线FP的方程为x=my﹣c(m>0),则直线FP的斜率为.通过a=2c,可得直线AE的方程为,求解点Q的坐标为.利用|FQ|=,求出m,然后求解直线FP的斜率.(ii)求出椭圆方程的表达式你,求出直线FP的方程为3x﹣4y+3c=0,与椭圆方程联立通过,结合直线PM和QN都垂直于直线FP.结合四边形PQNM的面积为3c,求解c,然后求椭圆的方程.【解答】解:(Ⅰ)设椭圆的离心率为e.由已知,可得.又由b2=a2﹣c2,可得2c2+ac﹣a2=0,即2e2+e﹣1=0.又因为0<e<1,解得.所以,椭圆的离心率为;(Ⅱ)(ⅰ)依题意,设直线FP的方程为x=my﹣c(m>0),则直线FP的斜率为.由(Ⅰ)知a=2c,可得直线AE的方程为,即x+2y﹣2c=0,与直线FP的方程联立,可解得,即点Q 的坐标为.由已知|FQ|=,有,整理得3m2﹣4m=0,所以,即直线FP的斜率为.(ii)解:由a=2c,可得,故椭圆方程可以表示为.由(i)得直线FP的方程为3x﹣4y+3c=0,与椭圆方程联立消去y,整理得7x2+6cx﹣13c2=0,解得(舍去),或x=c.因此可得点,进而可得,所以.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM 和QN都垂直于直线FP.因为QN⊥FP,所以,所以¡÷FQN的面积为,同理¡÷FPM的面积等于,由四边形PQNM的面积为3c,得,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为.【点评】本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.19.(14分)(•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【分析】(Ⅰ)求出函数f(x)的导函数,得到导函数的零点,由导函数的零点对定义域分段,列表后可得f(x)的单调区间;(Ⅱ)(i)求出g(x)的导函数,由题意知,求解可得.得到f(x)在x=x0处的导数等于0;(ii)由(I)知x0=a.且f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.构造函数t(x)=2x3﹣6x2+1,x∈[﹣1,1],利用导数求其值域可得b的范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f (x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a ≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].【点评】本题考查利用导数研究函数的单调性,考查了利用研究过曲线上某点处的切线方程,训练了恒成立问题的求解方法,体现了数学转化思想方法,是压轴题.。
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(有详细解析)
![2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(有详细解析)](https://img.taocdn.com/s3/m/a9978984cfc789eb162dc840.png)
2020年全国统一高考数学试卷(文科)(新课标Ⅱ)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A. ⌀B. {−3,−2,2,3}C. {−2,0,2}D. {−2,2}2.(1−i)4=()A. −4B. 4C. −4iD. 4i3.如图,将钢琴上的12个键依次记为a1,a2,⋯,a12,设1≤i<j<k≤12.若k−j=3且j−i=4,则称a i,a j,a k为原位大三和弦;若k−j=4且j−i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A. 5B. 8C. 10D. 154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名5.已知单位向量a⃗,b⃗ 的夹角为60°,则在下列向量中,与b⃗ 垂直的是()A. a⃗+2b⃗B. 2a⃗+b⃗C. a⃗−2b⃗D. 2a⃗−b⃗=()6.记S n为等比数列{a n}的前n项和.若a5−a3=12,a6−a4=24,则S na nA. 2n−1B. 2−21−nC. 2−2n−1D. 21−n−17.执行右图的程序框图,若输入的k=0,a=0,则输出的k为()A. 2B. 3C. 4D. 58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√559.设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 3210.设函数f(x)=x3−1x3,则f(x)()A. 是奇函数,且在(0,+∞)单调递增B. 是奇函数,且在(0,+∞)单调递减C. 是偶函数,且在(0,+∞)单调递增D. 是偶函数,且在(0,+∞)单调递减11.已知是面积为9√34的等边三角形,且其顶点都在球O的表面上,若球O的表面积为16π,则球O到平面ABC的距离为()A. √3B. 32C. 1 D. √3212.若2x−2y<3−x−3−y,则()A. ln(y−x+1)>0B. ln(y−x+1)<0C. ln|x−y|>0D. ln|x−y|<0二、填空题(本大题共4小题,共20.0分)13.设sinx=−23,则cos2x=________.14.记S n为等差数列{a n}的前n项和,若a1=−2,a2+a6=2,则S10=________.15.若x,y满足约束条件{x+y≥−1x−y≥−12x−y≤1,则z=x+2y的最大值是________.16.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4三、解答题(本大题共7小题,共80.0分)17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知cos2(π2+A)+cosA=54.(1)求A;(2)若b−c=√33a,证明:△ABC是直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i =6020i=1,∑y i =120020i=1,∑(x i −x )2=8020i=1,∑(y i −y )2=900020i=1,∑(x i −x )(y i −y )=8020i=10.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,√2≈1.414.19. (12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A,B 两点,交C 2于C,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.20.(12分)如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为▵A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π,求四3棱锥B−EB1C1F的体积.21.(12分)已知函数f(x)=2ln x+1.(1)若f(x)⩽2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)−f(a)x−a的单调性.22.[选修4−4:坐标系与参数方程](10分)已知曲线C1,C2的参数方程分别为C1:{x=4cos 2θy=4sin2θ(θ为参数),C2:{x=t+1ty=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.[选修4−5:不等式选讲](10分)已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.答案和解析1.D解:A∩B={x||x|<3,x∈Z}∩{x||x|>1,x∈Z}={x|1<|x|<3,x∈Z}={−2,2}2.A解:,3.C解:令k−j=3且j−i=4,相加得k−i=7,又1≤i<j≤12,故8≤k≤12,所以原位大三和弦(i,j,k)有(1,5,8)(2,6,9)(3,7,10)(4,8,11)(5,9,12),共5种;同理原位小三和弦(i,j,k)有(1,4,8)(2,5,9)(3,6,10)(4,7,11)(5,8,12),共5种;所以用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为10.4.B解:因为公司可以完成配货1200份订单,=18名.则至少需要志愿者为1600+500−1200505.D解:∵a⃗⋅b⃗ =|a⃗||b⃗ |cos60∘=12∴A选项:b⃗ ⋅(a⃗+2b⃗ )=b⃗ ⋅a⃗+2b⃗ 2=12+2=52B选项:b⃗ ⋅(2a⃗+b⃗ )=2b⃗ ⋅a⃗+b⃗ 2=1+1=2C选项:b⃗ ⋅(a⃗−2b⃗ )=b⃗ ⋅a⃗−2b⃗ 2=12−2=−32D选项:b⃗ ⋅(2a⃗−b⃗ )=2b⃗ ⋅a⃗−b⃗ 2=1−1=0得b⃗ ⊥(2a⃗−b⃗ ),6.B解:∵a5−a3=12①,a6−a4=24②∴②÷①得q=2,∴S na n =a1(1−q n)1−qa1⋅q n−1=1−q n(1−q)q n−1=1−2n−2n−1=2−21−n7.C解:运用程序框图,第一次循环,a=2a+1=1,k=1,此时a>10不成立,第二次循环,a=2a+1=3,k=2,此时a>10不成立,第三次循环,a=2a+1=7,k=3,此时a>10不成立,第四次循环,a=2a+1=15,k=4,此时a>10成立,结束循环,输出k=4,8.B解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√55.9.B解:双曲线C的两条渐近线分别为y=±bax,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到|DE|=2b,则S▵ODE=ab=8,c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.10.A解:函数的定义域是{x|x∈R且x≠0},f(−x)=(−x)3−1(−x)3=−(x3−1x3)=−f(x),∴f(x)为奇函数.又当x∈(0,+∞)时,y=x3,y=−1x3均为增函数,∴f(x)在(0,+∞)上单调递增,11.C解:设△ABC的外接圆圆心为O 1,设OO1=d,圆的半径为r,球O的半径为R,△ABC的边长为a,则S▵ABC=√34a2=9√34,可得a=3,由asinA=2r,于是r=√3=√3,由题意知,球O的表面积为16π,则R=2,OO1⊥面ABC,由R2=r2+d2,求得d=1,即O到平面ABC的距离为1.12.A解:2x−3−x<2y−3−y,设f(x)=2x−3−x,y=2x,y=−3−x=−(13)x,在R上均为增函数.所以函数f(x)在R上单调递增,因为f(x)<f(y),所以x<y,则y−x+1>1,ln(y−x+1)>0.13.19解:∵sinx=−23,∴cos2x=1−2sin2x=1−2×(−23)2=19.14.25解:∵数列{a n}为等差数列,设公差为d,∵a1=−2,a2+a6=2,∴−2+d+(−2)+5d=2,解得d=1,∵S n为{a n}的前n项和,故S10=10a1+10×92d=10×(−2)+45=25.15.8解:作出不等式组{x+y≥−1x−y≥−12x−y≤1对应的可行域,如下图阴影部分,由z=x+2y,得y=−12x+z2,平移直线y=−12x+z2,可知当直线y =−12x +z2经过图中的点A 时,直线的截距最大,此时z 最大, 由{x −y =−12x −y =1,可得A (2,3), ∴z =x +2y 的最大值为2+2×3=8.16. ①③④解:对于p 1:可设l 1与l 2,所得平面为α.若l 3与l 1相交,则交点A 必在平面α内.同理l 2与l 3的交点B 在平面α内,故直线AB 在平面α内,即l 3在平面α内,故p 1为真命题. 对于p 2:过空间中任意三点,若三点共线,可形成无数个平面,故p 2为假命题. 对于p 3:空间中两条直线的位置关系有平行,相交,异面,故p 3为假命题. 对于p 4:若m ⊥α,则m 垂直于平面α内的所有直线,故m ⊥l ,故p 4为真命题. 综上可知,p 1∧p 4为真命题,¬p 2∨p 3为真命题,¬p 3∨¬p 4为真命题.17.解:(1)∵cos 2(π2+A)+cosA =54, 化简得cos 2A −cosA +14=0,解得cosA =12, ∵A 是ΔABC 的内角,故A =π3. (2)证明:∵b −c =√33a ,A =π3,由正弦定理可得sinB −sinC =√33sinA =12,又B =π−A −C =2π3−C ,∴sin(2π3−C)−sinC =12,化简可得√32cosC−12sinC=12,即可得cos(C+π6)=12,又C∈(0,2π3),得C+π6∈(π6,5π6),故可得C+π6=π3,即C=π6,故A+C=π3+π6=π2,∴ΔABC是直角三角形.18.解:(1)由题可知,每个样区这种野生动物数量的平均数为120020=60,所以该地区这种野生动物数量的估计值为60×200=12000(2)根据公式得r=i −x)(y i−y)ni=1√∑(x i−x)∑(y i−y)i=1i=1=√80×9000=3√2≈0.94(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,为了提高样本的代表性,减小抽样误差,选用分层抽样法更加合理.19.解:(1)∵F为椭圆C1的右焦点,且AB垂直x轴,∴F(c,0),|AB|=2b2a,设抛物线C2方程为y2=2px(p>0),∵F为抛物线C2的焦点,且CD垂直x轴,∴F(p2,0),|CD|=2p,∵|CD|=43|AB|,C1与C2的焦点重合,∴{c=p22p=43×2b2a整理得4c=8b23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,解得e=12或e=−2(舍)故椭圆C1的离心率为12(2)由(1)知a=2c,b=√3c,p=2c,∴C1:x24c2+y23c2=1,C2:y2=4cx,∴C1的四个顶点坐标分别为(2c,0),(−2c,0),(0,√3c),(0,−√3c),C2的准线为x=−c,由已知得3c+c+c+c=12,即c=2.所以C1与C2的标准方程分别为x216+y212=1,y2=8xC2的标准方程。
2020版高考数学人教版理科一轮复习课时作业:25 解三角形的应用 Word版含解析
![2020版高考数学人教版理科一轮复习课时作业:25 解三角形的应用 Word版含解析](https://img.taocdn.com/s3/m/ce66d03a360cba1aa911da02.png)
课时作业25解三角形的应用第|一次作业根底稳固练一、选择题1.如图,两座灯塔A和B与河岸观察站C的距离相等,灯塔A 在观察站南偏西40° ,灯塔B在观察站南偏东60° ,那么灯塔A在灯塔B的(D)A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析:由条件及题图可知,∠A=∠B=40° ,又∠BCD=60° ,所以∠CBD=30° ,所以∠DBA=10° ,因此灯塔A在灯塔B南偏西80°.2.一名学生在河岸上紧靠河边笔直行走,某时刻测得河对岸靠近河边处的参照物与学生前进方向成30°角,前进200 m后,测得该参照物与前进方向成75°角,那么河的宽度为(A)A.50(3+1) m B.100(3+1) mC.50 2 m D.100 2 m解析:如下图 ,在△ABC 中 ,∠BAC =30° ,∠ACB =75°-30°=45° ,AB =200 m ,由正弦定理 ,得BC =200×sin30°sin45°=1002(m) ,所以河的宽度为BC sin75°=1002×2+64=50(3+1)(m). 3.为测出所住小区的面积 ,某人进行了一些测量工作 ,所得数据如下图 ,那么小区的面积是( D )A.3+64 km 2B.3-64 km 2C.6+34 km 2D.6-34 km 2解析:连接AC ,根据余弦定理可得AC = 3 km ,故△ABC 为直角三角形.且∠ACB =90° ,∠BAC =30° ,故△ADC 为等腰三角形 ,设AD=DC =x km ,根据余弦定理得x 2+x 2+3x 2=3 ,即x 2=32+3=3×(2-3) ,所以所求的面积为12×1×3+12×3×(2-3)×12=23+6-334=6-34(km 2). 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .假设a =b cos C +c sin B ,且△ABC 的面积为1+ 2 ,那么b 的最|小值为( A )A .2B .3 C. 2 D. 3解析:由a =b cos C +c sin B 及正弦定理 ,得sin A =sin B cos C +sin C sin B ,即sin(B +C )=sin B cos C +sin C sin B ,得sin C cos B =sin C sin B ,又sin C ≠0 ,所以tan B =1.因为B ∈(0 ,π) ,所以B =π4.由S △ABC =12ac sin B=1+ 2 ,得ac =22+4.又b 2=a 2+c 2-2ac cos B ≥2ac -2ac =(2-2)(4+22)=4 ,当且仅当a =c 时等号成立 ,所以b ≥2 ,b 的最|小值为2.应选A.5.(2021·郑州质量预测)在△ABC 中 ,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,假设△ABC 的面积S =3c ,那么ab 的最|小值为( C )A .28B .36C .48D .56解析:在△ABC 中 ,2c cos B =2a +b ,由正弦定理 ,得2sin C cos B =2sin A +sin B .又A =π-(B +C ) ,所以sin A =sin[π-(B +C )]=sin(B +C ) ,所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0 ,因为sin B ≠0 ,所以cos C =-12 ,又0<C <π ,所以C=2π3.由S =3c =12ab sin C =12ab ×32 ,得c =ab 4.由余弦定理得 ,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号) ,所以(ab 4)2≥3ab ,得ab ≥48 ,所以ab 的最|小值为48 ,应选C.6. (2021·山东日照二模)如下图 ,在平面四边形ABCD 中 ,AB =1 ,BC =2 ,△ACD 为正三角形 ,那么△BCD 面积的最|大值为( D )A .23+2 B.3+12 C.32+2D.3+1解析:在△ABC 中 ,设∠ABC =α ,∠ACB =β ,由余弦定理得:AC 2=12+22-2×1×2cos α ,∵△ACD 为正三角形 ,∴CD 2=AC 2=5-4cos α ,S △BCD =12·2·CD ·sin ⎝ ⎛⎭⎪⎫π3+β=CD ·sin ⎝ ⎛⎭⎪⎫π3+β=32CD ·cos β+12CD ·sin β ,在△ABC 中 ,由正弦定理得:1sin β=AC sin α ,∴AC ·sin β=sin α ,∴CD ·sin β=sin α ,∴(CD ·cos β)2=CD 2(1-sin 2β)=CD 2-sin 2α=5-4cos α-sin 2α=(2-cos α)2 ,∵β<∠BAC ,∴β为锐角 ,CD ·cos β=2-cos α ,∴S △BCD =32CD ·cos β+12CD ·sin β=32·(2-cos α)+12sin α=3+sin ⎝ ⎛⎭⎪⎫α-π3 ,当α=5π6时 ,(S △BCD )max =3+1.二、填空题7.如下图 ,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15° ,∠BDC =30° ,CD =30 ,并在点C 测得塔顶A 的仰角为60° ,那么塔高AB 等于15 6.解析:在△BCD 中 ,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin30°=CD sin135° ,所以BC =15 2.在Rt △ABC 中 ,AB =BC tan ∠ACB =152×3=15 6.8.如下图 ,在△ABC 中 ,C =π3 ,BC =4 ,点D 在边AC 上 ,AD =DB ,DE ⊥AB ,E 为垂足 ,假设DE =2 2 ,那么cos A =64.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =BD =x ,∴在△BCD 中 ,BC sin ∠CDB=BD sin C ,可得4sin2A =x sin60°.① 在△AED 中 ,ED sin A =AD sin ∠AED,可得22sin A =x 1.② ∴联立①②可得42sin A cos A =22sin A 32,解得cos A =64.9.在△ABC 中 ,BC =2 ,AB →·AC →=2 ,那么△ABC 面积的最|大值是3.解析:由BC →=AC →-AB → ,得BC →2=(AC →-AB →)2 ,设|AB →|=c ,|AC →|=b ,那么b 2+c 2=8 ,又因为AB →·AC →=bc ·cos A =2 ,所以cos A =2bc ,所以sin 2A =1-4(bc )2 ,设△ABC 的面积为S ,那么S 2=14(bc )2sin 2A =14(b 2c 2-4) ,因为bc ≤b 2+c 22=4 ,所以S 2≤3 ,所以S ≤ 3.所以△ABC 面积的最|大值是 3.10.(2021·武汉市调研测试)在钝角△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,假设a =4 ,b =3 ,那么c 的取值范围是(1 ,7)∪(5,7).解析:三角形中两边之和大于第三边 ,两边之差小于第三边 ,据此可得1<c <7 ,①假设∠C 为钝角 ,那么cos C =a 2+b 2-c 22ab =25-c 224<0 ,解得c >5 ,②假设∠A 为钝角 ,那么cos A =b 2+c 2-a 22bc =c 2-76c <0 ,解得0<c <7 ,③结合①②③可得c 的取值范围是(1 ,7)∪(5,7).三、解答题11.(2021·全国卷Ⅰ)在平面四边形ABCD 中 ,∠ADC =90° ,∠A =45° ,AB =2 ,BD =5.(1)求cos ∠ADB ;(2)假设DC =2 2 ,求BC .解:(1)在△ABD 中 ,由正弦定理得BD sin A =AB sin ∠ADB. 由题设知 ,5sin45°=2sin ∠ADB, 所以sin ∠ADB =25.由题设知 ,∠ADB <90° ,所以cos ∠ADB =1-225=235.(2)由题设及(1)知 ,cos ∠BDC =sin ∠ADB =25.在△BCD 中 ,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25.所以BC =5.12.(2021·潮州二模)在锐角△ABC 中 ,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B +b cos A c =233sin C . (1)求C 的值;(2)假设a sin A =2 ,求△ABC 的面积S 的最|大值.解:(1)∵a cos B +b cos A c =233sin C , 由正弦定理可得sin A cos B +sin B cos A =233sin 2C ,∴sin(A +B )=233sin 2C ,∴sin C =233sin 2C .∵sin C >0 ,∴sin C =32 ,∵C 为锐角 ,∴C =60°.(2)由C =60°及c sin C =a sin A =2 ,可得c = 3.由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号) ,∴S =12ab sin C ≤12×3×32=334 ,∴△ABC 的面积S 的最|大值为334.第二次作业 (高|考)·模拟解答题体验1.(2021·北京卷)在△ABC 中 ,a =7 ,b =8 ,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解:(1)在△ABC 中 ,因为cos B =-17 ,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π ,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中 ,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314 ,所以AC 边上的高为a sin C =7×3314=332.2.(2021·益阳·湘潭调研考试)锐角△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -b c =cos B cos C .(1)求角C 的大小;(2)求函数y =sin A +sin B 的值域.解:(1)由2a -b c =cos B cos C ,利用正弦定理可得2sin A cos C -sin B cos C=sin C cos B ,可化为2sin A cos C =sin(C +B )=sin A ,∵sin A ≠0 ,∴cos C =12 ,∵C ∈(0 ,π2) ,∴C =π3.(2)y =sin A +sin B =sin A +sin(π-π3-A )=sin A +32cos A +12sin A =3sin(A +π6) ,∵A +B =2π3 ,0<A <π2 ,0<B <π2 , ∴π6<A <π2 ,∴π3<A +π6<2π3 ,∴sin(A +π6)∈(32 ,1] ,∴y ∈(32 ,3].3.锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos 2B -cos 2C -sin 2A =-sin A sin B ,sin(A -B )=cos(A +B ).(1)求角A ,B ,C ;(2)假设a = 2 ,求三角形ABC 的边长b 的值及三角形ABC 的面积.解:(1)∵cos 2B -cos 2C -sin 2A =-sin A sin B ,∴sin 2C +sin A sin B =sin 2A +sin 2B ,∴由正弦定理得c 2+ab =a 2+b 2 ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12 ,∵0<C <π ,∴C =π3.∵sin(A -B )=cos(A +B ) ,∴sin A cos B -cos A sin B =cos A cos B -sin A sin B ,∴sin A (sin B +cos B )=cos A (sin B +cos B ) ,∴sin A =cos A ,∴由A 为锐角 ,可得A =π4 ,B =π-A -C =5π12.(2)∵a = 2 ,A =π4 ,B =5π12 ,∴由正弦定理可得b =a ·sin B sin A =6+22 , ∴三角形ABC 的面积S =12ab sin C =12×2×6+22×32=3+34.4.(2021·武汉市调研测试)在锐角△ABC 中 ,内角A ,B ,C 的对边分别是a ,b ,c ,满足cos2A -cos2B +2cos(π6-B )cos(π6+B )=0.(1)求角A 的值;(2)假设b =3且b ≤a ,求a 的取值范围.解:(1)由cos2A -cos2B +2cos(π6-B )cos(π6+B )=0 ,得2sin 2B -2sin 2A +2(34cos 2B -14sin 2B )=0 ,化简得sin A =32 ,又△ABC 为锐角三角形 ,故A =π3.(2)∵b =3≤a ,∴c ≥a ,∴π3≤C <π2 ,π6<B ≤π3 ,∴12<sin B ≤32.由正弦定理a sin A =b sin B ,得a 32=3sin B ,∴a =32sin B ,由sin B ∈(12 ,32]得a ∈[ 3 ,3).5.如下图 ,在△ABC 中 ,C =π4 ,CA →·CB →=48 ,点D 在BC 边上 ,且AD =5 2 ,cos ∠ADB =35.(1)求AC ,CD 的长;(2)求cos ∠BAD 的值.解:(1)在△ABD 中 ,∵cos ∠ADB =35 ,∴sin ∠ADB =45.∴sin ∠CAD =sin(∠ADB -∠ACD )=sin ∠ADB cos π4-cos ∠ADB sin π4=45×22-35×22=210.在△ADC 中 ,由正弦定理得AC sin ∠ADC =CD sin ∠CAD =AD sin ∠ACD,即AC 45=CD 210=5222,解得AC =8 ,CD = 2.(2)∵CA →·CB →=48 ,∴8·CB ·22=48 ,解得CB =6 2 ,∴BD =CB -CD =5 2.在△ABC 中 ,AB =82+(62)2-2×8×62×22=210.在△ABD 中 ,cos ∠BAD =(210)2+(52)2-(52)22×210×52=55. 6.在△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,假设b 2+c 2-a 2=bc .(1)求角A 的大小;(2)假设a = 3 ,求BC 边上的中线AM 的最|大值.解:(1)∵b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.又0<A <π ,∴A =π3.(2)在△ABC 中 ,A =π3 ,a = 3 ,由余弦定理a 2=b 2+c 2-2bc cos A 得b 2+c 2=bc +3.那么b 2+c 2=bc +3≥2bc ,得bc ≤3(当且仅当b =c 时取等号).在△ABC 中 ,由余弦定理 ,得cos B =a 2+c 2-b 22ac .在△ABM 中 ,由余弦定理 ,得AM 2=AB 2+BM 2-2·AB ·BM ·cos B=c 2+a 24-2·c ·12a ·a 2+c 2-b 22ac=2c 2+2b 2-a 24=2bc +34≤94 , ∴AM ≤32.∴AM 的最|大值是32.。
2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)文科数学+答题卡+答案+全解全析(2020.6.15)
![2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)文科数学+答题卡+答案+全解全析(2020.6.15)](https://img.taocdn.com/s3/m/989d267fed630b1c59eeb5cd.png)
线
封
﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍
学校__________________班级__________________姓名__________________准考证号__________________
全国名校 2020 年高三 6 月大联考(新课标Ⅰ卷) 文科数学·答题卡
x2 a2
−
y2 b2
= 1(a
> 0,b > 0) 的左、右焦点,若直线 x
=c
与双曲线
C
的
两条渐近线分别交于点 M,N,且 ∠MF1N = 60° ,则双曲线 C
的离心率为__________.
16.石雕工艺承载着几千年的中国石雕文化,随着科技的发展,
机器雕刻产品越来越多.某石雕厂计划利用一个圆柱形的石 材(如图 1)雕刻制作一件工艺品(如图 2),该作品的上方
3.请按题号顺序在各题目的答题区域内作答,超出 区域书写的答案无效;在草稿纸、试题卷上答题
无效。 4.保持卡面清洁,不要折叠、不要弄破。 5.正确填涂
贴条形码区
缺考 此栏考生禁填
标记
18.(12 分)
一、选择题(每小题 5 分,共 60 分)
1 [A] [B] [C] [D] 2 [A] [B] [C] [D] 3 [A] [B] [C] [D] 4 [A] [B] [C] [D]
π 12
个单位长度后所得函数的图象关于原点对称
D.函数
f
(x)
在区间
(π 3
,
5π ) 6
上单调递减
10.设各项均为正数的数列{an } 的前 n 项和为 Sn ,若数列{an } 满足 a1 = 2 , anan+1 = 4Sn − 2(n ∈ N* ) , 则
2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)
![2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)](https://img.taocdn.com/s3/m/b23e0968dd36a32d737581ce.png)
2020年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)32-(B)-12 (C)12(D) 32 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a =====g(5)43(1)(1)x x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(1)1464133x x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PFPF +-()()2222121212121212222221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:120220121260113cot 1cot 3sin 6022222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )23 (B )33 (C )23(D )63【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/2O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤--322y ≥-+故min ()322PA PB •=-+u u u v u u u v.此时21x =-【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v PABO2222221sin12sincos22212sin2sin sin22θθθθθθ⎛⎫⎛⎫--⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2sin,012x xθ=<≤,()()112123223x xPA PB xx x--•==+-≥-u u u v u u u v(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C) 23 (D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323V h h=⨯⨯⨯⨯=四面体,当直径通过AB与CD的中点时,22max22123h=-=,故max433V=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2020年高考文数真题试题(新课标Ⅰ)(Word版+答案+解析)
![2020年高考文数真题试题(新课标Ⅰ)(Word版+答案+解析)](https://img.taocdn.com/s3/m/2ec05651f121dd36a22d82d6.png)
2020年高考文数真题试卷(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共51分)1.已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,⋯,20)得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+b e xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数 f(x)=cos (ωx +π6) 在 [−π,π] 的图像大致如下图,则f(x)的最小正周期为( )A.10π9B.7π6C.4π3D.3π28.设 alog 34=2 ,则 4−a = ( )A. 116 B. 19 C. 18 D. 16 9.执行下面的程序框图,则输出的n=( )A. 17B. 19C. 21D. 2310.设 {a n } 是等比数列,且 a 1+a 2+a 3=1 , a 2+a 3+a 4=2 ,则 a 6+a 7+a 8= ( ) A. 12 B. 24 C. 30 D. 32 11.设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P 在C 上且 |OP|=2 ,则 △PF 1F 2的面积为( )A. 72 B.3 C. 52 D. 212.已知 A,B,C 为球O 的球面上的三个点,⊙ O 1 为 △ABC 的外接圆,若⊙ O 1 的面积为 4π , AB =BC =AC =OO 1 ,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π二、填空题:本题共4小题,每小题5分,共20分。
2020届全国Ⅱ卷高考压轴卷数学文科试卷(Word版含解析)
![2020届全国Ⅱ卷高考压轴卷数学文科试卷(Word版含解析)](https://img.taocdn.com/s3/m/785433f5dd36a32d727581c5.png)
参考答案
1. 【答案】A 【解析】 可解出集合 A,然后进行交集的运算即可.
【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};
∴A∩B={0,1}.
故选:A.
2. 【答案】A 【解析】
z
=
1−i 1+ 2i
=
(1− i)(1− 2i) (1+ 2i)(1− 2i)
=
−1− 3i 5
=
−
1 5
5. 【答案】B
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
【解析】
由题意得: −a = (1, −1) , b − a = (2, m −1)
−a = 2 , b − a = 4 + (m −1)2
( ) cos = (−a) b − a =
2 − m +1
= 2 ,解得: m = 1
已知数列{an}满足 a1 = −2 , an+1 = 2an + 4 .
(1)证明:an + 4 是等比数列;
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(2)求数列{an}的前 n 项和 Sn. 18. (本小题 12 分)
如图所示,在三棱柱 ABC - A1B1C1 中,侧棱 AA1 ⊥ 底面 ABC, AB ⊥ BC ,D 为 AC 的中 点, AA1=AB=2, BC=3.
1
A.
B. 1
C. 3
3
D. -1
5.
已知向量 a
= (−1,1) , b
= (1, m) ,若向量 −a
与b
−a
的夹角为 4
,则实数 m
2020版高考数学(文科)试题小卷练33Word版含解析
![2020版高考数学(文科)试题小卷练33Word版含解析](https://img.taocdn.com/s3/m/76e34d12dd36a32d73758195.png)
刷题小卷练33直线与圆锥曲线的综合小题基础练○33一、选择题1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A.相交B.相切C.相离D.不确定答案:A解析:通解将直线y=kx-k+1与椭圆x29+y24=1联立,整理得(4+9k2)x2+18k(1-k)x+9(1-k)2-36=0,则Δ=[18k(1-k)]2-4(4+9k2)[9(1-k)2-36]=144(8k2+2k+3)>0,所以直线与椭圆相交.优解因为直线y=kx-k+1过定点(1,1),又点(1,1)在椭圆内部,所以直线与椭圆相交.2.已知直线y=kx+1与双曲线x2-y24=1交于A,B两点,且|AB|=82,则实数k的值为()A.±7 B.±3或±41 3C.±3 D.±41 3答案:B解析:由直线与双曲线交于A,B两点,得k≠±2.将y=kx +1代入x2-y24=1得,(4-k2)x2-2kx-5=0,则Δ=4k2+4(4-k2)×5>0,解得k2<5.设A(x1,y1),B(x2,y2),则x1+x2=2k4-k2,x1x2=-54-k2,所以|AB|=1+k2·⎝⎛⎭⎪⎪⎫2k4-k22+204-k2=82,解得k=±3或±413.3.[2019·兰州模拟]已知直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3) 答案:A解析:直线y =kx -k -1恒过定点(1,-1).因为直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则曲线C 表示椭圆,点(1,-1)在椭圆内或椭圆上,所以12+2×(-1)2≤m ,所以m ≥3,故选A.4.[2019·宁波九校联考(二)]过双曲线x 2-y2b 2=1(b >0)的左顶点A 作斜率为1的直线l ,若l 与双曲线的两条渐近线分别交于B ,C ,且2AB→=BC →,则该双曲线的离心率为( ) A.10 B.103C. 5D.52 答案:C解析:由题意可知,左顶点A (-1,0).又直线l 的斜率为1,所以直线l 的方程为y =x +1,若直线l 与双曲线的渐近线有交点,则b ≠1.又双曲线的两条渐近线的方程分别为y =-bx ,y =bx ,所以可得x B =-1b +1,x C =1b -1.由2AB →=BC →,可得2(x B -x A )=x C -x B ,故2×⎝ ⎛⎭⎪⎪⎫-1b +1+1=1b -1-⎝ ⎛⎭⎪⎪⎫-1b +1,得b =2,故e =12+221= 5. 5.[2019·浙江八校联考(二)]抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且这两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则( )A .x 3=x 1+x 2B .x 1x 2=x 1x 3+x 2x 3C .x 1+x 2+x 3=0D .x 1x 2+x 2x 3+x 3x 1=0 答案:B解析:由⎩⎨⎧y =ax 2,y =kx +b ,消去y 得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-b a ,令kx +b =0得x 3=-bk ,所以x 1x 2=x 1x 3+x 2x 3.故选B.6.[2019·长春检测]椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-94 答案:A解析:设以P 为中点的弦所在直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23.故选A.7.[2019·福建福州外国语学校适应性考试]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,抛物线y =14x 2+14与双曲线C 的渐近线相切,则双曲线C 的方程为( )A.x 28-y 22=1B.x 22-y 28=1C .x 2-y 24=1 D.x24-y 2=1 答案:D 解析:由题意可得c =5,得a 2+b 2=5,双曲线的渐近线方程为y =±b a x .将渐近线方程和抛物线方程y =14x 2+14联立,可得14x 2±b a x +14=0,由渐近线和抛物线相切可得Δ=b 2a 2-4×14×14=0,即有a 2=4b 2,又a 2+b 2=5,解得a =2,b =1,可得双曲线的方程为x 24-y 2=1.故选D.8.[2019·唐山市五校联考]直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,M 是线段AB 的中点,若l 与OM (O 是原点)的斜率的乘积等于1,则此双曲线的离心率为( )A .3B .2 C. 3 D. 2 答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),代入双曲线的方程,得⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,又⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y22,所以x 0a 2=y 0(y 1-y 2)b 2(x 1-x 2),所以b 2a 2=y 0(y 1-y 2)x 0(x 1-x 2)=k OM k l =1,所以e 2=1+b 2a 2=2,所以e =2,故选D.二、非选择题9.若直线y =52x +b 和曲线4x 2-y 2=36有两个不同的交点,则b 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫92,+∞ 解析:联立直线方程和曲线方程,消去y 得,-94x 2-5bx -b 2-36=0,由直线和曲线有两个不同的交点,所以Δ=25b 2-9(b 2+36)>0,解得b <-92或b >92.10.直线x -y -1=0与抛物线y 2=4x 交于A ,B 两点,过线段AB 的中点作直线x =-1的垂线,垂足为M ,则MA →·MB →=________.答案:0解析:设A (x 1,x 1-1),B (x 2,x 2-1),由⎩⎨⎧y =x -1,y 2=4x得x 2-6x +1=0,则x 1+x 2=6,x 1x 2=1,故AB 的中点C (3,2),M (-1,2),又MA →=(x 1+1,x 1-3),MB →=(x 2+1,x 2-3),所以MA →·MB →=(x 1+1)(x 2+1)+(x 1-3)·(x 2-3)=2x 1x 2-2(x 1+x 2)+10=0. 11.已知抛物线y 2=4x 的焦点为F ,过焦点的直线与抛物线交于A ,B 两点,则当|AF |+4|BF |取得最小值时,直线AB 的倾斜角的正弦值为________.答案:223解析:当直线的斜率存在时,设直线方程为y =k (x -1)(k ≠0),由⎩⎨⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),x 1,x 2>0,则x 1+x 2=2k 2+4k 2 ①,x 1x 2=1 ②,1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=2k 2+4k 2+21+2k 2+4k 2+1=1.当直线的斜率不存在时,易知|AF |=|BF |=2,故1|AF |+1|BF |=1.设|AF |=a ,|BF |=b ,则1a +1b =1,所以|AF |+4|BF |=a +4b =⎝ ⎛⎭⎪⎫1a +1b (a +4b )=5+4b a +a b ≥9,当且仅当a =2b 时取等号,故a +4b 的最小值为9,此时直线的斜率存在,且x 1+1=2(x 2+1) ③,联立①②③得, x 1=2,x 2=12,k =±22,故直线AB 的倾斜角的正弦值为223.12.[2019·广东揭阳一中、汕头金山中学联考]已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y2a =1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.答案:14解析:根据抛物线的定义得1+p2=5,所以p =8,所以m =±4.由对称性不妨取M (1,4),A (-1,0),则直线AM 的斜率为2,由题意得-a ×2=-1,故a =14.课时增分练○33一、选择题1.已知抛物线y 2=16x ,直线l 过点M (2,1),且与抛物线交于A ,B 两点,|AM |=|BM |,则直线l 的方程是( )A .y =8x +15B .y =8x -15C .y =6x -11D .y =5x -9 答案:B解析:设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,又y 1+y 2=2,所以k AB =8,故直线l 的方程为y =8x -15.2.直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原。
2020年全国统一高考数学试卷(文科)(新课标I)(有详细解析)
![2020年全国统一高考数学试卷(文科)(新课标I)(有详细解析)](https://img.taocdn.com/s3/m/8c0f2d7fccbff121dc368300.png)
2020年全国统一高考数学试卷(文科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos (ωx+π6)在的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共80.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcos θ−16ρsin θ+ 3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1.D解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},2.C解:z=1+2i−i=1+i,则|z|=√12+12=√2,3.C解:设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,ℎ′a>0,解得ℎ′a =√5+14.4.A解:如图,从5点中随机选取3个点,共有10种情况,AOB,AOD,BOC,DOC,ABC,ADC,DBC,DAB,AOC,BOD,其中三点共线的有两种情况:AOC和BOD,则p=210=15.5.D用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.6.B解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8,弦长2√r2−OA2=2,7.C解:由图可知f(−4π9)=cos (−4π9ω+π6)=0,所以−4π9ω+π6=π2+kπ(k∈Z),化简可得ω=−3+9k4(k∈Z),又因为T<2π<2T,即2π|ω|<2π<4π|ω|,所以1<|ω|<2,则当且仅当k=−1时,1<|ω|<2,所以|ω|=32,故最小正周期T=2π|ω|=4π3.8.B解:由alog34=log34a=2,可得4a=32=9,∴4−a=(4a)−1=9−1=1,99.C解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.10.D解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,11.B解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|=4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为12|PF1|⋅|PF2|=3,12.B解:由圆O1的面积为4π=πr2,故圆O1的半径r=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.5解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.15.2x−y=0解:∵y=lnx+x+1,∴y′=1x+1设切点坐标为(x0,y0),因为切线斜率为2,所以1x+1=2,故x0=1,此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.16.7解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8=17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+ 29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13=102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.17.解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.18.解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=2,所以a=2√3,所以S△ABC=12acsin B=12×2√3×2×12=√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.19.解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.20.解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x >−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e ,当x <−2时,g(x)<0,当x >−2时,g(x)>0,所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞).21. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m9(x +3)得,y C =6m9+m ,即C(−3m 2+279+m ,6m9+m ),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).22.(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)当k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23. (1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图, 联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.。
2020版高考数学(文)刷题小卷练1 Word版含解析
![2020版高考数学(文)刷题小卷练1 Word版含解析](https://img.taocdn.com/s3/m/ec940720ff00bed5b9f31d8c.png)
刷题小卷练集合的概念与运算小题基础练①一、选择题.[·全国卷Ⅱ]已知集合={},={},则∩=( ).{} .{}.{} .{}答案:解析:∩={}∩{}={}.故选..[·全国卷Ⅰ]已知集合={-->},则∁=( ).{-<<}.{-≤≤}.{<-}∪{>}.{≤-}∪{≥}答案:解析:∵-->,∴ (-)(+)>,∴>或<-,即={>或<-}.在数轴上表示出集合,如图所示.由图可得∁={-≤≤}.故选..[·河南中原名校质检]已知全集={},集合={},={},则∩(∁)=( ).{} .{}.{} .{}答案:解析:因为∁={},所以∩(∁)={}.故选..[·河北衡水武邑中学调研]已知全集=,集合={<<,∈}和={-<<,∈}关系的图如图所示,则阴影部分所表示集合中的元素共有( ).个.个.个.无穷多个答案:解析:因为={<<,∈},所以∁={≤或≥}.题图中阴影部分表示的集合为(∁)∩={-<≤,∈}={-,-,-,},故该集合中共有个元素.故选..[·惠州一调]已知集合={-},={=,∈},则∁=( ).{} .{-}.∅.{-}答案:解析:∵={=,∈}={},∴∁={-},故选..[·河北省五校联考(二)]已知集合={<},={--<},则( ).∩={<} .∪=.∪={<} .∩={-<<}答案:解析:∵--<,∴-<<,∴={-<<},∴∪={<},∩={-<<},故选..[·江西赣州模拟]已知集合={-≤≤},={<},则∩=( ).{<<}.{<≤} .{<≤}答案:解析:∵-≤≤,∴≤≤,∴=.由<知<,∴={<},∴∩=.故选..[·广西桂林、百色、梧州、崇左、北海五市联合模拟]已知全集=,集合={(-)(+)≥},={-≤≤},则(∁)∩=().[-,-] .[-].[-) .[]答案:解析:因为全集=,集合={(-)(+)≥}={≤-或≥},所以∁={-<<}.又={-≤≤},所以(∁)∩=[-).故选.二、非选择题.[·江苏卷]已知集合={},={-},那么∩=.答案:{}解析:∩={}∩{-}={}..[·南昌模。
2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】
![2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】](https://img.taocdn.com/s3/m/6bdc2b1f3868011ca300a6c30c2259010302f34a.png)
绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x | x2- 3x - 4 < 0}, B = {-4,1, 3, 5},则A B =()A. {-4,1}B. {1, 5}C. {3, 5}D. {1, 3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A B ,得到结果.【详解】由x2- 3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1, 3, 5},所以A B ={1, 3},故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若z =1 + 2i + i3,则|z | = ()A. 0B. 1212 +12 2 b 2- a2 4b 2 b CD. 2【答案】C【解析】【分析】先根据i 2 = -1将 z 化简,再根据向量的模的计算公式即可求出.【详解】因为 z = 1+2i + i 3 = 1+2i - i = 1+ i ,所以 z = = .故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.1. 胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5 -1 4B.5 -1 2C.5 +1 4D.5 +1 2【答案】D【解析】【分析】设CD = a , PE = b ,利用 PO 2 = 1CD ⋅ PE 得到关于a , b 的方程,解方程即可得到答案.2CD = a , PE = b【详解】如图,设,则 PO=由题意 PO 2= 1 ab ,即b 2- a 2 =1 4( ) -2 ⋅ -1 = 0 ,化简得,ab 24 2aaPE 2 - OE 2解得b=1 + 5 (负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.为正方形ABCD 的中心,在O,A,B,C,D 中任取3 点,则取到的3 点共线的概率为()1 2A. B.5 514C. D.25【答案】A【解析】【分析】列出从5 个点选3 个点的所有情况,再列出3 点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O,A,B,C,D 5 个点中任取3 个有{O, A, B},{O, A, C},{O, A, D},{O, B, C}{O, B, D},{O,C, D},{A, B,C},{A, B, D}{A,C, D},{B,C, D} 共10 种不同取法,3 点共线只有{A,O, C} 与{B,O, D} 共2 种情况,由古典概型的概率计算公式知,取到 3 点共线的概率为2= 1 .故选:A10 5【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.3. 一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:°C )的关系,在 20个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1, 2,, 20) 得到下面的散点图:由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x的回归方程类型的是()A. y = a + bxB. y = a + bx 2C. y = a + b e xD. y = a + b ln x【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是y =a +b ln x .故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.4.圆x2+y2- 6x = 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据直线和圆心与点(1, 2) 连线垂直时,所求的弦长最短,即可得出结论.【详解】圆x2+y2- 6x = 0 化为(x - 3)2+y2= 9 ,所以圆心C 坐标为C(3, 0) ,半径为3 ,设P(1, 2) ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为= 2 = 2 .故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.5.数f (x) = cos(ωx +π) 在[-π,π]的图像大致如下图,则f(x)的最小正周期为()610π7πA. B.96 4π3πC. D.32【答案】C9- | CP |29 -8+= -【解析】【分析】由图可得:函数图象过点⎛ - 4π ,0⎫ ,即可得到cos ⎛ - 4π ⋅ω + π ⎫ = 0 ,结合⎛ - 4π ,0⎫是 9 ⎪ 9 6 ⎪ 9 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭函数 f (x ) 图象与 x 轴负半轴的第一个交点即可得到- 4π⋅ω + π = - π ,即可求得ω = 3, 9 6 2 2再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点⎛ - 4π ,0⎫,9 ⎪ ⎝ ⎭将它代入函数 f (x ) 可得: cos ⎛ - 4π⋅ω + π ⎫ = 0 9 6 ⎪ ⎝ ⎭又⎛ - 4π ,0⎫是函数 f (x ) 图象与 x 轴负半轴的第一个交点, 9 ⎪ ⎝ ⎭所以-4π ⋅ω ππ,解得:ω = 39622T =2π = 2π = 4π所以函数 f (x ) 的最小正周期为故选:Cω 3 32【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6. l og 3 4 = 2 ,则4- a= ()1 1 1 1 A.B.C.D.16986【答案】B【解析】【分析】首先根据题中所给的式子,结合对数的运算法则,得到log 3 4a= 2 ,即 4a = 9 ,进而求得4-a = 1,得到结果.9【详解】由a log 3 4 = 2 可得log 3 4a= 2 ,所以4a = 9 ,所以有4-a = 1,9故选:B.【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 7. 下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】根据程序框图的算法功能可知,要计算满足1+ 3 + 5 + + n > 100 的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足1+ 3 + 5 ++ n > 100 的最小正奇数,因为1+ 3 + 5 += 1 (n +1)2 4> 100 ,解得n > 19 ,所以输出的n =21.故选:C【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题.8.n } 是等比数列,且a 1 + a 2 + a 3 = 1 ,a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ( )A. 12B. 24C. 30D. 32(1+ n )⨯⎛ n -1 +1⎫⎪ + n =⎝ 2 2 ⎭1 2 1 2 1 2 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1 【答案】D【解析】【分析】根据已知条件求得q 的值,再由a + a + a = q 5(a + a + a ) 可求得结果.678123【详解】设等比数列{a } 的公比为q ,则a + a + a = a (1+ q + q 2)= 1 , a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2) = q = 2 , 因此, a + a + a = a q 5 + a q 6 + a q 7 = a q 5 (1+ q + q 2 )= q 5 = 32 .故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.F , F2y 2 | OP |= 29. 2 是双曲线C : x-= 1 的两个焦点,O 为坐标原点,点 P 在C 上且 ,3则△PF 1F 2 的面积为()A.725 B. 3C.2D. 2【答案】B【解析】【分析】由是以 P 为直角直角三角形得到| PF |2 + | PF|2= 16 ,再利用双曲线的定义得到| PF | - | PF | = 2 ,联立即可得到| PF || PF| ,代入 S △= 1 | PF || PF |中计算即可.1212F 1F 2 P 21 2【详解】由已知,不妨设 F 1(-2, 0), F 2 (2, 0) , 则 a = 1, c = 2 ,因为| OP |= 1 = 1| F F | ,21 2所以点 P 在以 F 1F 2 为直径的圆上,即 F 1F 2 P 是以 P 为直角顶点的直角三角形,故| PF |2 + | PF |2 =| F F |2 ,121 2即| PF |2+ | PF |2 = 16 ,又 | PF | - | PF | = 2a = 2 ,F 1F 2 P3 3 1 2 1 2 所以4 = | PF 1 | - | PF 2 | 2= | PF |2 + | PF |2-2 | PF|| PF |= 16 - 2 | PF 1 || PF 2 | ,解得| PF || PF |= 6 ,所以 S △= 1 | PF || PF|= 3 12故选:BF 1F 2 P 21 2【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.10. , B , C 为球O 的球面上的三个点,⊙ O 1 为 ABC 的外接圆,若⊙ O 1 的面积为4π ,AB = BC = AC = OO 1 ,则球O 的表面积为() A. 64π B. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边 ABC 的外接圆半径,进而求出其边长,得出OO 1 的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆O 1 半径为 r ,球的半径为 R ,依题意,得π r 2 = 4π ,∴r = 2 ,由正弦定理可得 AB = 2r sin 60︒ = 2 ,∴OO 1 = AB = 2 ,根据圆截面性质OO 1 ⊥ 平面 ABC ,∴OO ⊥ O A , R = OA === 4 ,1 1∴球O 的表面积 S = 4π R 2 = 64π .故选:AOO 2 + O A 2 1 1 OO 2 + r 2 1⎨⎩⎩ 【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.⎧2x + y - 2 ≤ 0,11. y 满足约束条件⎪x - y -1 ≥ 0, 则z =x +7y 的最大值为 .⎪ y +1 ≥ 0,【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数 z = x + 7 y 即: y = - 1 x + 1z ,77其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点 A 处取得最大值, 联立直线方程:⎧2x + y - 2 = 0 ,可得点 A 的坐标为: A (1, 0),⎨x - y -1 = 0据此可知目标函数的最大值为: z max = 1+ 7 ⨯ 0 = 1 . 故答案 :1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0 时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0 时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.x 12. a = (1, -1), b = (m +1, 2m - 4) ,若a ⊥ b ,则m =.【答案】5【解析】【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.【详解】由a ⊥ b 可得a ⋅ b = 0 ,又因为a = (1, -1), b = (m +1, 2m - 4),所以a ⋅ b = 1⋅(m +1) + (-1) ⋅ (2m - 4) = 0 ,即 m = 5 , 故答案为:5.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.13. = ln x + x +1的一条切线的斜率为 2,则该切线的方程为 .【答案】 y = 2x【解析】【分析】设切线的切点坐标为(x 0 , y 0 ) ,对函数求导,利用 y ' |x = 2 ,求出 x 0 ,代入曲线方程求出 y 0 ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为( x , y ), y = ln x + x + 1, y ' = 1+ 1 ,y ' |=1 + 1 = 2, x = 1, y 0 0x= 2,所以切点坐标为(1, 2) ,x = x 00 0所求的切线方程为 y - 2 = 2(x -1) ,即 y = 2x . 故答案为: y = 2x .【点睛】本题考查导数的几何意义,属于基础题.14. a } 满足a+ (-1)n a = 3n -1,前 16 项和为 540,则a =.nn +2n1【答案】7n +2 n 【解析】【分析】对 n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a 1 表示,由偶数项递推公式得出偶数项的和,建立a 1 方程,求解即可得出结论.【详解】a + (-1)n a = 3n -1,当 n 为奇数时, a n +2 = a n + 3n - 1 ;当n 为偶数时, a n +2 + a n = 3n - 1 . 设数列{a n } 的前n 项和为 S n ,S 16 = a 1 + a 2 + a 3 + a 4 += a 1 + a 3 + a 5= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为 必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.15. 受了一项加工业务,加工出来 产品(单位:件)按标准分为 A ,B ,C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元,20 元;对于D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25 元/件,乙分厂加工成本费为20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 + a 16+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )等级ABCD乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A 级品的概率为0.4 ,乙分厂加工出来的A 级品的概率为0.28 ;(2)选甲分厂,理由见解析.【解析】【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100 件产品的总利润,即可求出平均利润,由此作出选择.40【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为= 0.4 ,乙厂加工出10028= 0.28 ;来的一件产品为A 级品的概率为100(2)甲分厂加工100 件产品的总利润为40⨯(90 - 25)+ 20⨯(50 - 25)+ 20⨯(20 - 25)- 20⨯(50 + 25)= 1500 元,所以甲分厂加工100 件产品的平均利润为15 元每件;乙分厂加工100 件产品的总利润为28⨯(90 - 20)+17 ⨯(50 - 20)+ 34⨯(20 - 20)- 21⨯(50 + 20)= 1000 元,所以乙分厂加工100 件产品的平均利润为10 元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出3 A + C = 决策,属于基础题.16. 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 B =150°.(1)若 a = c ,b =2 ,求 ABC 的面积;(2)若 sin A +【答案】(1) sin C =2 ,求 C .2;(2)15︒ .【解析】【分析】(1) 已知角 B 和b 边,结合 a , c 关系,由余弦定理建立c 的方程,求解得出 a , c ,利用面积公式,即可得出结论;(2) 将 A = 30︒ - C 代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得b 2 = 28 = a 2 + c 2 - 2ac ⋅ cos150︒ = 7c 2 ,∴c = 2, a = 2 3,∴△ABC 的面积S = 1ac sin B = ; 2(2) 30︒ ,∴sin A + 3 sin C = sin(30︒ - C ) + 3 sin C= 1 cos C + 3 sin C = sin(C + 30︒) =2, 2 2 20︒ < C < 30︒,∴30︒ < C + 30︒ < 60︒ , ∴C + 30︒ = 45︒,∴C = 15︒ .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.17. D 为圆锥的顶点,O 是圆锥底面的圆心, ABC 是底面的内接正三角形,P 为 DO上一点,∠APC =90°.3 7 3 33 3= 3(1) 证明:平面 PAB ⊥平面 PAC ;(2) 设 DO =,圆锥的侧面积为 3π ,求三棱锥 P −ABC 的体积.【答案】(1)证明见解析;(2)6 .8【解析】【分析】(1) 根据已知可得 PA = PB = PC ,进而有△PAC ≅ △PBC ,可得∠APC = ∠BPC = 90,即PB ⊥ PC ,从而证得 PC ⊥ 平面 PAB ,即可证得结论; (2) 将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形 ABC 边长,在等腰直角三角形 APC 中求出 AP ,在 Rt APO 中,求出 PO ,即可求出结论.【详解】(1) Q D 为圆锥顶点, O 为底面圆心,∴OD ⊥ 平面 ABC ,P 在 DO 上, OA = OB = OC ,∴ PA = PB = PC ,ABC 是圆内接正三角形,∴ AC = BC , △PAC ≅ △PBC ,∴∠APC = ∠BPC = 90︒ ,即PB ⊥ PC , PA ⊥ PC , PA PB = P ,∴ PC ⊥ 平面 PAB , PC ⊂ 平面 PAC ,∴平面 PAB ⊥ 平面 PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为π rl =3π , rl = ,OD 2 = l 2 - r 2 = 2 ,解得r = 1, l = , AC = 2r sin 60 ,在等腰直角三角形 APC 中, AP =2 AC =6 ,22在 Rt PAO 中, PO ==2 ,22 AP 2 - OA 26 - 1 4∴三棱锥 P - ABC 的体积为V= 1PO ⋅ S= 1 ⨯ 2 ⨯ 3 ⨯ 3 = 6 . P - ABC 3 △ABC3 24 8【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.18. 数 f (x ) = e x - a (x + 2) .(1) 当a = 1 时,讨论 f (x ) 的单调性; (2) 若 f (x ) 有两个零点,求a 的取值范围.【答案】(1)减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)(1, +∞) . e 【解析】【分析】(1) 将a = 1 代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2) 若 f (x ) 有两个零点,即e x- a (x + 2) = 0 有两个解,将其转化为a = ex x + 2有两个解,令h (x ) = e xx + 2(x ≠ -2) ,求导研究函数图象的走向,从而求得结果.【详解】(1)当a = 1 时, f (x ) = e x - (x + 2) , f ' (x ) = ex -1,令f ' (x ) < 0 ,解得 x < 0 ,令 f ' (x ) > 0 ,解得 x > 0 ,所以 f (x ) 的减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)若 f (x ) 有两个零点,即e x - a (x + 2) = 0 有两个解,1+2从方程可知, x = 2 不成立,即a = e x x + 2有两个解,ex'e x (x + 2) - e x e x (x +1) 令 h (x ) =(x ≠ -2) ,则有h (x ) =x + 2(x + 2)2=(x + 2)2,令 h ' (x ) > 0,解得 x > -1 ,令h ' (x ) < 0 ,解得 x < -2 或-2 < x < -1 ,所以函数h (x ) 在(-∞, -2) 和(-2, -1) 上单调递减,在(-1, +∞) 上单调递增,且当 x < -2 时, h (x ) < 0 ,而 x → -2+ 时, h (x ) → +∞ ,当 x → +∞时, h (x ) → +∞ ,所以当a =e x x + 2有两个解时,有a > h (-1) = 1 ,e所以满足条件的a 的取值范围是: ( , +∞) .e【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线 y = e x 和直线 y = a ( x + 2) 有两个交点,利用过点(-2, 0) 的曲线 y = e x 的切线 斜率,结合图形求得结果.19. 、B 分别为椭圆 E :x 2a 2y= 1(a >1)的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x =6 上的动点,PA 与 E 的另一交点为 C ,PB 与 E 的另一交点为 D .(1) 求 E 的方程;(2) 证明:直线 CD 过定点.x 2 2【答案】(1)+ y 9= 1;(2)证明详见解析.【解析】 【分析】(1)由已知可得: A (-a ,0) , B (a ,0) , G (0,1) ,即可求得 AG ⋅ G B = a 2 -1 ,结合已知 即可求得: a 2 = 9 ,问题得解.AG ⋅ G B = a 2 x 0 ⎝ ⎭y (2)设 P (6, y 0 ) ,可得直线 AP 的方程为: y = y(x + 3) ,联立直线 AP 的方程与椭圆方 9⎛ -3y 2 + 27 6 y ⎫ 程即可求得点C 的坐标为 0 , 0 ⎪ ,同理可得点D 的坐标为 y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2 - 3 -2 y ⎫ 0 , 0 ⎪ ,即可表示出直线CD 的方程,整理直线CD 的方程可得: y 2 +1 y 2 +1⎝ 0 0 y =4 y 0⎭⎛ x - 3 ⎫,命题得证. 3(3 - y 2 )2 ⎪【详解】(1)依据题意作出如下图象:2由椭圆方程 E : + a2 y 2 = 1(a > 1) 可得: A (-a ,0) , B (a ,0) , G (0,1)∴ AG = (a ,1) , GB = (a , -1)∴ -1 = 8 ,∴ a 2 = 9∴ x 2 2椭圆方程为: + y = 19(2)证明:设 P (6, y 0 ) ,则直线 AP 的方程为: y =y 0 - 0 6 - (-3) ( x + 3) ,即: y = y 0 ( x + 3) 9 ⎧ x 2+ 2 = ⎪ 9联立直线 AP 的方程与椭圆方程可得: ⎨ y ,整理得: ⎪ y = 0 ( x + 3)⎪⎩9 1-3y 2 + 27 0 0 0 0⎝ 0 0 0 0 6 (3 - y )0 ⎩ 0 ⎭ ⎝ 2 0 ⎭ ( y 2 + 9) x 2 + 6 y 2 x + 9 y 2 - 81 = 0 ,解得: x = -3 或 x = 0-3y 2 + 27 y6 y 0y 2 + 9将x =代入直线y = 0 ( x + 3) 可得: y = 2y 2+ 99⎛ -3y 2 + 27 6 y ⎫ y 0 + 9所以点C 的坐标为 0 , 0 ⎪ .y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2- 3 -2 y ⎫ 同理可得:点 D 的坐标为 0 , 0 ⎪ y 2 +1 y 2 +1 ⎝ 0 0 ⎭6 y 0 - ⎛ -2 y 0 ⎫ ⎛ -2 y ⎫y 2 + 9 y 2 +1 ⎪ ⎛ 3y 2 - 3 ⎫ ∴直线CD 的方程为: y - 0 ⎪ = 0 ⎝ 0 ⎭ x - 0 ⎪ , ⎝ y 2 +1 ⎭ -3y 2 + 27 3y 2- 3 - y 2 +1 ⎭ y 2 + 9 y 2 +12 y 8 y (y 2+ 3)⎛ 03y 2 - 3 ⎫ 8 y⎛ 3y 2 - 3 ⎫ 整理可得: y + 0= y 2 +1 0 0 6 (9 - y 4)x - ⎝ y 2 +1 ⎪ = 0 x - 0 y 2 +1 ⎪ 整理得: y =4 y 0 x + 2 y 0= 4 y 0 ⎛ x - 3 ⎫ 3(3 - y 2) y 2 - 3 3(3 - y 2 )2 ⎪ 00 故直线CD 过定点⎛ 3 ,0 ⎫ 0 ⎝ ⎭ 2 ⎪ ⎝ ⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共 10 分。
2020版高考数学(文科)试题小卷练30Word版含解析
![2020版高考数学(文科)试题小卷练30Word版含解析](https://img.taocdn.com/s3/m/304d704a31b765ce0508148a.png)
刷题小卷练30 椭圆的定义、标准方程及性质小题基础练○30一、选择题1.椭圆x 24+y 2=1的离心率为( ) A.12 B.32C.52 D .2 答案:B解析:由题意得a =2,b =1,则c =3,所以椭圆的离心率e =c a =32,故选B.2.[2019·佛山模拟]若椭圆mx 2+ny 2=1的离心率为12,则mn =( )A.34B.43C.32或233D.34或43 答案:D解析:若焦点在x 轴上,则方程化为x 21m +y 21n =1,依题意得1m -1n 1m=14,所以m n =34;若焦点在y 轴上,则方程化为y 21n +x 21m=1,同理可得m n =43.所以所求值为34或43.故选D.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2答案:B解析:因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.故选B.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3C.3-12 D.3-1 答案:D解析:在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D.5.[2019·河南豫北重点中学联考]已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△P AB 的面积为( )A .2 B.24 C.12 D .1 答案:D解析:由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △P AB =12×2a ×22=1,故选D.6.[2019·河南安阳模拟]已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1→·(OF1→+OP →)=0(O 为坐标原点).若|PF1→|=2|PF 2→|,则椭圆的离心率为( ) A.6- 3 B.6-32C.6- 5D.6-52 答案:A解析:以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由PF 1→·(OF 1→+OP →)=0知此平行四边形的对角线互相垂直,则此平行四边形为菱形,∴|OP |=|OF 1|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则⎩⎨⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴⎩⎪⎨⎪⎧a =2+12x ,c =32x ,∴e =c a =32+1=6-3,故选A.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3C .6D .8 答案:C解析:由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x+3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.故选C.8.[2019·黑龙江大庆模拟]已知直线l:y =kx 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,其中右焦点F 的坐标为(c,0),且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫22,1B.⎝⎛⎦⎥⎤0,22C.⎝ ⎛⎭⎪⎫22,1D.⎝⎛⎭⎪⎫0,22答案:C解析:由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA |=|OF |=c ,由|OA |>b ,即c >b ,可得c 2>b 2=a 2-c 2,即c 2>12a 2,可得22<e <1.故选C.二、非选择题9.[2019·河南开封模拟]如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q .则动点Q 的轨迹Γ的方程为________.答案:x 24+y 2=1解析:连接QF ,因为Q 在线段PF 的垂直平分线上,所以|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4.又|EF |=23<4,得Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆即x 24+y 2=1.10.[2019·金华模拟]如果方程x 2+ky 2=2表示焦点在x 轴上,且焦距为3的椭圆,则椭圆的短轴长为________. 答案: 5解析:方程x 2+ky 2=2可化为x 22+y 22k=1,则⎝ ⎛⎭⎪⎫322+2k =2⇒2k =54,∴短轴长为2×52= 5.11.[2019·陕西检测]已知P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2取最大值时cos ∠F 1PF 2=13,则椭圆的离心率为________.答案:33解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y 2b 2=1与y轴的交点,由余弦定理及椭圆的定义得2a 2-2a23=4c 2,即a =3c ,所以椭圆的离心率e =c a =33.12.[2019·“超级全能生”联考]已知椭圆C :x 28+y 22=1与圆M :x 2+y 2+22x +2-r 2=0(0<r <2),过椭圆C 的上顶点P 作圆M 的两条切线分别与椭圆C 相交于A ,B 两点(不同于P 点),则直线P A 与直线PB 的斜率之积等于________.答案:1解析:由题可得,圆心为M (-2,0),P (0,2).设切线方程为y =kx + 2.由点到直线的距离公式得,d =|-2k +2|1+k 2=r ,化简得(2-r 2)k 2-4k +(2-r 2)=0,则k 1k 2=1.课时增分练○30一、选择题1.[2019·河北省五校联考]以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案:D解析:设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,12×2cb =1⇒bc =1,2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时,等号成立.故选D.2.[2019·深圳模拟]过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1B.x 210+y 215=1 C.x 215+y 210=1 D.x 210+y 25=1 答案:C 解析:椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y210=1.故选C.3.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12, 又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.故选。
2019-2020学年度最新数学高考一轮复习(文科)训练题:天天练 25 Word版含解析
![2019-2020学年度最新数学高考一轮复习(文科)训练题:天天练 25 Word版含解析](https://img.taocdn.com/s3/m/57fcf95c76c66137ee061967.png)
2019-2020学年度最新数学高考一轮复习(文科)训练题:天天练 25 Word 版含解析一、选择题 1.(2018·山东临汾一中月考)不等式y (x +y -2)≥0在平面直角坐标系中表示的区域(用阴影部分表示)是( )答案:C解析:由y ·(x +y -2)≥0,得⎩⎨⎧y ≥0,x +y -2≥0或⎩⎨⎧y ≤0,x +y -2≤0,所以不等式y ·(x +y -2)≥0在平面直角坐标系中表示的区域是C 项,故选C.2.(2018·河北卓越联盟联考)已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则实数a 的取值范围为( )A .(-7,24)B .(-∞,-7)∪(24,+∞)C .(-24,7)D .(-∞,-24)∪(7,+∞) 答案:A解析:由题意可知(-9+2-a )(12+12-a )<0,所以(a +7)(a -24)<0,所以-7<a <24.故选A.3.(2018·阜阳一模)下列正确的是( )A .若a ,b ∈R ,则b a +ab ≥2B .若x <0,则x +4x ≥-2x ×4x =-4C .若ab ≠0,则b 2a +a 2b ≥a +b D .若x <0,则2x +2-x >2答案:D解析:对于A ,当ab <0时不成立;对于B ,若x <0,则x +4x =-⎝ ⎛⎭⎪⎪⎫-x +4-x ≤-2(-x )·4-x =-4,当且仅当x =-2时,等号成立,因此B 选项不成立;对于C ,取a =-1,b =-2,b 2a +a 2b =-92<a +b =-3,所以C 选项不成立;对于D ,若x <0,则2x +2-x >2成立.故选D.4.(2018·河北张家口上学期模拟)已知向量a =(1,x -1),b =(y,2),其中x >0,y >0.若a ⊥b ,则xy 的最大值为( )A.14B.12 C .1 D .2 答案:B解析:因为a =(1,x -1),b =(y,2),a ⊥b ,所以a ·b =y +2(x -1)=0,即2x +y =2.又因为x >0,y >0,所以2x +y ≥22xy ,当且仅当x =12,y =1时等号成立,即22xy ≤2,所以xy ≤12,所以当且仅当x =12,y =1时,xy 取到最大值,最大值为12.故选B.5.(2018·河南八市重点高中联考)函数y =x 2+7x +10x +1(x >-1)的最小值为( )A .2B .7C .9D .10 答案:C解析:因为x >-1,所以x +1>0,所以y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2(x +1)·4x +1+5=9,当且仅当(x +1)2=4,即x =1时等号成立,所以要求函数的最小值在x=1处取到,最小值为9.故选C.6.(2018·河南郑州一中模拟)已知正数a ,b 满足4a +b =3,则e 1a ·e 1b的最小值为( )A .3B .e 3C .4D .e 4 答案:B解析:因为正数a ,b 满足4a +b =3,所以1a +1b =13⎝ ⎛⎭⎪⎫1a +1b (4a +b )=13⎝ ⎛⎭⎪⎫4+1+b a +4a b ≥13⎝⎛⎭⎪⎫5+2b a ·4a b =3(当且仅当⎩⎪⎨⎪⎧b a =4a b ,4a +b =3,即2a =b =1时取等号),所以e 1a ·e 1b =e 11a b+≥e 3,即当2a =b =1时,e 1a·e1b的最小值为e 3.故选B.7.已知x ,y 满足⎩⎨⎧y ≥12x ,x +y ≤3,x ≥a ,z =3x +y 的最大值比最小值大14,则a 的值是( )A .-2B .-1C .1D .2 答案:A解析:如图,不等式组所表示的可行域为△ABC 及其内部,作出目标函数z =3x +y 对应的直线l .因为z 的几何意义为直线l 在y 轴上的截距.显然,当直线l 过点B 时,z 取得最大值;当直线l 过点A 时,z 取得最小值.由⎩⎨⎧x -2y =0,x +y =3,解得B (2,1);由⎩⎨⎧x -2y =0,x =a ,解得A ⎝ ⎛⎭⎪⎫a ,a 2.所以目标函数的最大值为z max =3×2+1=7,最小值为z min =3×a+a 2=72a .由题意可得7-72a =14,解得a =-2.故选A.8.(2018·山西运城上学期期中)某工厂生产甲、乙两种产品,生产甲产品1件需消耗A 原料1千克,B 原料2千克;生产乙产品1件需消耗A 原料2千克,B 原料1千克;每件甲产品的利润是300元,每件乙产品的利润是400元,公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克,通过合理安排计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元 答案:C解析:设生产甲产品x 件,乙产品y 件,依题意有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ,y ∈N ,目标函数z =300x +400y ,作出⎩⎨⎧x +2y ≤12,2x +y ≤12的可行域,其中A (0,6),B (4,4),C (6,0),如图所示.由图可知,目标函数在点B (4,4)取得最大值,最大值为2 800.所以公司共可获得的最大利润是2 800元.故选C.二、填空题9.设a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是________. 答案:[-25,25]解析:∵a 2+b 2=10,a 2+b 2≥2ab ,∴2(a 2+b 2)≥2ab +a 2+b 2=(a +b )2,当且仅当a =b 时取等号,即(a +b )2≤2(a 2+b 2)=20,∴-25≤a +b ≤25,所以a +b 的取值范围是[-25,25].10.(2018·广东清远模拟)若x >0,y >0,且1x +9y =1,则x +y 的最小值是________.答案:16解析:因为x >0,y >0,且1x +9y =1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =10+9x y +y x ≥10+29x y ·y x =16,当且仅当9x 2=y 2,即y =3x =12时等号成立.故x +y 的最小值是16.11.(2018·河北保定联考)若点(x ,y )所在的平面区域满足不等式组⎩⎪⎨⎪⎧x +4y -8≤0,x ≥0,y >0,在区域内任取一点P ,则点P 落在圆x 2+y 2=2内的概率为________________________________________________________________________.答案:π16解析:不等式组对应的平面区域为△OAB (不包括线段OA ),其中A (8,0),B (0,2),如图所示,对应的面积为S =12×2×8=8.x 2+y 2=2表示的区域为半径为2的圆O .圆O 在△OAB 内的部分对应的面积为14×π×(2)2=π2,所以根据几何概型的概率公式,得到所求概率P =π28=π16.三、解答题 12.(2018·河北唐山一模)已知x ,y ∈(0,+∞),x 2+y 2=x +y .(1)求1x +1y 的最小值.(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解析:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xyxy =2,当且仅当x =y =1时,等号成立,所以1x +1y 的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎢⎡⎦⎥⎥⎤(x +1)+(y +1)22≤4,因此不存在x ,y 满足(x +1)(y +1)=5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刷题小卷练25空间几何体小题基础练○25一、选择题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1C.2 D.3答案:B解析:命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰;命题③对;命题④错,必须用平行于圆锥底面的平面截圆锥才可以.故选B.2.[2019·江西临川二中、新余四中联考]用斜二测画法画出一个水平放置的平面图形的直观图,为如图所示的一个正方形,则原来的图形是()答案:A解析:由题意知直观图是边长为1的正方形,对角线长为2,所以原图形为平行四边形,且位于y轴上的对角线长为2 2.3.[2018·全国卷Ⅲ]中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案:A解析:由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.4.正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如右图所示),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为()答案:C解析:过点A,E,C1的平面与棱DD1,相交于点F,且F 是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如下图所示,则其正视图应为选项C.5.如图,网格纸上小正方形的边长为1,粗线画出的是一个几何体的三视图,则该几何体的体积为()A .3 B.113C .7 D.233 答案:B 解析:由三视图可知该几何体是由一个长方体切去一个三棱锥所得,长方体的长、宽、高分别为2,1,2,体积为2×1×2=4,切去的三棱锥的体积为13×12×1×2×1=13,所以该几何体的体积为4-13=113.6.[2019·淮北月考]一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18 答案:A 解析:由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为6×⎝ ⎛⎭⎪⎫4-12+2×34×(2)2=21+ 3.故选A.7.[2018·北京卷]某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4 答案:C解析:由三视图得到空间几何体,如图所示,则P A ⊥平面ABCD ,平面ABCD 为直角梯形,P A =AB =AD =2,BC =1,所以P A ⊥AD ,P A ⊥AB ,P A ⊥BC .又BC ⊥AB ,AB ∩P A =A ,所以BC ⊥平面P AB ,所以BC ⊥PB .在△PCD 中,PD =22,PC =3,CD =5,所以△PCD 为锐角三角形.所以侧面中的直角三角形为△P AB ,△P AD ,△PBC ,共3个.故选C. 8.[2019·四川成都七中二诊]一个棱锥的三视图如图所示,则该棱锥的外接球的体积是( )A .9π B.9π2 C .36π D .18π 答案:B解析:由三视图可知,棱锥为三棱锥,放在长方体中,为如图所示的三棱锥A -BCD .该三棱锥的外接球就是长方体的外接球,外接球的直径等于长方体的体对角线的长,所以球的半径R=12×22+22+12=32,则外接球的体积V =43π×⎝ ⎛⎭⎪⎫323=9π2.故选B.二、非选择题9.已知在梯形ABCD 中,AB ⊥BC ,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD 所在的直线旋转一周形成的曲面所围成的几何体的表面积为________.答案:(5+2)π解析:由题意得几何体如图所示,旋转体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,所以几何体的表面积为一个圆柱底面与圆柱侧面、圆锥侧面之和,即π×12+2π×1×2+π×1×12+12=(5+2)π.10.[2019·天津滨海新区七所重点学校联考]一个几何体的三视图如图所示,则该几何体的体积为________.答案:4+6π解析:由三视图可知,几何体由半个圆柱和一个三棱锥的组合体,故体积为12π×22×3+13×12×4×2×3=4+6π.11.如图是一个几何体的三视图,若其正视图的面积等于8 cm 2,俯视图是一个面积为4 3 cm 2的正三角形,则其侧视图的面积等于________.答案:4 3 cm 2解析:易知三视图所对应的几何体为正三棱柱,设其底面边长为a ,高为h ,则其正视图的长为a ,宽为h ,故其面积为S 1=ah =8;①而俯视图是一个底面边长为a 的正三角形,其面积为S 2=34a 2=4 3.②由②得a =4,代入①得h =2.侧视图是一个长为32a ,宽为h 的矩形,其面积为S 3=32ah =4 3 (cm 2).12.[2019·贵州遵义模拟]已知边长为3的正三角形的三个顶点都在球O 的表面上,且球心O 到平面ABC 的距离为该球半径的一半,则该球的表面积为________.答案:16π3解析:如图,设OO ′⊥平面ABC ,垂足是点O ′.设球的半径为r .∵边长为3的正三角形ABC 的三个顶点都在球O 的表面上,且球心O 到平面ABC 的距离为该球半径的一半,∴AO ′=23×3×32=1,OA =r ,OO ′=12r .∵OA 2=O ′A +OO ′2,即r 2=1+r 24,解得r 2=43,∴球O的表面积S=4πr2=16π3.课时增分练○25一、选择题1.[2019·四川资阳联考]给出下列几个命题,其中正确命题的个数是()①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻的两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.A.0 B.1C.2 D.3答案:B解析:①错误,只有这两点的连线平行于轴线时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等;④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④不正确.故选B.2.[2019·福州适应性测试]在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案:D解析:由俯视图和正视图可知,该几何体可看成是由一个半圆锥和一个三棱锥组合而成的,且三棱锥的一个面恰为半圆锥的最大轴截面,故相应的侧视图可以为选项D.3.[2019·保定模拟]一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A .①②B .①③C .③④D .②④ 答案:D 解析:蚂蚁由点A 经正方体的表面,按最短路线爬行到顶点C 1的位置,若把平面BCC 1B 1展开到与平面ABB 1A 1在同一个平面内,在矩形中连接AC 1,会经过BB 1的中点,故此时的正视图为②.若把平面ABCD 展开到与平面CDD 1C 1在同一个平面内,在矩形中连接AC 1,会经过CD 的中点,此时正视图为④. 其他几种展形方式对应的正视图在题中没有出现或者已在②④中了.故选D.4.[2019·黑龙江哈尔滨三中模拟]如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为( )A .4B .2 C.43 D.23 答案:D解析:由三视图可知,几何体为三棱锥,底面为腰长为2的等腰直角三角形,高为1,则该几何体的体积为13×12×2×2×1=23.故选D.5.[2019·宁夏吴忠联考]某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x 是( )A .2B .4.5C .1.5D .3 答案:C 解析:由三视图可知,几何体为四棱锥,其底面为直角梯形,面积S =12×(1+2)×2=3.由该几何体的体积V =13×3x =32,解得x =1.5.故选C.6.[2018·全国卷Ⅲ]设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .12 3 B .18 3 C .24 3 D .54 3 答案:B解析:由等边△ABC 的面积为93可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.7.[2019·安徽马鞍山模拟]某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25π B.26πC.32π D.36π答案:C解析:由三视图可知,该几何体是以俯视图的图形为底面,一条侧棱与底面垂直的三棱锥.如图,三棱锥A-BCD即为该几何体,且AB=BD=4,CD=2,BC=23,则BD2=BC2+CD2,即∠BCD=90°.故底面外接圆的直径2r=BD=4.易知AD为三棱锥A-BCD的外接球的直径.设球的半径为R,则由勾股定理得4R2=AB2+4r2=32,故该几何体的外接球的表面积为4πR2=32π.故选C.8.[2019·长春质量监测(一)]《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A.4 B.5C.6 D.12答案:B解析:如图,由三视图可还原得几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,将原几何体拆分成两个底面积为3,高为1的四棱锥和一个底面积为32,高为2的三棱柱,所以V ABCDEF =2V 四棱锥E -ADHG +V 三棱柱EHG -FNM =2×13×3×1+32×2=5,故选B.二、非选择题9.[2019·福建莆田九中模拟]在直三棱柱ABC -A 1B 1C 1中,侧棱长为23,在底面△ABC 中,C =60°,AB =3,则此直三棱柱的外接球的表面积为________.答案:16π解析:由题意可知,在直三棱柱ABC -A 1B 1C 1中,底面△ABC的外接圆的半径R =3sin60°×12=1.两个底面中心的连线的中点与顶点的连线就是球的半径,外接球的半径为(3)2+12=2,外接球的表面积为4π×22=16π.10.[2018·全国卷Ⅱ]已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________. 答案:402π解析:如图,∵SA 与底面成45°角,∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158,∴S△SAB=12SA·SB·sin∠ASB=12(2r)2·158=515,解得r=210,∴SA=2r=45,即母线长l=45,∴S圆锥侧=πr·l=π×210×45=402π.11.如图所示,四边形A′B′C′D′是一平面图形的水平放置的斜二测画法的直观图,在斜二测直观图中,四边形A′B′C′D是一直角梯形,A′B′∥C′D′,A′D′⊥C′D′,且B′C′与y′轴平行,若A′B′=6,D′C′=4,A′D′=2.求这个平面图形的实际面积.解析:根据斜二测直观图画法规则可知,该平面图形是直角梯形,且AB=6,CD=4保持不变.由于C′B′=2A′D′=2 2.所以CB=4 2.故平面图形的实际面积为12×(6+4)×42=20 2.。