乘法公式练习题4

合集下载

乘法公式的作业(不带答案)

乘法公式的作业(不带答案)

一、填空题1.直接写出结果:(1)(x+2)(x -2)=_______ ; (2)(2x+5y)(2x-5y)=______ ;(3)(x-ab)(x+ab)=_______ ;2.直接写出结果:(1)(x+5) 2=_______ ; (2)(3m+2n) 2=_______ ;(3)(x-3y) 2=_______ ; (4)232⎪⎭⎫ ⎝⎛-b a = _______ ;(5)(-x+y) 2= ______ ; (6)(-x-y) 2=______. 3.先观察、再计算:(1)(x+y)(x-y)=______ ; (2)(y+x)(x-y)=______ ;(3)(y-x)(y+x)=______ ;(4)(x+y)(-y+x)=______ ;(5)(x-y)(-x-y)=______ ; (6)(-x-y)(-x+y)=______.4.若 9x 2+4y 2=(3x+2y) 2+M ,则 M=______.二、选择题1.下列各多项式相乘,可以用平方差公式的有 ( ).①(-2ab+5x)(5x+2ab) ②(ax-y)(-ax-y)③(-ab-c)(ab-c) ④(m+n)(-m-n)(A)4 个 (B)3 个 (C)2 个 (D)1 个2.若 x+y=6 , x-y=5 ,则 x 2-y 2 等于 ( ).(A)11 (B)15 (C)30 (D)603.下列计算正确的是 ( ).(A)(5-m)(5+m)=m 2-25 (B)(1-3m)(1+3m)=1-3m 2(C)(-4-3n)(-4+3n) =- 9n 2+16 (D)(2ab-n)(2ab+n)=4ab 2-n 24.下列多项式不是完全平方式的是 ( ).(A)x 2-4x-4 (B)m m ++241 (C)9a 2+ 6ab+b 2 (D)4t 2+12t+9 5.下列等式能够成立的是 ( ).(A)(a-b)2=(-a-b)2 (B)(x-y)2=x 2-y 2 (C)(m-n)2=(n-m)2 (D)(x-y)(x+y)=(-x-y)(x-y)6.下列等式不能恒成立的是 ( ).(A)(3x-y) 2=9x 2-6xy+y 2 (B)(a+b-c)2=(c-a-b)2 (C)2224121n mn m n m +-=⎪⎭⎫ ⎝⎛- (D)(x-y)(x+y)(x 2-y 2 )=x 4-y 4 三、计算题 1.3.4.5.四、解答题 1.应用公式计算: (1)103×97 ; (2)1.02×0.98 ;2. 当 x=1,y=2 时,求(2x-y)(2x+y)-(x+2y)(2y-x) 的值.3.用适当方法计算:(1) 22140⎪⎭⎫ ⎝⎛; (2)299 2.4.若 a+b=17 , ab=60 ,求 (a-b) 2 和 a 2+b 2的值.提升精练一、填空题 1.⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-2323a a = _______. 2. (-3 x-5y )(-3 x+5y )=______. 3.在括号中填上适当的整式:(1)( x+5)(______)=x 2-25 ; (2)( m-n )(______)=n 2-m 2 ;(3)(-1-3x )(______)=1-9x 2 ; (4)( a+2b )(______)=4b 2-a 2.4. (1) x 2-10 x+______=( -5)2 :(2) x 2+______+16=(______-4)2 ;(3) x 2-x+______=( x-______)2 ;(4)4 x 2+______+9=(______+3)2.5.多项式 x 2-8 x+k 是一个完全平方式,则 k=______.6.若 x 2+2ax+16 是一个完全平方式,则 a=______.二、选择题1.下列各式中能使用平方差公式的是 ( ).A.( x 2-y 2 )( y 2+x 2 )B.⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-323251215121n m n m C. (-2x-3y )(2 x+ 3y ) D.(4x-3y )(-3y+4x ) 2.下面计算 (-7+a+b )(-7-a-b ) 正确的是 ( ).A .原式= (-7+a+b )[-7-( a+b )] =- 72-( a+b )2 B.原式= (-7+a+b )[-7-( a+b )]=72+( a+b )2C .原式= [-(7-a-b )][-(7+a+b )]=72-( a+b )2D .原式= [-(7+a )+b ][-(7+a )-b ]=(7+a )2-b 23. ( a+3)( a 2+9)( a-3) 的计算结果是 ( ).A. a 4+81B.- a 4-81C.a 4-81 D . 81-a 4三、计算题1.9.四、解答题2.回答下列问题:(1) 填空:-⎪⎭⎫ ⎝⎛+=+22211x x x x ______=21⎪⎭⎫ ⎝⎛-x x +______. (2) 若51=+a a ,则 221a a +的值是多少 ?(3) 若 a 2-3 a+1=0 ,则 221a a +的值是多少 ?。

《乘法公式》测试题

《乘法公式》测试题

《乘法公式》测试题班级 姓名 学号 成绩 一、耐心填一填(每小题2分,共18分)1、计算:()()3232a a -- =__________ ;(2x +5)(x -5) =_____________.2、计算:(3x -2)2=_______________;(—a+2b)(a+2b)= ______________.3、计算:()()=⨯⨯⨯24103105________;(用科学记数法表示)()()b a b b a a --+=_____________.4、⑴ ·c b a c ab 532243—=; ⑵()22——a b a = 22b ab +5、.多项式2433326—93yz x z y x z y x +—的公因式是___________; 分解因式234ab a —= .6、分解因式:⑴=++221236y xy x ;⑵()()1662++—x x = .7、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm ), 如果将封面和封底每一边都包进去3cm .则需长方形的包装纸 2cm .9、若a —b=2,3a+2b=3,则3a(a —b)+2b(a —b)= . 10.利用因式分解计算22006-22005,则结果是 .二、精心选一选(每小题2分,共12分,每小题只且只有一个正确答案) 11、下列四个等式从左至右的变形中,是因式分解的是: ( )A .()()1112——a a a =+; B.()()()()m n x y n m y x ————=;C.()()111————b a b a ab =+;D.⎪⎭⎫ ⎝⎛=m m m m m 32322————.12、计算()()b a b a --+33等于: ( ) A .2269b ab a -- B .2296a ab b --— C .229a b - D .229b a - 13、下列多项式, 在有理数范围内不能用平方差公式分解的是:( )A .22y x +—B .()224b a a +—C . 228b a —D . —22y x 114、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的 代数恒等式是: ( ) A .()2222——b ab a b a += B .()2222b ab a b a ++=+C .()ab a b a a 2222+=+D .()()22——b a b a b a =+15、如果多项式162++mx x 能分解为一个二项式的平方的形式,那么m 的值为:A .4B .8C .—8D .±8 ( ) 16、()()212-+-x mx x 的积中x 的二次项系数为零,则m 的值是: ( ) A .1 B .–1 C .–2 D .217.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab+b 2-c 2的值 ( ) A .大于零 B .等于零 C .小于零 D .不能确定18.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a>b ),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是(• ) A .a 2-b 2=(a+b )(a -b ) B .(a+b )2=a 2+2ab+b 2C .(a -b )2=a 2-2ab+b 2D .a 2-ab=a (a -b )19.已知多项式4x 2-(y -z )2的一个因式为2x -y+z ,则另一个因式是 ( ) A .2x -y -z B .2x -y+z C .2x+y+z D .2x+y -z20.已知x+y=0,xy=-6,则x 3y+xy 3的值是 ( ) A .72 B .-72 C .0 D .6 三、用心做一做(共70分)1.用简便方法计算:(1)1982 (2)10.5×9.5 (3) 2.39×91+156×2.39-2.39×472、利用乘法公式计算:(3x 2y -2x +1)(-2xy) (2x -1)(x -3) (-3a+2b)2(-4x -y)(4x -y) -3a(a -b)2 (x -2)(x -3)-(x +5)(x -5)(a+2b -3c)(a -2b -3c) (2a+b)2(2a -b )23.分解因式:23、4a2-16 24、-2x2-12xy2+8xy3因式分解可不要半途而废哟!25、a2-4(a-b)2 26、4x(a-b)-8y(b-a)27、(a+3b)2-10(a+3b)+25 28、(a2+b2)2-4a2b229、25(a+b)2-9(a-b)2 30、(x2-5)2+8(x2-5)+164.如图,现有正方形甲1张,正方形乙2张,长方形丙3张,•请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式a2+3ab+2b2分解因用这种方法不仅可比大小,也能解计算题哟!阅读解答题:1.下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程. 解:设x 2-4x=y原式=(y+2)(y+6)+4 (第一步) =y 2+8y+16 (第二步) =(y+4)2 (第三步)=(x 2-4x+4)2 (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x+2)+1进行因式分解.2.有个多项式,它的中间项是12xy ,它的前后两项被墨水污染了看不清,请你把前后两项补充完整,使它成为完全平方式,你有几种方法?(要求至少写出两种不同的方法). 多项式:+12xy+=( )2 多项式:+12xy+=( )23.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过 程,再解答后面的问题. 例:(初中数学竞赛题)若x=123456789×123456786,y=123456788×123456787,试比较x 、y 的大小.解:设123456788=a ,那么x=()()2212———a a a a =+, y=()a a a a ——21=∵()()02222<a a a a y x ——————== ∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算 22345.0345.1—345.1—69.2345.0345.1⨯⨯⨯参考答案:一、耐心填一填:1、x 8,x 6;2、6a 5 ,2x 2—5x —25;3、9x 2-12x+4,4b 2-a 2;4、7105.1⨯ ,a 2+b 2; 5、⑴328b a —,⑵+; 6、yz x 23—,()()b a b a a 2—2+;7、⑴()26y x +,⑵()22—x ; 8、 10192—a a +9、6; 10、6. 二、精心选一选:题 号 11 12 13 14 15 16 17 18 19 20 答 案CCBCBBCDAC三、用心做一做:1、94x — ; 略 7、234———y x ; 8、2103b ab +; 9、a a 622——,值为4; 2、()()n m n m x —226+—;、()()x x —32—; 、()()222—b a b ab a ++; 3、x >1; 4、21122=+b a ,43=ab . 5、设1.345=x,那么()()()()345.1——2——2—212———2—212·123323232323=+=+==x x x x x x x x x x x x x x x x x x ————原式。

专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。

乘法公式练习题(含答案)

乘法公式练习题(含答案)

乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.乘法公式14.2.1 平方差公式1.B 2.C 3.C4.(1)a 2-9 (2)4x 2-9a 2 (3)b 2-a 2(4)2 2 100 2 99965.解:(1)原式=136x 2-y 2. (2)原式=20182-(2018+1)×(2018-1)=20182-20182+1=1.(3)原式=(x 2-1)(x 2+1)=x 4-1.6.解:原式=4-a 2+a 2-4a =4-4a .当a =-12时,原式=4+2=6. 14.2.2 完全平方公式第1课时 完全平方公式1.C 2.D3.(1)9a 2-12ab +4b 2 (2)9x 2-12x +4(3)x 2-2xy +y 2 (4)3x -14.解:(1)原式=4m 2+4mn +n 2.(2)原式=9x 2-6xy +y 2.(3)原式=4a 2+12ab +9ab 2-4a 2+12ab -9b 2=24ab .(4)原式=(100-0.2)2=1002-2×100×0.2+0.22=9960.04.5.解:(1)∵a +b =3,∴(a +b )2=9.(2)由(1)知(a +b )2=9,∴a 2+2ab +b 2=9.∵ab =2,∴a 2+b 2=9-2ab =9-4=5.第2课时 添括号法则1.C 2.C3.(1)b -c (2)b -c(3)x +y x 2+2xy +y 2+4xz +4yz +4z 24.解:∵a -3b =3,∴8-a +3b =8-(a -3b )=8-3=5.5.解:(1)原式=(2a +3b )2-1=4a 2+12ab +9b 2-1.(2)原式=x 2-2xy +y 2-4xz +4yz +4z 2.。

乘法公式练习题及答案

乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。

浙教版七年级数学下册4乘法公式同步练习

浙教版七年级数学下册4乘法公式同步练习

浙教版七年级下 3.4乘法公式同步练习一.选择题1.(2020•雁塔区校级模拟)下列计算正确的是()A.2a3•3a3=6a9B.(a4b)2=a6b2C.6a4b3÷3a2b3=2a2D.(a+2)(a﹣2)=a2﹣22.(2021秋•武威月考)下列式子可用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a﹣b)(b﹣a)C.(a+2b)(2b+a)D.(y﹣2x)(2x+y)3.(2022春•杏花岭区校级月考)计算2022﹣201×203的结果是()A.1 B.﹣1 C.2 D.﹣24.(2021秋•硚口区期末)计算(x+2y﹣3)(x﹣2y+3)的结果是()A.x2﹣4y2+12y﹣9 B.﹣x2+4y2﹣12y+9C.x2﹣4y2+9 D.x2﹣4y2﹣12y﹣95.(2021秋•普兰店区期末)已知(m+n)2=18,(m﹣n)2=2,那么m2+n2=()A.20 B.10 C.16 D.86.(2021秋•望城区期末)如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20 B.±20 C.10 D.±107.(2021秋•船山区校级期末)利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9 B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+18.(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x9.(2022•鼓楼区校级开学)已知:(2021﹣a)(2020﹣a)=3,则(2021﹣a)2+(2020﹣a)2的值为()A.7 B.8 C.9 D.1210.(2021秋•宁波期末)如图,将长方形ABCD分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为C1,长方形②的周长为C2,则C1与C2的大小为()A.C1>C2B.C1=C2C.C1<C2D.不确定二.填空题11.(2021秋•西岗区期末)计算:(2﹣3x)(﹣2﹣3x)=.12.(2020秋•普陀区期末)计算:(﹣2x﹣y)2=.13.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.14.(2021秋•南岗区校级期中)化简:(a+2)(a2+4)(a4+16)(a﹣2)=.15.(2021秋•沐川县期末)如图,边长为a+3的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个长方形.若拼成的长方形一边长为3,则另一边长为.16.(2021春•拱墅区校级期中)若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是.三.解答题17.利用平方差公式计算:(1)59.8×60.2;(2)103×97;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+.18.(2021秋•宜州区期末)计算:(m﹣3)(m+3)﹣(m﹣3)2.19.(2021秋•龙山县期末)计算:(3x﹣5)2﹣(2x+7)2.20.(2021秋•丰台区期末)计算:(2x﹣3)2﹣(x﹣3)(2x+1).21.(2021秋•自贡期末)计算:x(2﹣x)+(x+2y)(x﹣2y).22.(2021秋•庐江县期末)化简:(3m+n)2﹣3m(m+2n).23.计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.24.(2021秋•长沙期末)已知(a+b)2=11,ab=1.(1)求a2+b2的值;(2)求a﹣b的值.25.(2021秋•江陵县期末)如图1是一个长为2a、宽为2b的长方形(a>b>0),沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分正方形的边长为;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(3)根据(2)中的结论,若x﹣y=4,xy=2.25,求x+y的值.答案与解析一.选择题1.(2020•雁塔区校级模拟)下列计算正确的是()A.2a3•3a3=6a9B.(a4b)2=a6b2C.6a4b3÷3a2b3=2a2D.(a+2)(a﹣2)=a2﹣2 【解析】解:A.2a3•3a3=6a6,故本选项不合题意;B.(a4b)2=a8b2,故本选项不合题意;C.6a4b3÷3a2b3=2a2,故本选项符合题意;D.(a+2)(a﹣2)=a2﹣4,故本选项不合题意.故选:C.2.(2021秋•武威月考)下列式子可用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a﹣b)(b﹣a)C.(a+2b)(2b+a)D.(y﹣2x)(2x+y)【解析】解:A:原式=﹣(a+b)2用完全平方公式,∴不符合题意;B:原式=﹣(a﹣b)2用完全平方公式,∴不符合题意;C:原式=(a+2b)2用完全平方公式,∴不符合题意;D:原式=y2﹣4x2用平方差公式,∴符合题意;故选:D.3.(2022春•杏花岭区校级月考)计算2022﹣201×203的结果是()A.1 B.﹣1 C.2 D.﹣2 【解析】解:2022﹣201×203=2022﹣(202﹣1)×(202+1)=2022﹣2022+1=1.故选:A.4.(2021秋•硚口区期末)计算(x+2y﹣3)(x﹣2y+3)的结果是()A.x2﹣4y2+12y﹣9 B.﹣x2+4y2﹣12y+9C.x2﹣4y2+9 D.x2﹣4y2﹣12y﹣9【解析】解:原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9,故选:A.5.(2021秋•普兰店区期末)已知(m+n)2=18,(m﹣n)2=2,那么m2+n2=()A.20 B.10 C.16 D.8【解析】解:已知等式化简得:(m+n)2=m2+n2+2mn=18①,(m﹣n)2=m2+n2﹣2mn=2②,由①+②得:2(m2+n2)=20,则m2+n2=10.故选:B.6.(2021秋•望城区期末)如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20 B.±20 C.10 D.±10【解析】解:∵4x2+2kx+25=(2x±5)2,∴2kx=±2×2x•5=±20x,∴k=±10,故选:D.7.(2021秋•船山区校级期末)利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9 B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+1【解析】解:A.(4x﹣3)2=16x2﹣24x+9,故本选项不合题意;B.(2m+5)(2m﹣5)=4m2﹣25,故本选项不合题意;C.(a+b)(a+b)=a2+2ab+b2,故本选项不合题意;D.(4x+1)2=16x2+8x+1,故本选项符合题意;故选:D.8.(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x【解析】解:图1的面积为:(x+1)(x﹣1),图2中白色部分的面积为:x2﹣1,∴(x+1)(x﹣1)=x2﹣1,故选:B.9.(2022•鼓楼区校级开学)已知:(2021﹣a)(2020﹣a)=3,则(2021﹣a)2+(2020﹣a)2的值为()A.7 B.8 C.9 D.12【解析】解:设x=2021﹣a,y=2020﹣a,∴x﹣y=2021﹣a﹣2020+a=1,∵(2021﹣a)(2020﹣a)=3,∴xy=3,∴原式=x2+y2=(x﹣y)2+2xy=1+2×3=7,故选:A.10.(2021秋•宁波期末)如图,将长方形ABCD分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为C1,长方形②的周长为C2,则C1与C2的大小为()A.C1>C2B.C1=C2C.C1<C2D.不确定【解析】解:如图,设MN=a,NP=b,PQ=m,即正方形③的边长为a,正方形④的边长m,所以长方形①的长为a+b,宽为m,因此周长C1=(a+b+m)×2=2a+2b+2m,长方形②的长为m+b,宽为a,因此周长C2=(m+b+a)×2=2a+2b+2m,所以C1=C2,故选:B.二.填空题11.(2021秋•西岗区期末)计算:(2﹣3x)(﹣2﹣3x)=﹣4+9x2.【解析】解:(2﹣3x)(﹣2﹣3x)=﹣(2﹣3x)(2+3x)=﹣[22﹣(3x)2]=﹣4+9x2.故答案为:﹣4+9x2.12.(2020秋•普陀区期末)计算:(﹣2x﹣y)2=4x2+4xy+y2.【解析】解:原式=[﹣(2x+y)]2=(2x+y)2=4x2+4xy+y2,故答案为:4x2+4xy+y2.13.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=5.【解析】解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.14.(2021秋•南岗区校级期中)化简:(a+2)(a2+4)(a4+16)(a﹣2)=a8﹣256.【解析】解:(a+2)(a2+4)(a4+16)(a﹣2)=(a+2)(a﹣2)(a2+4)(a4+16)=(a2﹣4)(a2+4)(a4+16)=(a4﹣16)(a4+16)=a8﹣256.故答案为:a8﹣256.15.(2021秋•沐川县期末)如图,边长为a+3的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个长方形.若拼成的长方形一边长为3,则另一边长为2a+3.【解析】解:如图,将剩余部分拼成一个长方形.这个长方形一边长为3,另一边长为a+(a+3), 即2a+3,故答案为:2a+3.16.(2021春•拱墅区校级期中)若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是10x 或﹣10x或﹣1或﹣25x2或.【解析】解:①25x2是平方项时,25x2±10x+1=(5x±1)2,∴可添加的项是10x或﹣10x,②25x2是乘积二倍项时,+25x2+1=,∴可添加的项是,③可添加﹣1或﹣25x2,综上所述可添加的项是:10x或﹣10x或﹣1或﹣25x2或.故答案为:10x或﹣10x或﹣1或﹣25x2或.三.解答题17.利用平方差公式计算:(1)59.8×60.2;(2)103×97;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+.【解析】解:(1)59.8×60.2=(60﹣0.2)(60+0.2)=3600﹣0.04=3599.96;(2)103×97=(100+3)(100﹣3)=10000﹣9=9991;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+=(5﹣1)(5+1)(52+1)(54+1)(58+1)•(516+1)+=(52﹣1)(52+1)(54+1)(58+1)•(516+1)+=(532﹣1)+=×532=.18.(2021秋•宜州区期末)计算:(m﹣3)(m+3)﹣(m﹣3)2.【解析】解:原式=m2﹣9﹣(m2﹣6m+9)=m2﹣9﹣m2+6m﹣9=6m﹣18.19.(2021秋•龙山县期末)计算:(3x﹣5)2﹣(2x+7)2.【解析】解:(3x﹣5)2﹣(2x+7)2=(3x﹣5+2x+7)(3x﹣5﹣2x﹣7)=(5x+2)(x﹣12)=5x2﹣60x+2x﹣24=5x2﹣58x﹣24.20.(2021秋•丰台区期末)计算:(2x﹣3)2﹣(x﹣3)(2x+1).【解析】解:原式=4x2﹣12x+9﹣2x2﹣x+6x+3=2x2﹣7x+12.21.(2021秋•自贡期末)计算:x(2﹣x)+(x+2y)(x﹣2y).【解析】解:x(2﹣x)+(x+2y)(x﹣2y)=2x﹣x2+x2﹣4y2=2x﹣4y2.22.(2021秋•庐江县期末)化简:(3m+n)2﹣3m(m+2n).【解析】解:原式=(9m2+6mn+n2)﹣(3m2+6mn)=9m2+6mn+n2﹣3m2﹣6mn=6m2+n2.23.计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.【解析】解:(1)原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc;(2)原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz.24.(2021秋•长沙期末)已知(a+b)2=11,ab=1.(1)求a2+b2的值;(2)求a﹣b的值.【解析】解:(1)a2+b2=(a+b)2﹣2ab=11﹣2=9;(2)∵(a﹣b)2=a2+b2﹣2ab=9﹣2=7,∴a﹣b=.25.(2021秋•江陵县期末)如图1是一个长为2a、宽为2b的长方形(a>b>0),沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分正方形的边长为a﹣b;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2=(a﹣b)2+4ab;(3)根据(2)中的结论,若x﹣y=4,xy=2.25,求x+y的值.【解析】解:(1)由拼图可知,阴影正方形的边长为a﹣b,故答案为:a﹣b;(2)大正方形的边长为a+b,因此面积为(a+b)2,阴影小正方形的边长为a﹣b,因此面积为(a﹣b)2,而每个长方形的面积为ab,由S大正方形=S小正方形+4S长方形可得,(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)得,(x+y)2=(x﹣y)2+4xy, 即(x+y)2=42+4×2.25=26,∴x+y=±.。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

整式的乘法公式练习题

整式的乘法公式练习题

整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。

本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。

练习题一:将下列整式相乘,并将结果化简。

1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。

1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。

1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。

乘法公式同步练习

乘法公式同步练习

初中数学苏科版七年级下册9.4 乘法公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.在计算( x+2y) ( −2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式2.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b)2= a2+2ab+4b23.若a+b=100,ab=48,那么a2+b2值等于()A.5200B.1484C.5804D.99044.如果x2+x=3,那么代数式(x+1)(x−1)+x(x+2)的值是()A.2B.3C.5D.65.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.66.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xyC.x2﹣y2﹣4xyD.x2﹣y2+4xy8.计算(x+1)(x2+1)(x﹣1)的结果正确的是()A.x4+1B.(x+1)4C.x4﹣1D.(x﹣1)49.已知a−b=b−c=25,且a2+b2+c2=1,则ab+bc+ac的值()A.1325B.−225C.1925D.182510.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4B.5C.6D.7二、填空题(本大题共8题,每题2分,共16分)11.计算:2021×2019−20202=________12.已知x=y+4,则代数式x2−2xy+y2−25的值为________.13.若x2+2(m-3)x+16是完全平方式,则m表示的数是________.14.若(2a﹣3b)2=(2a+3b)2+N,则表示N的代数式是________.15.若x2+4x+8y+y2+20=0,则x﹣y=________.16.若规定符号|a bc d|的意义是:|a bc d|=ad﹣bc,则当m2﹣2m﹣3=0时,|m2m−31−2m m−2|的值为________.17.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=________.18.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为________.三、解答题(本大题共10题,共84分)19.先化简,再求值:(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2,其中x=﹣12,y= 13.20.先化简,再求值:(x+y)2-2x(x+3y)+(x+2y)(x-2y),其中x=-1,y=2.21.若|x﹣y+1|与(x+2y+4)2互为相反数,化简求代数[(2x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x)的值.22.小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):(2x−3y)2−(x−2y)(x+2y)=4x2−6xy+3y2−x2−2y2第一步=3x2−6xy+y2第二步小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):小华看到小明的改错后说:“你还有错没有改出来.”(1)你认为小华说的对吗?________(填“对”或“不对”);(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.23.在边长为a的正方形的一角减去一个边长为b的小正方形(a>b),如图①(1)由图①得阴影部分的面积为________;(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________;(3)由(1)(2)的结果得出结论:________=________;(4)利用(3)中得出的结论计算:20202−2019224.(1)已知a−b=2,ab=5,求a2+b2−3ab的值;(2)已知a2−a−1=0,求a3−2a2+3的值.(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).完成下列各题:①填空(a+b)(a+2b)=________;②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由________.25.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为________;(2)请用两种方法表示图②中阴影部分的面积.方法一:________;方法二:________;(3)观察图②,写出代数式(m+n)2、(m−n)2、mn之间的等量关系式:________;(4)计算:(10.5+2)2−(10.5−2)2=________.26.乘法公式的探究及应用.(1)小题1:如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式).(3)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).27.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是(请选择正确的一个)A.a 2﹣2ab+b 2=(a﹣b)2B.a 2﹣b 2=(a+b)(a﹣b)C.a 2+ab=a(a+b)(2)若x 2﹣9y 2=12,x+3y=4,求x﹣3y 的值;(3)计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).28.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。

专题复习:乘法公式知识点归纳及典例+练习题(生)

专题复习:乘法公式知识点归纳及典例+练习题(生)

专题复习:乘法公式知识点归纳及典例+练习题一、知识概述1、平方差公式由多项式乘法得到 (a+b)(a-b) =a2-b2.即两个数的和与这两个数的差的积,等于它们的平方差.2、完全平方公式由多项式乘法得到(a±b)2=a2±2ab+b2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.推广形式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca二、典型例题讲解例1、计算:(1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3); (4)(a+b+c)(a-b-c).例2、计算:(1)20042-19962 (2)(x-y+z)2-(x+y-z)2 (3)(2x+y-3)(2x-y-3).例3、计算:(1)(3x+4y)2; (2)(-3+2a)2;(3)(2a-b)2;(4)(-3a-2b)2例4、已知m+n=4, mn=-12,求(1);(2);(3).一、选择题1、计算:的结果为()A.B.1000C.5000 D.5002、20092-2008×2010的计算结果为()A.-1 B.1C.-2 D.23、一个多项式的平方是,则()A.9b2B.-3b2C.-9b2D.3b24、如果a2-b2=20,且a+b=-5,则a-b的值等于()A.5 B.4C.-4 D.以上都不对5、用乘法公式计算正确的是()A.(2x-1)2=4x2-2x+1B.(y-2x)2=4x2-4xy+y2C.(a+3b)2=a2+3ab+9b2D.(x+2y)2=x2+4xy+2y26、已知,则=()A.5 B.7C.9 D.117、如果x2+kx+81是一个完全平方式,则k的值是()A.9 B.-9C.±9 D.±188、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的()A.(x-p)2=5 B.(x-p)2=9C.(x-p+2)2=9 D.(x-p+2)2=59、设a+b=0,ab=11,则a2-ab+b2等于()A.11 B.-11C.-33 D.3310、已知x-y=3,y-z=,则(x-z)2+5(x-z)+的值等于().A.B.C.D.36二、解答题11、计算下列各题:(1)(-2x-7)(-2x+7); (2)(3x-y)(y+3x)-2(4x-3y)(4x+3y);(3)(m+1)2-5(m+1)(m-1)+3(m-1)2; (4)(2x+3y-1)(1+2x-3y)+(1+2x-3y)2.12、化简求值:(1)4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.(2)(8x2+4x+1)(8x2+4x-1),其中x=.(3)(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-.13、已知x2+y2=25,x+y=7,且x>y,求x-y的值.14、已知在△ABC中,(a,b,c是三角形三边的长).求证:a+c =2b.15、(1)已知,求:①,②,③,④。

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法分解演习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=_____ _.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为天然数)等于______.(二)选择:27.下列盘算最后一步的根据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交流律)=-20(a2a3)·(x4x)(乘法联合律)=-20a5x5. ( )A.乘法意义;B.乘方界说;C.同底数幂相乘轨则;D.幂的乘方轨则.28.下列盘算准确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算成果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列盘算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.盘算-a2b2·(-ab3)2所得的成果是[ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列盘算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列盘算准确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的成果是 [ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不合错误.36.若0<y<1,那么代数式y(1-y)(1+y)的值必定是[ ]A.正的;B.非负;C.负的;D.正.负不克不及独一肯定.37.(-3)2·(-4m)3的盘算成果是[ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.假如b2m<b m(m为天然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列盘算中准确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列盘算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)准确;B.只有(1)与(3)准确;C.只有(1)与(4)准确;D.只有(2)与(3)准确.42.(-6x n y)2·3x n-1y的盘算成果是 [ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列盘算准确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列盘算准确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的盘算成果写成10的幂的情势,准确的是[ ] A.100×103=106; B.1000×10100=103000;C.1002n×1000=104n+3; D.1005×10=10005=1015.48.t2-(t+1)(t-5)的盘算成果准确的是 [ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分离是[ ] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不管m,n为奇数或偶数都可以;D.不管m,n为奇数或偶数都不成.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)盘算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(3b4)2·(-4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(-1.5b+1)(-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.盘算[(-a)2m]3·a3m+[(-a)3m]3(m为天然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,个中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,个中x= 106.光的速度每秒约3×105千米,太阳光射到地球上须要的时光约是5×102秒.问地球与太阳的距离约是若干千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字交流,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为天然数),求证:ab-cb=ac.120.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证实(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算演习(进步27题)1.=2.若2x + 5y-3 = 0 则=3.已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4.已知,则x =5.21990×31991的个位数字是若干6.盘算下列各题(1)(2)(3)(4)7.盘算(-2x-5)(2x-5)8.盘算9.盘算,当a6 = 64时, 该式的值.10.盘算11.盘算12.盘算13.的值是n B.C.2n-1 D.22n-1A.14214.若, 求a2 + b2的值.15.求证: 不管x.y为何值, 多项式的值永弘远于或等于0.16.若,求: M-N的值是()A .正数B .负数C .非负数D .可正可负17.已知a = -2000 b = 1997 c = -1995那么的值是若干.18.已知由此求的值为? 19.实数a .b .c 知足a = 6-b , c 2 = ab -9,求证: a = b20.用公式解题,化简 21.已知x + y = 5, , 求x -y 之值由此可以得到 ①②22.已知a +b +c = 2,求的值 23.若a + b = 5,24.已知求a .b 的值 25.已知, 求xy 的值 26.已知的值27.已知的值《乘法公式》演习题(一)一.填空题1.(a +b )(a -b )=_____,公式的前提是_____,结论是_____.2.(x -1)(x +1)=_____,(2a +b )(2a -b )=_____,(31x -y )(31x +y )=_____.3.(x +4)(-x +4)=_____,(x +3y )(_____)=9y 2-x 2,(-m -n )(_____)=m 2-n 2 ×102=(_____)(_____)=( )2-( )2=_____.5.-(2x 2+3y )(3y -2x 2)=_____.6.(a -b )(a +b )(a 2+b 2)=_____.7.(_____-4b )(_____+4b )=9a 2-16b 2,(_____-2x )(_____-2x )=4x 2-25y 28.(xy -z )(z +xy )=_____,(65xy )(65xy )=_____. 9.(41x +y 2)(_____)=y 4-161x 210.不雅察下列各式:(x -1)(x +1)=x 2-1 ,(x -1)(x 2+x +1)=x 3-1 , (x -1)(x 3+x 2+x +1)=x 4-1 根据前面各式的纪律可得 (x -1)(x n +xn -1+…+x +1)=_____.二.选择题11.下列多项式乘法,能用平方差公式进行盘算的是( )A.(x +y )(-x -y )B.(2x +3y )(2x -3z )C.(-a -b )(a -b )D.(m -n )(n -m )12.下列盘算准确的是( )A.(2x +3)(2x -3)=2x 2-9B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 213.下列多项式乘法,不克不及用平方差公式盘算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +bx -y )(-yx )14.(4x 2-5y )需乘以下列哪个式子,才干应用平方差公式进行盘算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )215.a 4+(1-a )(1+a )(1+a 2)的盘算成果是( )A.-1B.1C.2a 4-1D.1-2a 4x 2-25y 2的是( )A.(x +5y )(-x +5y )B.(-x -5y )(-x +5y )C.(x -y )(x +25y )D.(x -5y )(5y -x )三.解答题×0.97 18.(-2x 2+5)(-2x 2-5)19.a (a -5)-(a +6)(a -6) 20.(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 21.(31x +y )(31x -y )(91x 2+y 2) 22.(x +y )(x -y )-x (x +y ) 23.3(2x +1)(2x -1)-2(3x +2)(2-3x )2×2001-20022《乘法公式》演习题(二) 1.222)(b a b a +=+--( ) 2.2222)(y xy x y x +-=----( ) 3.2222)(b ab a b a ++=----( ) 4.2229122)32(y xy x y x +-=-( ) 5.2294)32)(32(y x y x y x -=-+( )6______________)3)(32(=-+y x y x ;7._______________)52(2=+y x ;8.______________)23)(32(=--y x y x ; 9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13.4))(________2(2-=+x x ;14._____________)3)(3()2)(1(=+---+x x x x ; 15.____________)2()12(22=+--x x ;16.224)__________)(__2(y x y x -=-+; 17.______________)1)(1)(1)(1(42=++-+x x x x ;18.下列多项式乘法中不克不及用平方差公式盘算的是( )(A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+(C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +- 19.下列多项式乘法中可以用平方差公式盘算的是( ) (A ) ))((b a b a -+-(B ))2)(2(x x ++ (C ) )31)(31(x y y x -+(D ) )1)(2(+-x x 20.下列盘算不准确的是( )(A ) 222)(y x xy = (B ) 2221)1(xx xx +=- (C ) 22))((b a a b b a -=+- (D ) 2222)(y xy x y x ++=-- 21.化简:))(())(())((a c a c c b c b b a b a +-++-++-22.化简求值:22)2()2()2)(12(+---+-x x x x ,个中211-=x 23.解方程:24.(1)已知2)()1(2-=---y x x x , (2)假如2215,6ab ab a b +=+=求xy y x -+222的值; 求2222a b a b -+和的值 25.摸索题:(x-1)(x+1)=21x - (x-1)23(1)1x x x ++=- (x-1)324(11)x x x x ++-+=(x-1)4325(1)1x x x x x ++++=-…… 试求654322122222++++++的值断定200520042003 (212)22+++++的值末位数《乘法公式》演习题(三)1.盘算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2; (2)(x+y)4(x-y)4;(3)(a+b+c)(a 2+b 2+c 2-ab-ac-bc). 2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z); (2)(a+3b)(a 2-3ab+9b 2)-(a-3b)(a 2+3ab+9b 2); (3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)(x+y-z).3.已知z 2=x 2+y 2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z). 4.已知,,a b c 知足0a b c ++=,8abc =,那么111abc++的值是(A )正数; (B )零 (C )负数 (D )正负不克不及肯定 5.若实数,,a b c 知足2229a b c ++=,则代数式222()()()a b a c b c -+-+-的最大值是( )(A )27; (B )18; (C )15; (D )12. 6.已知21()()()4b c a b c a -=--,且0a ≠,则b ca += 7.已知2223336,14,36,abc a b c a b c ++=++=++=求abc 的值.。

乘法公式练习题

乘法公式练习题

乘法公式练习题乘法是数学中最基本的四则运算之一。

掌握好乘法公式可以帮助我们更好地解决数学问题。

本文将提供一些乘法公式练习题,帮助您巩固乘法运算的基础知识。

练习题1:计算下列乘法表达式的值:1. 3 × 4 = ?2. 7 × 5 = ?3. 9 × 2 = ?4. 6 × 8 = ?5. 12 × 10 = ?解答:1. 3 × 4 = 122. 7 × 5 = 353. 9 × 2 = 185. 12 × 10 = 120练习题2:计算下列乘法表达式的值:1. 15 × 3 = ?2. 24 × 2 = ?3. 10 × 10 = ?4. 5 × 9 = ?5. 8 × 7 = ?解答:1. 15 × 3 = 452. 24 × 2 = 483. 10 × 10 = 1004. 5 × 9 = 45练习题3:计算下列乘法表达式的值:1. 6 × 11 = ?2. 9 × 8 = ?3. 14 × 2 = ?4. 7 × 6 = ?5. 13 × 9 = ?解答:1. 6 × 11 = 662. 9 × 8 = 723. 14 × 2 = 284. 7 × 6 = 425. 13 × 9 = 117练习题4:计算下列乘法表达式的值:1. 25 × 4 = ?2. 18 × 3 = ?3. 7 × 14 = ?4. 12 × 6 = ?5. 9 × 13 = ?解答:1. 25 × 4 = 1002. 18 × 3 = 543. 7 × 14 = 984. 12 × 6 = 725. 9 × 13 = 117练习题5:计算下列乘法表达式的值:1. 16 × 10 = ?2. 3 × 5 × 2 = ?3. 7 × 8 + 10 = ?4. 4 × 6 + 12 × 2 = ?5. 15 × 3 + 10 - 5 × 2 = ?解答:1. 16 × 10 = 1602. 3 × 5 × 2 = 303. 7 × 8 + 10 = 664. 4 × 6 + 12 × 2 = 485. 15 × 3 + 10 - 5 × 2 = 55通过解答以上练习题,您可以发现乘法公式的灵活运用是解决数学问题和计算的基础能力。

乘法公式练习题

乘法公式练习题

乘法公式练习题乘法是数学中一种基本的运算方式,它是将两个或多个数相乘的操作。

在解决实际问题和数学计算中,乘法是一个常用的运算。

为了提高乘法运算的技巧和熟练度,我们需要进行大量的练习。

本文将为大家提供一些乘法公式练习题,帮助大家巩固和提高自己的乘法运算能力。

练习一:简单的乘法计算1. 2乘以3等于几?2. 5乘以6等于几?3. 8乘以4等于几?答案:1. 2乘以3等于6。

2. 5乘以6等于30。

3. 8乘以4等于32。

练习二:带有括号的乘法计算2. (5-2)乘以6等于几?3. (8-4)乘以(2+2)等于几?答案:1. (2+3)乘以4等于20。

2. (5-2)乘以6等于18。

3. (8-4)乘以(2+2)等于16。

练习三:多位数的乘法计算1. 12乘以5等于几?2. 45乘以6等于几?3. 78乘以9等于几?答案:1. 12乘以5等于60。

2. 45乘以6等于270。

练习四:乘法交换律的应用1. 3乘以7等于几?7乘以3等于几?是不是两次得到的结果相同?2. 8乘以9等于几?9乘以8等于几?是不是两次得到的结果相同?3. 6乘以4等于几?4乘以6等于几?是不是两次得到的结果相同?答案:1. 3乘以7等于21,7乘以3等于21,是的,两次得到的结果相同。

2. 8乘以9等于72,9乘以8等于72,是的,两次得到的结果相同。

3. 6乘以4等于24,4乘以6等于24,是的,两次得到的结果相同。

练习五:乘法分配律的应用1. 5乘以(2+3)等于几?2. (4+6)乘以8等于几?3. (7-2)乘以(9-5)等于几?答案:1. 5乘以(2+3)等于25。

2. (4+6)乘以8等于80。

3. (7-2)乘以(9-5)等于20。

通过以上练习题,我们可以加深对乘法公式以及乘法运算规律的理解和掌握。

在实际问题中,乘法运算常常被广泛应用。

通过大量练习,我们能够快速准确地进行乘法计算,提高自己的数学运算能力。

希望通过这些乘法练习题,大家能够更好地理解和应用乘法公式,为解决实际问题提供帮助。

乘法公式专项练习题

乘法公式专项练习题

乘法公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )6 C .-6 D .-55. 若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于( ) A.-16. 计算[(a 2-b 2)(a 2+b 2)]2等于( )-2a 2b 2+b 4 +2a 4b 4+b 6 -2a 4b 4+b 6 -2a 4b 4+b 87. 已知(a +b )2=11,ab =2,则(a -b )2的值是( )8. 若x 2-7xy +M 是一个完全平方式,那么M 是( ) 27 249 449 9. 若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A. x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 3.下列计算中,错误的有( ) A .1个 B .2个 C .3个 D .4个①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .、y 2n 一定是互为相反数 -1、-y 2n -1一定相等10. 已知19961995a x =+,19961996b x =+,19961997c x =+,那么222a b c ab bc ca ++---的值为( ). (A )1 (B )2 (C )3 (D )411. 已知0x ≠,且22(21)(21)M x x x x =++-+,22(1)(1)N x x x x =++-+,则M 与N 的大小关系为( ). (A )M N > (B )M N < (C )M N = (D )无法确定12. 设a b c 、、是不全相等的任意有理数.若2x a bc =-,22y b ca z c ab =-=-,,则x y z 、、( ). A .都不小于0 B .都不大于0 C .至少有一个小于0 D .至少有一个大于0二、填空题1. (-2x+y )(-2x -y )=______. (-3x 2+2y 2)(______)=9x 4-4y 4.2. (a+b -1)(a -b+1)=(_____)2-(_____)2.3. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____ .4. 若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.5. 5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.6. 多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。

专升本公式法练习题

专升本公式法练习题

专升本公式法练习题### 专升本数学公式法练习题#### 一、代数部分1. 单项式乘法计算以下单项式乘积:\[ (3x^2y) \cdot (2xy^2) \]2. 多项式乘法展开并简化以下多项式:\[ (x^2 + 3x - 2) \cdot (x - 1) \]3. 幂的运算简化以下表达式:\[ (a^3)^2 \cdot a^4 \]4. 因式分解将以下多项式进行因式分解:\[ x^3 - 8 \]5. 解一元二次方程使用公式法解以下方程:\[ 2x^2 + 5x - 3 = 0 \]#### 二、几何部分1. 三角形面积计算已知三角形的三边长分别为 \( a \), \( b \), \( c \),使用海伦公式计算其面积。

2. 圆的面积与周长给定圆的半径 \( r \),计算圆的面积 \( A \) 和周长 \( C \)。

3. 勾股定理在直角三角形中,如果 \( a \) 和 \( b \) 是直角边,\( c \)是斜边,验证勾股定理:\[ a^2 + b^2 = c^2 \]4. 相似三角形如果两个三角形的对应边成比例,证明它们是相似的。

5. 正弦定理和余弦定理给定一个三角形的两边和夹角,使用正弦定理或余弦定理求解未知边。

#### 三、微积分部分1. 导数的基本公式计算函数 \( f(x) = x^3 - 2x^2 + x \) 的导数 \( f'(x) \)。

2. 复合函数的导数如果 \( g(x) = x^2 \) 且 \( h(x) = 3x - 2 \),计算\( g(h(x)) \) 的导数。

3. 基本积分公式计算定积分:\[ \int_0^1 2x \, dx \]4. 微分方程解以下一阶微分方程:\[ y' + 3y = x^2 \]并找到通解。

5. 应用问题如果一个物体的加速度 \( a(t) = 2t + 1 \),求其速度 \( v(t) \) 和位移 \( s(t) \)。

2020年最新人教版数学八年级上册 14.2《乘法公式》章节测试

2020年最新人教版数学八年级上册 14.2《乘法公式》章节测试

人教版数学八年级上册《乘法公式》章节测试一、选择题(本大题共4小题,共16.0分)1.下列计算正确的是( )A. x5÷x3=x2B. 2x+3y=5xyC. (x2)3=x5D. (x+y)(x−2y)=x2−2y22.如果9a2−ka+4是完全平方式,那么k的值是( )A. −12B. 6C. ±12D. ±63.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. (a−b)2=a2−2ab+b2B. (a+b)2=a2+2ab+b2C. 2a(a+b)=2a2+2abD. (a+b)(a-b)=a2-b24.若(x−2)(x+3)=x2+ax+b,则a,b的值分别为( )A. a=5,b=−6B. a=5,b=6C. a=1,b=6D. a=1,b=−6二、填空题(本大题共6小题,每空3分,共24.0分)5.若x+y=3,则2x⋅2y的值为______.6.计算:(−2x3)2=______.7.若a m=2,a n=3,则a m−n的值为______ .8.x2-x+______=(x-0.5)2 , (______-1)2=______-4x+1.9.图中的四边形均为矩形.根据图形,写出一个正确的等式:______10.如果(x+2)(x+p)的展开式中不含x的一次项,那么p=______三、计算题(本大题共6小题,共30.0分)(1) (-3x-2y)2 (2)(−2a)3−(−a)⋅(3a)21(3) (2a-b)2-4a(a-b) (4) (x+2y)(x-2y)-(2x+1)2(5)(m-2n+3) (m+2n-3) (6)2008×2006−20072.12.(10分)已知a=−1,b=2,求[(2a+b)2−(4a+b)(a−2b)]÷b的值.13.(10分)已知x2−x=5,求(2x+1)2−x(5+2x)+(2+x)(2−x)的值14.(10分)已知x+y=4,x−y=2,求下列各式的值.第!异常的公式结尾页,共3页 2(1)x2+y2(2)xy.附加题:(20分)已知m−n=3,mn=2,求:(1)(m+n)2的值;(2)m2−5mn+n2的值.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档