二连浩特市高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二连浩特市高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )
A .﹣
B .
C .﹣1
D .1
2. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )
A .7
B .9
C .11
D .13
3. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )
A .(0,10)
B .(
,10)
C .(
,+∞)
D .(0,
)∪(10,+∞)
4. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
5. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6. 若1sin(
)34π
α-=
,则cos(2)3π
α+=
A 、78-
B 、14
- C 、14 D 、78
7. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
8. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即
()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总
人数的
1
10
,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 9. 已知一三棱锥的三视图如图所示,那么它的体积为( )
A .
13 B .2
3
C .1
D .2
10.若函数21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>⎩则函数1
()2y f x x =+的零点个数为( )
A .1
B .2
C .3
D .4 11.直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )
12.已知不等式组⎪⎩

⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值
范围为( )
A .(,2)-∞
B .(,1)-∞
C .(2,)+∞
D .(1,)+∞
二、填空题
13.若tan θ
+
=4,则sin2θ= .
14.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 . 15.已知
=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
16.在△ABC 中,若角A
为锐角,且=(2,3
),=(3,m ),则实数m 的取值范围是 .
17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式
a n = .
18.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经
过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
三、解答题
19.已知﹣2≤x ≤2,﹣2≤y ≤2,点P 的坐标为(x ,y )
(1)求当x ,y ∈Z 时,点P 满足(x ﹣2)2+(y ﹣2)2
≤4的概率; (2)求当x ,y ∈R 时,点P 满足(x ﹣2)2+(y ﹣2)2
≤4的概率.
20.已知函数f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≤2
(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)
21.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.
22.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
23.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)求f(0)+f(1)+f(2)+…+f(2015)的值.
24.求下列函数的定义域,并用区间表示其结果.
(1)y=+;
(2)y=.
二连浩特市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:∵a1=3,a n﹣a n•a n+1=1,
∴,得,,a4=3,

∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,
∵2016=3×672,
∴A2016 =(﹣1)672=1.
故选:D.
2.【答案】A
【解析】解:∵x+x﹣1=3,
则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
3.【答案】D
【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),
因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,
由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.
故选:D.
【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.
4.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
5. 【答案】C
【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
6. 【答案】A
【解析】 选A ,解析:2
2
27
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
7. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
=,故选D. 考点:系统抽样 8. 【答案】A 【解析】
P (X ≤90)=P (X ≥110)=110,P (90≤X ≤110)=1-15=45,P (100≤X ≤110)=25,1000×2
5
=400. 故选A.
9. 【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112
(12)2323
⨯⨯⨯⨯=,选B . 10.【答案】D 【



考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
11.【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时, ()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 12.【答案】A
【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当1
2
a ≤时,12a -≥-
,z ax y =+在点1,0A ()
取得最小值a ;当12a >时,12a -<-,z ax y =+在点11
,33
B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121
a a ⎧≤⎪
⎨⎪<⎩或
12
1113
3a a ⎧
>⎪⎪⎨
⎪+<⎪⎩,∴2a <,选A .
二、填空题
13.【答案】.
【解析】解:若tanθ+=4,则
sin2θ=2sinθcosθ=====,
故答案为.
【点评】本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于中档题.14.【答案】4.
【解析】解:由题意知,
满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:
{2,3},{2,3,1},{2,3,4},{2,3,1,4},
故共有4个,
故答案为:4.
15.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
16.【答案】

【解析】解:由于角A 为锐角,


不共线,
∴6+3m >0且2m ≠9,解得m >﹣2且m .
∴实数m 的取值范围是.
故答案为:

【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
17.【答案】

【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n

故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1

故a n =

【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.
18.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
三、解答题
19.【答案】
【解析】解:如图,点P 所在的区域为长方形ABCD 的内部(含边界),
满足(x ﹣2)2+(y ﹣2)2
≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,
满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,
依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);
∴所求的概率P=.
(2)当x,y∈R时,
满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,
满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,
∴所求的概率P==.
【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.
20.【答案】
【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.
|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,
而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,
∴不等式的解集为[0.5,2.5].
(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|
≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),
∴f(ax)﹣af(x)≥f(2a)成立.
21.【答案】
【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),
椭圆的离心率为,即有=,即a=c,b==c,
以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,
直线y=x+与圆相切,则有=1=b,
即有a=,
则椭圆C的方程为+y2=1;
(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),
由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,
即有+=0,即+=0,
即有x1y2+y2+x2y1+y1=0,①
设直线PQ:y=kx+t,代入椭圆方程,可得
(1+2k2)x2+4ktx+2t2﹣2=0,
判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,
即为t2﹣2k2<1②
x1+x2=,x1x2=,③
y1=kx1+t,y2=kx2+t,
代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,
将③代入,化简可得t=2k,
则直线l的方程为y=kx+2k,即y=k(x+2).
即有直线l恒过定点(﹣2,0).
将t=2k代入②,可得2k2<1,
解得﹣<k<0或0<k<.
则直线l的斜率k的取值范围是(﹣,0)∪(0,).
【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.
22.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.23.【答案】
【解析】(1)证明:∵f(x+2)=﹣f(x),
∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),
∴y=f(x)是周期函数,且T=4是其一个周期.
(2)令x∈[﹣2,0],则﹣x∈[0,2],
∴f(﹣x)=﹣2x﹣x2,
又f(﹣x)=﹣f(x),
∴在x∈[﹣2,0],f(x)=2x+x2,
∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,
由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,
∴当x∈[2,4]时,f(x)=x2﹣6x+8.
(3)当x∈[0,2]时,f(x)=2x﹣x2.
∴f(0)=0,f(1)=1,
当x∈[2,4]时,f(x)=x2﹣6x+8,
∴f(2)=0,f(3)=﹣1,f(4)=0
∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,
∵y=f(x)是周期函数,且T=4是其一个周期.
∴2016=4×504
∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,
即求f(0)+f(1)+f(2)+…+f(2015)=0.
【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.24.【答案】
【解析】解:(1)∵y=+,
∴,
解得x≥﹣2且x≠﹣2且x≠3,
∴函数y的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x≤4且x≠1且x≠3,
∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].。

相关文档
最新文档