九年级数学上学期期中试题(扫描版) 新人教版_19
人教版九年级上学期期中考试数学试卷及答案解析(共6套)

人教版九年级上学期期中考试数学试卷(一)一.选择题1、下列关于 X 的方程:①ax2+bx+c=0:②x'+ •!二6;③x—0;④x=3x2(5)(x+l )(x・1) =XMX中,一元二次方程的个数是()A、1个B、2个C、3个D、4个2、下列标志既是轴对称图形乂是中心对称图形的是()©c©D⅛⅛3、已知关于X的一元二次方程(a - 1) X2 - 2x÷l=0有两个不相等的实数根,则a的取值范围是()A、a>2B、a<2C、a<2 且D、&V ・ 24、若(2, 5)、(4, 5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()B、x=lC、x=2DX x=33、一个等腰三角形的两条边长分别是方程X2 - 7x÷10=0的两根,则该等腰三角形的周长是()A、12B、9C、13D、12 或 96、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD ±修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm',那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()B、(30 - 2x) (20 - 2x) =78C、(30∙2x) (20 ・ x) =6X78D、(30∙2x) (20 ・ 2x)二6X787、如图,∆ABC为OO的内接三角形,ZAOB=IOO o ,则ZACB的度数为(C、150°D、160°8、如图,在OO中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、 AB丄CDB、ZAOB=4 ZACDC、AD= BDD、 Po二PD9、已知抛物线y二∙x'+2x∙3,下列判断正确的是()A、开口方向向上,y有最小值是・2B、抛物线与X轴有两个交点C、顶点坐标是(■ 1, -2)D、当x<l时,y随X增大而增大10、有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A、4个B、3个C、2个D、1个11、将抛物线y二3x:向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A、y=3 (x+2)2+3B、y二3 (X ・ 2)2+3C、y二3 (x+2)2- 3D、y二3 (x・2)2- 312、下列说法正确的是()A、弦是直径B、平分弦的直径垂直弦C、长度相等的两条弧是等弧D、圆的对称轴有无数条,而对称中心只有一个13、已知抛物线y=a X=+bx+c的开口向下,顶点坐标为(2,・3),那么该抛物线有()A、最小值・3B、最大值・3C、最小值2D、最大值2二、填空题14、钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了 _______ 度.15、___________________________________________ 一元二次方程x'・4x+6二O实数根的悄况是_____________________________ .16、如图,在RtΔABC 中,ZBAC二90° , ZB二60° , ΔAB, C,可以由 AABC 绕点A顺时针旋转90°得到(点B'与点B是对应点,点C'与点C是对应点), 连接CC',则ZCC' B'的度数是____________ .17、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、18、已知二次函数y=aX=+bx+c的图象如图所示,有下列5个结论,Φabc<0;②2a+b=0:③b'∙4dc<0;④d+b+c>O;⑤a - b+c<O.其中正确的结论有20、某商店四月份的利润为6. 3万元,此后两个月进入淡季,利润均以相同的白分比下降,至六月份利润为5. 4万元.设下降的白分比为X,由题意列出方程21、__________________________________________________________ 已知In 是关于X的方程X2 - 2X- 3=0的一个根,则2m: - 4m= _______________ •22、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有_______ (填序号)23、如图所示:点M、G、D在半圆O上,四边形OEDF. HMNo均为矩形,EF二b,NH=c,则b与C之间的大小关系是b ________ C (填<、二、>)三.解下列方程24、解下列方程(1)X2÷6X - 1=0(2)(2x+3) 2 - 25=0.四、解答题25、在方格纸上建立如图所示的平面直角坐标系,将AABO绕点0按顺时针方向旋转90° ,得ZU' B Z 0.(1)画岀旋转后的图形;(2)写出点A' , B,的坐标.26、如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm, 水的最大深度为2c∏b求该输水管的半径是多少?27、如图,在RtΔABC中,ZACB二90, AD平分ZBAC,过A, C, D三点的圆与斜边AB交于点E,连接DE.(2)若AC=6, CB=8,求Z∖ACD的外接圆的直径.28、如图,已知抛物线与X交于A ( - 1, 0)、E (3, 0)两点,与y轴交于点B(1)求抛物线的解析式:(2)设抛物线顶点为D,求四边形AEDB的面积.29、某体育用品丿占购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为X(X$60)元,销售量为y套.(1)求出y与X的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?答案解析部分—、<b >选择题〈/b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:①当沪O时,ax2+bx+c=0不是一元二次方程;②X2+ ≥=6 是分式方程;③x'=()是一元二次方程;④x=3x'是一元二次方程⑤(x÷l) (x・1) =X Mx,整理后不含X的二次项,不是一元二次方程.故选:B.【分析】依据一元二次方程的定义求解即可.2、【答案】A【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【分析】根据中心对称图形与轴对称图形的概念判断即可.3、【答案】C【考点】根的判别式【解析】【解答】解:△二4 - 4 (a - 1)二8 ・ 4a>0得:a<2.又a・l≠0Λa<2 且 &H1.故选C.【分析】利用一元二次方程根的判别式列不等式,解不等式求出&的取值范围. 4、【答案】D【考点】二次函数的性质【解析】【解答】解:因为点(2, 5)、(4, 5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴X=故选D.【分析】由已知,点(2, 5)、(4, 5)是该抛物线上关于对称轴对称的两点, 所以只需求两对称点横坐标的平均数.5、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质【解析】【解答】解:X2- 7x÷10=0,(X ・ 2) (x ・ 5) =0,X ・ 2=0, X ・ 5=0,Xι~2, x:=o >①等腰三角形的三边是2, 2, 5V2+2<5,・・・不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2, 5, 5,此时符合三角形三边关系定理,三角形的周长是 2+5+5二12;即等腰三角形的周长是12.故选:A.【分析】求出方程的解,即可得出三角形的边长,再求出即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设道路的宽为xm,由题意得:(30 ・ 2x) (20 ・ x)二6X78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30∙2x) m, 宽为(20・x) m.根据长方形面积公式即可列方程(30・2x) (20・x)二6X78. 7、【答案】B【考点】圆周角定理【解析】【解答】解:在优弧AB上取点D,连接AD, BD,V ZAOB=IOO O ,Λ ZD= 4 ZAOB=50° ,・•・ZACB=I80° ・ ZD二130° .【分析】首先在优弧AB上取点D,连接AD, BD,然后由圆周角定理,求得ZD 的度数,乂山圆的内接四边形的性质,求得ZACB的度数.8、【答案】D【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:TP是弦AB的中点,CD是过点P的直径,・・・AB丄CD,兄沪云方,ZiAOB是等腰三角形,・•・ ZAoB二 2 ZAOP,Y ZAOP二 2 ZACD,・•・ ZAoB二 2 ZAOP二2 × 2 ZACD二4 ZACD.故选D.【分析】根据垂径定理及圆周角定理可直接解答.9、【答案】D【考点】二次函数的性质【解析】【解答】解:y- ■ x'+2x - 3= - (X-I) ^ - 2,a二・1,抛物线开口向下,对称轴为直线X二1,顶点坐标为(1, -2) , △二4・12二・8<0,抛物线与X轴没有交点,当x<l时,y随X的增大而增大. 故选:D. 【分析】根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.10、【答案】D【考点】命题与定理【解析】【解答】解:①圆的对称轴是圆的直径所在的直线,故本选项错误;②在同圆或等圆中,相等的弦所对的弧相等,故本选项错误;③在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;④半径相等的两个半圆是等弧,故本选项正确;其中正确的有1个;故选D.【分析】根据轴对称图形的概念和弧、弦和圆心角之间的关系,分别对每一项进行分析即可得出答案.11、【答案】A【考点】二次函数图象与儿何变换【解析】【解答】解:由“上加下减”的原则可知,将抛物线y二3x'向上平移3 个单位所得抛物线的解析式为:y=3x2+3:IJI “左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3 (x+2) 2+3.故选A.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.12、【答案】D【考点】垂径定理【解析】【解答】解:A、直径是弦,但弦不一定是直径,选项错误;B、平分弦的直径垂直弦,被平分的弦不是直径,故选项错误;C、能重合的两个弧是等弧,选项错误;D、圆的对称轴有无数条,而对称中心只有一个,正确.故选D.【分析】根据弦的定义以及垂径定理、等弧的定义即可作出判断.13、【答案】B【考点】二次函数的最值【解析】【解答】解:因为抛物线开口向下和其顶点坐标为(2,・3),所以该抛物线有最大值・3.故选B.【分析】根据抛物线开口向下和其顶点坐标为(2,・3),可直接做出判断.二、<b >填空题<∕b>14、【答案】60【考点】生活中的旋转现象【解析】【解答】解:Y钟表上的时针匀速旋转一周的度数为360。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
2019人教版初三数学上学期期中综合考试卷(含答案解析)精品教育.doc

人教版2019初三数学上学期期中综合考试卷(含答案解析)人教版2019初三数学上学期期中综合考试卷(含答案解析)第I卷(选择题)一、选择题(每题3分共计30分)1.下列各点中,在函数的图象上的是()A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)2.已知点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y= 的图象上,则下列关系正确的是().A.x1<x3<x2 B.x<1x2<x3 C.x3<x2<x1 D.x2<x3<x13.若ab0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是()4.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是()A. = B. = C.∠B=∠D D.∠C=∠AED5.已知△ABC和△DEF相似,且△ABC的三边长分别为3、4、5,如果△DEF的周长为6,那么下列选项不可能是△DEF一边长的是()A.1.5 B.2 C.2.5 D.36.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A、2B、 3C、4D、57.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲 B.乙 C.丙 D.丁8.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()9.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3 ),反比例函数的图像与菱形对角线AO交于D 点,连接BD,当BD⊥x轴时,k的值是()A.6 B.-6 C.12 D.-1210.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式为()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c 第II卷(非选择题)二、填空题(每小题3分共计24分)11.已知反比例函数y= ,其图象在第一、第三象限内,则k的值可为.(写出满足条件的一个k的值即可).12.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离 km.13.如图,正方形ABOC的边长为2,反比例函数y= 过点A,则k的值是.14.如图,小明在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则树的高度为_________m.15.如图,在△ABC中,,,直线 // // ,与之间距离是1,与之间距离是2.且,,分别经过点A, B,C,则边AC的长为.16.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.17.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,OA=1,OC=6,则正方形ADEF 的边长为.18.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y= ,在l上取一点A1,过A1作x轴的垂线交双曲线与点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究;过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2019= .三、解答题(共计96分)19.(9分)已知直线y=﹣3x与双曲线y= 交于点P (﹣1,n).(1)求m的值;(2)若点A (,),B(,)在双曲线y= 上,且<<0,试比较,的大小.20.(9分)已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED =∠B.若AE=5,AB=9,CB=6.(1)求证:△ADE∽△ACB;(2)求ED的长.21.(12分)已知反比例函数的图象经过点,一次函数的图象经过点与点,且与反比例函数的图象相交于另一点.(1)分别求出反比例函数与一次函数的解析式;(2)求点的坐标.(3)求三角形OAB的面22.(12分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。
人教版九年级上册数学期中试卷【含答案】

人教版九年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的平均数是()。
A. 4B. 2C. 0D. 无法确定5. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()。
A. 16B. 26C. 28D. 36二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 在直角坐标系中,所有第一象限的点的坐标都是正数。
()3. 一个等边三角形的三个角都是60度。
()4. 任何两个负数相乘的结果都是正数。
()5. 一个数的立方根只有一个。
()三、填空题(每题1分,共5分)1. 一个正方形的边长为5,则它的面积是______。
2. 若一组数据的平均数为10,则这组数据的总和是______。
3. 在直角坐标系中,点A(3, 4)到原点的距离是______。
4. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是______。
5. 2³的值是______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述勾股定理的内容。
3. 请简述因式分解的定义。
4. 请简述概率的定义。
5. 请简述直角坐标系中,点的坐标表示的意义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,求这个长方形的面积和周长。
2. 已知一组数据的平均数为15,数据个数为5,求这组数据的总和。
3. 在直角坐标系中,点A(2, 3)和点B(5, 7)之间的距离是多少?4. 若一个等腰三角形的底边长为12,腰长为13,求这个三角形的面积。
人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方
,
故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
人教版中学九年级上学期期中数学考试试卷及参考答案

人教版中学九年级上学期期中考试数学试卷满分:150分 考试时间:120分钟第I 卷(选择题)一、单选题(每小题5分,共45分)1.下列方程中,是关于x 的一元二次方程的是( )A .21120x x +-=B .20x bx c ++=C .()231637x x x x -+=+D .4= 2.下列四个图形中,不是轴对称图形的是( )A .B .C .D .3.二次函数2(3)4y x -+=- 图象的顶点坐标是( )A .(﹣3,4)B .(3,4)C .(﹣3,﹣4)D .(3,﹣4)4.若0b <,则二次函数2(1)3y x b x =-+-+的图象的顶点在 ( )A .第一象限;B .第二象限;C .第三象限;D .第四象限5.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图像可能是( )A .B .C .D . 6.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( )A .230(030)y x x x =-<<B .230(030)y x x x =-+<C .230(030)y x x x =-+<<D .230(030)y x x x =-+<7.如图,点A 为⊙O 上一点,如果60,BAC BC =︒∠ )AB .2C .1D .38.在平面直角坐标系中,点P 的坐标()0,2,点Q 的坐标为391,44()(t t t ---为实数),当PQ 长取得最小值时,t 的值为( )A .75-B .125-C .3D .49.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .第II 卷(非选择题)二、填空题(每小题5分,共30分)10.直线23y x =+ 上有一点P (2,m ),则P 点关于原点的对称点P '的坐标为_________.11.将抛物线22y x =- 向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为___________________.12.如图,△ABC 绕点A 顺时针方向旋转45°得到△AB C '',若∠BAC =90°,AB =AC =分的面积等于_______.13.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___14.半径为1_________.15.已知二次函数2( y x mx m m =-++为常数),当24x -≤≤时,y 的最大值是15,则m 的值是__________.三、解答题(共75分)16.(8分)解方程: (1) 210x x --=(2) 2680x x -+=17.(8分)农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的养圈.(1)请你求出张大伯设计的矩形羊圈的面积;(2)请你判断他的设计方案是否使矩形羊圈的面积最大?如果不是最大,应怎样设计?请说明理由.18.(8分)如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式19.(8分)已知:ABC 中,边AB 及AB 边上的高CD 的和为40cm .()1请直接写出ABC 的面积()2S cm 与边AB 的长()x cm 之间的函数关系式(不要求写出自变量x 的取值范围); ()2当x 是多少时,这个三角形面积S 最大?最大面积是多少?20.(8分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)21.(10分)某文具店销售A 、B 两种文具,其中A 文具的定价为20元/件,B 产品的定价10元/件.(1)若该文具按定价售出A 、B 两种文具共400件,若销售总额不低于5000元,则至少销售A 产品多少件?(2)该文具店2018年2月按定价销售A 文具280件,B 文具120件,2018年3月,市场情况发生变化,A 文具销售价与上个月持平,但这个月的销售量比上个月减少了m%;B 文具的销售价比上个月减少了m%,但销售量增加了203m%;3月份的销售总金额与2月份保持不变.求m 的值. 22.(12分)如图,()Rt 90ABC ACB ∠=△内接于O ,过点C 作O 的切线,交AB 延长线于点D ,OF CB ⊥于点E ,交CD 于点F .(1)求证BCD BOF ∠∠=;(2)若1EF = ,AC =8,求圆O 的半径.23.(13分)定义: 在平面直角坐标系中,如果点(),M m n 和(),N n m 都在某函数的图象l 上,则称点M N、是图象l 的一对“相关点”.例如,点(12)M ,和点1(2)N ,是直线3y x =-+的一对相关点.()1请写出反比例函数6y x=的图象上的一对相关点的坐标; ()2如图,抛物线2y x bx c =++的对称轴为直线1x =,与y 轴交于点()0,1C -.①求抛物线的解析式:②若点M N 、是抛物线2y x bx c =++上的一对相关点,直线MN 与x 轴交于点1,0A ,点P 为抛物线M N 、上之间的一点,求PMN 面积的最大值.参考答案1.B2.B3.B4.C5.C6.C7.C8.A9.C10.(-2,-7).11.22(2)3y x =-++12.413.0或-114.60︒或120︒.15.6和19-16.(1)1x = ,2x = ; (2)122,4x x == .17.(1)由题意可得张大伯设计羊圈的面积为: S=25×7.5=187.5(平方米),答:张大伯设计羊圈的面积为187.5平方米.(2)不是最大.设矩形的长为x ,面积为y ,∴当x=20时y 最大=200,此时矩形的长为20米,宽为10米.18.(1)抛物线开口向下,顶点为(4,165),对称轴为x =4; (2)球飞行的最大水平距离是8m ;(3)2163212525y x x =-+ 19.(1)21202S x x =-+; (2)当x 为20cm 时,三角形面积最大,最大面积是2200cm20.(1)35元(2)销售单价应定为30元或40元(3)3600元21.(1)100件;(2)m=15.22.(1)证明:(2)523.(1)()2,3,(32),; (2)①221y xx =--; ②278。
人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
人教版九年级上册期中数学试卷(含答案)(最新)

人教版九年级上册期中数学试卷练习题一、选择题。
1、方程3x2﹣1=0的一次项系数是()A、﹣1B、0C、3D、12、方程x(x﹣1)=0的根是()A、x=0B、x=1C、x1=0,x2=1D、x1=0,x2=﹣13、抛物线y=2(x+1)2﹣3的对称轴是()A、直线x=1B、直线x=3C、直线x=﹣1D、直线x=﹣34、下列所述图形中,是中心对称图形的是()A、直角三角形B、平行四边形C、正五边形D、正三角形5、用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A、(x+3)2=1B、(x﹣3)2=1C、(x+3)2=19D、(x﹣3)2=196、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A、30°B、45°C、60°D、90°7、若关于x的方程x2+x﹣a+ =0有两个不相等的实数根,则实数a的取值范围是()A、a>2B、a≥2C、a≤2D、a<28、三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A、14B、12C、12或14D、以上都不对9、设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A、(1,0)B、(3,0)C、(﹣3,0)D、(0,﹣4)10、二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A、函数有最小值B、对称轴是直线x=C、当x<,y随x的增大而减小D、当﹣1<x<2时,y>0二、填空题:11、把方程2x2﹣1=5x化为一般形式是________.12、点P(﹣1,2)关于原点对称的点P′的坐标是________.13、若x=﹣1是一元二次方程x2+2x+a=0的一个根,那么a=________.14、请写出一个开口向上,且其图象经过原点的抛物线的解析式________.15、已知点A(,y1),B(﹣2,y2)都在二次函数y=(x﹣2)2﹣1的图象上,则y1与y2的大小关系是________.16、如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于________.三、解答题17、解方程:x2﹣3x+2=0.18、已知二次函数y=﹣x2﹣2x,用配方法把该函数化为y=a(x﹣h)2+c的形式,并指出函数图象的对称轴和顶点坐标.19、已知x=1是关于x的一元二次方程x2+3x﹣m=0的一个根,求m的值和方程的另一个根.20、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为(﹣1,1),B(﹣3,1),C(﹣1,4).(1)将△ABC绕点A顺时针旋转90°后得到△AB′C′,请在图中画出△AB′C′.(2)写出点B′、C′的坐标.21、如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.22、向阳村2013年的人均收入为10000元,2015年人均收入为12100元,若2013年到2015年人均收入的年平均增长率相同.(1)求人均收入的年平均增长率;(2)2014年的人均收入是多少元?23、如图所示,一个农户要建一个矩形猪舍,猪舍的一边利用长为12m的房墙,另外三边用25m 长的建筑材料围成,为了方便进出,在垂直于房墙的一边留一个1m宽的门.(1)所围成矩形猪舍的长、宽分别是多少时,猪舍面积为80m2(2)为做好猪舍的卫生防疫,现需要对围成的矩形进行硬底化,若以房墙的长为矩形猪舍一边的长,且已知硬底化的造价为60元/平方米,请你帮助农户计算矩形猪舍硬底化需要的费用.24、一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF,其中D、E、F分别在BC、AB、AC上.(1)若设AE=x,则AF=________;(用含x的代数式表示)(2)要使剪出的矩形CDEF的面积最大,点E应选在何处?25、如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.(1)求抛物线的函数解析式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为________.答案解析部分一、<b >选择题。
人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 2.下列方程中是一元二次方程的是( )A .21xy +=B .21902x x+-= C .20ax bx c ++= D .20x =3.如图,已知AB∥CD∥EF 且AC∥CE =3∥4,BF =14,则DF 的长为( )A .8B .7C .6D .34.已知二次函数2287y x x =++的图象上有点()12,A y -,()25,B y -,()31,C y -,则1y 、2y 、3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .311y y y >>5.如图,∥ABC 与∥BEF 位似,点O 是它们的位似中心,其中OE=2OB ,则∥ABC 与∥DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:96.现要在一个长为40m ,宽为26m 的矩形花园中修建等宽的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为2950m ,那么小道的宽度应是( )A .1mB .1.5mC .2mD .2.5m7.如图,在平面直角坐标系中,线段OA 与x 轴正方向夹角为45︒,且2OA =,若将线段OA 绕点O 沿逆时针方向旋转105︒到线段OA ',则此时点A '的坐标为( )A .1)-B .(-C .(D .(1,8.如图,Rt ABC △中,90C ∠=︒,30A ∠=︒,20AB =,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60︒得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为( )A .5B .10C .20D .259.已知12x x 、是方程2320x x -+=的两根,则12x x += ,12x x = . A .-3,2 B .-3,-2 C .3 , 2 D .2,310.某数学复习课上,数学老师用几何画板上画出二次函数y =ax 2+bx+c (a≠0)图象如图所示,四名同学根据图象,说出下列结论:李佳:abc <0:王宁:2a ﹣b <0:孙浩:b 2>4ac一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2,你认为其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题 11.若y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,则m =___.12.已知0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,则m 的值是______. 13.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为_________14.如图,小明为了测量高楼MN 的高度,在离点18N 米的点A 处放了一个平面镜,小明沿NA 方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M ,已知小明的眼睛(点B )到地面的高度BC 是1.6米,则高楼MN 的高度是______.15.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为______.16.如图,点A 在数轴的负半轴,点B 在数轴的正半轴,且点A 对应的数是21x -,点B 对应的数是2x x +,已知5AB =,则x 的值为______.17.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x+b 与这个新图象有3个公共点,则b 的值为_____.三、解答题18.解方程:(1)2531x x x -=+(2)3(21)42x x x +=+19.如图,在平面直角坐标系中,已知ABC 三个顶点的坐标分别为()()()1,2,3,4,2,6A B C ---.(1)画出ABC 绕点A 顺时针旋转90︒后得到的111A B C △,写出点1C 的坐标.(2)以原点O 为位似中心,在网格内画出将111A B C △三条边放大为原来的2倍后得222A B C △,写出点2B 的坐标.20.已知关于x 的方程2(1)2(1)0x m x m -++-=()求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.21.如图,在ABC 中,PC 平分ACB ∠,PB PC =.(1)求证:APC ACB;(2)若2AP=,5PC=,求AC的长.22.如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约53米,铅球落地点在B处,铅球运行中在运动员前4米处(即4OC=)达到最高点,最高点高为3米,已知铅球经过的路线是抛物线.根据图示的直角坐标系回答下列问题.(1)求铅球所经过路线的函数表达式.(2)铅球的落地点离运动员有多远?23.如图,在Rt∥ABC中,∥ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若∥BPQ和∥ABC相似,求t的值;(2)连接AQ,CP,若AQ∥CP,求t的值.24.如图,抛物线2:3L y ax bx=++与x轴交于A、(3,0)B两点(A在B的左侧),与x轴交于A、B两点,且点B坐标为(3,0)与y轴交于点C,已知对称轴1x=.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围:△能否成为以点P为直角(3)设点P是抛物线L上任一点,点Q在直线:3l x=-上,PBQ顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.25.商场销售某种电子产品,每个进货价为40元,调查发现,当销售价格为60元时,平均每天能销售100个;当销售价每降价1元时,平均每天多售出10个,该商场要想使得这种电子产品的销售利润平均每天达到2240元.(1)每个电子产品的价格应该降价多少元?(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品按照几折优惠销售?(3)当定价为多少时,商场每天销售该电子产品的利润最大?最大利润是多少?∠=,点P是平面内不与点A、C重合的任意一点,连26.在ABC中,CA CB=,ACBα接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD、BD、CP.(1)如图(1),当60α=︒时,BD CP的值是______,直线BD 与直线CP 相交所成的较小角的度数是______. (2)如图(2),当90α=︒时,请求出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数. (3)如图(3),当90α=︒时,若点E 、F 分别是CA 、CB 的中点,点P 在直线EF 上,请直接写出当点C 、P 、D 在同一直线上时AD CP的值.参考答案1.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】根据一元二次方程的定义:含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,据此逐项分析即可解题.【详解】解:A、21xy+=含有2个未知数,不是一元二次方程,故A不符合题意;B、2190 2xx+-=含有分式,不是一元二次方程,故B不符合题意;C、20ax bc c++=,当0a=不是一元二次方程,故C不符合题意;D、20x=,是一元二次方程,故D符合题意;故选D.【点睛】本题考查一元二次方程的概念,是基础考点,难度较易,掌握相关知识是解题关键.3.A【解析】【分析】根据平行线分线段成比例定理即可得到结论.【详解】解:由题意:∥AB∥CD∥EF,∥AC∥CE=BD∥DF=3∥4,所以设BD=3x,DF=4x,所以3x+4x=14,即x=2,∥DF=4x=8故答案选:A【点睛】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.4.C【解析】【分析】先求出二次函数y=2x2+8x+7的图象的对称轴,然后判断出A(-2,y1),B(-5,y2),C(-1,y3)在抛物线上的位置,再求解.【详解】解:∥二次函数y=2x2+8x+7中a=2>0,∥开口向上,对称轴为x=-2,∥A(-2,y1)中x=-2,y1最小,B(-5,y2),点B关于对称轴的对称点B′横坐标是2×(-2)-(-5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∥y2>y3>y1.故选:C.【点睛】此题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.5.A【解析】【分析】利用位似的性质得∥ABC∥∥DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∥∥ABC与∥DEF位似,点O为位似中心.∥∥ABC∥∥DEF,OB:OE= 1:2,∥∥ABC与∥DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.A【解析】【分析】设小道的宽度应为x m,则剩余部分可合成长为(40-2x)m,宽为(26-x)m的矩形,根据矩形的面积计算公式,结合种植花草的面积为950m2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道的宽度应为x m ,则剩余部分可合成长为(402)m x -,宽为(26)m x -的矩形, 依题意得:(402)(26)950x x --=,解得,11x =,245x =.4540>(不合题意,舍去),1x ∴=.答:小道进出口的宽度应为1米.故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.C【解析】【分析】过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,进而可得30A OB '∠=︒,进而根据含30度角的直角三角形的性质求得A B ',勾股定理求得OB ,根据A '在第二象限,即可求得点A '的坐标.【详解】解:如图,过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,30A OB '∴∠=︒在Rt A OB '△中,11122A B A O AO ''∴===BO A '在第二象限,A '∴(故选C【点睛】本题考查了坐标与图形,旋转的性质,含30度角的直角三角形的性质,求得30A OB '∠=︒是解题的关键.8.A【解析】【分析】如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .证明∥TBP∥∥CBQ (SAS ),推出CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=5.【详解】解:如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .∥∥ACB=90°,∥A=30°,∥AB=2BC ,∥ABC=60°,∥AT=TB ,∥BC=BT ,∥BP=BQ ,∥CBT=∥PBQ ,∥∥CBT -∥PBC=∥PBQ -∥PBC ,即∥TBP=∥CBQ ,∥∥TBP∥∥CBQ (SAS ),∥CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=14AB=5,∥CQ 的最小值为5.故选A【点睛】本题考查旋转变换,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.9.C【解析】【分析】根据一元二次方程根与系数的关系,x 1+x 2=−b a ,12cx x a =即可进行作答.【详解】由一元二次方程x 2-3x+2=0,知a=1,b=-3,c=2,又∥x1、x 2是一元二次方程x 2-3x+2=0的两根,∥x 1+x 2=−b a =3,12cx x a ==2.故选C.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握关系式是解题的关键.10.B【解析】【分析】根据二次函数的性质结合图象逐项分析可得解.【详解】解:对称轴在左侧,故ab 同号,c <0,故李佳:abc <0正确;函数对称轴:x =2ba -<﹣1,解得:2a <b ,故王宁:2a ﹣b <0正确;函数和x 轴有两个交点,b 2﹣4ac >0,故孙浩:b 2>4ac 正确;x =﹣3时,y 1<0,而x =1时,y 2>0,故一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2错误;故选B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.﹣4【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:∥y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,∥|m|﹣2=2,m ﹣4≠0,解得:m =﹣4 .故答案为:﹣4.【点睛】本题考查了二次函数的定义.二次函数的定义:一般地,形如y =ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y =ax 2+bx+c (a 、b 、c 是常数,a≠0)也叫做二次函数的一般形式.12.-1【解析】【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:∥x=0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,∥m 2-1=0且m -1≠0,即m 2=1且m≠1,解得 m=-1.即m 的值是-1.故答案为:-1.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.23(3)2y x =-+【解析】【分析】按照“左加右减,上加下减”的规律得出即可.【详解】解:23y x =先向上平移2个单位,得到232y x =+,再向右平移3个单位23(3)2y x =-+. 得到抛物线的解析式为23(3)2y x =-+.故答案为:23(3)2y x =-+.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,解题的关键是掌握左加右减,上加下减.14.19.2米【解析】【分析】根据相似三角形的判定定理证明BCA ∥MNA △,再利用相似三角形的性质求解即可.【详解】解:由题意得:BC∥CA ,MN∥AN ,∥∥C =∥MNA =90°,由光的反射原理可得:∥BAC =∥MAN ,∥BCA ∥MNA △, ∥BC AC MN AN =,即118.6 1.5MN =, ∥MN =19.2米.故答案为:19.2米.【点睛】本题考查了相似三角形的判定定理与性质,熟练掌握相似三角形的判定定理及性质是解题的关键.15.24︒【解析】【分析】根据旋转可得AB AB '=,由已知条件AB CB ''=,根据等边对等角可得B AC C '∠=∠,AB B B '∠=∠,根据三角形的外角性质可得2AB B C '∠=∠,根据三角形内角和可得1802BAB B '∠=︒-∠,根据108BAC ∠=︒即可求得C '∠的度数【详解】AB CB ''=B AC C '∴∠=∠2AB B C '∴∠=∠将ABC 绕点A 按逆时针方向旋转得到AB C ''△.AB AB '∴=,C C '∠=∠AB B B '∴∠=∠1802BAB B '∴∠=︒-∠1804C =︒-∠108BAC ∠=︒1802BAC CAB B AB C B ''∴∠=∠+∠=∠+︒-∠18041803C C C =∠+︒-∠=︒-∠24C ∴∠=︒24C '∴∠=︒故答案为:24︒【点睛】本题考查了旋转的性质,三角形内角和定理,三角形的外角性质,掌握旋转的性质是解题的关键.16.-2【解析】【分析】根据数轴上点的位置可得2210x x x -<<+,即可得到()2215AB x x x =+--=,由此解方程,再根据210x -<即12x <进行求解即可. 【详解】解:由数轴上点的位置可得2210x x x -<<+,∥()2215AB x x x =+--=即260x x --=,∥()()230+-=x x ,解得3x =或2x =-,∥210x -<即12x <, ∥2x =-,故答案为:-2.【点睛】本题主要考查了数轴上两点的距离,解一元二次方程,解题的关键在于能够熟练掌握数轴上两点的距离以及解一元二次方程的方法.17.﹣12或﹣734. 【解析】【分析】如图所示,过点B 作直线y=2x+b ,将直线向下平移到恰在点C 处相切,则一次函数y=2x+b 在这两个位置时,两个图像有3个交点,即可求解.【详解】解:如图所示:过点B 的直线y =2x+b 与新抛物线有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点,令y =x 2﹣5x ﹣6=0,解得:x =﹣1或6,即点B 坐标(6,0),将一次函数与二次函数表达式联立得:x 2﹣5x ﹣6=2x+b ,整理得:x 2﹣7x ﹣6﹣b =0, ∥=49﹣4(﹣6﹣b )=0,解得:b =﹣734, 当一次函数过点B 时,将点B 坐标代入:y =2x+b 得:0=12+b ,解得:b =﹣12, 综上,直线y =2x+b 与这个新图象有3个公共点,则b 的值为﹣12或﹣734; 故答案是:﹣12或﹣734. 【点睛】本题考查的是二次函数与坐标轴的交点,涉及到一次函数、根的判别式、翻折的性质等知识点,画出图像确定临界点在图像上的位置是解答本题的关键.18.(1)115x =-,21x =;(2)123x =,212x =- 【解析】【分析】(1)先移项,然后利用因式分解的方法解一元二次方程即可;(2)先去括号,然后移项合并,最后利用因式分解的方法解一元二次方程即可.【详解】解:(1)∥2531x x x -=+,∥25410x x --=,∥()()5110x x +-=, 解得115x =-,21x =; (2)∥3(21)42x x x +=+,∥26342x x x +=+,∥2620x x --=,∥()()21320x x +-=, 解得123x =,212x =-. 【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法. 19.(1)图见解析,1(3,3)C ;(2)图见解析,1(3,3)C【解析】【分析】(1)画出旋转后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;(2)根据位似性质,画出放大后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;【详解】解:(1)如图,111A B C △为所求作的三角形,1(3,3)C .(2)如图所示,则222A B C △为所求作的三角形,()22,8B .【点睛】本题考查了平面直角坐标系坐标系中画图,涉及到旋转与位似,解题关键是明确旋转和位似的性质,准确进行画图.20.(1)见详解;(2)4和2【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=(m -3)2∥0,由此即可证出:无论m 取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.【详解】解:(1)证明:∥∥=[-(m+1)]2-4×2(m -1)=m 2-6m+9=(m -3)2≥0,∥无论m 取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16-4(m+1)+2(m -1)=0,解得:m=5,∥原方程为x 2-6x+8=0,解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∥∥=0,即m=3,此时方程为x 2-4x+4=0,解得:x 1=x 2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【点睛】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ∥0时,方程有实数根”;(2) 分腰长为4和底边长度为4两种情况分别求解.21.(1)见解析;(2)AC 【解析】【分析】(1)利用角平分线及等腰三角形性质,可得出ACP ABC ∠=∠,同时两个三角形有一个公共角,即可得出两个三角形相似;(2)利用(1)中相似三角形的对应边成比例,将已知边代入即可求出答案.【详解】(1)∥PC 平分ACB ∠,PB PC =,∥ACP BCP ∠=∠,BCP ABC ∠=∠,∥ACP ABC ∠=∠.又∥CAP BAC ∠=∠,∥APC ACB ;(2)由(1)可知:APC ACB ,且5PB PC ==,2AP =, ∥257AB AP BP =+=+=,∥AC AP AB AC=, ∥27214AC AB AP =⋅=⨯=,∥AC =【点睛】本题主要考察相似三角形的判定和性质,理解掌握判定定理及性质是解答本题关键. 22.(1)()214312y x =--+;(2)铅球的落地点离运动员有10米远 【解析】(1)根据题意得A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点,故可将抛物线解析式设为顶点式,然后代入A 点坐标求解即可;(2)令0y =,求出x 的值,再根据B 点在x 轴正半轴求出B 点坐标,则OB 的长即为所求.【详解】解:(1)由题意得:A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点, ∥设抛物线的解析式为()243y a x =-+, ∥()250433a =-+, ∥112a =-, ∥抛物线解析式为()214312y x =--+; (2)令0y =,则()2104312x =--+, ∥()2436x -=, 解得10x =或2x =-(因为B 点在x 轴正半轴),∥B 点坐标为(10,0),∥OB=10∥铅球的落地点离运动员有10米远,答:铅球的落地点离运动员有10米远.【点睛】本题主要考查了求二次函数解析式,二次函数与x 轴的交点问题,解题的关键在于能够熟练掌握二次函数的相关知识.23.(1)t的值为1s或3241s;(2)t的值为78s.【解析】(1)根据勾股定理即可得到结论;分两种情况:∥当∥BPQ∥∥BAC时,∥当∥BPQ∥∥BCA 时,根据相似三角形的性质,把BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM∥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据∥ACQ∥∥CMP,得出AC:CM=CQ:MP,代入计算即可.【详解】解:(1)∥∥ACB=90°,AC=6cm,BC=8cm,(cm),分两种情况讨论:∥当∥BPQ∥∥BAC时,BP BQ BA BC=,∥BP=5t,QC=4t,AB=10,BC=8,∥584 108t t-=,解得,t=1,∥当∥BPQ∥∥BCA时,BP BQ BC BA=,∥584 810t t-=,解得,t=32 41,∥t=1s或3241s时,∥BPQ∥∥BCA;(2)过P作PM∥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,MC=8-4t,∥PM∥BC,∥ACB=90°,∥PM∥AC,∥∥BPM∥∥BAC,∥BP PM BM BA AC BC==,即51068t PM BM ==, ∥PM=3t ,BM=4t ,MC=8-4t ,∥∥NAC+∥NCA=90°,∥PCM+∥NCA=90°,∥∥NAC=∥PCM ,∥∥ACQ=∥PMC ,∥∥ACQ∥∥CMP , ∥AC CQ CM MP =, ∥64843t t t=-, 解得t=78. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,由三角形相似得出对应边成比例是解题的关键.24.(1)2y x 2x 3=-++;(2)24h ≤≤;(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【解析】 (1)根据对称性求得A 的坐标,进而待定系数法求二次函数解析式即可;(2)先求得BC 的解析式,再求得抛物线的顶点坐标,根据平移的特点求得h 的范围; (3)根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -,分P 点在x 轴的上方和下方两种情况讨论,证明MPQ ≌NBP △,根据6,MN PM PN PM BN =+==分别列出方程,解方程即可求解.【详解】解:(1)抛物线的对称轴为1x =,点B 坐标为(3,0)与y 轴交于点C ,∴(1,0)A -∥抛物线2:3L y ax bx =++过点(1,0),(3,0)A B -∥309330a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩ ∴抛物线L 的解析式为:2y x 2x 3=-++(2)抛物线L :2y x 2x 3=-++与y 轴交于点C()0,3C ∴()3,0B设直线BC 的解析式为y kx b =+将()3,0B ,()0,3C 代入303k b b +=⎧⎨=⎩解得13k b =-⎧⎨=⎩∴直线BC 的解析式为3y x =-+()222314y x x x =-++=--+∴顶点坐标为()1,4∴在直线BC 上,1x =时,2y = 平移后所得抛物线的顶点落在OBC 内(包括OBC 的边界),∴当2h =时,抛物线的顶点在直线BC 上,当4h =时,抛物线的顶点在x 轴上,即OB 上∴24h ≤≤(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭, 根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -, ∥当P 点在x 的上方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,∥PBQ △是以点P 为直角顶点的等腰直角三角形∥90,BPQ BP PQ ∠=︒=∥,PM MQ PN BN ⊥⊥∥90PMQ BNP ∠=∠=︒MPQ BPN NBP BPN ∴∠+∠=∠+∠MPQ NBP ∴∠=∠在MPQ 和NBP △中PMQ BNP MPQ NBP BP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MPQ ≌NBP △PM BN ∴=223PM BN m m ∴==-++()3,0B ,3PN m ∴=-,6MN PM PN =+=即22336m m m -+++-=解得121,0m m ==(1,4)P ∴或(0,3)∥当P 点在x 轴下方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,同理可得MPQ ≌NBP △PM BN ∴=()633PM m m ∴=--=+,223BN m m =--则2323m m m +=--解得12m m ==P ∴,⎝⎭⎝⎭综上所述P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【点睛】本题考查了二次函数综合,待定系数法求二次函数解析式,二次函数的的平移,等腰直角三角形的性质,全等三角形的性质与判定,坐标与图形,解一元二次方程,第(3)问中,分类讨论,作出辅助线是解题的关键.25.(1)每个电子产品的价格应该降价4元或6元;(2)该商场应该将该电子产品按照九折优惠销售;(3)当x =55时,w 有最大值,最大值为2250元.【解析】【分析】(1)设每个电子产品的价格应该降价x 元,根据每个电子产品的利润乘以销售量,得一元二次方程,求解即可;(2)由(1)所求得的降价额,结合问题的实际意义,可得应降价多少,从而可得打几折优惠;(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,根据题意列出函数关系式,写成顶点式,即可得问题的答案.【详解】解:(1)设每个电子产品的价格应该降价x 元,由题意得:(60﹣x ﹣40)(100+10x )=2240∥(x ﹣4)(x ﹣6)=0∥x 1=4,x 2=6∥每个电子产品的价格应该降价4元或6元.(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品可以降价6元销售:(60﹣6)÷60=0.9∥该商场应该将该电子产品按照九折优惠销售..(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,由题意得:w =(y ﹣40)[100+(60﹣y )×10]=(y ﹣40)(﹣10y+700)=﹣10y 2+1100y ﹣28000=﹣10(y ﹣55)2+2250∥二次项系数为﹣10<0∥当x =55时,w 有最大值,最大值为2250元.【点睛】本题考查了二次函数及一元二次方程在实际问题中的应用,明确成本利润问题的基本关系式及二次函数的性质,是解题的关键.26.(1)1,60︒;(2,45︒;(3)22+【解析】【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:∥如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题;∥如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .CA CB =,60ACB ∠=︒ABC ∴是等边三角形60CAB ∴∠=︒由旋转可得PA=PD ,∥APD=60°∥三角形PAD 是等边三角形60PAD CAB ∠=∠=︒,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ∴∠=∠=︒,1BDPC ∴=,线BD 与直线CP 相交所成的较小角的度数是60︒,故答案为1,60︒.(2)如图2中,,90CA CB ACB =∠=︒,将线段AP 绕点P 逆时针旋转90︒得到线段DP ,45,90,CAB CBA APD PA PD ∴∠=∠=︒∠=︒=,45PAD CAB ︒∴∠=∠=,,PAD CAB ∴△△是等腰直角三角形,,DA BA ∴==PAD DAC DAC CAB ∴∠+∠=∠+∠PAC DAB ∴∠=∠,AB AD AC AP ==DAB PAC ∴∆∆,PCA DBA ∴∠=∠,BDABPC AC ==,GHC AHB ∠=∠,45CGH HAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45EFC ABC ︒∴∠=∠=,45PAO ︒∠=,PAO OFH ∴∠=∠,POA FOH ∠=∠,H APO ∴∠=∠,90APC ︒∠=,EA EC =,PE EA EC ∴==,EPA EAP BAH ∴∠=∠=∠,H BAH ∴∠=∠,BH BA ∴=,45ADP BDC ︒∠=∠=,90ADB ︒∴∠=,BD AH ∴⊥,AD DH =∴90ACH ∠=︒12DC AH AD ∴== DA DC ∴=,设=AD a ,则DC AD a ==,2PD =,2AD CP ∴==如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,2PD =,PC a ∴=,2AD PC ∴== 综上所述,AD PC的值为22 【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
人教版2019届九年级(上)期中数学试卷(解析版)

人教版2018-2019学年九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.如图图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.下列运算正确的是()A.2x2•x3=2x5 B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x74.由中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4300000000人,这个数用科学记数法表示为()A.43×108B.4.3×109C.4.3×108D.4.3×10105.下列命题中,真命题是()A.圆周角等于圆心角的一半B.等弧所对的圆周角相等C.平分弦的直径垂直于弦D.过弦的中点的直线必经过圆心6.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1 7.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE =1:3,则S△DOE:S△AOC的值为()A.B.C.D.9.如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.计算:﹣= .12.函数y=的自变量x的取值范围是.13.分解因式:3a2﹣6ab+3b2= .14.将二次函数y=x2+6x+3化成顶点式y=a(x﹣h)2+k的形式.15.双曲线,当x>0时,y随x的增大而减小,则m= .16.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.18.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD= .19.菱形ABCD中∠A=60°,点E在直线BD上,直线AE交直线CD于F,CD=3DE,AF=6,则AE= .20.如图,正方形ABCD的顶点D在正方形ECGF的边EC上,顶点B在GC的延长线上,连接EG、BE,∠EGC的平分线GH过点D交BE于H,连接HF交EG于M,则的值为.三、解答题(21、22每题7分,23、24每题8分,25、26、27每题10分)21.先化简,再求代数式﹣2的值,其中x=3sin45°+2cos60°.22.图1,图2均为正方形网络,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)在图1中,画一个边长为整数的矩形,面积等于24,周长等于22.(2)在图2中,画一个有一个角是钝角的等腰三角形,且面积等于10.23.为推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图两个统计图,请根据相关信息,解答下列问题:(1)求本次抽样调查的学生的人数;(2)通过计算补全条形统计图;(3)若学校计划购买200双运动鞋,建议购买35号运动鞋约多少双?24.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.25.冬季将至,服装城需1100件羽绒服解决商场货源短缺问题,现由甲、乙两个加工厂生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,且加工生产480件羽绒服甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件羽绒服?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批羽绒服的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?26.已知,如图1,Rt△ABC中,∠C=90°,M为AB上的一点,MN⊥AC 于N,△AMN绕点A旋转得到△APQ,延长BC至点D,使CD=BC,延长PQ至点E,使QE=PQ,连接ED.BP.(1)求证:DE=BP;(2)如图2,连接PD,取PD中点F,连接CQ,FQ,若tan∠ABC=,则QC= QF.(3)如图3,在(2)的条件下,若AB=AM,AQ∥ED,CQ=12,求PD的长.27.已知:y=ax2﹣4ax交x轴于O、A两点,对称轴交x轴于点E,顶点为点D,若△AOD的面积为4.点P是x轴上方抛物线上一动点,作PH⊥x轴,垂足为H,连接PA,作直线HQ⊥PA交y轴于点Q,(1)求a的值.(2)在点P运动过程中,连接QD,若∠PAO=∠QDE,求HE的长度.(3)点Q关于AP的对称点为点K,若2HA=QH,求点P的坐标及KE的长.2018-2019学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D .【考点】正数和负数;绝对值.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C .2.如图图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个、第三个图形既是轴对称图形又是中心对称图形.故选C.3.下列运算正确的是()A.2x2•x3=2x5 B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.4.由中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4300000000人,这个数用科学记数法表示为()A.43×108B.4.3×109C.4.3×108D.4.3×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4300 000 000=4.3×109,故选:B.5.下列命题中,真命题是()A.圆周角等于圆心角的一半B.等弧所对的圆周角相等C.平分弦的直径垂直于弦D.过弦的中点的直线必经过圆心【考点】命题与定理.【分析】利用圆周角定理、垂径定理及其推理分别判断后即可确定正确的选项.【解答】解:A、同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,故错误,为假命题;B、等弧所对的圆周角相等,正确,为真命题;C、平分弦(不是直径)的直径垂直于弦,故错误,为假命题;D、过先的中点且垂直于弦的直线必经过圆心,故错误,为假命题,故选B.6.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.7.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°【考点】解直角三角形的应用-坡度坡角问题.【分析】根据正弦的定义进行解答即可.【解答】解:∵sin∠C=,∴AB=AC•sin∠C=100sin20°,故选:D.8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE =1:3,则S△DOE:S△AOC的值为()A .B .C .D .【考点】相似三角形的判定与性质.【分析】证明BE :EC=1:3,进而证明BE :BC=1:4;证明△DOE ∽△AOC ,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3; ∴BE :BC=1:4; ∵DE ∥AC , ∴△DOE ∽△AOC ,∴=,∴S △DOE :S △AOC ==,故选D .9.如图,圆O 的弦AB 垂直平分半径OC ,则四边形OACB 一定是( )A .正方形B .长方形C .菱形D .梯形【考点】垂径定理;菱形的判定.【分析】先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.【解答】解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.二、填空题(每题3分,共30分)11.计算:﹣= ﹣3.【考点】二次根式的加减法.【分析】直接化简二次根式进而合并求出答案.【解答】解:﹣=3﹣3×2=﹣3.故答案为:﹣3.12.函数y=的自变量x的取值范围是x≥3 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≥0且x﹣2≠0,解得x≥3且x≠2,所以,x≥3.故答案为:x≥3.13.分解因式:3a2﹣6ab+3b2= 3(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.14.将二次函数y=x2+6x+3化成顶点式y=a(x﹣h)2+k的形式y=(x+3)2﹣6 .【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式即可.【解答】解:y=x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6.故答案为:y=(x+3)2﹣6.15.双曲线,当x>0时,y随x的增大而减小,则m= ﹣2 .【考点】反比例函数的定义.【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:根据题意得:,解得:m=﹣2.故答案为﹣2.16.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A 的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为1:4 .【考点】位似变换.【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF的面积之比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.18.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.【考点】旋转的性质.【分析】设CD=x,由B′C′∥AB,可推得∠BAD=∠B′,由旋转的性质得:∠B=∠B′,于是得到∠BAD=∠B,AC=AC′=3,AD=BD=4﹣x,在直角△ADC中,由勾股定理可求得结论.【解答】解:设CD=x,∵B′C′∥AB,∴∠BAD=∠B′,由旋转的性质得:∠B=∠B′,AC=AC′=3,∴∠BAD=∠B,∴AD=BD=4﹣x,∴(4﹣x)2=x2+32,解得:x=.故答案为:.19.菱形ABCD中∠A=60°,点E在直线BD上,直线AE交直线CD于F,CD=3DE,AF=6,则AE= 4或8 .【考点】菱形的性质.【分析】有两种情形,画出图形,先证明△ABD、△BDC都是等边三角形,再根据平行线分线段成比例定理即可解决问题.【解答】解:①如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD,DC∥AB,∵∠DAB=60°,∴∠DCB=∠DAB=60°,∴△ABD,△BDC都是等边三角形,∴DC=DB,∵CD=3DE,∴DB=3ED,∵DF∥AB,∴==,∵AF=6,∴AE=4.②如图2中,由①可知BD=3DE,∵DF∥AB,∴==,∵AF=6,∴AE=8.故答案为4或820.如图,正方形ABCD的顶点D在正方形ECGF的边EC上,顶点B在GC的延长线上,连接EG、BE,∠EGC的平分线GH过点D交BE于H,连接HF交EG于M,则的值为+1 .【考点】正方形的性质.【分析】取EG中点O,连接OH,先证明△BCE≌△DCG推出HG⊥BE,再证明△BGH≌△EGH,推出OH是三角形中位线,设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,利用△DHN∽△DGC,得=,求出a、b之间的关系,最后由△EFM∽△OMH,得==,推出==即可解决问题.【解答】解:取EG中点O,连接OH∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG,∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,∴HG⊥BE,在△BGH和△EGH中,,∴△BGH≌△EGH,∴BH=EH,∵EH=HB,EO=OG,∴HO∥BG,HO=BG=EF,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1,∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴====,∴=+1.故答案为.三、解答题(21、22每题7分,23、24每题8分,25、26、27每题10分)21.先化简,再求代数式﹣2的值,其中x=3sin45°+2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先对括号内的式子进行通分相减,把除法转化为乘法,然后计算乘法即可化简,然后化简x的值,代入计算即可.【解答】解:原式=÷﹣2=•﹣2=x+1﹣2=x﹣1.当x=3sin45°+2cos60°=时,原式=.22.图1,图2均为正方形网络,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)在图1中,画一个边长为整数的矩形,面积等于24,周长等于22.(2)在图2中,画一个有一个角是钝角的等腰三角形,且面积等于10.【考点】勾股定理.【分析】(1)根据长方形的面积、周长公式,画一个长和宽为8和3的长方形即可;(2)根据勾股定理确定出三角形的腰长,再由钝角三角形的性质画出图形即可.【解答】解:(1)设该长方形的长为a,宽为b,则a+b=11,ab=24,显然a、b是关于x的一元二次方程x2﹣11x+28=0的两根,解方程x2﹣11x+28=0得到x1=8,x2=3,即a=8,b=3,所以该矩形的长为8,宽为3,如图1所示的矩形ABCD.(2)如图2所示,AC==5,BC=5,S△ABC=×4×5=10.23.为推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图两个统计图,请根据相关信息,解答下列问题:(1)求本次抽样调查的学生的人数;(2)通过计算补全条形统计图;(3)若学校计划购买200双运动鞋,建议购买35号运动鞋约多少双?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40;(2)40﹣12﹣10﹣8﹣4=6(人)补全条形统计图如下:(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.24.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.【考点】圆周角定理;勾股定理;等腰直角三角形.【分析】(1)连接OA,由BC是⊙O的直径,AD⊥BC,易得∠C=∠OAE=∠B,又由F是弧BC中点,可得∠BAF=∠CAF,继而证得AE平分∠DAO;(2)首先连接OF,易得OF∥AD,即可得DE:OE=AD:OF,然后由勾股定理求得AD,BD的长,继而求得答案.【解答】(1)证明:连接OA,∵BC是⊙O的直径,∴∠BAC=90°,∴∠C+∠B=90°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C,∵OA=OC,∴∠OAC=∠C,∴∠BAD=∠OAC,∵F是弧BC中点,∴∠BAF=∠CAF,∴∠DAE=∠OAE,即AE平分∠DAO;(2)解:连接OF,∵∠BOF=2∠BAF=∠BAC=90°,∴OF⊥BC,∵AD⊥BC,∴OF∥AD,∴DE:OE=AD:OF,∵AB=6,AC=8,∴BC==10,∴AD==,∴BD==,∴OD=OB﹣BD=5﹣=,∴DE:OE=:5=24:25,∴OE=×=.25.冬季将至,服装城需1100件羽绒服解决商场货源短缺问题,现由甲、乙两个加工厂生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,且加工生产480件羽绒服甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件羽绒服?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批羽绒服的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)先设乙工厂每天可加工生产x件,则甲工厂每天可加工生产1.5件,根据加工生产480件羽绒服甲工厂比乙工厂少用4天,列出方程,求出x 的值,再进行检验即可求出答案;(2)设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.【解答】解:(1)设乙工厂每天可加工生产x件,则甲工厂每天可加工生产1.5x 件,根据题意可得:=+4,解得:x=40,经检验,x=40是原方程的根,也符合题意,则1.5x=60,答:甲工厂每天可加工生产60件,乙工厂每天可加工生产40件;(2)设甲工厂加工生产y天,根据题意得:3y+2.4×≤60,解得:y≥10.答:至少应安排甲工厂加工生产10天.26.已知,如图1,Rt△ABC中,∠C=90°,M为AB上的一点,MN⊥AC 于N,△AMN绕点A旋转得到△APQ,延长BC至点D,使CD=BC,延长PQ至点E,使QE=PQ,连接ED.BP.(1)求证:DE=BP;(2)如图2,连接PD,取PD中点F,连接CQ,FQ,若tan∠ABC=,则QC= QF.(3)如图3,在(2)的条件下,若AB=AM,AQ∥ED,CQ=12,求PD的长.【考点】几何变换综合题.【分析】(1)作辅助线,构建两个全等三角形:△ADE和△ABP,根据垂直平分线性质定理得出:AB=AD,AP=AE和夹角相等,两三角形全等,则DE=BP;(2)证明△ACQ∽△ABP得,再利用已知的tan∠ABC=得出AC与AB的比,利用中位线QF与DE的关系得出最后结论;(3)作辅助线,构建直角三角形,设△AMN的两直角边分别为3a和4a,表示出AB、AD、DG、AQ的长,利用已知的CQ=12和(2)中的结论QC=QF,求出QF的长,在直角△AGD和直角△PDE运用勾股定理列等式求出PD的长.【解答】解:(1)如图1,连接AE、AD,∵AC⊥BD,AQ⊥PE,BC=BD,PQ=QE,∴AB=AD,AP=AE,∴∠BAC=∠PAQ,∠BAC=∠CAD,∠PAQ=∠EAQ,∴∠BAD=∠PAE,∴∠MAP=∠EAD,∴△ABP≌△ADE,∴BP=ED;(2)如图2,∵∠BAC=∠PAQ,∴∠BAC﹣∠PAN=∠PAQ﹣∠PAN,∴∠BAP=∠CAQ,∵△PAQ≌△MAN,∴,∵MN∥BC,∴,∴,∴△ACQ∽△ABP,∴,∵tan∠ABC=,∴设AC=3k,BC=4k,则AB=5k,∴,∵ED=PB=2QF,∴,∴QC=;故答案为:.(3)如图3,过D作QF的垂线,交QF的延长线于G,则∠QGD=90°,∵PQ=QE,PF=FD,∴FQ∥DE,ED=2FQ,∵AQ∥DE,∴A、Q、F在同一条直线上,且∠EQG=∠E=90°,∴四边形QGDE是矩形,由MN∥BC得∠AMN=∠ABC,∴tan∠AMN=tan∠ABC=,设AN=3a,MN=4a,则AM=5a,AD=AB=4a,∵CQ=12,∴QF=12×=10,ED=20,∵△PQF≌△DGF,∴FG=FQ=10,DG=PQ=NM=4a,∵AQ=AN=3a,在Rt△AGD中,AD2=AG2+DG2,(4a)2=(4a)2+(20+3a)2,11a2﹣24a﹣80=0(a﹣4)(11a+20)=0a 1=4,a2=﹣(舍去)在Rt△PED中,PD====4.27.已知:y=ax2﹣4ax交x轴于O、A两点,对称轴交x轴于点E,顶点为点D,若△AOD的面积为4.点P是x轴上方抛物线上一动点,作PH⊥x轴,垂足为H,连接PA,作直线HQ⊥PA交y轴于点Q,(1)求a的值.(2)在点P运动过程中,连接QD,若∠PAO=∠QDE,求HE的长度.(3)点Q关于AP的对称点为点K,若2HA=QH,求点P的坐标及KE的长.【考点】二次函数综合题.【分析】(1)根据三角形面积公式求出点D坐标,然后代入抛物线解析式即可求出a.(2)如图1中,设点P(m,﹣m2+2m),求出直线PA,HQ的解析式,得到点Q坐标(0,﹣2),根据tan∠QDE=tan∠PAO=,列出方程即可解决问题.(3)设QH交PA于点F,作FN⊥AO于N,由△OQH∽△FAH,以及在RT △OQH中利用勾股定理,想办法求出点F、点K坐标即可解决问题.【解答】解:(1)令y=0,则ax2﹣4ax=0,x=0或4.∴•OA•DE=4,∴DE=2,∴点D坐标(2,2)代入y=ax2﹣4ax,2=4a﹣8a,∴a=﹣.(2)如图1中,由(1)可知抛物线y=﹣x2+2x,设点P(m,﹣m2+2m),设直线PA为y=kx+b,把P(m,﹣m2+2m),A(4,0)代入得,解得,∴直线PA为y=﹣mx+2m,∵直线QH⊥PA,设直线HQ为y=x+b′,把H(m,0)代入得,b′=﹣2,∴OQ=2,∴tan∠QDE=tan∠PAO=,∴4﹣m=2(﹣m2+2m)m1=1,m2=4(舍)∴HE=1.(3)设QH交PA于点F,作FN⊥AO于N.∵∠HFA=∠HOQ,∠OHQ=∠FHA,∴△OQH∽△FAH,∴AF:OQ=AH:QH=:2,∴AF=,设HQ=x,则AH=x,在RT△OHQ中,22+(4﹣x)2=x,解得x=(或2舍弃不合题意),∴AH=,OH=,FH=,∵•FH•FA=•AH•FN,∴××=××FN,∴FN=1,HN==,∵点F坐标(1,1),点Q(0,﹣2)又∵K、Q关于点F对称,∴点K坐标(2,4),∵点E坐标(2,0)∴KE=4.。
人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。
一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。
人教版九年级上册期中数学试卷(含详细标准答案)(最新)

人教版九年级上册期中数学试卷练习题一、选择题.1、方程3x2﹣1=0地一次项系数是()A、﹣1B、0C、3D、12、方程x(x﹣1)=0地根是()A、x=0B、x=1C、x1=0,x2=1D、x1=0,x2=﹣13、抛物线y=2(x+1)2﹣3地对称轴是()A、直线x=1B、直线x=3C、直线x=﹣1D、直线x=﹣34、下列所述图形中,是中心对称图形地是()A、直角三角形B、平行四边形C、正五边形D、正三角形5、用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确地为()A、(x+3)2=1B、(x﹣3)2=1C、(x+3)2=19D、(x﹣3)2=196、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A、30°B、45°C、60°D、90°7、若关于x地方程x2+x﹣a+ =0有两个不相等地实数根,则实数a地取值范围是()A、a>2B、a≥2C、a≤2D、a<28、三角形两边地长是3和4,第三边地长是方程x2﹣12x+35=0地根,则该三角形地周长为()A、14B、12C、12或14D、以上都不对9、设二次函数y=(x﹣3)2﹣4图象地对称轴为直线l,若点M在直线l上,则点M地坐标可能是()A、(1,0)B、(3,0)C、(﹣3,0)D、(0,﹣4)10、二次函数y=ax2+bx+c(a≠0)地大致图象如图,关于该二次函数,下列说法错误地是()A、函数有最小值B、对称轴是直线x=C、当x<,y随x地增大而减小D、当﹣1<x<2时,y>0二、填空题:11、把方程2x2﹣1=5x化为一般形式是________.12、点P(﹣1,2)关于原点对称地点P′地坐标是________.13、若x=﹣1是一元二次方程x2+2x+a=0地一个根,那么a=________.14、请写出一个开口向上,且其图象经过原点地抛物线地解析式________.15、已知点A(,y1),B(﹣2,y2)都在二次函数y=(x﹣2)2﹣1地图象上,则y1与y2地大小关系是________.16、如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分地面积等于________.三、解答题17、解方程:x2﹣3x+2=0.已知二次函数y=﹣x2﹣2x,用配方法把该函数化为y=a(x﹣h)2+c地形式,并指出函数图象地对称轴和顶点坐标.19、已知x=1是关于x地一元二次方程x2+3x﹣m=0地一个根,求m地值和方程地另一个根.20、如图,在平面直角坐标系中,已知△ABC地三个顶点地坐标分别为(﹣1,1),B(﹣3,1),C(﹣1,4).(1)将△ABC绕点A顺时针旋转90°后得到△AB′C′,请在图中画出△AB′C′.(2)写出点B′、C′地坐标.21、如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B地左侧).(1)求A、B地坐标;(2)利用函数图象,写出y<0时,x地取值范围.22、向阳村2013年地人均收入为10000元,2015年人均收入为12100元,若2013年到2015年人均收入地年平均增长率相同.(1)求人均收入地年平均增长率;(2)2014年地人均收入是多少元?23、如图所示,一个农户要建一个矩形猪舍,猪舍地一边利用长为12m地房墙,另外三边用25m长地建筑材料围成,为了方便进出,在垂直于房墙地一边留一个1m宽地门.(1)所围成矩形猪舍地长、宽分别是多少时,猪舍面积为80m2?(2)为做好猪舍地卫生防疫,现需要对围成地矩形进行硬底化,若以房墙地长为矩形猪舍一边地长,且已知硬底化地造价为60元/平方米,请你帮助农户计算矩形猪舍硬底化需要地费用.24、一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF,其中D、E、F分别在BC、AB、AC上.(1)若设AE=x,则AF=________;(用含x地代数式表示)(2)要使剪出地矩形CDEF地面积最大,点E应选在何处?25、如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.(1)求抛物线地函数解析式;(2)设P为对称轴上一动点,求△APC周长地最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点地四边形是菱形,则点D地坐标为________.答案解析部分一、<b >选择题.</b>1、【答案】B 【考点】一元二次方程地定义【解析】【解答】解:3x2﹣1=0地一次项系数是0,故选:B.【分析】根据一元二次方程地一般形式,可得答案.2、【答案】C 【考点】解一元二次方程-因式分解法【解析】【解答】解:∵x(x﹣1)=0,∴x1=0,x2=1,故选择C.【分析】由题意推出x=0,或(x﹣1)=0,解方程即可求出x地值.3、【答案】C 【考点】二次函数地性质【解析】【解答】解:∵y=2(x+1)2﹣3,∴对称轴为直线x=﹣1,故选C.【分析】由抛物线解析式可求得答案.4、【答案】B 【考点】中心对称及中心对称图形【解析】【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.【分析】根据中心对称图形地定义对各选项分析判断即可得解.5、【答案】D 【考点】解一元二次方程-公式法【解析】【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.6、【答案】C 【考点】旋转地性质【解析】【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选C.【分析】先利用互余得到∠A=60°,再根据旋转地性质得CA′=CA,∠ACA′等于旋转角,然后判断△ACA′为等边三角形得到∠ACA′=60°,从而得到旋转角地度数.7、【答案】A 【考点】根地判别式【解析】【解答】解:根据题意得△=12﹣4×(﹣a+ )>0,解得a>2.故选A.【分析】根据判别式地意义得到△=12﹣4×(﹣a+ )>0,然后解不等式即可.8、【答案】B 【考点】三角形三边关系【解析】【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形地周长为3+4+5=12,故选B.【分析】易得方程地两根,那么根据三角形地三边关系,排除不合题意地边,进而求得三角形周长即可.9、【答案】B 【考点】二次函数地性质【解析】【解答】解:∵二次函数y=(x﹣3)2﹣4图象地对称轴为直线x=3,∴直线l上所有点地横坐标都是3,∵点M在直线l上,∴点M地横坐标为3,故选B.【分析】根据二次函数地解析式可得出直线l 地方程为x=3,点M在直线l上则点M地横坐标一定为3,从而选出答案.10、【答案】D 【考点】二次函数地性质【解析】【解答】解:A、由抛物线地开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x= ,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x地增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【分析】根据抛物线地开口方向,利用二次函数地性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数地增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴地下方,则y<0,从而判断D.二、<b >填空题:</b>11、【答案】2x2﹣5x﹣1=0 【考点】一元二次方程地定义【解析】【解答】解:2x2﹣1=5x化为一般形式是2x2﹣5x﹣1=0,故答案为:2x2﹣5x﹣1=0.【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)地a、b、c分别是二次项系数、一次项系数、常数项.12、【答案】(1,﹣2)【考点】关于原点对称地点地坐标【解析】【解答】解:点P(﹣1,2)关于原点对称地点P′地坐标是(1,﹣2).故答案为:(1,﹣2).【分析】根据关于原点对称地点地横坐标与纵坐标都互为相反数解答.13、【答案】1 【考点】一元二次方程地解【解析】【解答】解:将x=﹣1代入得:1﹣2+a=0,解得:a=1.故答案为:1.【分析】根据方程地根地定义将x=﹣1代入方程得到关于a地方程,然后解得a地值即可.14、【答案】y=x2+x 【考点】二次函数地性质【解析】【解答】解:设抛物线解析式为y=ax2+bx+c,∵抛物线开中向上,∴a>0,故可取a=1,∵抛物线过原点,∴c=0,∵对称没有限制,∴可取b=1,故答案为:y=x2+x.【分析】由开口方向可确定a 地符号,由过原点可确定常数项,则可求得其答案.15、【答案】y1<y2【考点】二次函数图象上点地坐标特征【解析】【解答】解:∵函数y=(x﹣2)2﹣1地对称轴为x=2,∴A(,y1),B(﹣2,y2)在对称轴左侧,∵抛物线开口向上,在对称轴左侧y随x地增大而减小,∵>﹣2,∴y1<y2.故答案为:y1<y2.【分析】先求得函数地对称轴为x=2,再判断A(,y1),B(﹣2,y2)在对称轴左侧,从而判断出y1与y2地大小关系.16、【答案】﹣1 【考点】旋转地性质,等腰直角三角形【解析】【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC= ,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD= BC=1,AF=FC′=sin45°AC′= AC′=1,∴图中阴影部分地面积等于:S△AFC′﹣S△DEC′= ×1×1﹣×(﹣1)2= ﹣1.故答案为:﹣1.【分析】根据题意结合旋转地性质以及等腰直角三角形地性质得出AD= BC=1,AF=FC′=sin45°AC′= AC′=1,进而求出阴影部分地面积.三、<b >解答题</b>17、【答案】解:∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2.【考点】解一元二次方程-因式分解法【解析】【分析】把方程地左边利用十字相乘法因式分解为(x﹣1)(x﹣2),再利用积为0地特点求解即可.18、【答案】解:y=﹣x2﹣2x,=﹣(x2+2x)=﹣(x2+2x+1﹣1)=﹣(x+1)2+1即对称轴是直线x=﹣1,顶点坐标是(﹣1,1)【考点】二次函数地三种形式【解析】【分析】先配方,得到二次函数地顶点坐标式,即可直接写出其对称轴和顶点坐标.19、【答案】解:∵x=1是方程地根,∴1+3﹣m=0,∴m=4,设另一个根为x2,则1+x2=﹣3,∴x2=﹣4,∴m地值是4,另一个根是x=﹣4 【考点】一元二次方程地解,根与系数地关系【解析】【分析】由于x=1是方程地一个根,直接把它代入方程即可求出m地值,然后根据根与系数地关系可以求出方程地另一根.20、【答案】(1)解:如图,△AB′C′为所求;(2)解:B′(﹣1,3)、C′(2,1)【考点】坐标与图形变化-旋转【解析】【分析】(1)利用网格特点和旋转地性质画出点B、C地对应点B′、C′,从而得到△AB′C′;(2)利用(1)中画出地图形写出点B′、C′地坐标.21、【答案】(1)解:令y=0,即x2+x﹣6=0 解得x=﹣3或x=2,∵点A在点B地左侧∴点A、B地坐标分别为(﹣3,0)、(2,0)(2)解:∵当y<0时,x地取值范围为:﹣3<x<2【考点】二次函数地性质,抛物线与x轴地交点【解析】【分析】(1)令y=0代入y=x2+x﹣6即可求出x地值,此时x地值分别是A、B两点地横坐标.(2)根据图象可知:y <0是指x轴下方地图象,根据A、B两点地坐标即可求出x地范围.22、【答案】(1)解:设人均收入地年平均增长率为x,依题意,得10000(1+x)2=12100,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去),答:人均收入地年平均增长率为10%(2)解:2014年地人均收入为:10000(1+x)=10000(1+0.1)=11000(元)【考点】一元二次方程地应用【解析】【分析】(1)经过两次增长,求年平均增长率地问题,应该明确原来地基数,增长后地结果.设人均收入地年平均增长率为x,则经过两次增长以后人均收入为10000(1+x)2万元,即可列方程求解;(2)利用求得地百分率,进一步求得2014年地人均收入即可.23、【答案】(1)解:设矩形猪舍垂直于房墙地一边长为xm,则矩形猪舍地另一边长为(26﹣2x)m.依题意,得x(26﹣2x)=80,解得x1=5,x2=8.当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12.答:矩形猪舍地长为10m,宽为8m(2)解:若以房墙地长为矩形猪舍一边地长,则26﹣2x=12,解得x=7,∴垂直于房墙地一边长为7m,∴矩形猪舍地面积为:12×7=84(m2),∴矩形猪舍硬底化地造价为:84×60=5040(元).答:矩形猪舍硬底化地造价是5040元【考点】一元二次方程地应用【解析】【分析】(1)设矩形猪舍垂直于房墙地一边长为xm,则矩形猪舍地另一边长为(26﹣2x)m,根据猪舍面积为80m2,列出方程并解答;(2)若以房墙地长为矩形猪舍一边地长,可得垂直于房墙地一边长为7m,再根据矩形地面积公式得到矩形猪舍地面积,再根据总价=单价×数量可求矩形猪舍硬底化地造价.24、【答案】(1)x(2)解:∵四边形CDEF是矩形,∴∠AFE=90°,∵∠A=30°,∴EF=AE= x,在Rt△ABC中,∠C=90°,AB=12,∴BC= AB=6,根据勾股定理得:AC= =6 ,∴CF=AC﹣AF=6 ﹣x,∴S矩形CDEF=CF•EF= x(6 ﹣x)=﹣(x﹣6)2+9 ,∴当x=6时,矩形CDEF地面积最大,即当点E为AB地中点时,矩形CDEF地面积最大.【考点】二次函数地最值,矩形地性质,相似三角形地应用【解析】【解答】解:(1)在Rt△ABC中,∠A=30°,∠C=90°,AE=x,∴EF= x,根据勾股定理得:AF= x;故答案为:x;【分析】(1)在直角三角形中,利用30度所对地直角边等于斜边地一半表示出EF,再利用勾股定理表示出AF即可;(2)利用30度所对地直角边等于斜边地一半表示出BC,进而利用勾股定理表示出AC,由AC﹣AF表示出CF,根据CF与EF乘积列出S与x地二次函数解析式,利用二次函数性质确定出面积地最大值,以及此时x地值即可.25、【答案】(1)解:抛物线与x轴交于点A、B,且AB=2,根据对称性,得AM=MB=1,∵对称轴为直线x=2,∴OA=1,OB=3,∴点A、B地坐标分别为(1,0)、(3,0),把A、B两点坐标代入y=x2+bx+c,得到,解得,∴抛物线地解析式为:y=x2﹣4x+3(2)解:如图1中,连结BC,与对称轴交点则为点P,连接AP、AC.由线段垂直平分线性质,得AP=BP,∴CB=BP+CP=AP+CP,∴AC+AP+CP=AC+BC,根据“两点之间,线段最短”,得△APC周长地最小,∵C为(0,3)∴OC=3,在Rt△AOC中,有AC== ,在Rt△BOC中,有BC= =3 ,∴△APC地周长地最小值为:+3 (3)(2,﹣1)【考点】二次函数地图象,二次函数地性质,待定系数法求二次函数解析式【解析】【解答】解:(3)如图2中,当点D为抛物线地顶点时,EM=DM时,以点A、B、D、E为顶点地四边形是菱形,此时点D(2,﹣1)故答案为D(2,﹣1).【分析】(1)首先确定A、B两点坐标,利用待定系数法即可解决问题.(2)如图1中,连结BC,与对称轴交点则为点P,连接AP、AC.由线段垂直平分线性质,得AP=BP,推出CB=BP+CP=AP+CP,AC+AP+CP=AC+BC,根据“两点之间,线段最短”,得△APC周长地最小,求出AC、BC地长即可.(3)观察图象可知当点D在抛物线地顶点时,可得以点A、B、D、E为顶点地四边形为菱形,由此即可求出点D坐标.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.IAg9qLsgBX用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.WwghWvVhPEUsers may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.asfpsfpi4k转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.ooeyYZTjj1Reproduction or quotation of the content of this article mustbe reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.BkeGuInkxI。
九年级数学上学期期中试题(扫描版) 新人教版-2019word版可打印

∴BC=2DF=2 .--------------------10分
21.
题号
1
2
3
4
5
6
7
8
答案
B
C
A
CALeabharlann BDB二、填空题(本大题共6个小题,每小题3分,共18分.)
9. 10. 18
11. 12.
13. 50 14. (2,4﹣2)
解答题:本大题共7个小题,共78分,解答应写出必要的文字说明、证明过程或演算步骤
15.(本题12分,每题6分)
=
(2)
解:∵DE∥BC,
∴△ADE∽△ABC,
在Rt△AED中,∠ADE=α=43º
那么tanα所以,AE=DEtan43º =10×0.9325=9.325-------6分
所以,AB=AE+EB =9.325+1.5=10.825≈10.8(米)-------7分
18.解:(1)∵∠BOE=60° ∴∠A =∠BOE = 30°------2分
(2)在△ABC中 ∵ ∴∠C=60°
又∵∠A =30°
∴∠ABC=90°∴ ∴BC是⊙的切线---------6分
(3)∵点M是的中点 ∴OM⊥AE 在Rt△ABC中 ∵
∴AB=6 ∴OA=
∴OD= ∴MD=---------10分
19
解:过点B作BD⊥AC于D.
由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,
∵钟面显示3点45分时,A点距桌面的高度为16公分,
∴A′C=16,
∴AO=A′O=6,-----3分
则钟面显示3点50分时,
【2019最新】九年级数学上学期期中试题 新人教版

【2019最新】九年级数学上学期期中试题新人教版(全卷三个大题,共25个小题;满分120分,考试时间90分)温馨提示:请把选择题和填空题正确答案填写在第3页的答题栏内!一.选择题:(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在第3页答题栏内.每小题选对得3分,错选、不选或多选均记0分,满分36分.)1.下列方程是一元二次方程的是( )A.012=+x B.12=+xy C. 012=+x D. 112=+xx2.一元二次方程0)1(=-xx的解是()A.0=x B.1=x C. 0=x或1-=x D. 0=x或1=x3.已知关于x的一元二次方程22x m x-=有两个不相等的实数根,则m的取值范围是( ) A.m>-1 B.m<-2 C.m≥0 D.m<04.抛物线3)2(2+-=xy的对称轴是()A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x5.二次函数()20y ax bx c a=++≠)图象如图所示,现有下列结论:①b2-4a c>0 ②a>0③b>0 ④c>0 ⑤4a+2b+c<0,则其中结论正确的个数是( )A、2个B、3个C、4个D、5个6.如图所示的图形中,既是轴对称图形又是中心对称图形的是( )7.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x-1)2-2 B.y=3(x+1)2-2 C.y=3(x+1)2+2 D.y=3(x-1)2+28.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2)B. (2,3) C.(-2,-3)D.(2,-3)9.如图所示,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30° C.60° D.75°第5题图第9题图1 / 710.下列命题错误..的是( ) A .经过三个点一定可以作圆B .三角形的外心到三角形各顶点的距离相等C .同圆或等圆中,相等的圆心角所对的弧相等D .经过切点且垂直于切线的直线必经过圆心11.二次函数y=x 2-4x+3 的图像交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积是( )A .4B .6C .3D .112.如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为( ) A.152 B.154 C.8 D.10二.填空题:(本大题共 6个小题,将每小题的最后结果填入第3页答题栏内,填对得4分,满分24分.)13.一个直角三角形的两条直角边的长是方程x 2-7x +12=0的两个根,则此直角三角形的周长为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省南阳市唐河县2018届九年级数学上学期期中试题
2017年秋期期中九年级学业水平测试
数学试题参考答案及评分标准
一、选择题(每小题3分,共30分)
1.C 2.D 3.C 4.B 5.A 6.B 7.B 8.C 9.A 10.D 二、填空题(每小题3分,共15分)
11.12+ 12.
54 13.-5 14.12=x ,2
33=y ,α=83°. 15.16∶9 三、解答题(共75分) 16.(8分)解:①3152-= ()()()
3153153152+-+ ………………………… 2分 ()9
153152-+= ………………………… 3分 3
315+=; ………………………… 4分 ②7325
+7327
12+-=
………………………… 5分 ()()()()732732732
732712712+-+=+-+= … 7分
732-=. ………………………… 8分
17.(每小题5分,共10分)
(1)解:方法一:(配方法)
移项得:142-=-x x ……………………………… 1分
配方得:41442+-=+-x x ………………………………2分 即3)2(2=-x ………………………………………3分 开方得:32±=-x ……………………………………… 4分
∴原方程的解是:321+=x ,322-=x . ……………………5分
方法二:(公式法)
∵a=1,b=-4,c=1
∴b 2-4ac =(-4)2-4×1×1=12,……………………………2分
∴ ()1
2124242⨯±--=-±-=a ac b b x ……………………………4分 ∴x 1=2+3,x 2=2- 3. ………………………………………5分
(2)22x +x -6=0.
(2)解:方法一:左边分解因式()()0232=+-x x …………………………………2分 02032=+=-x x 或 ……………………………………4分 2
3,221=-=x x …………………………………………5分 方法二:∵a=2,b=1,c=-6
∴b 2-4ac =1-4×2×(-6)=49>0,……………………………2分
∴ 2
271242⨯±-=-±-=a ac b b x …………………………………4分 ∴ 23,221=
-=x x ………………………………………………5分 18.(8分)
解:(1)因为一元二次方程0222=++m x x 有个不相等的实数根,
所以08442>-=-=∆m ac b …………………… 2分 解得:2
1<m . 故m 的取值范围为21<
m . …………………… 3分 (2)根据根与系数的关系得:221-=+x x ,m x x 221=⋅, …………………… 5分 8442)(212212221=-=-+=+m x x x x x x …………………… 6分
所以1-=m , …………………… 7分
验证当1-=m 时0>∆.
故m 的值为1-=m . …………………… 8分
19. 参照课本P 62-P 63的内容方法,合理给分即可。
20.(本大题满分9分)
(1)利用△CDE ∽△CGF …………………………………………………… 2分
C D D E C G F G =, 2 1.62DG a =+
524G D a =
- ………………………………………………………………4分
(2)在直角△AFG 中,∠A =30°, 564
AG FG =+ …………………………5分
0t a n t a n 3056456412.5FG
A AG
FG FG FG FG FG ==+=+≈
答:旗杆FG 的高度约12.5米.……………………………………………… 9分
21.解:(1)x 20600- ………………………………………………………… 2分
(2)方法一:
设每个台灯降价x 元.
根据题意,得8400)600200)(3040(=+--x x ………………………5分
2x -7x +12=0 解得31=x ,42=x .
当3=x 时,37340=-,12101200600200)3740(<=+⨯-;
当4=x 时,36340=-,12101400600200)3640(>=+⨯-(舍);
答:每个台灯的售价为37元. ………………………………… 8分
方法二:设每个台灯的售价为x 元.
根据题意,得[]8400600200)40()30(=+⨯--x x ………………………5分
2x -73x +1332=0
解得361=x ,372=x .
当36=x 时,12101400600200)3640(>=+⨯-(舍); 当37=x 时,12101200600200)3740(<=+⨯-;
答:每个台灯的售价为37元. ………………………………………8分
(3)38元;……………………………………………………………… 9分
50元.……………………………………………………………… 10分
提示:若降价x 元,根据题意,8000)600200)(3040(=+--x x
2x -7x +10=0 解得21=x ,52=x (舍). 3824040=-=-x
【若降价,设每个台灯的售价为x 元得[]8000600200)40()30(=+⨯--x x 2
x -73x +1330=0解得351=x (舍),382=x . 】
若上涨x 元,根据题意,得[]800020600)3040(=--+x x 2x -20x +100=0解得1021==x x (舍),50104040=+=+x
22.解:(1)△CDP∽△PAE.
证明:∵四边形ABCD 是矩形,
∴∠D=∠A=90°,CD=AB=6,
∴∠PCD+CPD=90°,
∵∠CPE=90°, ∴∠APE+∠CPD=90°,
∴∠APE=∠PCD,
∴△CDP∽△PAE;…………………………………………………… 4分
(2)假设存在满足条件的点P ,设DP=x ,则AP=AD -DP=11-x ,……………5分
∵△CDP∽△PAE,
∴
=2,…………………………………………………………… 6分
∴=2,…………………………………………………… 7分
解得:x =8,…………………………………………………… 8分
∴AP=3,AE=4,
即DP=8.……………………………………………………… 9分
【点评】此题考查了相似三角形的判定与性质以及矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
23.解:(1)3,……………………………………………………………………1分
分别为 △ABC∽△ACD,△ABC∽△CBD , △ACD∽△CBD ………………… 2分
(2) 解法一:在△ABC 中,︒=∠90ACB ,AB=10,AC=8,BC=
=-22AC AB 6, ∵S△ABC=CD AB BC AC ⋅=⋅2
121 ∴ 6×8=10·CD
∴CD=4.8 ………………………………………………………… 5分
解法二:在△ABC 中,AB=10,AC=8,︒=∠90ACB ∴BC=
=-22AC AB 6,
由(1)可知△ABC∽△ACD ∴
AB
AC BC CD = ∴1086=CD ∴CD=4.8 ………………………………………………………………… 5分
解法三:在△ABC 中,AB=10,AC=8,︒=∠90ACB ∴BC==-22AC AB 6,
10
86sin ⨯=⋅=∠=AB AC BC B BC CD =4.8…………………………… 5分 (3)存在点P ,使△BPQ 与△ABC 相似,理由如下:
在△BOC 中,∠BOC=90°,OB==-22CO BC 3.6
(i )当∠BQP=90°时,(如图)易得△PQB∽△ABC
∴BC BQ AB BP = ∴6
106t t =-………………………… 6分 解得:t=2.25(或4
9=t )即BQ=CP=2.25 …………………………………………7分
∴OQ=1.35,BP=3.75
在△BPQ 中,PQ==-22BQ BP 3 ∴点P 的坐标为(1.35,3)…………………………………………… 8分 (ii )当∠BPQ=90°时,(如图)易得△QPB∽△ABC
∴
AB
BQ BC BP = ∴1066t t =- ……………………………………………………………… 9分 x
解得:t=3.75(或4
15=t )即BQ=CP=3.75,BP=2.25………………10分 过点P 作PD⊥x 轴于点D ,
∵△QPB∽△ABC ∴
AB
BQ CO PD = ∴1075.38.4=PD ∴PD=1.8
在△BPD 中,BD==-22BD BP 0.45
∴OD=3.15
∴点P 的坐标为(3.15,1.8)…………………………………………11分 综上可得:点P 的坐标为(1.35,3)或(3.15,1.8)。