三角恒等变形 基础知识检测

合集下载

高三数学(理)一轮复习第六章三角恒等变形训练题

高三数学(理)一轮复习第六章三角恒等变形训练题

高三数学(理)一轮复习第六章三角恒等变形第一节 同角三角函数的基本关系A 组1.已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于________. 解析:∵α、β均为锐角,∴-π2<α-β<π2,∴cos(α-β)=1-sin 2(α-β)=31010.∵sin α=55,∴cos α= 1-(55)2=255.∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22.∵0<β<π2,∴β=π4.答案:π42.已知0<α<π2<β<π,cos α=35,sin(α+β)=-35,则cos β的值为________.解析:∵0<α<π2,π2<β<π,∴π2<α+β<32π.∴sin α=45,cos(α+β)=-45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=(-45)×35+(-35)×45=-2425.答案:-24253.如果tan α、tan β是方程x 2-3x -3=0的两根,则sin(α+β)cos(α-β)=________.解析:tan α+tan β=3,tan αtan β=-3,则sin(α+β)cos(α-β)=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=31-3=-32.答案:-324.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是___.解析:由已知得32cos α+12sin α+sin α=453,即12cos α+32sin α=45,得sin(α+π6)=45,sin(α+76π)=-sin(α+π6)=-45.答案:-455.(原创题)定义运算a b =a 2-ab -b 2,则sin π12 cos π12=________.解析:sin π12 cos π12=sin 2π12-sin π12cos π12-cos 2π12=-(cos 2π12-sin 2π12)-12×2sin π12cos π12=-cos π6-12sin π6=-1+234.答案:-1+2346.已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.解:(1)因为sin α2+cos α2=62,两边同时平方得sin α=12.又π2<α<π.所以cos α=-32. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×(-35)=-43+310.B 组1.cos2α1+sin2α·1+tan α1-tan α的值为________.解析:cos2α1+sin2α·1+tan α1-tan α=cos 2α-sin 2α(sin α+cos α)2·1+tan α1-tan α=cos α-sin αsin α+cos α·1+tan α1-tan α=1-tan α1+tan α·1+tan α1-tan α=1. 2.已知cos(π4x )=35,则sin2x -2sin 2x 1-tan x的值为________.解析:∵cos(π4+x )=35,∴cos x -sin x =352,∴1-sin2x =1825,sin2x =725,∴sin2x -2sin 2x 1-tan x =2sin x (cos x -sin x )cos x -sin x cos x=sin2x =725.3.已知cos(α+π3)=sin(α-π3),则tan α=________.解析:cos(α+π3)=cos αcos π3-sin αsin π3=12cos α-32sin α,sin(α-π3)=sin αcos π3cos αsin π3=12sin α-32cos α,由已知得:(12+32)sin α=(12+32)cos α,tan α=1.4.设α∈(π4,3π4),β∈(0,π4),cos(α-π4)=35,sin(3π4+β)=513,则sin(α+β)=________.解析:α∈(π4,3π4),α-π4(0,π2,又cos(α-π4)=35,∴sin(α-π4)=45.∵β∈(0,π4),∴3π4+β∈(3π4,π).∵sin(3π4+β)=513,∴cos(3π4+β)=-1213,∴sin(α+β)=-cos[(α-π4)+(3π4+β)]=-cos(α-π4)·cos(3π4+β)+sin(α-π4)·sin(3π4+β)=-35×(-1213)+45×513=5665,即sin(α+β)=5665.5.已知cos α=13,cos(α+β)=-13,且α,β∈(0,π2),则cos(α-β)的值等于________.解析:∵α∈(0,π2),∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-79,∴sin2α=1-cos 22α=429,而α,β∈(0,π2),∴α+β∈(0,π),∴sin(α+β)=1-cos 2(α+β)=223,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=(-79×(-13)+429×223=2327.6.已知角α在第一象限,且cos α=35,则1+2cos(2α-π4)sin(α+π2)=________.解析:∵α在第一象限,且cos α=35,∴sin α=45,则1+2cos(2α-π4)sin(α+π2)=1+2(22cos2α+22sin2α)cos α=2cos 2α+2sin αcos αcos α=2(sin α+cos α)=2(45+35)=145.7.已知a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π4)的值为________.解析:a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=35,又α∈(π2,π),∴cos α=-45,tan α=-34,∴tan(α+π4)=tan α+11-tan α=17. 8.tan10°tan70°tan70°-tan10°+tan120°的值为______. 解析:由tan(70°-10°)=tan70°-tan10°1+tan70°·tan10°=3,故tan70°-tan10°=3(1+tan70°tan10°),代入所求代数式得:tan70°tan10°3(1+tan70°tan10°)+tan120°=tan70°tan10°3(1+tan70°tan10°)-3=tan70°tan10°3tan70°tan10°=33.9.已知角α的终边经过点A (-1,15),则sin(α+π4)sin2α+cos2α+1的值等于________.解析:∵sin α+cos α≠0,cos α=-14,∴sin(α+π4)sin2α+cos2α+1=24cos α=- 2.10.求值:cos20°sin20°·cos10°+3sin10°tan70°-2cos40°.解:原式=cos20°cos10°sin20°+3sin10°sin70°cos70°-2cos40°=cos20°cos10°+3sin10°cos20°sin20°-2cos40°=cos20°(cos10°+3sin10°)sin20°-2cos40°=2cos20°(cos10°sin30°+sin10°cos30°)sin20°-2cos40°=2cos20°sin40°-2sin20°cos40°sin20°=2.11.已知向量m =(2cos x 2,1),n =(sin x2,1)(x ∈R ),设函数f (x )=m ·n -1.(1)求函数f (x )的值域;(2)已知锐角△ABC 的三个内角分别为A ,B ,C ,若f (A )=513,f (B )=35,求f (C )的值.解:(1)f (x )=m ·n -1=(2cos x 2,1)·(sin x 2,1)-1=2cos x 2sin x2+1-1=sin x .∵x ∈R ,∴函数f (x )的值域为[-1,1].(2)∵f (A )=513,f (B )=35,∴sin A =513,sin B =35.∵A ,B 都为锐角,∴cos A =1-sin 2A =1213,cos B =1-sin 2B =45.∴f (C )=sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =513×45+1213×35=5665∴f (C )的值为5665. 12.已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)求cos(α+π4)的值.解:(1)法一:∵cos(β-π4)=cos π4cos β+sin π4sin β=22cos β+22sin β=13,∴cos β+sin β=23,∴1+sin2β=29,∴sin2β=-79.法二:sin2β=cos(π2-2β)=2cos 2(β-π4)-1=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0.∵cos(β-π4)=13,sin(α+β)=45,∴sin(β-π4)=223cos(α+β)=-35.∴cos(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)=-35×13+45×223=82-315.第二节 两角和与差及二倍角的三角函数A 组1.若sin α=35α∈(-π2,π2),则cos(α+5π4)=________.解析:由于α∈(-π2,π2),sin α=35得cos α=45,由两角和与差的余弦公式得:cos(α+5π4)=-22(cos α-sin α)=-210. 2.已知π<θ<32π,则 12+12 12+12cos θ=________.解析:∵π<θ<3π2,∴π2<θ23π4,π4<θ4<3π812+12 12+12cos θ= 12+12 cos 2θ2=12-12cos θ2=sin θ4. 3.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 4.函数y =2cos 2x +sin2x 的最小值是__________________.解析:y =2cos 2x +sin2x =sin2x +1+cos2x =sin2x +cos2x +1=2sin(2x +π4)+1≥1- 2.5.函数f (x )=(sin 2x +12010sin 2x )(cos 2x +12010cos 2x )的最小值是________. 解析:f (x )=(2010sin 4x +1)(2010cos 4x +1)20102sin 2x cos 2x=20102sin 4x cos 4x +2010(sin 4x +cos 4x )+120102sin 2x cos 2x=sin 2x cos 2x +201120102sin 2x cos 2x -22010≥22010(2011-1). 6.已知角α∈(π4,π2),且(4cos α-3sin α)(2cos α-3sin α)=0.(1)求tan(α+π4)的值;(2)求cos(π3-2α)的值.解:∵(4cos α-3sin α)(2cos α-3sin α)=0,又α∈(π4,π2),∴tan α=43sin α=45,cos α=35,(1)tan(α+π4)=tan α+tan π41-tan αtan π4=43+11-437.(2)cos2α=2cos 2α-1=-725,sin2α=2sin αcos α=2425cos(π3-2α)=cos π3cos2α+sin π3sin2α=12×(-725)+32×2425=243-750.B 组1.若tan(α+β)=25,tan(β-π4=14,则tan(α+π4)=_____.解析:tan(α+π4)=tan[(α+β)-(β-π4=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=25-141+25×14=322.2.若3sin α+cos α=0,则1cos 2α+sin2α________.解析:由3sin α+cos α=0得cos α=-3sin α,则1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α=9sin 2α+sin 2α9sin 2α-6sin 2α=103.3.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是解析:a =2sin59°,c =2sin60°,b =2sin61°,∴a <c <b .或a 2=1+sin28°<1+12=32,b 2=1+sin32°>1+12=32,c 2=32,∴a <c <b .4.2+2cos8+21-sin8的化简结果是________.解析:原式=4cos 24+2(sin4-cos4)2=|2cos4|+2|sin4-cos4|=-2sin4.5.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为_________.解析:由题意知,tan α=3,sin(2α+π4)=22(sin2α+cos2α),而sin2α=2tan α1+tan 2α=35,cos2α=1-tan 2α1+tan 2α=-45.∴sin(2α+π4)=22(35-45)=-210. 6.若函数f (x )=sin2x -2sin 2x ·sin2x (x ∈R ),则f (x )的最小正周期为________.解析:f (x )=sin2x (1-2sin 2x )=sin2x cos2x =12sin4x ,所以T =2π4=π2.7. 2cos5°-sin25°cos25°的值为________.解析:由已知得:原式=2cos(30°-25°)-sin25°cos25°=3cos25°cos25°= 3.8.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________________.解析:|a -2b |2=(cos10°-2cos70°)2+(sin10°-2sin70°)2=5-4cos10°cos70°-4sin10°sin70°=5-4cos60°=3,∴|a -2b |= 3.9.已知1-cos2αsin αcos α=1,tan(β-α)=-13,则tan(β-2α)=________.解析:因为1-cos2αsin αcos α=1,即1-1-tan 2α1+tan 2α=12×2tan α1+tan 2α,所以2tan α=1,即tan α=12,所以tan(β-2α)=tan(β-α-α)=tan(β-α)-tan α1+tan(β-α)tan α=-13-121-16=-1.10.已知tan α=2.求(1)tan(α+π4)的值;(2)sin2α+cos 2(π-α)1+cos2α的值.解:(1)∵tan(α+π4)=1+tan α1-tan α,tan α=2,∴tan(α+π4)=1+21-2=-3.(2)sin2α+cos 2(π-α)1+cos2α=2sin αcos α+cos 2α2cos 2α=2sin α+cos α2cos α=tan α+12=5211.如图,点A ,B 是单位圆上的两点,A ,B 两点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°.=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435.12.△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos Bsin(B -A )=cos C .(1)求角A ,C .(2)若S △ABC=3+3,求a ,c .解:(1)因为tan C =sin A +sin B cos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B,所以sin C cos A +sin C cos B =cos C sin A +cos C sin B , 即sin C cos A -cos C sin A =cos C sin B -sin C cos B , 得sin(C -A )=sin(B -C ),所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6或B -A =5π6(舍去),得A =π4B =5π12.故A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即 a 22=c32,得a =22,c =2 3.。

三角恒等变形-练习题

三角恒等变形-练习题

三角恒等变形-练习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--3-1-1两角差的余弦公式一、选择题1.cos39°cos9°+sin39°sin9°等于( )C .-12D .-32 2.cos555°的值为( ) B .-6+243.已知α∈⎝⎛⎭⎫0,π2,sin α=45,则cos ⎝⎛⎭⎫π4-α等于( )2C .-210D .-254.若sin α·sin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1 D .-1 5.cos75°+cos15°的值是( )6.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( )A .sin2xB .cos2yC .-cos2xD .-cos2y7.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( ) A .-558.cos π12+3sin π12的值为( ) A .- 29.已知sin ⎝⎛⎭⎫π6+α=35,π3<α<5π6,则cos α的值是( )10.已知sin α+sin β=45,cos α+cos β=35,则cos(α-β)的值为( ) D .-12 二、填空题11.cos α=35,cos β=513,sin α=-45,sin β=1213,则cos(α-β)=________.12.cos(61°+2α)cos(31°+2α)+sin(61°+2α)sin(31°+2α)=________.13.已知cos ⎝⎛⎭⎫α-π3=cos α,则tan α=________.14.化简2cos10°-sin20°cos20°=________. 三、解答题 15.求值:(1)sin285°;(2)sin460°sin(-160°)+cos560°cos(-280°). 16.已知sin α=13,α∈⎝⎛⎭⎫0,π2,cos β=27,β是第四象限角,求cos(α-β)的值.17.设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.18.若α,β为锐角,且cos α=45,cos(α+β)=-1665,求cos β的值.3-1-2-1两角和与差的正弦、余弦一、选择题1.下列等式成立的是( )A .cos80°cos20°-sin80°sin20°=12 B .sin13°cos17°-cos13°sin17°=12 C .sin70°cos25°+sin25°sin20°=22 D .sin140°cos20°+sin50°sin20°=32 2.cos 5π12的值等于( )3.在△ABC 中,已知sin(A -B )·cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰非直角三角形sin ⎝⎛⎭⎫π4-x +6sin ⎝⎛⎭⎫π4+x 的化简结果是( ) A .22sin ⎝⎛⎭⎫5π12+x B .22sin ⎝⎛⎭⎫x -5π12C .22sin ⎝⎛⎭⎫7π12+xD .22sin ⎝⎛⎭⎫x -7π12 5.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a6.已知cos(α+β)=45,cos(α-β)=-45,则cos αcos β的值为( )A .0 C .0或45 D .0或±457.若α、β均为锐角,sin α=255,sin(α+β)=35,则cos β等于( )或2525 D .-2525 8.若α、β为两个锐角,则( )A .cos(α+β)>cos α+cos βB .cos(α+β)<cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<sin α+sin β9.若sin α-sin β=1-32,cos α-cos β=-12,则cos(α-β)的值是( )D .110.(2012·重庆)sin47°-sin17°cos30°cos17°( ) A .-32 B .-12 二、填空题11.化简:cos(35°-x )cos(25°+x )-sin(35°-x )sin(25°+x )=________.12.若cos(α+β)cos α+sin(α+β)sin α=-45,且450°<β<540°,则sin(60°-β)=________.13.已知α、β为锐角,且tan α=23,tan β=34,则sin(α+β)=________. 的值是________. 三、解答题15.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.16.已知sin α=23,cos β=-14,且α,β为相邻象限的角,求sin(α+β)和sin(α-β)的值. 17.求证:sin?2α+β?sin α-2cos(α+β)=sin βsin α.18.(暂时不做)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.3-1-2-2两角和与差的正切一、选择题1.若α、β∈(0,π2)且tan α=12,tan β=13,则tan(α-β)( )A .-17 B .1 C .17 D .152.tan(α+β)=25,tan(α-β)=14,则tan2α=( )3.已知α∈(π2,π),sin α=35,则tan(α+π4)的值等于( )A .-7B .7C .-174.在△ABC 中,若0<tan B tan C <1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不能确定5.化简tan10°tan20°+tan20°tan60°+tan60°tan10°的值等于( )A .1B .2C .tan10°D .3tan20°6.已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,则α+β的值为( )B .-2π3 或-2π3 D .-π3或2π37.(2011~2012·长春高一检测)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是( )C .2 3 的值为( )A .2+ 3 C .2- 39.已知α、β为锐角,cos α=45,tan(α-β)=-13,则tan β的值为( )10.在△ABC 中,若tan B =cos?C -B ?sin A +sin?C -B ?,则这个三角形是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 二、填空题11.若tan α=2,tan(β-α)=3,则tan(β-2α)的值为____.12.化简3-tan18°1+3tan18°=________.13.已知tan ⎝⎛⎭⎫α-β2=12,tan ⎝⎛⎭⎫β-α2=-13,则tan α+β2=________.14.不查表求值:tan15°+tan30°+tan15°tan30°=______. 三、解答题15.(2011~2012·学军高一检测)已知△ABC 中,3tan A tan B -tan A -tan B = 3.求C 的大小.16.已知tan α、tan β是方程x 2-3x -3=0的两根,试求sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β)的值.17.首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅已知A ,B ,C 是△ABC 的三内角,向量m =(-1,3),n =(cos A ,sin A ),且m ·n =1.(1)求角A ;(2)若tan ⎝⎛⎭⎫π4+B =-3,求tan C .18.是否存在锐角α、β,使得(1)α+2β=2π3,(2)tan α2·tan β=2-3同时成立若存在,求出锐角α、β的值;若不存在,说明理由.3-1-3二倍角的正弦、余弦、正切公式一、选择题1.12-sin 215°的值是( )2.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( )C .-60119D .-1201193.若x =π12,则cos 2x -sin 2x 的值等于( )4.已知sin θ=45,sin θcos θ<0,则sin2θ的值为( )A .-2425B .-1225C .-455.已知sin ⎝⎛⎭⎫π4-x =35,则sin2x 的值为( )6.定义向量的模:设向量a =(),x y ,则a 的模为22x y +.现已知向量a =⎝⎛⎭⎫cos θ,12的模为22,则cos2θ等于( )-32 B .-14C .-127.已知等腰三角形底角的余弦值为23,则顶角的正弦值是( )C .-459D .-2598.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-139.(2009·广东)函数y =2cos 2(x -π4)-1是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数10.(2011·宁夏、海南)3-sin70°2-cos 210°=( )C .2 二、填空题11.3tan π81-tan 2π8=________. 12.在△ABC 中,cos A =513,则sin2A =________.13.设cos2θ=23,则cos 4θ+sin 4θ的值是________.14.2002年北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形接成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________. 三、解答题15.已知cos α=-1213,α∈⎝⎛⎭⎫π,3π2,求sin2α,cos2α,tan2α的值.16.已知cos(x -π4)=210,x ∈(π2,3π4).(1)求sin x 的值. (2)求sin(2x +π3)的值.17.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos2x cos ⎝⎛⎭⎫π4+x的值. 18.设函数f (x )=2cos x sin(x +π3)-3sin 2x +sin x cos x ,当x ∈[0,π2]时,求f (x )的最大值和最小值.3-2-1三角恒等变换一、选择题1.设-3π<α<-5π2,则化简1-cos?α-π?2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α22.已知cos α=-15,π2<α<π,则sin α2等于( )A .-105 C .-155 ·2cos 2αcos2α等于( )A .tan αB .tan2αC .14.已知钝角α满足cos α=-13,则sin α2等于( )5.化简cos2αtan ⎝⎛⎭⎫π4+α=( ) A .sin α B .cos α C .1+sin2α D .1-sin2α6.函数f (x )=cos ⎝⎛⎭⎫2x +π3+12-12cos2x ,则f (x )可化为( )-32sin2x +32sin2x C .1-3sin2x D .-32sin2x 7.函数f (x )=cos 2x +sin x cos x 的最大值是( )A .28.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C .12 D .729.(山东)若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )10.已知-3π2<α<-π,则12+12·12+12cos2α的值为( )A .-sin α2B .cos α2 C .sin α2 D .-cos α2 二、填空题11.已知tan α2=13,则cos α=________. 12.若tan α=2,则tan α2=________.13.若sin ⎝⎛⎭⎫3π2-2x =35,则tan 2x =________.14.若cos2θ=-34,那么sin 4θ+cos 4θ=________. 三、解答题15.若已知tan θ2=2,求cos θ、sin θ的值.16.化简12sin 2x ·⎝ ⎛⎭⎪⎪⎫1tan x 2-tan x 2+32cos2x 为A sin(ωx +φ)的形式.17.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 18.已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈.(1)求函数f (x )的最大值及此时自变量x 的集合; (2)求函数f (x )的单调递增区间.3-2-2三角恒等式的应用一、选择题1.函数f (x )=-12sin x cos x 的最大值是( )B .-12 D .-142.函数y =cos 2x 2-sin 2x2的最小值等于( )A .-1B .1 D .23.函数y =sin x1+cos x的周期等于( )B .πC .2πD .3π4.函数y =cos 4x -sin 4x +2的最小正周期是( )A .πB .2π5.函数y =12sin2x +sin 2x 的值域是( )6.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的最大值是( )7.化简1+cos80°-1-cos80°等于( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°8.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π4)的一个单调递增区间是( )A .[-π2,π2]B .[5π4,9π4]C .[-π4,3π4]D .[π4,5π4] 9.(2011·重庆) 首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C 等于( )10.设M ={平面内的点(a ,b )},N ={f (x )|f (x )=a cos2x +b sin2x },给出M 到N 的映射f :(a ,b )→f (x )=a cos2x +b sin2x ,则点(1,3)的象f (x )的最小正周期为( )A .π2B .π4C .πD .2π 二、填空题11.函数y =2sin x +2cos x 的值域是________.12.已知函数f (x )=3sin ωx cos ωx -cos 2ωx (ω>0)的周期为π2,则ω=________.13.函数f (x )=3sin x -cos x 的单调递增区间是______.14.关于函数f (x )=sin2x -cos2x ,有下列命题:①函数y =f (x )的周期为π;②直线x =π4是y =f (x )的图象的一条对称轴;③点⎝⎛⎭⎫π8,0是y =f (x )的图象的一个对称中心; ④将y =f (x )的图象向左平移π4个单位,可得到y =2sin2x 的图象.其中真命题的序号是________. 三、解答题15.已知函数f (x )=23sin x cos x +2cos 2x -1.(1)求f ⎝⎛⎭⎫π6的值及f (x )的最小正周期; (2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最大值和最小值. 16.已知函数f (x )=2sin 2ωx +23sin ωx sin ⎝⎛⎭⎫π2-ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的值域. 17.已知函数f (x )=3sin2x -2sin 2x .(1)若点P (1,-3)在角α的终边上,求f (α)的值;(2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 18.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1m ,求割出的长方形桌面的最大面积(如图).。

三角恒等变换含答案

三角恒等变换含答案

三角恒等变换一、单选题1.已知α是第二象限角,tan()74πα-=-,则sin()3πα+=( )A B C D 2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A .19-B C .19D . 3.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形。

如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于( )A .45B .725C .725-D .354.已知锐角α满足3cos()65πα+=,则sin(2)3πα+=( ) A .1225B .1225±C .2425D .2425±5.sin 3πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D6.已知22ππαβ--<<,sin 2cos 1αβ-=,2cos sin αβ+=则3s i n πβ⎛⎫-= ⎪⎝⎭ ( )A .3B .3C .3±D .3±7.若,αβ都是锐角,且cos 5α=,3sin()5αβ+=,则cos β= ( )A B C D 8.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tanα,tanβ,且22ππαβ⎛⎫∈- ⎪⎝⎭,,,则α+β=( ). A .34π或34π-B .4π-或4πC .4π D .34π-9.已知角,αβ均为锐角,且cos αβ==αβ-的值为( ) A .3πB .4π C .4π-D .4π或4π-10.已知 πsin()4α+=,则 3πsin()4α-的值为 ( ).A .B .2C .-12D .1211.已知函数()212cos 2f x x x =+-,若其图象是由sin 2y x =图象向左平移ϕ(0ϕ>)个单位得到,则ϕ的最小值为( ) A .6πB .56π C .12πD .512π 12.已知函数()sin sin 3f x x x =-,[0,2]x πÎ,则()f x 的所有零点之和等于( ) A .5πB .6πC .7πD .8π13.若函数()sin cos f x a x b x =+在3x π=处取得最大值4,则ab=( )A .1B C .2D .314.已知函数()sin f x a x x =-图象的一条对称轴为6x π=-,若()()124f x f x ⋅=-,则12x x +的最小值为( )A .3π B .πC .23π D .43π二、填空题15.计算:tan 20tan 40tan120tan 20tan 40++=_______________.16.cos102cos20cos10-⋅=____________. 17.已知()2sin 3αβ+=,()2sin 5αβ-=,则tan tan αβ的值为__________;18.已知αβ,均为锐角,1sin())663ππαβ-=+=,cos()αβ+=________. 19.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 20.若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式()()cos2sin sin 0f x x f x a ++-≤恒成立,则a 的最大值是_____.21.已知等腰三角形顶角的余弦值为725-,则这个三角形底角的正切值...为______ 22.o o oosin58+cos60sin2cos2=____________.23.已知π1sin cos 63αα⎛⎫--=⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭__________.24.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则sin 2θ=______.25.若函数2()4sin sin cos 2(0)42x f x x x πωωωω⎛⎫=⋅++>⎪⎝⎭在2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是____________.26.如图,某园林单位准备绿化一块直径为BC 的半圆形空地,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若BC a =,ABC θ∠=,设ABC ∆的面积为1S ,正方形PQRS 的面积为2S ,当a 固定,θ变化时,则12S S 的最小值是__________.27.已知函数()()()cos sin sin cos f x a x b x =-没有零点,则22a b +的取值范围是_______三、解答题 28.(1cos103sin10-;(2)求值tan 70tan 503tan 70tan 50+-= 29.已知()222x x x f x sincos sin a ⎛⎫=⋅++ ⎪⎝⎭ (1)求实数a 的值;(2)若443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,求2141tan παα⎛⎫-+ ⎪⎝⎭+的值. 30.(1)已知51sin π123α⎛⎫+=⎪⎝⎭,求πsin 12α⎛⎫- ⎪⎝⎭的值. (2)已知角α的终边过点()43P ,-,β为第三象限角,且4tan 3β=,求()c o s αβ-的值.31.(1)求值: sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)已知10sin cos ,25x x x π-<<+=,,求sin cos x x -的值. 32.已知1tan()2αβ-=,1tan 7β=-,且,(0,)αβπ∈,求2αβ-的值 33.已知32ππα<<,32ππβ<<,sin α=,cos β=αβ-的值. 34.已知α,β为锐角,且17cos α=,()1114cos αβ+=-.求sinβ的值. 35.计算(1)已知2sin cos 0αα-=,求sin cos sin cos sin cos sin cos αααααααα-+++-的值; (2)求()214cos 102sin10︒+︒-︒的值. 36.已知2sin cos 3αα+=,且2παπ<<,求下列各式的值(1)sin cos αα-(2)cos()24sin()4πααπα+++37.已知sin(2)7αβ-=11cos(2)14αβ-=-, 042ππβα<<<<,(1)求tan(2)αβ-的值; (2)求cos()αβ+以及αβ+的值38.计算(1)23sin12(4cos 122)--; (240sin 50(13tan10).701cos 40+++39.已知函数2()2cos cos cos .22x xf x x x =+ (1)求函数f (x )的最小正周期; (2)求函数f (x )在区间,64ππ⎡⎤-⎢⎥⎣⎦上的值域.40.已知函数2()sinsin 1(02f x x x x πωωωω⎫⎛⎫=+⋅+-> ⎪⎪⎝⎭⎭的相邻两条对称轴之间的距离为2π. (1)求ω的值;(2)当,122x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 41.如图,OPQ 是半径为2,圆心角为3π的扇形,C 是扇形弧上的一动点,记COP θ∠=,四边形OPCQ 的面积为S .(1)找出S 与θ的函数关系;(2)试探求当θ取何值时,S 最大,并求出这个最大值.42.已知函数2()sin cos (0)f x x x x =>ωωωω的最小正周期为2π, (1)求函数()f x 的单调递减区间;(2)若函数()()g x =f x +m 在区间0,4⎡⎤⎢⎥⎣⎦π上有两个零点,求实数m 的取值范围. 43.为迎接2020年奥运会,某商家计划设计一圆形图标,内部有一“杠铃形图案”(如图阴影部分),圆的半径为1米,AC ,BD 是圆的直径,E ,F 在弦AB 上,H ,G 在弦CD 上,圆心O 是矩形EFGH 的中心,若23EF =米,2AOB θ∠=,5412ππθ≤≤.(1)当3πθ=时,求“杠铃形图案”的面积;(2)求“杠铃形图案”的面积的最小值.参考答案1.C 【解析】 由tan 74πα⎛⎫-=- ⎪⎝⎭,得171tan tan αα-=-+,解得34tan α=-. 又α是第二象限角,可得34sin ,cos 55αα==-.则314sin 333525sin cos cos sin πππααα⎛⎫+=+=⨯-= ⎪⎝⎭. 故选C. 2.D 【解析】分析:由二倍角公式得cos 3πθ⎛⎫+⎪⎝⎭,再由5cos ?cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合同角三角函数关系可得解.详解:由2sin 263θπ⎛⎫+=⎪⎝⎭,得28112sin 12699θπ⎛⎫-+=-= ⎪⎝⎭,即1cos 39πθ⎛⎫+= ⎪⎝⎭,由θ为锐角,且1cos 039πθ⎛⎫+=> ⎪⎝⎭,所以3πθ+因为锐角,所以sin 03πθ⎛⎫+> ⎪⎝⎭.5cos cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选D.点睛:解决三角变换中的给值求值问题时,一定要注意先化简再求值,同时要注意所给条件在解题中的整体作用. 3.B 【解析】 【分析】根据两个正方形的面积求出两个正方形的边长,进而用三角函数表示边长求出三角函数值,再利用二倍角公式求解即可. 【详解】由大正方形面积为25,小正方形面积为1.易得大正方形边长为5,小正方形边长为1.由图有15cos 5sin 1cos sin 5θθθθ-=⇒-=,故221cos sin 5cos sin 1θθθθ⎧-=⎪⎨⎪+=⎩ ,因为较小的锐角为θ,故4cos 53sin 5θθ⎧=⎪⎪⎨⎪=⎪⎩.故2247cos 22cos 121525θθ⎛⎫=-=⨯-= ⎪⎝⎭ 故选:B 【点睛】本题主要考查了由图像求解三角函数值的问题,需要根据图像到三角函数的关系式再求解,属于中等题型. 4.C 【解析】 【分析】利用诱导公式,求得sin()6πα+的值,再利用倍角公式,即可求解.【详解】因为锐角α满足3cos()65πα+=,所以6πα+也是锐角,由三角函数的基本关系式可得4sin()65πα+==, 则24sin(2)2sin()cos()36625πππααα+=++=,故选C. 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数的倍角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 5.B 【解析】 【分析】根据sin 3πα⎛⎫-= ⎪⎝⎭和0,2πα⎛⎫∈ ⎪⎝⎭,得到sin 3πα⎛⎫- ⎪⎝⎭和cos 3πα⎛⎫- ⎪⎝⎭的值,将所求的cos α转化为cos 33ππα⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦,利用两角和的余弦公式,得到答案.【详解】因为sin 33πα⎛⎫-=⎪⎝⎭,所以sin 33πα⎛⎫-=- ⎪⎝⎭,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 33πα⎛⎫-==⎪⎝⎭, 所以cos cos 33ππαα⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 3333ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭12⎛=- ⎝⎭36+=. 故选:B. 【点睛】本题考查同角三角函数关系,两角和的余弦公式,属于简单题. 6.B 【解析】 【分析】两式平方相加利用两角和与差的公式可化为()54sin 3αβ--=,再根据22ππαβ-<-<得出6παβ=+,代入2cos sin αβ+=.【详解】将两个等式两边平方可得2222sin 4sin cos 4cos 1cos 4cos sin 4sin 2ααββααββ⎧-⋅+=⎨+⋅+=⎩, 两式相加可得()54sin 3αβ--=,所以()1sin 2αβ-=, 22ππαβ-<-<,6παβ∴-=,即6παβ=+,代入2cos sin αβ+=3sin 2ββ+=,所以sin 63πβ⎛⎫+= ⎪⎝⎭, 故选:B 【点睛】本题主要考查三角函数的化简求值,需熟记两角和与差的公式以及常见的三角函数值,属于中档题. 7.A 【解析】 【分析】先计算出()cos αβ+,再利用余弦的和与差公式,即可. 【详解】因为,αβ都是锐角,且1cos 2α=<,所以,32ππα<<又()31sin 52αβ+=>,所以2παβπ<+<,所以()4cos 5αβ+==-sin α==,cos β=()()()cos cos cos sin sin αβααβααβα+-=+++ 25=,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大。

(易错题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)(1)

(易错题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)(1)

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α的值为( )A .15B C D 2.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .2-或1 C .34-或1D .1或-1 3.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( )A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦4.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或05.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =2,则有( ) A .c <a <b B .b <c <a C .a <b <cD .b <a <c6.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 7.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33658.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6B .6C .16D .16-9.函数2()3sin cos f x x x x =+的最大值为( )A B .C .D .3+10.已知αβ、均为锐角,满足sin cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π11.已知cos()63πα+=sin(2)6πα-的值为( )A .3B .13C .13-D .3-12.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020πB .1010π C .32020πD 二、填空题13.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.14.已知tan 2α=,则2sin 2cos αα+=________. 15.已知4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,则tan 4πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin cos ,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,有以下结论: ①()f x 的图象关于y 轴对称; ②()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上单调递增; ③()f x 图象的一条对称轴方程是4x π=; ④()f x 的最大值为2.则上述说法中正确的是__________(填序号) 17.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++<⎪⎝⎭为偶函数,则ϕ=______.18.已知2tan 3tan 5πα=,则2sin 59cos 10παπα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭________. 19.设)sin17cos172a =︒+︒,22cos 131b =︒-,2c =,则a ,b ,c 的大小关系是______.20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围. 22.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值. 23.已知函数()2cos 2f x x x =-,[,]34x ππ∈-.(1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.24.已知向量()21,cos 1a x =-,(sin 21,b x =+,()()f x a b x R =⋅∈.(1)求函数()f x 的对称中心及单调减区间; (2)若,43x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 25.已知函数2()2sin cos f x x x x =--. (1)求函数()f x 的最小正周期;(2)当,04x π⎡⎤∈-⎢⎥⎣⎦时,不等式()3f x m <+恒成立,求实数m 的取值范围. 26.在①64f π⎛⎫-=- ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值.注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解. 【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα= 因为0,2πα⎛⎫∈ ⎪⎝⎭, 所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).2.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴sin 224αα-=sin()44πα-=,1cos sin 2ββ-=ββ-=,cos()4πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.3.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数.故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).4.B解析:B 【分析】根据题意,化简得到cossin22αα+=,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 022222αααα⎫-+-=⎪⎝⎭,即cos sin cos sin 022222αααα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭, 因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin 222αα+=-,所以3,24αππ⎛⎫∈ ⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos 2α==,所以π11sin 0622α⎛⎫+=-= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).5.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.6.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.7.A解析:A 【分析】由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.8.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.9.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】依题意()1cos 233sin 2sin 2222222x f x x x x -=+=-+12cos 2222262x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭,所以()f x =. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.10.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.11.B解析:B 【解析】∵cos 63πα⎛⎫+= ⎪⎝⎭,则5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.12.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 2020202044x x x x =+-,320220cos 2020x x=-3sin(2020)6x π=-, ∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.二、填空题13.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.14.1【分析】本题先求出再化简代入求值即可【详解】解:∵∴或①当且时;②当且时故答案为:1【点睛】本题考查了同角三角函数关系二倍角公式是基础题解析:1 【分析】本题先求出sin α、cos α,再化简2sin 2cos αα+代入求值即可. 【详解】解:∵ tan 2α=,sin tan cos ααα=,22sin cos 1αα+=, ∴sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩①当sin α=cos 5α=时,222sin 2cos 2sin cos cos 21555ααααα⎛+=⋅+=⨯+= ⎝⎭; ②当sin α=且cos α=时,222sin 2cos 2sin cos cos 21ααααα⎛⎛⎛+=⋅+=⨯⨯+= ⎝⎭⎝⎭⎝⎭. 故答案为:1. 【点睛】本题考查了同角三角函数关系,二倍角公式,是基础题.15.【分析】由且求得得到再结合两角和的正切公式即可求解【详解】因为且可得所以又由故答案为:【点睛】本题主要考查了三角函数的基本关系式以及两角和的正切公式的化简求证其中解答中熟记三角函数的基本关系式和两角解析:17【分析】 由4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,求得3sin 5θ=-,得到3tan 4θ=-,再结合两角和的正切公式,即可求解. 【详解】 因为4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,可得3sin 5θ===-,所以sin 3tan cos 4θθθ==-, 又由311tan 14tan 341tan 714πθθθ-+⎛⎫+=== ⎪-⎝⎭+. 故答案为:17.【点睛】本题主要考查了三角函数的基本关系式,以及两角和的正切公式的化简、求证,其中解答中熟记三角函数的基本关系式和两角和的正切公式,准确运算是解答的关键,着重考查运算与求解能力.16.①【分析】去掉绝对值利用辅助角公式化简函数解析式利用函数的奇偶性单调性对称性以及函数的最值对选项进行判断即可【详解】当时当时即函数为偶函数图象关于y 轴对称①正确;函数在区间上单调递增在区间上单调递减解析:① 【分析】去掉绝对值,利用辅助角公式化简函数解析式,利用函数的奇偶性,单调性,对称性以及函数的最值对选项进行判断即可. 【详解】(),,042sin cos ,0,42x x f x x x x x ππππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦=+=⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,当,02x ⎡⎤∈-⎢⎥⎣⎦π时,()()44f x x x f x ππ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭, 当0,2x π⎛⎤∈ ⎥⎝⎦时,()()44f x x x f x ππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭,即函数()f x 为偶函数,图象关于y 轴对称,①正确; 函数()f x 在区间,24ππ⎡⎤--⎢⎥⎣⎦上单调递增,在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减,②错误;因为函数()f x 的定义域为,22ππ⎡⎤-⎢⎥⎣⎦,不关于直线4x π=对称,所以直线4x π=不是一条对称轴,③错误;()f x,④错误.故答案为:①. 【点睛】本题考查余弦函数的性质,考查余弦函数的奇偶性,单调性,对称性以及最值,考查辅助角公式的应用,考查学生的分析推理能力,属于中档题.17.【分析】先用辅助角公式函数化简为由偶函数的条件可知是函数的对称轴则又由求得的值【详解】由得因为是偶函数故为其对称轴则又因为所以故答案为:【点睛】本题考查了三角函数的恒等变换三角函数的奇偶性对称性属于解析:4π【分析】先用辅助角公式函数化简为())4f x x πϕ=++,由偶函数的条件可知,0x =是函数的对称轴,则()42k k Z ππϕπ+=+∈,又由2πϕ<求得ϕ的值.【详解】由()()()sin cos ()2f x x x πϕϕϕ=+++<得())4f x x πϕ=++,因为()f x 是偶函数,故0x =为其对称轴,()42k k Z ππϕπ+=+∈,则()4k k ϕπ=π+∈Z , 又因为2πϕ<,所以4πϕ=.故答案为:4π. 【点睛】本题考查了三角函数的恒等变换,三角函数的奇偶性,对称性,属于中档题.18.【分析】由可得然后用正弦的和差公式展开然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换解决此类问题时要善于发现角之间的关系解析:12【分析】由259210πππαα+=++可得22sin sin 5592cos sin 105ππααππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值 【详解】 因为2tan 3tan5πα= 所以222sin sin sin 555922cos cos sin 10255πππαααππππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2222sincos cos sin tan tan 2tan 1555522222sin cos cos sin tan tan 4tan5555ππππαααππππααα---====----- 故答案为:12【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 622a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<.故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=- ⎪⎝⎭,()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.22.(1)10;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以sin α=cos α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭=(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角.23.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案. 【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题. 24.(1)对称中心为,126k ππ⎛⎫-⎪⎝⎭,k Z ∈,单调递减区间是71212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,;(2)[]0,3. 【分析】(1)由()f x a b =⋅可得()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,然后由正弦函数的对称中心和单调递减区间可得答案; (2)根据x 的范围得到23x π+的范围,可以得sin 23x π⎛⎫+ ⎪⎝⎭的范围,从而得到答案. 【详解】(1)∵()21,cos 1a x =-,(sin 21,b x =,∴()f x a b =⋅22sin 21sin 21x x x x =++-=+)2sin 22cos 11sin 2212sin 213x x x x x π⎛⎫=+-+=+=++ ⎪⎝⎭.∴()2sin 213f x x π⎛⎫=++ ⎪⎝⎭, 由2,3x k k Z ππ+=∈得,26k x k Z ππ=-∈, ∴对称中心为,126k ππ⎛⎫-⎪⎝⎭,k Z ∈, 令3222232k x k πππππ+≤+≤+,则71212k x k ππππ+≤≤+,即函数()f x 单调递减区间是71212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, (2)∵()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,∵43x ππ-≤≤, ∴2223x ππ-≤≤,∴263x πππ-≤+≤,∴当236x ππ+=-,即4πx =-时,min 1()2102f x ⎛⎫=⋅-+= ⎪⎝⎭, ∴当232x ππ+=,即12x π=时,max ()213f x =+=,∴当43x ππ-≤≤时,()f x 的值域为[]0,3.【点睛】本题考查了三角函数的化简与性质,关键点是化简为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,要熟练掌握三角函数的性质,考查了学生的基本运算. 25.(1)π;(2)1m >- 【分析】(1)利用二倍角公式和辅助角公式将()f x 化简,再利用周期公式即可求解; (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,转化为()max 3m f x +>,利用正弦函数的性质求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可求解. 【详解】2()2sin cos f x x x x =--1cos 2sin 22sin 22sin 223x x x x x π+⎛⎫=-=-=- ⎪⎝⎭所以()f x 的最小正周期22T ππ==-, (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 3m f x +>, 因为,04x π⎡⎤∈-⎢⎥⎣⎦时,所以20,2x π⎡⎤-∈⎢⎥⎣⎦,52,336x πππ⎡⎤-∈⎢⎥⎣⎦,所以1sin 2,132x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,可得()[]2sin 21,23f x x π⎛⎫=-∈ ⎪⎝⎭, 所以()max 2f x =,即 32m +>,解得:1m >- 所以实数m 的取值范围是1m >- 【点睛】关键点点睛:对于恒成立问题求参数,常采用分离参数的方法,不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,等价于()max 3m f x +>,,04x π⎡⎤∈-⎢⎥⎣⎦,只需要求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可.26.①6f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos sin 22x x x ωωω=⋅-11cos 2sin 2422x x ωω-=-11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 223x πω⎛⎫=+ ⎪⎝⎭.选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min 2x x π-= 代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭ 12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-= 意味着函数()sin 23g x x πω⎛⎫=+⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.。

(完整版)三角恒等变换知识总结及基础训练

(完整版)三角恒等变换知识总结及基础训练

第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。

2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。

(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

训练【四】三角函数及其恒等变换

训练【四】三角函数及其恒等变换

【高考冲刺】三角函数及其恒等变换参考答案与试题解析一、选择题(共20小题)1.已知为第二象限角,则tan(α+)=()A.B.C.3D.﹣3考点:两角和与差的正切函数;同角三角函数间的基本关系.2361035专题:计算题.分析:由α为第二象限角,根据cosα的值,利用同角三角函数间的基本关系求出sinα的值,再利用同角三角函数间的基本关系弦化切求出tanα的值,然后把所求的式子利用两角和与差的正切函数公式及特殊角的三角函数值化简后,将tanα的值代入即可求出值.解答:解:∵α为第二象限角,cosα=﹣,∴sinα==,∴tanα==﹣2,则tan(α+)===﹣.故选A点评:此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.2.已知sin()=,则cos(π﹣2θ)等于()A.B.C.D.考点:二倍角的余弦;运用诱导公式化简求值.2361035专题:三角函数的求值.分析:利用诱导公式化简已知的等式,求出cosθ的值,将所求式子利用诱导公式变形后,再利用二倍角的余弦函数公式化简,把cosθ的值代入计算,即可求出值.解答:解:∵sin(+θ)=cosθ=,∴cos(π﹣2θ)=﹣cos2θ=1﹣2cos2θ=1﹣2×()2=.故选D点评:此题考查了二倍角的余弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.3.曲线和直线在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=()A.πB.2πC.3πD.4π考点:两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.2361035专题:计算题.分析:将y=2sin(x+)cos(x﹣)的解析式利用诱导公式,二倍角的余弦函数公式化简得y=sin2x+1,令y=,解得x=kπ+±(k∈N),代入易得|P2P6|的值.解答:解:∵y=2sin(x+)cos(x﹣)=2sin(x﹣+)cos(x﹣)=2cos(x﹣)cos(x﹣)=cos[2(x﹣)]+1=cos(2x﹣)+1=sin2x+1,若y=2sin(x+)cos(x﹣)=,∴2x=2kπ+±(k∈N),即x=kπ+±(k∈N),则|P2P6|=2π.故选B点评:此题考查了诱导公式,二倍角的余弦函数公式,直线与曲线的相交的性质,求两个函数图象的交点间的距离,关键是要求出交点的坐标,然后根据两点间的距离求法进行求解.4.已知α、β为锐角,2tanα+3sinβ=7,tanα﹣6sinβ=1,则sinα的值是()A.B.C.D.考点:同角三角函数间的基本关系.2361035分析:根据题中所给方程组可求出tanα的值,再根据三角函数定义和角的范围可直接得答案.解答:解:∵2tanα+3sinβ=7,tanα﹣6sinβ=1,∴tanα=3∵tanα=,sin2α+cos2α=1∴∵α为锐角∴故选C.点评:本题主要考查同角三角函数的基本关系,属基础题.这里注意角的取值范围影响三角函数的符号.5.sin71°cos26°﹣sin19°sin26°的值为()D.A.B.1C.﹣考点:两角和与差的正弦函数.2361035专题:计算题.分析:把sin71°化为cos19°,利用两角差的余弦公式,把要求的式子化为cos(19°+26°),从而求得式子的值.解答:解:sin71°cos26°﹣sin19°sin26°=cos19°cos26°﹣sin19°sin26°=cos(19°+26°)=cos45°=. 故选:D .点评: 本题主要考查诱导公式、两角和差的余弦公式的应用,把要求的式子化为cos (19°+26°),是解题的关键.6.已知﹣π<α<0,且,则=( )A .B .C .D .考点: 二倍角的正弦;两角和与差的正弦函数.2361035 专题: 计算题.分析: 利用两角和与差的正切函数公式及特殊角的三角函数值将已知等式化简,求出tanα的值,由α的范围,得出sinα小于0,cosα大于0,利用同角三角函数间的基本关系求出sinα的值,将所求式子分子第二项利用二倍角的正弦函数公式化简,分子提取2sinα,分母利用两角和与差的余弦函数公式及特殊角的三角函数值化简,约分后把sinα的值代入即可求出值.解答: 解:∵tan (α+)==,∴tanα=﹣<0,∵﹣π<α<0,∴cosα==,∴sinα=﹣,则==2sinα=﹣.故选C点评: 此题考查了二倍角的正弦函数公式,两角和与差的正切、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.7.函数是( ) A . 周期为π的奇函数 B . 周期为π的偶函数 C . 周期为2π的奇函数 D . 周期为2π的偶函数考点: 诱导公式一;三角函数的周期性及其求法.2361035 专题: 计算题.分析: 利用诱导公式化简函数解析式后,找出ω的值,代入周期公式求出函数的最小正周期,再根据余弦函数为偶函数,即可得到正确的选项. 解答: 解:y=sin (﹣2x )=cos2x ,∵ω=2,∴T==π,又余弦函数为偶函数,则原函数是周期为π的偶函数.故选B点评:此题考查了三角函数的周期性及其求法,以及函数的奇偶性,其中利用诱导公式将函数解析式化为一个角的余弦函数是解本题的关键.8.平面直角坐标系中,点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,则t的值为()A.±6或±1 B.6或1 C.6D.1考点:两角和与差的正切函数;任意角的三角函数的定义.2361035专题:综合题.分析:根据任意角的三角函数定义分别求出tanα和tan(α+45°),然后利用两角和与差的正切函数公式及特殊角的三角函数值得到一个关于t的方程,求出t的值,然后利用α和α+45°是始边为x轴的非负半轴的角,得到满足题意t的值即可.解答:解:由题意得tanα=,tan(α+45°)==而tan(α+45°)===,化简得:t2+5t﹣6=0即(t﹣1)(t+6)=0,解得t=1,t=﹣6因为点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,所以t=﹣6舍去则t的值为1故选D点评:此题考查学生掌握任意角的三角函数的定义,灵活运用两角和与差的正切函数公式化简求值,是一道中档题.9.若,则sinx•cosx的值为()A.B.C.D.考点:诱导公式的作用;二倍角的正弦.2361035专题:计算题.分析:利用诱导公式化简方程,方程两边平方,即可求出sinx•cosx的值.解答:解:因为,所以﹣cosx+sinx=,则,所以sinx•cosx=;故选A.点评:本题考查三角方程的解法,正确利用诱导公式是解题的前提,利用平方求出结果是关键,考查计算能力.10.已知A为三角形的一个内角,且sinAcosA=﹣,则cosA﹣sinA的值为()A.﹣B.±C.±D.﹣考点:同角三角函数间的基本关系.2361035专题:计算题.分析:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0即cosA﹣sinA<0,而(cosA﹣sinA)2=1﹣2siAcosA,代入可求解答:解:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0∴cosA﹣sinA<0而(cosA﹣sinA)2=1﹣2siAcosA=∴故选:D点评:本题主要考查了三角函数中同角平方关系的应用,解题的关键是根据已知判断出sinA,cosA 的符号,在结合由A为三角形的(cosA﹣sinA)2=1﹣2siAcosA进行求解,本题容易漏掉对sinA﹣cosA的符号的判断错选成C11.(1+tan25°)(1+tan20°)的值是()A.﹣2 B.2C.1D.﹣1考点:同角三角函数基本关系的运用.2361035专题:计算题.分析:观察可知25°+20°=45°,先根据两角和的正切函数公式得到对等式两边取正切得到一个关系式,然后利用多项式的乘法法则化简原式,整体代入可得值.解答:解:因为1=tan45°=tan(25°+20°)=,所以tan25°+tan20°=1﹣tan25°tan20°,则(1+tan25°)(1+tan20°)=1+tan250+tan200+tan250tan200=1+1﹣tan250tan200+tan250tan200=2故选B点评:此题为一道基础题,要求学生灵活运用两角和的正切函数公式.本题的关键点是45°=25°+20°角度的变换.12.如果,则=()A.B.C.4019 D.﹣4019考点:三角函数中的恒等变换应用.2361035专题:计算题.分析:将分式转化为整式,利用和、差角的正弦公式展开进行合并整理是解决本题的关键,注意正弦、余弦、正切之间的转化问题,注意切化弦的方法和整体思想的运用.解答:解:由题意可得2010sinαcosβ﹣2010cosαsinβ=2009sinαcosβ+2009cosαsinβ,∴sinαcosβ=4019cosαsinβ,得tanα=4019tanβ,∴.故选C.点评:本题考查三角恒等变换的基本知识,考查了两角和与差的正弦公式,主要寻找角之间的关系和函数名称之间的关系,考查同角三角函数的基本关系式,注意整体思想的运用.考查转化与化归思想的应用.13.函数对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为()A.B.1C.2D.4考点:三角函数的恒等变换及化简求值;三角函数的周期性及其求法.2361035专题:计算题;函数的性质及应用.分析:先将函数写出分段函数,再确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值,由此可得结论.解答:解:由题意可得,f(x)=,f(x1)为函数的最小值,f(x2)为函数的最大值.|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值由于x=时,函数取得最大值2,x=时,sinπx=cosπx=﹣,函数取得最小值∴|x2﹣x1|的最小值为﹣=,故选A.点评:本题考查绝对值函数,考查三角函数的性质,确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值是关键,属于中档题.14.=()A.B.C.D.考点:两角和与差的正弦函数;运用诱导公式化简求值.2361035专题:计算题.分析:由于sin(α+)+cosα=sin(α+)=,可求得sin(α+)=,利用诱导公式即可求得sin(α+).解答:解:∵sin(α+)+cosα=sinα+cosα+cosα=sinα+cosα=sin(α+)=,∴sin(α+)=.∴sin(α+)=﹣sin(α+)=﹣.故选C.点评:本题考查两角和与差的正弦函数,考查诱导公式在化简求值中的应用,属于中档题.15.若对所有实数x,均有sinkx•sinkx+coskx•coskx=cosk2x,则k=()A.6B.5C.4D.3考点:三角函数恒等式的证明;函数恒成立问题.2361035专题:计算题.分析:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得k为奇数,设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1.解答:解:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得,则k为奇数.设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1,故选择支中只有k=3满足题意,故选D.点评:本题考查函数的恒成立问题,体现了特殊值的思想,得到k为奇数,设k=2n﹣1,在得到n为偶数,这是解题的难点.16.已知,则sinα•cosα=()A.B.C.D.考点:二倍角的正弦;两角和与差的正切函数.2361035专题:计算题.分析:解法一:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子分母“1”根据同角三角函数间的基本关系变形为sin2α+cos2α,分子分母同时除以cos2α,利用同角三角函数间的基本关系弦化切后,将tanα的值代入即可求出值;解法二:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子利用二倍角的正弦函数公式化简后,再利用万能公式变形,将tanα的值代入即可求出值.解答:解:法一:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3tanα,解得:tanα=2,则sinα•cosα====;法二:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3t anα,解得:tanα=2,则sinα•cosα=sin2α=×==.故选A点评:此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,万能公式,以及特殊角的三角函数值,熟练掌握公式及基本关系是解本题的关键.17.若,则tanβ=()A.10 B.5C.D.﹣8考点:角的变换、收缩变换.2361035专题:计算题.分析:利用两角和的正切公式求出tan(β﹣)=tan[(β﹣α)+(α﹣)]的值,再由tan(β﹣)=求出tanβ 的值.解答:解:∵,∴tan(β﹣)=tan[(β﹣α)+(α﹣)]===,故=,∴tanβ=﹣8.故选:D.点评:本题主要考查两角和差的正切公式的应用,角的变换是解题的关键,属于中档题.18.设,则()A.b<a<c B.b<c<a C.a<b<c D.c<a<b考点:二倍角的余弦;余弦函数的单调性.2361035专题:计算题.分析:把a利用特殊角的三角函数值及两角和与差的余弦函数公式化简为一个余弦值,b利用二倍角的余弦函数公式也化为一个余弦值,c利用特殊角的三角函数值化为一个余弦值,根据余弦函数在(0,90°]为减函数,且根据角度的大小即可得到三个余弦值的大小,从而得到a,b及c的大小关系.解答:解:化简得:a=(sin17°+cos17°)=cos45°cos17°+sin45°sin17°=cos(45°﹣17°)=cos28°,b=2cos213°﹣1=cos26°,c==cos30°,∵余弦函数y=cosx在(0,90°]为减函数,且26°<28°<30°,∴cos26°>cos28°>cos30°则c<a<b.故选D点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值,以及余弦函数的单调性,利用三角函数的恒等变形把a,b及c分别变为一个角的余弦值是解本题的关键.19.已知sin+cos=,且cosα<0,那么tanα等于()A.B.﹣C.D.﹣考点:二倍角的正弦;任意角的三角函数的定义;同角三角函数间的基本关系.2361035专题:三角函数的求值.分析:将已知等式左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,求出sinα的值,再由cosα的值小于0,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.解答:解:将已知等式左右两边平方得:(sin+cos)2=,即1+sinα=,可得sinα=﹣,∵cosα<0,∴cosα=﹣=﹣,则tanα==.故选C点评:此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.20.本式的值是()A.1B.﹣1 C.D.考点:运用诱导公式化简求值.2361035专题:计算题.分析:利用诱导公式及三角函数的奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数的奇偶性.化简时学生应注意细心做题,注意符号的选取.二、填空题(共1小题)(除非特别说明,请填准确值)21.已知扇形的周长为10,求此扇形的半径r与面积S之间的函数关系式及其定义域.考点:扇形面积公式.2361035专题:计算题.分析:求出扇形的弧长,利用扇形面积公式表示二者关系,求出定义域即可.解答:解:扇形的周长为10,扇形的半径r,扇形弧长为10﹣2r所以s==5r﹣r2,r∈(0,5)定义域(0,5).点评:本题考查扇形面积公式,考查计算能力,是基础题.。

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. (2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15°2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ). 3.已知sin α=23,则cos(π-2α)等于( ). 4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α=_______. 5.已知cos ⎝⎛⎭⎫π4-α=1213,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫π4+α=_________. 6. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值.。

三角函数及三角恒等变换测试题及答案

三角函数及三角恒等变换测试题及答案

三角函数及恒等变换考试试卷一、选择题(共12小题,满分60分,每小题5分)1、(5分)(2018•陕西)方程|x|=cosx在(﹣∞,+∞)内()A、没有根B、有且仅有一个根C、有且仅有两个根D、有无穷多个根2、(5分)(2018•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则()A、f(x)在区间[﹣2π,0]上是增函数B、f(x)在区间[﹣3π,﹣π]上是增函数C、f(x)在区间[3π,5π]上是减函数D、f(x)在区间[4π,6π]上是减函数3、(5分)(2018•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A、B、C、2 D、34、(5分)(2018•辽宁)已知函数,y=f(x)的部分图象如图,则=()A、B、C、D、5、(5分)(2018•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A、ω=1,φ=B、ω=1,φ=﹣C、ω=2,φ=D、ω=2,φ=﹣6、(5分)(2018•重庆)下列关系式中正确的是()A、sin11°<cos10°<sin168°B、sin168°<sin11°<cos10°C、sin11°<sin168°<cos10°D、sin168°<cos10°<sin11°7、(5分)(2018•山东)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A、y=2cos2xB、y=2sin2xC、D、y=cos2x8、(5分)(2018•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A、B、C、D、39、(5分)(2018•江西)已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A、﹣B、﹣C、D、10、(5分)(2018•广东)函数y=2cos2(x﹣)﹣1是()A、最小正周期为π的奇函数B、最小正周期为π的偶函数C、最小正周期为的奇函数D、最小正周期为的偶函数11、(5分)(2018•天津)设,,,则()A、a<b<cB、a<c<bC、b<c<aD、b<a<c12、(5分)已知函数f(x)=sin(2x﹣),若存在a∈(0,π),使得f(x+a)=f(x+3a)恒成立,则a=()A、B、C、D、二、填空题(共4小题,满分16分,每小题4分)13、(4分)(2018•辽宁)已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=_________.14、(4分)(2018•四川)已知函数(ω>0)在单调增加,在单调减少,则ω=_________.15、(4分)(2007•四川)下面有5个命题:①函数y=sin4x﹣cos4x的最小正周期是π;②终边在y轴上的角的集合是;③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有3个公共点;④把函数的图象向右平移得到y=3sin2x的图象;⑤角θ为第一象限角的充要条件是sinθ>0其中,真命题的编号是_________(写出所有真命题的编号)16、(4分)若=_________.三、解答题(共7小题,满分74分)17、(10分)(2018•四川)求函数y=7﹣4sinxcosx+4cos2x﹣4cos4x的最大值与最小值.18、(10分)(2018•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.19、(10分)(2018•陕西)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20、(10分)(2018•浙江)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.21、(10分)(2018•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?22、(10分)(2018•广东)已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.23、(14分)已知函数,(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)画出函数的图象,由图象研究并写出g(x)的对称轴和对称中心.答案与评分标准一、选择题(共12小题,满分60分,每小题5分)1、(5分)(2018•陕西)方程|x|=cosx在(﹣∞,+∞)内()A、没有根B、有且仅有一个根C、有且仅有两个根D、有无穷多个根考点:余弦函数的图象。

必修4第三章三角恒等变形经典练习题

必修4第三章三角恒等变形经典练习题

必修四第三章三角恒等变形测试题一. 选择题(每小题4分,共48分)1. sin cos sin cos 15151515o oo o+-的值为( )A.33B.264+ C.264- D. -32. 1232cos sin αα-可化为( )A. sin πα6-⎛⎝ ⎫⎭⎪B. sin πα3-⎛⎝ ⎫⎭⎪C. sin πα6+⎛⎝ ⎫⎭⎪D. sin πα3+⎛⎝ ⎫⎭⎪3. 若αβπ、,∈⎛⎝ ⎫⎭⎪02,且tan tan αβ==4317,,则αβ-的值是( )A.π3B.π4C.π6D.π84. 函数y x x x =82sin cos cos 的周期为T ,最大值为A ,则( ) A. T A ==π,4 B. T A ==π24,C. T A ==π,2D. T A ==π22,5. 已知111cos sin αα-=,则sin 2α的值为( )A. 21-B. 12-C. 222-D. 222-6. 已知tan θ=13,则cos sin 2122θθ+( )A. -65B. -45C. 45D. 657. 设f x x (tan )tan =2,则f()2=( )A. 4B.45C. -23D. -438. 2242-+sin cos 的值是( )A. sin 2B. -cos2C. -32cosD. 32cos9. 在△ABC 中,若2cos sin sin B A C =,则△ABC 的形状一定是( ) A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形10. 要使斜边一定的直角三角形周长最大,它的一个锐角应是( )A. 30°B. 45°C. 60°D. 正弦值为13的锐角11. 已知向量()OB →=20,,向量()OC →=22,,向量()CA →=22cos sin αα,,则向量OA→与OB →的夹角范围为( )A. 04,π⎡⎣⎢⎤⎦⎥B. ππ4512,⎡⎣⎢⎤⎦⎥C. 5122ππ,⎡⎣⎢⎤⎦⎥D. ππ12512,⎡⎣⎢⎤⎦⎥12. 已知:()3250cos cos αββ++=,则()tan tan αβα+的值为( ) A. ±4 B. 4 C. -4 D. 1二. 填空题(每小题3分,共12分)13. 已知sin cos αα+=13,则cos4α=_____________。

三角恒等变形测试题及答案解析

三角恒等变形测试题及答案解析

第三章 恒等变换一、选择题(此题共12小题,每题5分,总分值60分) 1.277sin 16812π-的值为〔 〕 2.假设sin()cos cos()sin m αβααβα---=,且β为第三象限角,则cos β的值为〔 〕 3.在△ABC 中,2sinAcosB =sinC ,则△ABC 一定是 ( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形4.2cos10°-sin20°sin70°的值是 ( )A .12B .32 C .3 D . 25.*∈(-π2,0),cos*=45,则tan2*等于 ( )A .724B .-724C .247D .-2476.假设ABC ∆的角A 满足2sin 23A =,则sin cos A A += ( )B. C .53 D .53-7.等式sin α+3cos α=4m -64-m 有意义,则m 的取值围是 ()A .(-1,73)B .[-1,73]C .[-1,73]D .[―73,―1]8.在△ABC 中,tan A +B2=sinC ,则以下四个命题中正确的选项是 ()(1)tanA ·cotB =1.(2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C .A .①③B .②④C .①④D .②③ 9.α∈(0,π),且sin α+cos α=15,则tan α的值为 ()A .-43B .-43 或-34C .-34D .43 或-3410.函数)cos (sin sin 2x x x y +=的最大值为( )A.21+B.12-C.2D.211.将函数212sin 22y x x =+-的图象进展以下哪一种变换就变为一个奇函数的图象 ( 〔 〕 A .向左平移12π个单位 B .向左平移6π个单位 C .向右平移12π个单位 D .向右平移6π个单位cos 23x x a +=-中,a 的取值围是〔 〕二.填空题(此题共5小题,每题6分,总分值30分)把答案填在第二卷的横线上13.sin cos ,x x m -=求sin cos x x ────── 14.函数x x x f 32sin)232sin()(++=π的图象相邻的两条对称轴之间的距离是 15.假设*=π3是方程2cos(*+α)=1的解,α∈(0,2π),则α=.16.给出下面的3个命题:〔1〕函数|)32sin(|π+=x y 的最小正周期是2π;〔2〕函数)23sin(π-=x y 在区间)23,[ππ上单调递增;〔3〕45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是.17.在△ABC 中,sinA +cosA =22,AC =2,AB =3,则tanA=,△ABC 的面积为第二卷二、填空题(本大题共6小题,每题5分,共30分.把答案填在题中横线上)11.________________________ 12._______________________ 13._________________________ 14.______________________ 15._________________________ 16._______________________三.解答题此题共小题〔,每题12分,总分值60分,解容许写出文字说明,证明过程或演算步骤)18.12cos ,13α=求sin α和tan α 19.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos 〔α+β〕.20.6sin 2α+sin αcos α-2cos 2α=0,α∈[π2,π],求sin(2α+π3)的值.21.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.22.函数2()2cos 2sin 4cos f x x x x =+- (1)求()3f π值的;(2)求()f x 的最大值和最小值。

高中数学 第3章 三角恒等变形基础知识检测 北师大版必修4

高中数学 第3章 三角恒等变形基础知识检测 北师大版必修4

【成才之路】2015-2016学年高中数学 第3章 三角恒等变形基础知识检测 北师大版必修4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知α为第二象限角,sin α=35,则sin2α=( )A .-2425B .-1225C .1225D .2425[答案] A[解析] 此题是给值求值题,考查基本关系式、二倍角公式. ∵sin α=35,α∈(π2,π),∴cos α=-1-352=-45,∴sin2α=2sin αcos α=2×35×(-45)=-2425.2.(2015·全国卷Ⅰ理,2)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B .32C .-12D .12[答案] D[解析] 原式=sin 20°cos 10°+cos 20°sin 10°=sin 30° =12,故选D .3.下列等式中正确的是( ) A .sin2α2+cos2α2=12B .若α∈(0,2π),则一定有tan α=sin αcos αC .sin π8=±1-cos2π8D .sin α=tan α·cos α(α≠k π+π2,k ∈Z )[答案] D[解析] 选项A 中,sin2α2+cos2α2=1,所以选项A 不正确;利用同角的三角函数基本关系时一定要注意其隐含条件,对于选项B 中cos α≠0,也即α≠k π+π2(k ∈Z ),因而选项B 不正确;因为0<π8<π2,所以sin π8>0,所以选项C 不正确.4.若sin 2α+sin α=1,则cos 4α+cos 2α的值为( ) A .0 B .1 C .2 D .3[答案] B[解析] ∵sin 2α+sin α=1,∴sin α=1-sin 2α=cos 2α, ∴cos 4α+cos 2α=sin 2α+sin α=1.5.已知sin αcos α=18,且π4<α<π2,则cos α-sin α的值为( )A .32B .-32C .34D .-34[答案] B[解析] ∵π4<α<π2,∴cos α<sin α,∴cos α-sin α<0,∵(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α =1-2·18=34,∴cos α-sin α=-32. 6.若α,β∈(0,π2),且tan α=43,tan β=17,则α-β的值为( )A .π3B .π4C .π6D .π8[答案] B[解析] tan(α-β)=tan α-tan β1+tan αtan β=43-171+43×17=1.又0<α<π2,-π2<-β<0,∴-π2<α-β<π2.∴α-β=π4.7.函数y =cos 2(x -π4)-cos 2(x +π4)的值域是( )A .[-1,0]B .[0,1]C .[-1,1]D .[-12,1][答案] C[解析] y =cos 2(x -π4)-cos 2(x +π4)=cos 2(x -π4)-sin 2[π2-(x +π4)]=cos 2(x -π4)-sin 2(x -π4)=cos2(x -π4)=cos(2x -π2)=cos(π2-2x )=sin2x ,∴函数的值域为[-1,1].8.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=( ) A .-π6B .π6C .5π6D .-5π6[答案] A[解析] 3sin x -3cos x =23⎝⎛⎭⎪⎫32sin x -12cos x=23sin ⎝⎛⎭⎪⎫x -π6,又φ∈(-π,π),∴φ=-π6.9.(2014·浙江理,4)为了得到函数y =sin3x +cos3x 的图像,可以将函数y =2cos3x 的图像( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位[答案] C[解析] 本题考查三角函数图像变换.y =sin3x +cos3x =2sin(3x +π4)=2cos(3x-π4)只需将y =2cos3x 向右平移π12个单位,选C . 10.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫α+π4=322,则tan ⎝ ⎛⎭⎪⎫β-π4=( )A .15 B .14 C .1318 D .1322[答案] B[解析] tan ⎝ ⎛⎭⎪⎫β-π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫α+π4=tan α+β-tan ⎝⎛⎭⎪⎫α+π41+tan α+βtan ⎝⎛⎭⎪⎫α+π4=25-3221+25×322=14.11.已知f (x )=cos x ·cos2x ·cos4x ,若f (α)=18,则角α不可能等于( )A .π9B .2π9C .2π7D .4π7[答案] B[解析] f (x )=cos x ·cos2x ·cos4x =8sin x ·cos x ·cos2x ·cos4x 8sin x =sin8x 8sin x ,由f (α)=18,可得sin8α=sin α,经验证,α=2π9时,上式不成立. 12.已知△ABC 中,tan A =cos B -cos Csin C -sin B 成立,则△ABC 为( )A .等腰三角形B .A =60°的三角形C .等腰三角形或A =60°的三角形D .不能确定 [答案] B[解析] ∵tan A =sin Acos A ,∴sin A cos A =cos B -cos Csin C -sin B, 即sin A (sin C -sin B )=cos A (cos B -cos C ), sin A sin C -sin A sin B =cos A cos B -cos A cos C . ∴cos A cos B +sin A sin B =cos A cos C +sin A sin C . ∴cos(A -B )=cos(A -C )(*).∵在△ABC 中,0<A <π,0<B <π,0<C <π, ∴-π<A -B <π,-π<A -C <π.则(*)式为A -B =A -C 或A -B =-(A -C ), 则B =C ①或2A =B +C ②. ∵A +B +C =π, ∴由②得A =π3.若B =C ,则已知等式右边分母为0,不合题意,故选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.tan21°+tan39°+3tan21°·tan39°=________. [答案]3[解析] tan(21°+39°)=tan60°=3, ∴tan21°+tan39°1-tan21°·tan39°= 3.∴tan21°+tan39°+3tan21°tan39°= 3. 14.函数f (x )=sin 2(2x -π4)的最小正周期是________.[答案]π2[解析] 本题考查了倍角公式及三角函数的性质. f (x )=sin 2(2x -π4)=1-cos 4x -π22=-12sin4x +12,∴T =2π4=π2.15.计算sin50°(1+3tan10°)=________. [答案] 1[解析] 原式=sin50°(1+3sin10°cos10°)=sin50°·212cos10°+32sin10°cos10°=2sin50°·sin30°cos10°+cos30°sin10°cos10°=2cos40°·sin40°cos10°=sin80°cos10°=cos10°cos10°=1.16.观察下列恒等式: ∵tan 2α-1tan α=-21-tan 2α2tan α,∴tan α-1tan α=-2tan2α.①∴tan2α-1tan2α=-2tan4α.② ∴tan4α-1tan4α=-2tan8α.③ 由此可知:tan π32+2tan π16+4tan π8-1tan π32=______.[答案] -8[解析] tan π32+2tan π16+4tan π8-1tanπ32=4tan π8+2tan π16+(tan π32-1tan π32)=4tan π8+2tan π16-2tan π16=4tan π8-4tan π8=-8tanπ4=-8.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1. [证明] 方法一:tan 2α=2tan 2β+1, ∴tan 2β=tan 2α-12.∵tan 2β=sin 2βcos 2β=sin 2β1-sin 2β, ∴sin 2β=tan 2β1+tan 2β. ∴sin 2β=tan 2α-121+tan 2α-12=tan 2α-1tan 2α+1=sin 2αcos 2α-1sin 2αcos 2α+1 =sin 2α-cos 2αsin 2α+cos 2α=2sin 2α-1. 方法二:∵tan 2α=2tan 2β+1, ∴tan 2α+1=2(tan 2β+1),即sin 2α+cos 2αcos 2α=2·sin 2β+cos 2βcos 2β, 即1cos 2α=2cos 2β, 即cos 2β=2cos 2α,即1-sin 2β=2(1-sin 2α), 即sin 2β=2sin 2α-1.18.(本小题满分12分)已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos2x2cos π4+xsin x的值.[解析] (1)由sin x 2-2cos x 2=0,得tan x2=2,∴tan x =2tan x21-tan 2x 2=2×21-22=-43.(2)原式=cos 2x -sin 2x 222cos x -22sin x sin x=cos x -sin x cos x +sin xcos x -sin x sin x=cos x +sin x sin x =1tan x +1=(-34)+1=14.19.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),(0<α<β<π),且k a +b 与a -k b 大小相等,求β-α.(其中k 为非零实数)[解析] ∵k a +b =(k cos α+cos β,k sin α+sin β),a -kb =(cos α-k cos β,sin α-k sin β),|k a +b |=k 2+2k cos β-α+1, |a -k b |=1-2k cos β-α+k 2, 又∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 由k ≠0,则有cos(β-α)=0, 又∵0<α<β<π,∴β-α=π2.20.(本小题满分12分)(2015·烟台高三上学期期末)已知sin(A +π4)=7210,A ∈(π4,π2). (1)求cos A 的值;(2)求函数f (x )=cos2x +52sin A sin x 的值域.[解析] (1)因为π4<A <π2,且sin(A +π4)=7210,所以π2<A +π4<3π4,cos(A +π4)=-210.因为cos A =cos[(A +π4)-π4]=cos(A +π4)cos π4+sin(A +π4)sin π4=-210×22+7210×22=35, 所以cos A =35.(2)由(1)可得sin A =45.所以f (x )=cos2x +52sin A sin x=1-2sin 2x +2sin x =-2(sin x -12)2+32.因为sin x ∈[-1,1],所以当sin x =12时,f (x )取最大值32;当sin x =-1时,f (x )取最小值-3. 所以函数f (x )的值域为[-3,32].21.(本小题满分12分)已知函数f (x )=A sin(x +π3),x ∈R ,且f (5π12)=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈(0,π2),求f (π6-θ).[解析] (1)f (5π12)=A sin(5π12+π3)=A sin 3π4=322,∴A =322·2=3.(2)由(1)得:f (x )=3sin(x +π3),∴f (θ)-f (-θ)=3sin(θ+π3)-3sin(-θ+π3)=3(sin θcos π3+cos θsin π3)-3[sin(-θ)cos π3+cos(-θ)sin π3]=6sin θcos π3=3sin θ,而f (θ)-f (-θ)=3,所以sin θ=33,又因为θ∈(0,π2)所以cos θ=1-sin 2θ=1-332=63, 所以f (π6-θ)=3sin(π6-θ+π3)=3sin(π2-θ)=3cos θ= 6.22.(本小题满分12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间[0,π2]上的最大值和最小值;(2)若f (x 0)=65,x 0∈[π4,π2],求cos2x 0的值.[解析] (1)由f (x )=23sin x cos x +2cos 2x -1, 得f (x )=3(2sin x cos x )+(2cos 2x -1) =3sin2x +cos2x =2sin(2x +π6). 所以函数f (x )的最小正周期为π.因为f (x )=2sin(2x +π6)在区间[0,π6]上为增加的,在区间[π6,π2]上为减少的.又f (0)=1,f (π6)=2,f (π2)=-1,所以函数f (x )在区间[0,π2]上的最大值为2,最小值为-1.(2)由(1)可知f (x 0)=2sin(2x 0+π6).又因为f (x 0)=65,所以sin(2x 0+π6)=35.由x 0∈[π4,π2],得2x 0+π6∈[2π3,7π6].从而cos(2x 0+π6)=-1-sin22x 0+π6=-45.所以cos2x 0=cos[(2x 0+π6)-π6]=cos(2x 0+π6)cos π6+sin(2x 0+π6)sin π6=3-4310.。

(整理)当堂检测三角恒等变形

(整理)当堂检测三角恒等变形

精品文档精品文档1.(文)(2011·福建文,9)若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于( )A.22B.33 C.2 D. 3[解析] sin 2α+cos2α=sin 2α+cos 2α-sin 2α=cos 2α=14,∵α∈(0,π2),∴cos α=12,sin α=32,∴tan α= 3.2.(2011·天津蓟县模拟)函数f (x )=cos 2x +3sin x cos x 在区间[-π4,π3]上的最大值为( )A.12B.1+32 C .1 D.32[解析] f (x )=1+cos2x 2+32sin2x =sin ()2x +π6+12∵-π4≤x ≤π3,∴-π3≤2x +π6≤5π6, ∴-32≤sin ()2x +π6≤1, ∴f (x )的最大值为32. 3.(2010·江苏泰州模拟)已知sin α=35,cos β=35,其中α,β∈(0,π2),则α+β=________.[解析] ∵α,β∈(0,π2),sin α=35,cos β=35,∴cos α=45,sin β=45,∴cos(α+β)=cos αcos β-sin αsin β=45×35-35×45=0,∵α+β∈(0,π),∴α+β=π2.4.(2011·海南五校联考)设函数f (x )=sin x +cos x ,f ′(x )是f (x )的导数,若f (x )=2f ′(x ),则sin 2x -sin2xcos 2x =________.[解析] ∵f (x )=sin x +cos x ,∴f ′(x )=cos x -sin x ,由f (x )=2f ′(x )得sin x +cos x =2(cos x -sin x ),∴tan x =13,∴sin 2x -sin2x cos 2x =sin 2x -2sin x cos x cos 2x =tan 2x -2tan x =(13)2-2×13=-59. 5.(文)(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b .(1)求函数f (x )的最小正周期;(2)当x ∈[]0,π2时,求函数f (x )的最大值及最小值.[解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =co s2x +sin2x =2⎝⎛⎭⎫22cos2x +22sin2x=2sin ()2x +π4.∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π4,∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π2时,f (x )有最小值-1.。

2023高中数学三角恒等变换基础知识手册

2023高中数学三角恒等变换基础知识手册

(每日一练)2023高中数学三角恒等变换基础知识手册单选题1、以正方形的边长为底,向外作4个等腰三角形,腰长为2,则该图的面积最大为()A.4√3+4B.8+4√3C.8+8√2D.8+8√3答案:C解析:),利用θ的正、余弦表示出图形的面积,再借助三角变换即可计算得设题设中的等腰三角形底角为θ(0<θ<π2解.如图,ABCD是正方形,△ABE,△BCF,△CDG,△DAH是等腰三角形,它们的底边为正方形相应的边,腰长均为2,,则有等腰△ABE底边上的高为2sinθ,底边AB=4cosθ,设等腰△ABE的底角∠ABE=θ,0<θ<π2⋅4cosθ⋅2sinθ=8+8sin2θ+8cos2θ=8+8√2sin(2θ+于是得图形面积S=AB2+4S△ABE=16cos2θ+4⋅12π),4因0<θ<π2,即π4<2θ+π4<5π4,则当2θ+π4=π2,即θ=π8时,sin(2θ+π4)取最大值1,S max =8+8√2,所以该图的面积最大为8+8√2. 故选:C2、角α的终边与单位圆的交点坐标为(√32,12),将α的终边绕原点顺时针旋转3π4,得到角β,则cos(α+β)=( )A .√6−√24B .√6+√24 C .√3−14D .0 答案:A 解析:先求α的正余弦三角函数,再求β的正余弦三角函数,然后根据余弦的两角和与差的公式计算即可得到答案.由角α的终边经过点(√32,12),得sinα=12,cosα=√32, 因为角β的终边是由角α的终边顺时针旋转3π4得到的, 所以sinβ=sin(α−3π4)=sinαcos 3π4−cosαsin3π4=12×(−√22)−√32×√22=−√2−√64cosβ=cos(α−3π4)=cosαcos 3π4+sinαsin 3π4=√32×(−√22)+12×√22=√2−√64cos(α+β)=cosαcosβ−sinαsinβ=√32×√2−√64−12×−√2−√64=√6−√24, 故选:A. 小提示:本题主要考查了三角函数的定义以及两角和与差的正余弦公式的应用,属于中档题. 3、已知函数f(x)=sinx +cosx ,且f ′(x )=3f (x ),则tan2x 的值是 A .-43B .43C .-34D .34 答案:A 解析:先求f ′(x )=cos x ﹣sin x ,根据f ′(x )=3f (x )得tan x ,然后利用正切的二倍角公式即可得到答案. 根据题意,f ′(x )=cos x ﹣sin x , 由f ′(x )=3f (x )得, cos x ﹣sin x =3(sin x +cos x ), 4sin x =﹣2cos x ,解得tan x =-12, 再根据二倍角公式得,tan2x =2tanx 1−tan 2x=﹣43,故选A . 小提示:本题主要考查了导数的运算,涉及正弦函数和余弦函数的导数,以及正切的二倍角公式,属于基础题. 4、已知函数f (x )=asinx +bcosx ,其中a,b ∈R ,且ab ≠0,若f (x )≤|f (π4)|对一切x ∈R 恒成立,则( ). A .f (π5)>f (π6)B .f (x )=f (5π2−x) C .f (x −π4)是偶函数D .f (x +π4)是奇函数 答案:B 解析:利用辅助角公式可得f (x )=√a 2+b 2sin (x +φ),又f (x )≤|f (π4)|对一切x ∈R 恒成立知|f (π4)|=√22a +√22b =√a 2+b 2,可得a =b ,整理得f (x )=√2asin (x +π4),利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 由ab ≠0知a ≠0且b ≠0,利用辅助角公式可得f (x )=asinx +bcosx =√a 2+b 2sin (x +φ),其中tanφ=ba , 又f (x )≤|f (π4)|对一切x ∈R 恒成立,知|f (π4)|是f (x )的最值,所以|f (π4)|=asin π4+bcos π4=√22a +√22b =√a 2+b 2,即12a 2+12b 2+ab =a 2+b 2,所以12a 2+12b 2−ab =0,即12(a −b )2=0, 所以a =b ,tanφ=ba =1,可得φ=π4, 所以f (x )=√2asin (x +π4),对于选项A :f (π5)=√2asin (π5+π4)=√2asin 9π20,f (π6)=√2asin (π6+π4)=√2asin 5π12,又因为5π12<9π20<π2,则sin 5π12<sin 9π20,当a >0时,f (π5)>f (π6),当a <0时,f (π5)<f (π6),故选项A 不正确;对于选项B :f (5π2−x)=√2asin (5π2−x +π4)=√2asin (11π4−x)=√2asin (3π4−x)=√2asin (π−π4−x)=√2asin (π4+x)=f (x ),故选项B 正确;对于选项C :f (x −π4)=√2asin (x −π4+π4)=√2asinx 是奇函数,故选项C 不正确;对于选项D :f (x +π4)=√2asin (x +π4+π4)=√2asin (x +π2)=√2acosx 是偶函数,故选项D 不正确,故选:B 小提示:关键点点睛:本题的关键点是从已知条件f (x )≤|f (π4)|对一切x ∈R 恒成立,知|f (π4)|是f (x )的最值,|f (π4)|=√22a +√22b =√a 2+b 2,从而得f (x )=√2asin (x +π4),属于中档题.5、已知sin(α−π3)+√3cosα=13,则sin(2α+π6)=( ) A .23B .29C .−19D .−79 答案:D 解析:利用两角差的正弦、余弦公式化简sin(α−π3)+√3cosα=13,再利用诱导公式、二倍角公式求解sin(2α+π6)即可.∵sin(α−π3)+√3cosα=13∴sinαcosπ3−cosαsinπ3+√3cosα=13∴12sinα−√32cosα+√3cosα=13∴12sinα+√3 2cosα=13∴cos(α−π6)=13∴sin(2α+π6)=sin[2(α−π6)+π2]=cos2(α−π6)=2cos2(α−π6)−1=2×(13)2−1=−79故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章基础知识检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知α为第二象限角,sin α=35,则sin2α=( )A .-2425B .-1225C .1225D .2425[答案] A[解析] 此题是给值求值题,考查基本关系式、二倍角公式. ∵sin α=35,α∈(π2,π),∴cos α=-1-(35)2=-45,∴sin2α=2sin αcos α=2×35×(-45)=-2425.2.cos π12cos 7π12的值是( )A .14B .-14C .34D .-34[答案] B[解析] cos π12cos 7π12=cos π12cos(π-5π12)=-cos π12cos 5π12=-cos π12sin π12=-12sin π6=-14.3.若α,β∈(0,π2),且tan α=43,tan β=17,则α-β的值为( )A .π3B .π4C .π6D .π8[答案] B[解析] tan(α-β)=tan α-tan β1+tan αtan β=43-171+43×17=1.又0<α<π2,-π2<-β<0,∴-π2<α-β<π2.∴α-β=π4.4.函数y =cos 2(x -π4)-cos 2(x +π4)的值域是( )A .[-1,0]B .[0,1]C .[-1,1]D .[-12,1][答案] C[解析] y =cos 2(x -π4)-cos 2(x +π4)=cos 2(x -π4)-sin 2[π2-(x +π4)]=cos 2(x -π4)-sin 2(x -π4)=cos2(x -π4)=cos(2x -π2)=cos(π2-2x )=sin2x ,∴函数的值域为[-1,1].5.若3sin x -3cos x =23sin(x -φ),φ∈(-π,π),则φ=( ) A .-π6B .π6C .5π6D .-5π6[答案] B[解析] 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x=23sin ⎝⎛⎭⎫x -π6,又φ∈(-π,π),∴φ=π6. 6.21-sin80°-2+2cos80°等于( ) A .-2sin40° B .2cos40°C .4cos40°-2sin40°D .2sin40°-4cos40°[解析] 原式=2|cos40°-sin40°|-2|cos40°|=-2sin40°.7.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于( ) A .22B .12C .0D .-1[答案] C[解析] 本题考查了平面向量的垂直关系及余弦的二倍角公式. 由a ⊥b 得,-1+2cos 2θ=cos2θ=0.向量的共线与垂直是两向量位置关系中最重要的,一定区分开它们的异同.8.(2014·浙江理,4)为了得到函数y =sin3x +cos3x 的图像,可以将函数y =2cos3x 的图像( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位[答案] C[解析] 本题考查三角函数图像变换.y =sin3x +cos3x =2sin(3x +π4)=2cos(3x -π4)只需将y =2cos3x 向右平移π12个单位,选C.9.已知tan(α+β)=25,tan ⎝⎛⎭⎫α+π4=322,则tan ⎝⎛⎭⎫β-π4=( ) A .15B .14C .1318D .1322[答案] B[解析] tan ⎝⎛⎭⎫β-π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α+π4 =tan (α+β)-tan ⎝⎛⎭⎫α+π41+tan (α+β)tan ⎝⎛⎭⎫α+π4=25-3221+25×322=14.10.已知f (x )=cos x ·cos2x ·cos4x ,若f (α)=18,则角α不可能等于( )A .π9B .2π9C .2π7D .4π7[解析] f (x )=cos x ·cos2x ·cos4x =8sin x ·cos x ·cos2x ·cos4x 8sin x =sin8x8sin x ,由f (α)=18,可得sin8α=sin α,经验证,α=2π9时,上式不成立.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上) 11.tan π8的值为________.[答案]2-1[解析] tan π8=1-cos π4sin π4=1-2222=2-1.12.函数f (x )=sin 2(2x -π4)的最小正周期是________.[答案] π2[解析] 本题考查了倍角公式及三角函数的性质. f (x )=sin 2(2x -π4)=1-cos (4x -π2)2=-12sin4x +12,∴T =2π4=π2.13.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为__________. [答案]2[解析] 解法一:∵a =(1,sin θ),b =(1,cos θ), ∴a -b =(1,sin θ)-(1,cos θ)=(0,sin θ-cos θ), ∴|a -b |=(sin θ-cos θ)2=1-sin2θ. ∴当sin2θ=-1时,|a -b |max = 2. 解法二:|a -b |2=(a -b )2=a 2+b 2-2a ·b=1+sin 2θ+1+cos 2θ-2(1+sin θcos θ)=1-sin2θ, ∴|a -b |2max =2,∴|a -b |max = 2.14.若α,β∈(0,π2),cos(α-β2)=32,sin(α2-β)=-12,则cos(α+β)的值等于________.[答案] -12[解析] ∵α,β∈(0,π2),cos(α-β2)=32,sin(α2-β)=-12,∴α-β2=±π6,α2-β=-π6.∴2α-β=±π3,α-2β=-π3.α+β=(2α-β)-(α-2β)=0或2π3(0舍去).∴cos(α+β)=-12.15.观察下列恒等式: ∵tan 2α-1tan α=-2(1-tan 2α)2tan α,∴tan α-1tan α=-2tan2α.① ∴tan2α-1tan2α=-2tan4α. ② ∴tan4α-1tan4α=-2tan8α.③由此可知:tan π32+2tan π16+4tan π8-1tan π32=______.[答案] -8[解析] tan π32+2tan π16+4tan π8-1tan π32=4tan π8+2tan π16+(tan π32-1tan π32)=4tan π8+2tan π16-2tan π16=4tan π8-4tan π8=-8tan π4=-8.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin2x 的最小正周期、最大值和最小值.[解析] ∵f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-2sin x cos x=1-sin 2x cos 2x 2(1-sin x cos x )=12(1+sin x cos x )42∴T =π,最大值为34,最小值为14.17.(本小题满分12分)已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos2x2cos (π4+x )sin x的值.[解析] (1)由sin x 2-2cos x 2=0,得tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43. (2)原式=cos 2x -sin 2x2(22cos x -22sin x )sin x=(cos x -sin x )(cos x +sin x )(cos x -sin x )sin x=cos x +sin x sin x =1tan x +1=(-34)+1=14. 18.(本小题满分12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域; (2)若f (α)=3210,求sin2α的值.[解析] (1)由已知,f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos(x +π4). 所以最小正周期T =2π,值域为[-22,22]. (2)由(1)知,f (α)=22cos(α+π4)=3210, 所以cos(α+π4)=35.所以sin2α=-cos(π2+2α)=-cos2(α+π4)4=1-1825=725.19.(本小题满分12分)(2014·烟台高三上学期期末)已知sin(A +π4)=7210,A ∈(π4,π2).(1)求cos A 的值;(2)求函数f (x )=cos2x +52sin A sin x 的值域.[解析] (1)因为π4<A <π2,且sin(A +π4)=7210,所以π2<A +π4<3π4,cos(A +π4)=-210.因为cos A =cos[(A +π4)-π4]=cos(A +π4)cos π4+sin(A +π4)sin π4=-210×22+7210×22=35, 所以cos A =35.(2)由(1)可得sin A =45.所以f (x )=cos2x +52sin A sin x=1-2sin 2x +2sin x =-2(sin x -12)2+32.因为sin x ∈[-1,1],所以当sin x =12时,f (x )取最大值32;当sin x =-1时,f (x )取最小值-3. 所以函数f (x )的值域为[-3,32].20.(本小题满分13分)(2014·四川理,16)已知函数f (x )=sin(3x +π4).(1)求f (x )的单调递增区间;(2)若α是第二象限角,f (α3)=45cos(α+π4)cos2α,求cos α-sin α的值.[解析] (1)因为函数y =sin x 的单调递增区间为[-π2+2k π,π2+2k π],k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为[-π4+2k π3,π12+2k π3],k ∈Z .(2)由已知,有sin(α+π4)=45cos(α+π4)(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45(cos αcos π4-sin αsin π4)(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 21.(本小题满分14分)设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cos B =13,f ⎝⎛⎭⎫C 2=-14,且C 为锐角,求sin A .[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x2=12-32sin2x . 所以函数f (x )的最大值为1+32,最小正周期为π.(2)由f ⎝⎛⎭⎫C 2=12-32sin C =-14, 即12-32sin C =-14,解得 sin C =32, 又C 为锐角,所以C =π3.又在△ABC 中,cos B =13由cos B =13求得sin B =223.因此 sin A =sin[π-(B +C )]=sin(B +C ) =sin B cos C +cos B sin C =223×12+13×32=22+36.。

相关文档
最新文档