【初中数学】湖北省鄂州市2013-2014学年下学期4月调研考试九年级数学试题 人教版

合集下载

湖北省鄂州市鄂城区汀祖中学九年级数学4月调研考试试题(扫描版)

湖北省鄂州市鄂城区汀祖中学九年级数学4月调研考试试题(扫描版)

湖北省鄂州市鄂城区汀祖中学2015届九年级数学4月调研考试试题数学参考答案1------5 A C C D B 6------10 D D B D D11、1/4 12、3 13、26 14、6 15、—1 16、y=(x>017、x==18、略19、解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==.20、解:(1)∵在Rt△ACD中,AC=45cm,DC=60cm∴AD==75(cm),∴车架档AD的长是75cm;(2)过点E作EF⊥AB,垂足为F,∵AE=AC+CE=(45+20)cm,∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63(cm),∴车座点E到车架档AB的距离约是63cm.21、解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.22、(1)证明:连结OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE =90°,即∠2+∠ODC =90°,∵OC =OD ,∴∠C =∠ODC ,∴∠2+∠C =90°,而OC ⊥OB ,∴∠C +∠3=90°,∴∠2=∠3,∵∠ 1=∠3,∴∠1=∠2;(2)解:∵OF :OB =1:3,⊙O 的半径为3,∴OF =1,∵∠1=∠2,∴EF =ED ,在Rt △ODE 中,OD =3,DE =x ,则EF =x ,OE =1+x ,∵OD 2+DE 2=OE 2,∴32+t 2=(t +1)2,解得t =4,∴DE =4,OE =5,∵AG 为⊙O 的切线,∴AG ⊥AE ,∴∠GAE =90°,而∠OED =∠GEA ,∴Rt △EOD ∽Rt △EGA , ∴=,即=,∴AG =6. 23、(1)1202p x =-(2)(1202)(6040)(125)(40)1125(4040)(1202)(2550)x x x y p q x x x -⋅+-≤<⎧⎪=⋅-=⎨+-⋅-≤≤⎪⎩ 22802400(125)1350002250(2550)x x x x x ⎧-++≤<⎪=⎨-≤≤⎪⎩(3)2125,2(20)3200x y x ≤<=--+∴x=20时,y 的最大值为3200元 1350002550,2250x y x≤≤=- x=25时,y 的最大值为3150元∴该超市第20天获得最大利润为3200元24、解:(1)抛物线y=(x+2)(x ﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B (4,0).∵直线y=﹣x+b 经过点B (4,0),∴﹣×4+b=0,解得b=, ∴直线BD 解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3). ∵点D (﹣5,3)在抛物线y=(x+2)(x ﹣4)上,∴(﹣5+2)(﹣5﹣4)=3, ∴k=. (2)由抛物线解析式,令x=0,得y=k ,∴C(0,﹣k ),OC=k .因为点P 在第一象限内的抛物线上,所以∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△ABP.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴D(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△ABP,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.(3)由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动时间等于折线AF+FG的长度.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.。

2013武汉九年级四月调研数学试题及答案

2013武汉九年级四月调研数学试题及答案

2013武汉九年级四月调研数学试题及答案 考试时间:120分钟 试卷满分:120分一、选择题(共10小题,每小题3分,共30分) 1.12-的相反数是A .12 B. 12- C. 2 D. -22.函数1-=x y 中自变量x 的取值范围是A .1>xB .1≥xC .1≤xD .1<x 3.在数轴上表示不等式组⎨⎧≤-042x 的解集,正确的是A .B .C .D .4.下列事件中,必然事件是A 、度量一个四边形的四个内角,和为180°B 、买1000张体育彩票,中奖C 、掷一次硬币,有国徽的一面向上D 、a 、b 是实数,则a+b=b+a5.若x 1、x 2是一元二次方程x 2+2x -3=0的两个根,则x 1·x 2的值是 A .2 B -2 C. 3 D. -36.如图,四边形ABCD 内有一点E ,已知AE=BE=DE=BC=DC , AB=AD ,若∠C =100°,则∠BAD 的大小是 ( ) A.25° B. 50° C.60° D.80°7.分别由五个大小相同的正方形组成的甲﹑乙两个几何体如上图所示,它们的三视图中完全一致的是A 主视图 B.左视图 C.俯视图 D.三视图8.如图,AB 是⊙O 的直径,CD 是弦,CD 平分∠ACB ,AI 平分 ∠CAB ,⊙O 的半径为1,则DI 的长为 AB 2 C.2 D 19.某中学学生会为了考察该校1800名学生参加课外体育活动的情况,采取抽样调查的方法乙图 第7题图甲图第6题图从“篮球、排球、乒乓球、足球及其他”等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息,下列判断:①本次抽样调查的样本容量是60;②在扇形统计图中,“其他”部分所对应的圆心角是60°;③该校学生中喜欢“乒乓球”的人数约为450人;④若被抽查的男女学生数相同,其中喜欢球类的男生占喜欢球类人数的56.25%,则被抽查的学生中,喜欢“其他”类的女生数为9人.其中正确的判断是A 只有 ①②③B 只有①②④C 只有①③④D 只有③④10.在矩形ABCD 中,BC=4,BG 与对角线AC 垂直且分别交AC ,AD 及射线CD 于点E ,F ,G , 当点F 为AD 中点时,∠ECF 的正弦值是 A.63 B.43 C.121 D.66二、填空题11、计算:sin60°= .12.《武汉晚报》5月30日报道:湖北省今年高考报名人数为484000人. 484000用科学计数法表示应为_________13、李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:g ):280,260, 250,244,260,260,250,230,这组数据的众数是 ,极差是 ,中位数是 .14. 如图是由火柴棒拼出的一列图形,通过观察,分析发现: 第7个图形中平行四边形的个数为______15、甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 天.16、如图,A 、B 分别是x 轴和y 轴上的点,以AB 为直径作⊙M ,过M点.....EDC BA作AB 的垂线交⊙M 于点C , C 在双曲线y =kx (x <0)上,若OA-OB=4,则k 的值是 .三、解答题17.(本题6分)解方程:52333x x=---;18.(本题6分)直线6y kx =-经过点A (-2,-2),求关于x 的不等式60kx -≥的解集.19.已知,如图在直角△ABC 中,∠C =90°,AB AD AC AE ⋅=⋅. 求证:ED ⊥AB .20.如图,在平面直角坐标系中,先把梯形ABCD 向左平移6个单位长度得到梯形A 1B 1C 1D 1.(1)请你在平面直角坐标系中画出梯形A 1B 1C 1D 1 ;(2)以点C 1为旋转中心,把(1)中画出的梯形绕点C 1顺时针方向旋转90°得到梯形A 2B 2C 2D 2 ,请你画出梯形A 2B 2C 2D 2.21.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球3个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数;(2)一次从袋中任意摸出两球,请你用列表或画树状图的方法求出两球颜色一样的概率.22. 如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F,(1)求证:BF=CE;(2)若∠C=30°,C E ,求AC23. 一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.24. 如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动25. 已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=2-x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG 面积的(12+)倍.若存在,请直接2..写出点P的坐标;若不存在,请说明理由.参考答案一选择题:ABADD BACCA二.填空题11、略;12.4.84×105 13、略;14. 16 15、18. 16、2.三.解答下列各题 17.418.6-≤x 19.略20.。

湖北省鄂州市2014年中考数学试题及答案(word解析版)

湖北省鄂州市2014年中考数学试题及答案(word解析版)

2014年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x ﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A (1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A 作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B ﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a ﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x 的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.考点:算术平均数.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x 的解集为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A (2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.考点:扇形面积的计算;正方形的性质.分析:如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.解答:解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC=S扇形OBC﹣S△OBC=﹣×2×1=﹣1.∴S阴影=4(S△OCD﹣2S弓形OmC)=4[×2×(2﹣)﹣2(﹣1)]=16﹣4﹣.故答案为:16﹣4﹣.点评:本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN 的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的部分通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=(+)•=•=•=,当a=2﹣时,原式==﹣.点评:本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n=36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).考点:频数(率)分布表;扇形统计图;列表法与树状图法.分析:(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.解答:解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.点评:考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.考点:根的判别式;根与系数的关系.分析:(1)根据关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,得出m≠0且(﹣2m)2﹣4•m•(m﹣2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1•x2的值,再根据|x1﹣x2|=1,得出(x1+x2)2﹣4x1x2=1,再把x1+x2和x1•x2的值代入计算即可.解答:解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.解答:解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE﹣DE=10,即x﹣x=10,解得:x=5(+1),∴AD=x=5+5答:AD的长为(5+5)米.(2)由(1)可得AC=2AE=(10+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=BF=y,在Rt△BFA中,AF=BF=y,∴y+y=(10+10),解得:y=10,在Rt△ABF中,AB==10米.答:树高AB的长度为10米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD 于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.考点:切线的判定.分析:(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,求出圆的直径AB,再根据勾股定理得出CE,即可求出答案.解答:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵=,∴令CD=3,AD=4,得AC=5,∴=,∴BC=,由勾股定理得AB=,∴OC=,∵OC∥AD,∴=,∴=,解得AE=,∴cos∠DAB===.点评:本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?考点:二次函数的应用.分析:(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解答:解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120;(2)当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+﹣40)(﹣2x+120)=﹣2250;(3)当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y=﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y=﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C 两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x 恒成立,求m的最大值.考点:二次函数综合题.分析:(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2=﹣x2的两根分别为x0,x0,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.解答:解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是x=2,∴,解得∴y=﹣x2+x+.∴m的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5∴B(5,0)∵D(0,)∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b则=2k+b,∴b=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由得x2﹣(4﹣4k)x﹣8k=0∴x1+x2=4﹣4k,x1x2=﹣8k∵y1=kx1+﹣2k,y2=kx2+﹣2k∴y1﹣y2=k(x1﹣x2)∴M1M2======4(1+k2)M1F===同理M2F=∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y设M1(x1,y1),则有(x1﹣2)2=9﹣4y1.∴M1F===﹣y1;设M2(x2,y2),同理可求得:M2F=﹣y2.∴+===①.直线M1M2的解析式为y=kx+﹣2k,即:y﹣=k(x﹣2).联立y﹣=k(x﹣2)与抛物线(x﹣2)2=9﹣4y,得:y2+(4k2﹣)y+﹣9k2=0,∴y1+y2=﹣4k2,y1y2=﹣9k2,代入①式,得:+==1.(3)设y2=﹣x2的两根分别为x0,x0,∵抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大∴当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得∴当x0=1时,对应的x0即为m的最大值将x0=1代入y2=﹣(x﹣h)2﹣x得(1﹣h)2=4∴h=3或﹣1(舍)将h=3代入y2=﹣(x﹣h)2=﹣x有﹣(x﹣3)2=﹣x∴x0=1,x0=9.∴m的最大值为9.点评:本题主要考查运用待定系数法求函数解析式、一元二次方程根与系数的关系及平面直角坐标系中两点距离公式的综合运用,对计算要求较高.。

湖北省鄂州市2014年中考数学试题(含答案)

湖北省鄂州市2014年中考数学试题(含答案)

湖北省鄂州市2014年中考数学试题(含答案)鄂州市2014年初中毕业生学业水平考试数学试题学校:________注意事项:1.本试卷共6页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

6.考生不准使用计算器。

一、选择题(每小题3分,共30分)1.12-的绝对值的相反数是()A.12B.12- C.2 D.2-2.下列运算正确的是( ) A .236(2)6x x -=- B.222(3)9a b a b -=- C.235x x x ⋅=D.235xx x +=3.如图所示,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是( )第3题图 AB C D 4.如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =70°,则∠2的度数为( ) A .20° B .40° C .30° D .25° 5.点A 为双曲线(0)k y k x=≠上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( ) A .B.± 6.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为( )A.90° B.120° C.150°D.180°7.在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当AGAD =()时,四边形BHDG为菱形.A.45B.35C.49D.38第7题图8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.22016(1)1500x-=B.21500(1)2160x+=C.21500(1)2160x-=D.215001500(1)1500(1)2160x x++++=9.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形1111A B C D ,再顺次连接四边形1111A B C D 各边中点,得到四边形2222A B C D ,如此进行下去,得到四边形nnnnA B C D .下列结论正确的是( )①四边形4444A B C D 是菱形②四边形3333A B C D 是矩形③四边形7777A B C D 周长为8a b + ④四边形nnnnA B C D 面积为2na b ⋅A .①②③B .②③④C .①③④ D.①②③④第9题图10.已知抛物线的顶点为2(02)y axbx c a b =++<<的顶点为00(,)P x y ,点(1,),(0,),(1,)ABCA yB yC y -在该抛物线上,当0y≥0恒成立时,A BCy y y -的最小值为 ( ) A .1B .2C .4D .3二、填空题:(每小题3分,共18分) 11的算术平方根为 . 12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a ,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为 . 13.如图,直线y kx b =+过A (-1,2)、B (-2,0)两点,则02kx b x ≤+≤-的解集为 .第13题图 第15题图 第16题图 14.在平面直角坐标中,已知点A (2,3)、B(4,7),直线(0)y kx k k =-≠与线段AB 有交点,则k 的取值范围为 .15.如图,正方形ABCD 的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD 的边长为半径.求阴影部分的面积 . 16.如图,正方形ABCD 边长为1,当M 、N 分别在BC ,CD 上,使得△CMN 的周长为2,A D BC则△AMN 的面积的最小值为 . 三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:112222a a a a ⎛⎫+÷⎪-++⎝⎭,其中2a =18.(本题满分8分)在平面内正方形ABCD 与正方形CEFH 如图放置,连DE ,BH ,两线交于M .求证:(1)(4分)BH =DE .(2)(4分)BH ⊥DE .18题图19.(本题满分8分)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:乙班:第19题图根据上面提供的信息回答下列问题 ⑴(3分)表中x = ,甲班学生成绩的中位数落在等级 中,扇形统计图中等级D 部分的扇形圆心角n = .⑵(5分)现学校决定从两班所有A 等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.(本题满分8分)一元二次方程2220-+-=mx mx m⑴(4分)若方程有两实数根,求m的范围.⑵(4分)设方程两实根为12,x x,且121-=,x x 求m.21.(本题满分9分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB 顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)(5分)求AD的长;(2)(4分)求树长AB.22.(本题满分9分)如图,以AB为直径的⊙O交∠BAD 的角平分线于C ,过C 作CD ⊥AD 于D ,交AB 的延长线于E .(1)(5分)求证:CD 为⊙O 的切线.(2)(4分)若34CD AD ,求cos ∠DAB .23.(本题满分10分)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:销售单价q (元/件)与x 满足:当112512560;255040x q x x q x≤<=+≤≤=+时当时.(1)(2分)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)(4分)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)(4分)这50天中,该超市第几天获得利润最大?最大利润为多少?24.(本题满分12分)如图,在平面直角坐标系xoy 中,一次函数54y x m =+的图象与x 轴交于A (-1,0),与y 轴交于点C .以直线x =2为对称轴的抛物线21:(0)C y axbx c a =++≠经过A 、C 两点,并与x 轴正半轴交于点B . (1)(3分)求m 的值及抛物线21:(0)C y axbx c a =++≠的函数表达式.(2)(5分)设点25(0,)12D ,若F 是抛物线21:(0)C y ax bx c a =++≠对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线1C 于111222(,),(,)M x y M x y 两点,试探究1211M F M F +是否为定值?请说明理由.(3)(4分)将抛物线C 1作适当平移,得到抛物线2221:(),14C y x h h =-->,若当1x m <≤时,2y x≥-恒成立,求m 的最大值.参考答案一、选择题(30分)1——5 B C D A D 6——10 DC B A D二、填空题(18分) 11、12、144 13、21x -≤≤-14、733k ≤≤ 15、8163π- 16、117、原式=2221422a a a a a +∙=--………………………………………………… 5′当2a =-时,原式=2==-………………………… 8′18、(1)证明△BCH ≅△DCE ,则BH =DE ………………… 5′(2)设CD 与BH 相交于G ,则∠MBC +∠CGB =90°又 ∵∠CDE =∠MBC , ∠DGH =∠BGC ∵∠CDE +∠DGH =90° ∴∠GMD =90°∴DE ⊥BH …………… 8′19、(1)X =2 Bn =36° …………………………………………… 3′(2)25……………………………………… 8′ 20、(1)2(2)4(2)00m m m m ⎧=---≥⎨≠⎩∴m>0 ……………… 4′(2)x 1+x 2=2若x 1>x 2 则x 1-x 2=1 ∴132x = ∴m =8若x 1<x 2 则x 2-x 1=1∴112x = ∴m =8 ∴m =8……………… 8′21、(1)过A 作AH ⊥CB 于H ,设AH =x , CHx , DH =x ,∵CH -DH =CD∴x -x =10∴x =)51 ……………………3′∴AD=x=(2)过B作BM⊥AD于M∵∠1=75°,∠ADB=45°,∴∠DAB=30°m设MB=m∴AM=DM=mm+m∵AD=AM+DM∴………………… 7′∴AB=2m=……………………9′22、(1)连CO,证OC∥AD则OC⊥CD即可………………………………………5′(2)设AD交圆O于F,连BF BC在直角△ACD中,设CD=3k, AD=4k∴AC=5k△ACD~△ABC∴2A C A D A C=∙,∴AB=25k4又BF⊥AD,∴OC⊥BF,∴BF=2CD=6k在直角△ABF中AF=7k,4∴cos ∠DAB =77425254k AD k AE == …………………………………… 9′ 23、(1)1202p x=-…………………………………………………………………… 3′(2)(1202)(6040)(125)(40)1125(4040)(1202)(2550)x x x y p q x x x -⋅+-≤<⎧⎪=⋅-=⎨+-⋅-≤≤⎪⎩22802400(125)1350002250(2550)x x x x x ⎧-++≤<⎪=⎨-≤≤⎪⎩………………… 7′ (3)2125,2(20)3200x y x ≤<=--+∴x =20时,y 的最大值为3200元1350002550,2250x y x ≤≤=- x =25时,y 的最大值为3150元 ∴该超市第20天获得最大利润为3200元…………………………………10′ 24、(1)54m =,抛物线2115:44c y x x =-++……………………………………3′(2)要使△ADF 周长最小,只需AD +FD 最小,∵A 与B 关于x =2对称 ∴只需BF +DF 最小 又∵BF +DF ≥BD∴F 为BD 与x =2的交点BD 直线为5251212y x =-+,当x =2时54y = ∴5(2,)4F1M F =∵2111115:44c yx x =-++21191(2)44y x -=-- 21194()(2)4y x --=-∴1M F ===1134y =-同理22134M F y =- ∴121212121213()11112131316913()44164y y M F M F y y y y y y -++=+=---++又∵25(2)49(2)4()4y k x x y ⎧-=-⎪⎪⎨⎪-=--⎪⎩∴222525(4)90216yk y k +--+= ∴2212125254,9216y yk y y k +=-+=-+∴22121144144k M F M F k ++==+ ……………………………… 8′ (3)法一:设22yx =-的两根分别为'0,x x∵抛物线2221:()4Cy x h =--可以看成由214y x=-左右平移得到,观察图象可知,随着图象向右移,'0,x x 的值不断增大∴当21,x m yx<≤≥-学习恒成立时,m 最大值在'0x 处取得 ∴当01x =时,对应的'x 即为m 的最大值将01x=代入221()4y x h x=--=-得2(1)4h -=∴31h =或-(舍)10′将3h =代入221()4yx h x=--=-有21(3)4x x --=- ∴'0019xx ==∴m的最大值为9 ………………………………… 12′法二:221(),14yx h x x m=--≥-<≤恒成立化简得22(24)0x h x h -++≤,1x m <≤,恒成立设22()(24)f x xh x h =-++,如图则有(1)0()0f f m ≤⎧⎨≤⎩10′即2213(1)(24)0h h mh m h<≤>⎧⎨-++≤⎩13(1)22h h h m h <≤>⎧⎪⎨+-≤≤++⎪⎩∴2329m h ≤++≤++=∴m 的最大值为9 …………………………22()(24)f x x h x h =-++。

2014武汉四调数学试卷及答案(Word精校版)

2014武汉四调数学试卷及答案(Word精校版)

第1页 / 共11页2013~2014学年度武汉市九年级四月调考数学试卷第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.下列数中,最大的是A .﹣1.B .0.C .1.D .2. 2.式子x -5 在实数范围内有意义,则x 的取值范围是A .x ≥ 5.B .x >﹣5.C .x ≥﹣5.D .x >5. 3.下列计算正确的是A .(﹣4)+(﹣6)=10.B . 2 =1.C .6-9=﹣3.D .8 - 3 =8-3 . 4.对20名男生60秒跳绳的成绩进行统计,结果如下表所示:跳绳的成绩(个) 130 135 140 145 150 人数(人)131132则这20个数据的极差和众数分别是:A .10,3.B .20,140.C .5,140.D .1,3. 5.下列计算正确的是A .2x +x =3x 2.B .2x 2·3x 2=6x 4.C .x 6÷x 2=x 3.D .2x -x =2.6.如图,线段AB 的两个端点坐标分别为A (2,2),B (4,2),以原点O 为位似中心,将线段AB 缩小后得到线段DE .若DE =1,则端点D 的坐标为yxED BA OA .(2,1).B .(2,2).C .(1,1).D .(1,2).7.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是A ..B ..C ..D ..第2页 / 共11页8.七年级有2000名学生参加“趣味数学竞赛”活动,从中抽取了若干名学生的得分进行统计,整理出下列不完整的表格,和扇形统计图.成绩x (分) 频数(人) 50≤x <60 10 60≤x <70 70≤x <80 80≤x <90 90≤x <10050若90分以上(含90分)的学生可获得一等奖; 70分以上(含70分),90以下的学生可获得二等奖;其余学生可获得鼓励奖.根据统计图表中的数据,估计本次活动中,七年级学生获得二等奖的人数大约有 A .1200人. B .120人. C .60人. D .600人.9.下列图形都是由同样大小的正方形按一定规律组成的,其中,第1个图形中一共有1个正方形,第2个图形中共有5个正方形,第3个图形中共有14个正方形,…,按照此规律第5个图形中正方形的个数为第1个图 第2个图 第3个图A .30.B .46.C .55.D .60.10.如图,P 为的⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP = 3 ,则弦BC 的最大值为 A .2 3 . B .3. C . 6 . D .3 2 .第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.分解因式:x 3-4x = .12.载有239名乘客的MH 370飞机失联后,其行踪一度成为世人关注的焦点.小明在百度中搜索“马航最新消息”,找到相关结果约32 800 000个.其中数32 800 000用科学计数法表示为 .13.口袋中装有10个小球,其中红球3个,黄球7个,从中随机摸出一球,是红球的概率为 . 14.一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.则a = .…50≤x <605%60≤x <7010%70≤x <8080≤x <9030%90≤x <100CA第3页 / 共11页15.如图所示,某双曲线上三点A 、B 、C 的横坐标分别为1、2、3.若AB =2BC ,则该双曲线的解析式的为y = .16.如图,在等边三角形△ABC 中,射线AD 四等分∠BAC 交BC 于点D ,其中∠BAD >∠CAD ,则CDBD = .三、解答题(共9小题,共72分)17.(本小题满分6分)解方程: 3121x x =-.18.(本小题满分6分)直线y =kx +4经过点A (1,5),求关于x 的不等式kx +4≤0的解集.19.(本小题满分6分)已知:如图,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C . 求证:AB =A C .第19题图ABCDE第4页 / 共11页20.(本小题满分7分)如图,在平面直角坐标系中,△ABCB (﹣1,1)、C (﹣3,1).将△ABC 向右平移2得到△A 1B 1C 1;将△ABC 绕原点O 旋转180°得到△A 2(1)请直接写出点C 1和C 2的坐标; (2)请直接写出线段A 1A 2的长.21.(本小题满分7分)菲尔兹奖(F I elds Medal )是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.获奖者当年不能超过四十岁.对获奖者获奖时的年龄进行统计,整理成下面的表格和统计图.(1)直接写出a 、b 、c 的值,并补全条形统计图; (2)请问这组数据的中位数在哪一个年龄段中?(3)在五位36岁的获奖者中有两位美国人,一位法国人和两位俄罗斯人.请用画树形图或列表的方法求出“从五位36岁的获奖者中随机抽出两人,刚好是不同国籍的人”(记作事件A )的概率.年龄段(岁) 27≤x <29 29≤x <31 31≤x <33 33≤x <35 35≤x <37 37≤x <39 39≤x <41 频数(人) 1 275a bc 频率0.0250.1750.15第5页 / 共11页22.(本小题满分8分)已知:P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上一点. (1) 如图1,若AC 为直径,求证:OP ∥BC ; (2) 如图2,若s I n ∠P =1213,求tan ∠C 的值.C图1 图223.(本小题满分10分)某工厂生产一种矩形材料板,其长宽之比为3∶2.每张材料板的成本c (单位:元)与它的面积(单位:2cm )成正比例,每张材料板的销售价格y (单位:元)与其宽x 之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.(1)求一张材料板的销售价格y 与其宽x 之间的函数关系式,不要求写出自变量的取值范围; (2)若一张材料板的利润w 为销售价格y 与成本c 的差.①请直接写出一张材料板的利润w 与其宽x 之间的函数关系,不要求写出自变量的取值范围; ②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.第6页 / 共11页24.(本小题满分10分)在△ABC 中,点D 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,同时点F 从B 出发,在BC 边上以相同的速度向C 运动,过点D 作DE ∥BC 交AC 于点E .运动时间为t 秒.(1)若AB =5,BC =6,当t 为何值时,四边形DFCE 为平行四边形; (2)连接AF 、C D .若BD =DE ,求证:∠BAF =∠BCD ; (3)AF 交DE 于点M ,在DC 上取点N ,使MN ∥AC ,连接FN .①求证:BF CF =DNCN;②若AB =5,BC =6,AC =4,当MN =FN 时,请直接写出t 的值.25.(本小题满分12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4 (a <0)经过第一象限内的定点P . (1)直接点P 的坐标;(2)直线y =2x +b 与抛物线c 1在相交于A 、B 两点,如图1所示,直线P A 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值;(3)若a =﹣1,点M 坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点.设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式.第7页 / 共11页2013—2014学年度武汉市部分学校九年级调研测试数学试题参考答案题号 1 2 3 4 5 6 7 8 9 10 答案DACBBCDACA11.x (x +2) (x -2). 12.3.28×107. 13.0.3. 14.15. 15.6155x 16.3-12. 17.解:方程两边同乘以2x (x -1),去分母得, ………………1分3(x -1)=2x , ………………2分 即3x -3=2x , ………………3分解得:x =3, ………………4分 经检验x =3是原方程的根. ……………… 5分 ∴原方程的解为x =3. ……………… 6分 18.解:把(1,5)代入直线的函数关系式y =kx +4中,得,k +4=5, ……………… 2分 解得,k =1, ………………3分∴直线的函数关系式为y =x +4. ……………… 4分 ∴x +4≤0, ………………5分 ∴x ≤﹣4. ………………6分 19.证明:在△ABE 和△ACD 中, ………………1分∵⎩⎪⎨⎪⎧∠A =∠A ,∠B =∠C ,AE =AD .………………4分(每写对一对对应关系给1分) ∴△ABE ≌△AC D .(AAS ) ………………5分 ∴AB =A C . ………………6分 20.解:(1)C 1(﹣1,﹣3),C 2(3,﹣1); (每写对一个点的坐标给2分共4分)(2)A 1A 2的长6. ……………… 7分21.(1)a =7,b =12,c =6,补全条形统计图如下:;………………3分第8页 / 共11页(2)这组数据的中位数在35≤x <37的年龄段中. ……………… 4分(3)将两名美国人分别记作M 1、M 2,法国人记作F ,俄罗斯人分别记作E 1、E 2,则随机抽出两人的所有结果列表如下: M 1 M 2 F E 1 E 2 M 1 M 2,M 1F ,M 1 E 1,M 1 E 2,M 1 M 2 M 1,M 2 F ,M 2 E 1,M 2 E 2,M 2 F M 1,F M 2,F E 1,F E 2,F E 1 M 1,E 1 M 2,E 1 F ,E 1 E 2,E 1 E 2M 1,E 2M 2,E 2F ,E 2E 1,E 2由表可知,共有20个等可能的结果, ……………… 5分 其中“刚好是不同国籍的人”的结果有16个. ……………… 6分 ∴(A )=45. ……………… 7分22.(1)证明:连接AB 交PO 于点M .∵P A 、PB 分别切⊙O 于A 、B 两点, ∴P A =PB ,OP 平分∠AP B . ∴AB ⊥PO . 即∠AMO =90°. ∵AC 为直径. ∴∠ABC =90°. ∴∠ABC =∠AMO . ∴BC ∥OP .……………… 4分(2)连接AB ,过点A 作AD ⊥PB 于点D ,作直径BE ,连接AE .∵PB 为⊙O 的切线, ∴BE ⊥P B .∴∠PBA +∠ABE =90°.第9页 / 共11页∵BE 为直径, ∴∠BAE =90°. ∴∠E +∠ABE =90°. ∴∠E =∠ABP . ∵∠E =∠C , ∴∠C =∠ABP .由s I n ∠P =1213 ,可以设AD =12t ,则P A =13t ,PD =5t .∴BD =8t .∴tan ∠ABD =AD BD =12t 8t =32.∴tan ∠C =32. ………………8分C23.解:(1)由表中数据判断,销售价格y 与宽x 之间的函数关系不是反比例函数关系. 方法一:如果是二次函数的关系,可设函数解析式为y =ax 2+bx +C .则 242a +24b +c =780,302a +30b +c =900,422a +42b +c =1140,解之得 a =0,b =20,c =300.因此,它们实际上是一次函数关系.其解析式为y =20x +300.方法二:假设是一次函数关系,可设函数解析式为y =kx +B .则 24k +b =780,30k +b =900,解之得,k =20,b =300.将x =42,y =1140,和x =54,y =1380代入检验,满足条件. 故其解析式为y =20x +300. ………………4分(2)①w =﹣16 x 2+20x +300; ………………8分②w =﹣16(x -60)2+900,所以,当材料板的宽为60cm 时,一张材料板的利润最大,最大利润为900元 ……10分 24.(1)解:∵ED ∥BC ,当DF ∥AC 时,四边形DFCE 为平行四边形.此时,BD AB =BF BC .∵AD =BF =t ,∴BD =5-t .∴5-t 5=t6,第10页 / 共11页∴t =3011. ………………3分(2)证明:∵DE ∥BC ,∴△ADE ∽△ABC , ∴AD AB =DE BC. ∵AD =BF ,DE =DB , ∴BF AB =DB BC. ∵∠ABF =∠CBD , ∴△ABF ∽△CB D .∴∠BAF =∠BC D . ……………… 6分 (3)①证明:∵DE ∥BC ,∴△ADM ∽△ABF , ∴AM AF =DM BF. 同理,AM AF =EM CF ,∴DM BF =EMCF . ∴DM ME =BFCF. ∵MN ∥EC , ∴DM ME =DNCN, ∴BF CF =DNCN. ………………8分 ②t =103. ………………10分25.(1)点P 的坐标为(2,4); ………………2分(2)设点A 、B 的坐标分别为A (x 1,ax 12-4a +4)、B (x 2,ax 22-4a +4). ∵点A 、B 在直线y =2x +b 上,∴2x 1+b =ax 12-4a +4 ①,2x 2+b =ax 22-4a +4 ②. ①-②,得2(x 1-x 2)=a (x 12-x 22), ∴a (x 1+x 2)=2.过点B 作BG ∥y 轴,过点P 作PG ∥x 轴,BG 、PG 相交于点G ,过点A 作AH ∥x 轴,过点P 作PH ∥y 轴,AH 、PH 相交于点H .第11页 / 共11页 ∵PD =PC ,∴∠PDC =∠PC D .∵AH ∥x 轴,∴∠P AH =∠PDC ,同理,∠BPG =∠PCD ,∴∠AHP =∠PG B .∴Rt △PGB ∽Rt △AHP .∴BG PG =PH AH . ∴2-x 2ax 22-4a =2-x 1﹣(4a ). ∴x 1+x 2=﹣4.∴a =﹣12. ………………8分 即,y Q =﹣2x Q 2+4x Q +2.∴抛物线c 2的解析式为:y =﹣2x 2+4x +2. ………………12分。

湖北省鄂州市一中2014届九年级下第二次月考数学试题

湖北省鄂州市一中2014届九年级下第二次月考数学试题

2014年春九年级第二次月考数 学 试 卷(Ⅰ)一、选择题(每题3分,共30分) 1、4的算术平方根是 A 、±2 B 、21C 、2D 、-2 2、如果yx b a 321与-12+x y b a 是同类项,则x+y 的值为 A 、2 B 、3 C 、4 D 、53、如图,用6个完全相同的小正方体组合成如图所示的主体图形,它的主视图为A B C D 4、如图,已知AB ∥CD ,∠2=135º,则∠1的度数是 A 、35º B 、45 ºC 、55ºD 、65º5、如图,已知双曲线)0(<=k xky 经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若A 点的坐 标为(-6,4),则△AOC 的面积为A 、6B 、8C 、9D 、126、如图,正方形ABCD 的边长为4,点E 在BC 上,四边形EFGB也是正方形,以B 为圆心,BA 长为半径画AC ,连AF 、CF , 则图中阴影部分面积为 A 、2π B 、4π C 、4π-2 D 、6π7、如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =42,则△EFC 的周长为A 、11B 、10C 、9D 、88、设1x 、2x 是一元二次方程0342=-+x x 的两个根,2)35(22221=+-+a x x x ,则a 的值为A 、-2B 、4C 、8D 、10 9、如图,二次函数)0(2≠++=a c bx ax y 的图象顶点在第一象限, 且过点(0,1)和(-1,0),下列结论:①ab <0;②a b 42>;③20<++<c b a ;④10<<b ;⑤当1->x 时,0>y , 其中正确结论的个数是A 、5个B 、4个C 、3个D 、2个 10、如图,圆柱形容器中,高为1.2米,底面周长为1米,在容器 内壁离容器底部0.3m 处的点B 处有一蚊子。

初中毕业升学考试(湖北鄂州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖北鄂州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖北鄂州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】-的相反数是()A.- B.- C. D.【答案】C.【解析】试题分析:根据相反数的定义可得答案.-的相反数是.故答案选C.考点:相反数.【题文】下列运算正确的是()A.3a+2a=5a2 B.a6÷a2=a3C.(-3a3)2=9a6 D.(a+2)2=a2+4【答案】C.【解析】试题分析:选项A,根据同类项合并法则可得3a+2a=5 a,本选项错误;选项B,根据同底数幂的除法可得a6÷a2= a4,本选项错误;选项C,根据积的乘方可得(-3a3)2=9a6,本选项正确;选项D,根据完全平方式可得(a+2)2=a2+4a+4,本选项错误.故选C.考点:合并同类项;同底数幂的除法;积的乘方;完全平方式.【题文】钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A. 4.4×106B. 44×105C. 4×106D. 0.44×107【答案】A【解析】试题分析:根据科学记数法是把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数).确定a×10n(1≤|a|<10,n为整数),4400000有7位,所以可以确定n=7-1=6,再表示成a×10n 的形式即可,即4400000=4.4×106.故答案选A.考点:科学记数法.【题文】一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()【答案】B.【解析】试题分析:从物体的左面看是正六棱柱的两个侧面,因C项只有1个面,D项有3个面,故排除C,D;从俯视图可知,本题几何体是正六棱柱,所以棱应该在正中间,故排除A.故答案选B.考点:几何体的三视图.【题文】下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是10【答案】B.【解析】试题分析:选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;D.一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.考点:抽样调查、中位数、样本容量、方差.【题文】如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°【答案】B.【解析】试题分析:已知AB∥CD,根据平行线的性质可得∠2=∠D;又因EF⊥BD,根据垂线的性质可得∠DEF=90°;在△DEF中,根据三角形的内角和定理可得∠D=180°―∠DEF―∠1=180°―90°―50°=40°,所以∠2=∠D=40°.故答案选B.考点:平行线的性质;三角形的内角和定理.【题文】如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是()【答案】A.【解析】试题分析:当点P在AB上分别运动时,围成的三角形面积为S(cm2)随着时间的增多不断增大,到达点B时,面积为整个正方形面积的四分之一,即4cm2;当点P在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)随着时间的增多继续增大,S=4+S△OBP;动点P由A开始沿折线A—B—M方向匀速运动,故排除C,D;到达点M时,面积为4+2=6(cm2),故排除B.故答案选A.考点:动点函数的图像问题.【题文】如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E ,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9.以下结论:①⊙O的半径为②OD∥BE③PB=④tan∠CEP=其中正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:①连接OE,则OE⊥DC,易证明四边形ABCD是梯形,则其中位线长等于(4+9)=,而梯形ABCD的中位线平行于两底,显而易见,中位线的长(斜边)大于直角边(或运用垂线段最短判定),故可判断①错误;②先证明△AOD≌△EOD,得出∠AOD=∠EOD=∠AOE,再运用同弧所对的圆周角等于圆心角的一半证明∠AOD=∠ABE,从而得出OD∥BE,故②正确;③由①知OB=6,根据勾股定理,OC===3;易证△OPB∽△OBC,则,所PB===,③正确;④易知∠CEP>∠ECP,所以CP>PE,故tan∠CEP=错误.故答案选B.考点:圆的综合题.【题文】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -,其中正确的结论个数有_____________________ (填序号)【答案】C【解析】试题分析:由图象可知抛物线开口向下,可得a<0,由抛物线的对称轴在y轴的右侧,可得b>0,抛物线与y轴的交点在x轴下方,可得c<0,所以abc>0,即①正确;当x=3时,y=ax2+bx+c=9a+3b+c >0,所以②错误;已知C(0,c),OA=OC,可得A(﹣c,0),由图知,A在1的左边∴﹣c<1 ,即c>-1,即③正确;把-代入方程ax2+bx+c=“0”(a≠0),得ac﹣b+1=0,把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,即ac﹣b+1=0,所以关于x的方程ax2+bx+c=“0” (a≠0)有一个根为-,即④正确;故答案选C.考点:二次函数图象与系数的关系;数形结合思想.【题文】如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD 沿直线PQ折叠,A的对应点为A′,当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.【答案】B.【解析】试题分析:如图,过C作CH⊥AB,连接DH;因ABCD是菱形,∠B=60°,可判定△ABC为等边三角形;所以AH=HB=4;再由BP=3,可得HP=1.要使CA′的长度最小,则梯形APQD沿直线PQ折叠后A的对应点A′应落在CH上,且对称轴PQ应满足PQ∥DH;由作图知,DHPQ为平行四边形,可得DQ=HP= 1,CQ=CD-DQ=8-1=7.故答案选B.考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.【题文】方程x2-3=0的根是【答案】x1=,x2= -.【解析】试题分析:移项得x2=3,开方得x1=,x2= -.考点:解一元二次方程.【题文】不等式组的解集是【答案】﹣1<x≤2.【解析】试题分析:解不等式2x-3<3x-2,得:x>﹣1;解不等式2(x-2)≥3x-6,得:x≤2,所以不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.【题文】如图,扇形OAB中,∠AOB=60°,OA=6cm,则图中阴影部分的面积是.【答案】(6π-9)cm2.【解析】试题分析:由阴影部分面积=扇形的面积-三角形的面积可得S阴影=S扇=πnR2-S△AOB=π×60×62-×6×6×=6π-9.考点:扇形的面积.【题文】如图,已知直线与x轴、y轴相交于P、Q两点,与y=的图像相交于A(-2,m)、B(1,n)两点,连接OA、OB.给出下列结论:①k1k2<0;②m+n=0;③S△AOP= S△BOQ;④不等式k&#xad;1x+b>的解集是x<-2或0<x<1,其中正确的结论的序号是.【答案】②③④.【解析】试题分析:①由直线的图像在二、四象限,知k&#xad;1<0;y=的图像在二、四象限,知k&#xad;2<0;因此k&#xad;1k2>0,所以①错误;②A,B两点在y=的图像上,故将A(-2,m)、B(1,n)代入,得m=,n= k2;从而得出m+n=0,故②正确;③令x=0,则y=b,所以Q(0,b),则S△BOQ=×1×|b|= -b;将A(-2,m)、B(1,n)分别代入,解得k&#xad;1=,所以y=x+b;令y=0,则x=-b,所以P(-b,0),则S△AOP=×|-2|×|-b|= -b;所以S△&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;&#xad;AOP= S△BOQ,故③正确;④由图像知,在A点左边,不等式k&#xad;1x+b的图像在的图像的上边,故满足k&#xad;1x+b>;在Q点与A点之间,不等式k&#xad;1x+b的图像在的图像的上边,故满足k&#xad;1x+b>;因此不等式k&#xad;1x+b>的解集是x<-2或0<x<1.故④正确.考点:反比例函数与一次函数的性质.【题文】如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点。

湖北省武汉市九年级四月调考数学试卷(一)

湖北省武汉市九年级四月调考数学试卷(一)

九年级四月调考数学试卷(一)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列四个数中,是正整数的是( )A. -1B. 0C.D. 12.若代数式在实数范围内有意义,则实数x的取值范围是( )A. x≠-3B. x=-3C. x<-3D. x>-33.一组数据2,4,6,4,8的中位数为( )A. 2B. 4C. 6D. 84.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )A. B. C. D.5.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A.B.C.D.6.在一只不透明的口袋中装有标号为1,2,3的3个球,这些球除标号外其他都相同,甲、乙按先后顺序从袋中各摸出一个球(不放回),摸到1号球者胜出,则乙胜出的概率是( )A. B. C. D.7.若二元一次方程组的解为,则a-b=( )A. 1B. 3C.D.8.观察“田”字中各数之间的关系:则a+d-b-c的值为( )A. 52B. -52C. 51D. 519.将函数y=x2-2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2-2|x|的图象,关于x的方程x2-2|x|=a,在-2<x<2的范围内恰有两个实数根时,a的值为( )A. 1B. 0C.D. -110.如图,AB是⊙O的直径,BC是⊙O的弦=.若BD=2,CD=6,则BC的长为( )A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.计算:×=______.12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是______.13.化简的结果为______.14.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为______.15.平面直角坐标系中,过动点P(n,0)且垂直于x轴的直线与直线y=-3x-1及双曲线y=的交点分别为B和C,当点B位于点C下方时,则n的取值范围是______.16.在四边形ABCD中,AC=BC=BD,AC⊥BD,若△ABD的面积为6,则AB的长是______.三、解答题(本大题共8小题,共72.0分)17.计算:2x4+x2+(x3)2-5x618.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.19.某校为了做好全校800名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,如图是利用所得数据绘制的频数分布直方图(视力精确到0.1)请你根据此图提供的信息,回答下列问题:(1)本次调查共抽测了______名学生;(2)视力在4.9及4.9以上的同学约占全校学生比例为多少?(3)如果视力在第1,2,3组范围内(4.9以下)均属视力不良,应给予治疗矫正.请计算该校视力不良学生约有多少名?20.正六边形ABCDEF的边长1,请仅用无刻度的直尺按要求画图.(1)在图1中,画出一条长度为的线段;(2)在图2中,画出一条长度为的线段,并说明理由.21.在△ABC中,∠C=90°,0为AB边上一点,以O为圆心,OA为半径作⊙O交AB于另一点D,OD=DB.(1)如图1,若⊙O与BC相切于E点,连接AE,求证:AC=CE;(2)如图2,若⊙O与BC相交于E,F两点,且F为的中点,连接AF,求tan∠CAF 的值.22.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价-进价-销售成本).23.已知直线AC与BD交于点E,连接AD,BC.(1)如图1,若∠DAB=∠ABC=∠AEB,求证:AB2=AD•BC(2)如图2,延长DA,CB交于点F.若∠F=90°,AF=BF=BC,∠AED=45°,求的值;(3)在(1)的条件下,若∠AEB=135°,tan∠D=,直接写出tan∠C的值为______.24.如图,在平面直角坐标系中抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3),与直线l:y=k(x-3)+3(k>0)交于D,E两点.(1)求抛物线的解析式;(2)连接BD,BE,若△BDE的面积为6,求k的值;(3)点P为直线DE上的一点,若△PAB为直角三角形,且满足条件的点P有且只有3个,直接写出k的值为______.答案和解析1.【答案】D【解析】解:A、-1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.正整数是指既是正数还是整数,由此即可判定求解.此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.【答案】A【解析】解:由题意,得x+3≠0,解得x≠-3,故选:A.根据分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.3.【答案】B【解析】【分析】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.4.【答案】A【解析】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选:A.根据平移的性质,结合图形对选项进行一一分析,选出正确答案.本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.5.【答案】C【解析】解:从左边看竖直叠放2个正方形.故选:C.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.【答案】D【解析】解:画树状图得:∵共有6种等可能的结果,其中乙摸到1号球的有2种结果,∴乙胜出的概率是=,故选:D.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与乙摸到1号球的结果数,再根据概率公式计算可得.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】D【解析】解:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y)+(3x-5y)=3+4,∴4x-4y=7,∴x-y=,∵x=a,y=b,∴a-b=x-y=故选:D.将两式相加即可求出a-b的值.本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.8.【答案】B【解析】解:由图可得,左上角的数字分别为1,3,5,7,9,…,是一些连续的奇数,左下角的数字依次是2,4,8,16,32,…,则可以用2n表示,右下角的数字是左上角和左下角的数字之和,右上角的数字比右下角的数字小1,则a=11,b=26=64,d=11+64=75,c=75-1=74,∴a+d-b-c=11+75-64-74=-52,故选:B.根据题目中的图形,可以发小数字的变化规律,从而可以求得a、b、c、d的值,从而可以解答本题.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.9.【答案】D【解析】解:由y=x2-2x可知与x轴的交点为(0,0),(2,0),故沿y轴翻折得到一个新的图象与x轴的交点为(0,0),(-2,0),∵y=x2-2x=(x-1)2-1∴顶点为(1,-1),∴沿y轴翻折得到一个新的图象的顶点为(-1,-1),∴函数y=x2-2|x|的图象与x轴交于(-2,0),(0,0),(2,0)3个交点,(1,-1),(-1,-1)两个顶点.如图所示,观察图象可知y=x2-2|x|和直线y=a在-2<x<2的范围内有一个交点时,则直线为y=-1;∴关于x的方程x2-2|x|=a,在-2<x<2的范围内恰有两个实数根时,a=-1.故选:D.函数y=x2-2|x|的图象与x轴交于点(-2,0),(0,0),(2,0),有3个交点,两个顶点为(1,-1)和(-1,-1),根据图象即可求得.本题考查了二次函数图象与几何变换,画出函数的图象是解题的关键.10.【答案】B【解析】【分析】连AD,过点D作直径DE,与AC交于点F,连结CE,由条件知DE⊥AC,CD⊥CE,BD=CE ,可求得DE长和CF长,则AC、BC可求.本题考查了圆心角,弧,弦的关系,勾股定理,相似三角形的性质,等腰三角形的性质,解题的关键是正确的作出辅助线.【解答】解:连AD,过点D作直径DE,与AC交于点F,连结CE,∴DE⊥AC,CD⊥CE,∵,∴AD=CD,∴,,∴BD=CE=2,∴,∵∠ECA=∠CDE,∠ECD=∠CFD=90°,∴△ECF∽△EDC,∴,∴,∴,∴,∴=.故选B.11.【答案】3【解析】解:原式===3.故答案为:3.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.【答案】【解析】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.本题考查的是几何概率,熟记概率公式是解答此题的关键.13.【答案】a-1【解析】解:原式==a-1,故答案为:a-1,根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.【答案】25°【解析】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°-120°-110°=130°,∴∠DAE==25°,故答案为:25°.由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.15.【答案】-1<n<0或n>【解析】解:令-3x-1=-,解得:x1=-1,x2=.观察函数图象可知:当-1<n<0或n>时,反比例函数图象在一次函数图象的上方,即点B位于点C下方,∴当点B位于点C下方时,n的取值范围为-1<n<0或n>.故答案为-1<n<0或n>令-3x-1=-,可求出两函数图象交点的横坐标,再根据两函数图象的上下位置关系即可得出当点B位于点C下方时,n的取值范围.本题考查了反比例函数与一次函数的交点问题以及一次函数图象上点的坐标特征,解题的关键是令-3x-1=-,求出两函数交点的横坐标.16.【答案】2【解析】解:过D作DE⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,∵CF⊥AB,AC⊥BD,∴∠ACF+∠FAC=90°,∠ABD+∠BAC=90°,∴∠ACF=∠ABD,∵AC=BC,CF⊥AB,∴AF=BF,∠ACF=∠BCF,∴∠ABD=∠BCF,∵DE⊥AB,CF⊥AB,∠ABD=∠BCF,BC=BD,∴△BDE≌△CBF(AAS),∴BF=ED,∵AF=BF,∴AB=2BF=2ED,∵S△ABD==6,∴×2BF×BF=6,∴BF=,∴AB=2,故答案为:2.过D作DE⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,结合图形,想一想△BDE与△CBF有何关系?根据AC⊥BD,CF⊥AB,利用同角的余角相等可得∠ACF=∠ABD,再由等腰三角形三线合一可推出∠ABD=∠BCF,进而利用AAS证明△BDE 与△CBF全等,从而得到BF与ED的数量关系;由等腰三角形三线合的性质可求得BF=AF,则ED的长度可知,进而利用三角形面积公式即可解决题.本题考查了全等三角形的判定和性质,等腰三角形的性质及三角形的面积.解题的关键是正确作辅助线及三角形全等的应用17.【答案】解:2x4+x2+(x3)2-5x6=2x4+x2+x6-5x6【解析】本题运用整式的运算:幂的乘方及整式的加减即可求得.本题考察幂的乘方及整式的加减,要注意按照运算次序进行,结果一定不能有同类项,所以要细心计算,结果通常按某一字母的降幂排列.18.【答案】证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.【解析】由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC ,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.19.【答案】(1)160;(2)视力在4.9及4.9以上的同学人数为40+20=60(人),所占比例为:=;(3)视力在第1,2,3组的人数在样本中所占的比例为,∴该校视力不良学生约有800×(人).【解析】(1)10+30+60+40+20=160;(2)视力在4.9及4.9以上的同学人数为40+20=60(人),所占比例为:=;(3)视力在第1,2,3组的人数在样本中所占的比例为,∴该校视力不良学生约有800×(人).(1)根据频数分布直方图,把各个频数相加即可;(2)计算出视力在4.9及4.9以上的同学人数,再除以调查的总人数即可;(3)视力在第1,2,3组的人数和除以调查总人数,再利用样本估计总体的方法计算出该校视力不良学生约有多少名.此题主要考查了频数分布直方图,关键是看懂统计图,从图中得到正确信息.20.【答案】解:(1)如图1:连接AD,BF交于点G,则AG即为所求;理由:∵正六边形ABCDEF的边长1,∴AF=ABA=1,∠BAF=120°,∴△ABF是等腰三角形,∴∠AFG=30°,又∵AD是正六边形的对称轴,在Rt△ABF中,AG=AF=;(2)如图2:连接AD,BF交于点G,连接FC与AD交于O,连接EG与FC交于H,则HO即为所求;理由:∴O是正六边形的中心,∴∠FOA=60°,OF=1,∠EFO=60°,∵∠EHF=∠OHG,∴∠EFH=∠GOH,∴△OHG∽△FHE,∴,∵OG=,EF=1,∴FH=2OH,∵FO=1,∴OH=.【解析】(1)连接AD,BF交于点G,则AG即为所求;(2)连接AD,BF交于点G,连接FC与AD交于O,连接EG与FC交于H,则HO 即为所求;本题考查正六边形的性质,作图,三角形的似的判定和性质;能够熟练掌握正六边形的边角关系,分割成三角形,借助直角三角形和三角形相似解题是关键.21.【答案】解:(1)如图1,连接OE,∵BC与⊙O相切,∴OE⊥BC,∵EO=OD=DB,∴∠B=∠BOE=30°,∵OA=OE,∴∠BAE=∠AEO=30°,∴∠CEA=60°,∴,∴;(2)如图2,连AE、DE、OF,∵F为的中点,∴OF⊥AE,∵AD为⊙O的直径,∴∠AED=90°,∴OF∥DE,∴DE=OF,∵四边形FADE为⊙O的内接四边形,∴∠CFA=∠ADE,∵∠ACF=∠AED=90°,∴△ACF∽△AED,∴,∵,∴CF=,∴,∴tan∠CAF=.【解析】(1)如图1,连接OE由BC与⊙O相切,得到OE⊥BC,由于EO=OD=DB,推出∠B=∠BOE=30°,根据同圆的半径相等得到OA=OE,于是∠BAE=∠AEO=30°,进而求得∠CEA=60°,则结论得证;(2)连AE、DE、OF,可证出△ACF∽△AED,得比例线段证出CF与AF的关系,则tan∠CAF可求.本题考查圆的切线的性质,等腰三角形性质,勾股定理,相似三角形的判定与性质,锐角三角函数,解题的关键是掌握圆的切线的性质.22.【答案】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元根据题意得:解得x=400经检验,x=400为原方程的解∴x+100=500答:一件A型、B型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800-500-2n)m+(600-400-n)•(50-m)=(100-n)m+10000-50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100-n>0m=25时,销售这批丝绸的最大利润w=25(100-n)+10000-50n=-75n+12500(Ⅱ)当n=100时,100-n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100-n<0当m=16时,销售这批丝绸的最大利润w=-66n+11600.综上所述:w=.【解析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.23.【答案】(1)证明:如图1中,∵∠DAB=∠ABC=∠AEB,又∵∠AEB=∠D+∠DAE,∠BAD=∠DAE+∠BAC,∴∠D=∠BAC,∴△BAC∽△ADB,∴=,∴AB2=AD•BC.(2)解:如图2中,连接CD,AB,作AH⊥BD于H,BG⊥AC于G.设AF=BF=BC=a ,则AC=a.AB=a,∵∠AED=45°,∵∠F=90°,∴∠FDC+∠FCD=90°,∴∠FDB+∠ACF=45°,∵∠FAB=∠ADB+∠ABD=45°,∠ABF=∠BAC+∠ACB=45°,∴∠ABE=∠ACB,∠BAE=∠ADB,∵∠BAE=∠BAC,∴△BAE∽△CAB,∴AB2=AE•AC,∴AE=a,∵tan∠ACF==,BC=a,∴BG=EG=a,∴BE=a,∵∠ABE=∠ABD,∠BAE=∠BDA,∴△BAE∽△BDA,∴AB2=BE•BD,∴BD=a,DE=BD-BE=a,∵AH=HE=a,∴DH=DE-EH=a,∴AD==2a,∴==.(3).【解析】(1)见答案;(2)见答案;(3)如图3中,延长DA交CB的延长线于H.∵∠DAB=∠ABC=∠AEB=135°,∴HA=HB,∠H=90°,设AH=HB=m,则AB=m,∵tan D==,∴DH=2m,∴AD=m,∵AB2=AB•BC,∴BC=2m,∴CH=3m,∴tan C==.故答案为.【分析】(1)证明△BAC∽△ADB即可解决问题.(2)如图2中,连接CD,AB,作AH⊥BD于H,BG⊥AC于G.设AF=BF=BC=a,则AC=a.AB=a,想办法求出AD,DE即可解决问题.(3)如图3中,延长DA交CB的延长线于H.首先证明△ABH是等腰直角三角形,设AH=HB=m,则AB=m,想办法求出BC即可解决问题.本题属于相似三角形综合题,考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.24.【答案】解:(1)∵抛物线与x轴交于点A(-1,0),B(3,0),∴设解析式为y=a(x+1)(x-3),∵抛物线交y轴于点C(0,3),∴-3a=3,∴a=-1,∴抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3;(2)直线l:y=k(x-3)+3,当x=3时,y=3,∴直线l过定点F(3,3),如图1,连接BF,则BF⊥x轴,BF=3,设点D横坐标为x1,点E横坐标为x2,∵整理得:x2+(k-2)x-3k=0,∴x1+x2=2-k,x1x2=-3k,∵S△BDE=S△BDF-S△BEF=BF•(3-x1)-BF•(3-x2)=BF•(x2-x1)=6,∴x2-x1=4,∵(x1+x2)2-4x1x2=(x2-x1)2,∴k的值为;(3).【解析】解:(1)见答案;(2)见答案;(3)∵△PAB为直角三角形,且在直线DE上各有一个点P满足∠PAB=90°与∠PBA=90°,∴只有1个点P满足∠APB=90°,∴直线DE与以AB为直径的圆相切,如图2,取AB中点G(1,0),G为圆心,PG=BG=2,设P(p,kp-3k+3),∴PG2=(p-1)2+(kp-3k+3)2=4,整理得:(k2+1)p2+(6k-6k2-2)p+9k2-18k+6=0,∵只有一个满足条件的点P,∴△=(6k-6k2-2)2-4(k2+1)(9k2-18k+6)=0,解得:k=,故答案为:.【分析】(1)用待定系数法即能求抛物线解析式;(2)把直线l与抛物线的解析式进行方程联立,整理得关于x的一元二次方程,两个根x1、x2分别为点D、E的横坐标,根据根与系数的关系可用k表示x1+x2与x1x2的值.又根据△BDE面积为6,可求得x2-x1的值,用完全平方公式为等量关系即得到关于k的方程.(3)因为在直线DE上各有一个点P满足∠PAB=90°与∠PBA=90°,所以满足∠APB=90°的点P只有一个.根据圆周角定理,可得点P在以AB为直径的圆上,且此圆与直线DE 只有一个交点.设点P横坐标为p并代入直线DE,又有P到AB中点距离为AB的一半列得方程,联立方程组,此方程组只有一个解,化简后令△=0即求出k的值.本题考查了待定系数法求二次函数解析式,一元二次方程根与系数的关系,完全平方公式,勾股定理.第(3)解题关键是把条件转化理解为,当只有一个在直线DE上的点P 满足∠APB=90°时,求点P坐标.计算涉及2个未知数时可抓住其中一个未知数只有一个解,转化为一元二次方程只有一个解即△=0来计算.。

2013年鄂州市中考数学试卷解析

2013年鄂州市中考数学试卷解析

湖北省鄂州市2013年中考数学试卷一、选择题(每小题3分,共30分)1.(3分)(2013?鄂州)2013的相反数是()A . 12013B. 12013C. 3102D. - 2013考点:相反数.分析:直接根据相反数的定义求解.解答:解:2013的相反数为-2013.故选D.点评:本题考查了相反数:a的相反数为-a.2. (3分)(2013?鄂州)下列计算正确的是()A . a4?a3=a12B. . :;C. (x2+1)0=0考点:解一元二次方程-因式分解法;算术平方根;同底数幕的乘法;零指数幕. 分析:A、同底数的幕相乘,底数不变,指数相加;B、通过开平方可以求得*的值;C、零指数幕:a0=1 (a^0);D、先移项,然后通过提取公因式对等式的左边进行因式分解,然后解方程.解答:解:A、a4?a3=a(4+3)=a7.故本选项错误;B、’鼻;;;=|3|=3,故本选项正确;C、T x2+1 旳,••• (x2+1)0=1 .故本选项错误;D、由题意知,x2- x=x (x - 1)=0,贝V x=0或x=1 •故本选项错误. 故选B.点评:本题综合考查了零指数幕、算术平方根、同底数幕的乘法以及解一元二次方程--因式分解法.注意,任何不为零的数的零次幕等于1.3. (3分)(2013?鄂州)如图,由几个相同的小正方体搭成的一个几何体,考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中. 解答:解:从左面看易得第一层有3个正方形,第二层最左边有一个正方形.D.若x2=x,贝U x=1它的左视图为()A .点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4. (3分)(2013?鄂州)一副三角板有两个直角三角形,如图叠放在一起,则/ a的度数是考点:三角形的外角性质.分析:利用直角三角形的性质求得/ 2=60 °则由三角形外角的性质知 / 2= / 1+45 °60 °,所以易求/仁15 °然后由邻补角的性质来求/ a的度数.解答:解:如图,•/ Z 2=90 °- 30 °60 °••• / 1 = / 2 - 45°=15 °••• / a=180 °- / 1=165 °故选A.点评:本题考查了三角形的外角性质.解题时,注意利用题干中隐含的已知条件:/ 1+ a=180°.5. (3分)(2013?鄂州)下列命题正确的个数是()也-2工①若代数式—----- 有意义,则x的取值范围为x W且x .②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为 3.03 X108元.③若反比例函数(m为常数),当x> 0时,y随x增大而增大,则一次函数y= - 2x+mr的图象一定不经过第一象限.2 ④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3, y=2x+1 , y=x2中偶函数的个数为2个.A . 1B . 2C . 3D . 4考点:命题与定理.分析:根据有关的定理和定义作出判断即可得到答案.C. 150°D. 135°解答:.一,解:①若代数式- "有意义,则x的取值范围为x V 1且x旳,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为 3.03 XI08元正确.③若反比例函数(m为常数)的增减性需要根据m的符号讨论,原命题错误;I2④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中只有y=x中偶函数,原命题错误,故选C.点评:本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.考点:函数的图象.分析:分三段考虑,①小烧杯未被注满,这段时间,浮子的高度快速增加;②小烧杯被注满,大烧杯内水面的高度还未达到小烧杯的高度,此时浮子高度不变;③大烧杯内的水面高于小烧杯,此时浮子高度缓慢增加.解答:解:①小烧杯未被注满,这段时间,浮子的高度快速增加;②小烧杯被注满,大烧杯内水面的高度还未达到小烧杯的高度,此时浮子高度不变;③大烧杯内的水面高于小烧杯,此时浮子高度缓慢增加.结合图象可得B选项的图象符合.故选B.点评:本题考查了函数的图象,解答本题需要分段讨论,另外本题重要的一点在于:浮子始终保持在容器的正中间.7. (3 分)(2013?鄂州)如图,Rt△ ABC 中,/ A=90 ° AD 丄BC 于点D,若BD : CD=3 : 2,贝U tanB=()6. (3分)(2013?鄂州)一个大烧杯中装有个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水, 水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用来表示y与x之间关系的选项是()x表示注水时间,用y表示浮子的高度, 则用3B.二C. . D.;23考点:相似三角形的判定与性质;锐角三角函数的定义.分析:首先证明△ ABD ACD,然后根据BD : CD=3 : 2,设BD=3x , CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.解答:解:在Rt △ ABC中,••• AD丄BC于点D,••• / ADB= / CDA ,•/ Z B+ / BAD=90 ° / BAD+DAC=90 °•Z B= Z DAC ,•△ ABD ACD ,.AB=AD•AD-应,•/ BD : CD=3 : 2,设BD=3x , CD=2x ,• AD=心直吃工=典^,则tanB= =•「=".BD 3s 3故选D.点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长.& ( 3分)(2013?鄂州)已知m, n是关于x的一元二次方程x2- 3x+a=0的两个解,若(m -1) (n -1) = - 6,则a 的值为( )A . - 10 B. 4 C. - 4 D. 10考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形, 将m+n 与mn的值代入即可求出a的值.解答:解:根据题意得:m+n=3 , mn=a,■/ (m - 1) (n —1) =mn —( m+n) +1= - 6,• a- 3+1= - 6, 解得:a= - 4.故选C点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.29. (3分)(2013?鄂州)小轩从如图所示的二次函数y=ax +bx+c (a#))的图象中,观察得出了下面五条信息:①ab>0;②a+b+c v 0;③b+2c>0;④a-2b+4c>0;⑤考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系, 然后根据对称轴及抛物线,与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①如图,•••抛物线开口方向向下,••• a v 0.对称轴x=—-—=-丄,•- b^—a v 0,• ab> 0.故①正确;②如图,当x=1时,y v 0,即a+b+c v 0. 故②正确;③如图,当x= — 1 时,y=a —b+c > 0,• 2a—2b+2c> 0,即卩3b—2b+2c> 0,• b+2c>0.故③正确;④如图,当x= —1时,y>0,即卩a—b+c>0.抛物线与y轴交于正半轴,则c> 0.•/ b v 0,• c— b > 0,•(a—b+c)+ (c—b)+2c>0,即a—2b+4c>0.故④正确;⑤如图,对称轴x= -------- =--:,则1__■: ■.故⑤ 正确.J Z综上所述,正确的结论是①②③④⑤,共5个.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.你认为其中正确信息的个数有(10. (3分)(2013?鄂州)如图,已知直线a// b,且a与b之间的距离为4,点A到直线a 的距离为2,点B到直线b的距离为3,AB= .试在直线a上找一点M,在直线b上找一点N,满足MN丄a且AM+MN+NB 的长度和最短,则此时AM+NB=()考点:勾股定理的应用;线段的性质:两点之间线段最短;平行线之间的距离.分析:MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A连接A 'B交直线b与点N,过点N作NM丄直线a,连接AM,则可判断四边形AA NM是平行四边形,得出AM=A 'N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE丄AA :交AA于点E,在Rt△ ABE 中求出BE,在Rt△ A BE 中求出 A B即可得出AM+NB .解答:解:作点A关于直线a的对称点A ',连接A B交直线b与点N,过点N作NM丄直线a,连接AM ,•/ A到直线a的距离为2, a与b之间的距离为4,••• AA =MN=4 ,•••四边形AA NM是平行四边形,• AM+NB=A N+NB=A B,过点B作BE丄A A ',交AA于点E,易得AE=2+4+3=9 , AB=2』^j, A E=2+3=5 ,在Rt △ AEB中,BE= J胡2 —曲录西,在Rt△ A EB 中,A B= 「. •卜=8.点评:本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点NC. 10D. 12的位置,难度较大,注意掌握两点之间线段最短.二、填空题:(每小题3分,共18分)11. (3 分)(2013?鄂州)若|p+3|=0,则p= —3考点:绝对值.分析:根据零的绝对值等于0解答.解答:解:•/ |p+3|=0,••• p+3=0,解得p=- 3.故答案为:-3.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12. (3分)(2013?鄂州)下列几个命题中正确的个数为 1 个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为 1 , 2, 3, 4, 5, 6).②5名同学的语文成绩为90, 92, 92, 98, 103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16, 则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以5万元"的说法无法判断对错.对于该部门员工个人年创利润的中位数为个人年创利润/万元10 8员工人数 1 3考点:命题与定理.分析:分别根据中位数、众数、平均数、方差等公式以及性质分别计算分析得出即可.解答:解:①“掷一枚均匀骰子,朝上点数为负”为不可能事件(骰子上各面点数依次为 1 , 2, 3, 4, 5, 6),故此选项错误;②5名同学的语文成绩为90, 92, 92, 98, 103,则他们平均分为95,众数为92, 故此选项正确;③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中甲较乙更稳定,故此选项错误;④根据某部门15名员工个人年创利润数据,第7个与第8个数据平均数是中位数,故该部门员工个人年创利润的中位数为5万元”故此选项错误,故正确的有1个.故答案为;1.点评:此题主要考查了命题与定理,根据已知正确分析数据得出中位数是解题关键.「2器-13. (3分)(2013?鄂州)若不等式组彳” 的解集为3強詔,则不等式ax+b v 0的解Lx+a<0集为x> ^ .2—考点:分解一兀一次不等式组;不等式的解集;解一兀一次不等式.求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出ab的值,代入求出不等式的解集即可.解答:解: (2x- b>0®卫+&<0②•••解不等式①得:X士,2解不等式②得:x<- a,•••不等式组的解集为:—^X<- a,•-不等式组戸—的解集为3強詔,峙3,- a=4,b=6,a= - 4,• - 4x+6 v 0,x >丄,2故答案为:x >—2点评:本题考查了解一兀一次不等式(组),一兀一次不等式组的整数解的应用,关键是能根据不等式组的解集求出 a b的值.14. (3分)(2013?鄂州)已知正比例函数y= - 4x与反比例函数尸上的图象交于A、B两点, 若点A的坐标为(x,4),则点B的坐标为(1 ,- 4).考点:反比例函数与一次函数的交点问题.分析:首先求出A点坐标,进而将两函数联立得出B点坐标即可.解答: 解:•••正比例函数y= - 4x与反比例函数尸上的图象交于A、B两点,点A的坐标为I(x,4),•4= - 4x,解得:x= - 1,•xy=k= - 4,-4…y= ,则-世=-4x,解得:X仁1,x2=1,当x=1 时,y= —4,•••点B的坐标为:(1, - 4).故答案为:(1,- 4).点评:此题主要考查了一次函数与反比例函数的交点问题, 键. 15. (3分)(2013?鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计) ,一根没有弹16. (3 分)(2013?鄂州)如图,△ AOB 中,/ AOB=90 ° AO=3 , BO=6 ,,△ AOB 绕顶点 O 逆时针旋转到△ A'OB 处,此时线段 AB 与BO 的交点E 为BO 的中点,则线段 B E 的长度 为.—5 —根据已知得出A 点坐标是解题关 性的木棒的两端 A 、B 能在滑槽内自由滑动, 将笔插入位于木棒中点 P 处的小孔中,随着木AB=20cm ,则画出的圆的半径为10 cm .考点:直角三角形斜边上的中线.分析:连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得半径就是OP 长.解答:解:连接OP ,••• △ AOB 是直角三角形,P 为斜边AB 的中点, ••• OP=丄AB ,2OP 的长,画出的圆的■/AB=20cm , •关键是掌握直角三角形斜边上的中线等于斜边的半.考点: 分析: 旋转的性质.利用勾股定理列式求出 AB ,根据旋转的性质可得 AO=A O , A B =AB ,再求出OE , 从而得到OE=A 'O ,过点O 作OF 丄A B 于F ,利用三角形的面积求出 OF ,利用勾股 定理列式求出EF ,再根据等腰三角形三线合一的性质可得 A E=2EF ,然后根据B E=A B - AE 代入数据计算即可得解. 解答:解:•/ / AOB=90 ° AO=3 , BO=6 , • AB=,】;.•「上|」=3 -,•/ △ AOB 绕顶点O 逆时针旋转到 △ A'OB 处, ••• AO=A O=3 , A B =AB=3 .乙 •••点E 为BO 的中点, • OE=A O ,过点O 作OF 丄A B 于F ,S A A OB =—■; X3 口?OF=2 X 3>6, 解得OF=—i5在 Rt △ EOF 中,EF= j -= ■■•/ OE=A O , OF 丄 A 'B ',• A 'E=2EF=2 > _ '=" _ '(等腰三角形三线合一)5 5• B 'E=A B - A E=3 J —i-'」’5 5OE=丄BO= 2>6=3,AO故答案为:—'.点评:本题考查了旋转的性质,勾股定理的应用,等腰三角形三线合一的性质,以及三角形面积,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键. 、解答题(17〜20每题8分,21〜22每题9分,23题10分,24题12分,共72分) 17. (8分)(2013?鄂州)先化简,后求值: 〔一—一T — ----- )—卫¥,其中a=3.3-2a 2 -2a a 2考点:分式的化简求值.专题:计算题.=a .•••当a=3时,原式=3.点评:本题考查了分式的化简求值,熟悉因式分解及约分是解题的关键.18. (8分)(2013?鄂州)如图正方形 ABCD 的边长为4, E 、F 分别为DC 、BC 中点. (1) 求证:△ ADE ◎△ ABF . (2) 求厶AEF 的面积.考点:正方形的性质;全等三角形的判定与性质.分析:现将括号内的部分因式分解, 通分后相加,再将除法转化为乘法,最后约分.再将a=3代入即可求值.分析:(1)由四边形ABCD为正方形,得到AB=AD , / B= / D=90 ° DC=CB,由E、F 分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S A AEF=S正方形ABC D - S A ADE - S A ABF - S ACEF 得出结果.解答:(1)证明:•••四边形ABCD为正方形,••• AB=AD , / =90 ° DC=CB ,••• E、F 为DC、BC 中点,• DE=」DC, BF=_BC ,2 2• DE=BF,•••在△ ADE 和△ ABF 中,AD=AB[ZB=ZD ,• △ADE BA ABF ( SAS);(2)解:由题知A ABF、△ ADE、△ CEF均为直角三角形,且AB=AD=4 , DE=BF=_! >4=2 , CE=CF=2 >4=2 ,2 2• S A AEF=S正方形ABCD - S A ADE - S A ABF - S A CEF=4 > -丄>4>2-2=6 .点评:本题主要考查正方形的性质和全等三角形的证明,解答本题的关键是熟练掌握正方形的性质以及全等三角形的判定定理,此题难度不大.19. (8分)(2013?鄂州)一个不透明的口袋里装有分别标有汉字灵”、秀”、鄂”、州”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是鄂”的概率为多少?(2 )甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成灵秀”或鄂州”的概率P1;(3 )乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成灵秀”或鄂州”的概率为P2,指出P1, P2的大小关系(请直接写出结论,不必证明).考点:列表法与树状图法;概率公式.分析:(1)由有汉字灵”、秀”、鄂”、州”的四个小球,任取一球,共有4种不同结果,利用概率公式直接求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成灵秀”或鄂州”的情况,再利用概率公式即可求得答案;注意是不放回实验;(3)首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成灵秀”或鄂州”的情况,再利用概率公式即可求得答案;注意是放回实验.解答:解:(1) •••有汉字 灵”、秀”、鄂”、州”的四个小球,任取一球,共有 4种不同结杲,•••球上汉字刚好是鄂”勺概率凭;(2)画树状图得:开始灵秀州灵秀鄂•••共有12种不同取法,能满足要求的有 4种,4_1 ET 石;(3)画树状图得:•••共有16种不同取法,能满足要求的有 4种,4 1=1& 4'• P l > P 2.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以 上完成的事件•注意概率=所求情况数与总情况数之比.20. (8分)(2013?鄂州)甲、乙两地相距 300千米,一辆货车和一辆轿车先后从甲地出发 向乙地,如图,线段 OA 表示货车离甲地距离 y (千米)与时间x (小时)之间的函数关系; 折线BCD 表示轿车离甲地距离 y (千米)与x (小时)之间的函数关系•请根据图象解答 下列问题: (1 )轿车到达乙地后,货车距乙地多少千米? (2) 求线段CD 对应的函数解析式.(3) 轿车到达乙地后,马上沿原路以 CD 段速度返回,求轿车从甲地出发后多长时间再与 货车相遇(结果精确到 0.01).咒千米)/K /N /N /1\灵鄂州xAxxAx灵秀鄂州灵秀鄂州 灵秀鄂艸灵秀鄂州考点:一次函数的应用.分析:(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后 4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300 -270=30 千米;(2)设CD段的函数解析式为y=kx+b,将C (2.5, 80), D ( 4.5, 300)两点的坐标代入,运用待定系数法即可求解;(3)设轿车从甲地出发x小时后再与货车相遇,根据轿车(x - 4.5)小时行驶的路程+货车x小时行驶的路程=300千米列出方程,解方程即可.解答:解:(1)根据图象信息:货车的速度V货^-^=60 (千米/时).5•/轿车到达乙地的时间为货车出发后 4.5小时,•••轿车到达乙地时,货车行驶的路程为: 4.5 >60=270 (千米),此时,货车距乙地的路程为:300 - 270=30 (千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b (k和)(2.5纟詔.5).•/ C ( 2.5, 80), D (4.5, 300)在其图象上,T2. 5k+b二80解得r k=1105k+b=300 'b二T95• CD 段函数解析式:y=110x - 195 (2.5$詔.5);(3)设轿车从甲地出发x小时后再与货车相遇.十., 3Q0—80 ,•/ V货车=60千米/时,V轿车= =110 (千米/时),I. _■ L. _■• 110 (x - 4.5)+60x=300 ,解得x須.68 (小时).答:轿车从甲地出发约 4.68小时后再与货车相遇.点评:本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度 >寸间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.21. ( 9分)(2013?鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:这楼起码20层!”小华却不以为然:20层?我看没有,数数就知道了!”小明说:有本事,你不用数也能明白!”小华想了想说:没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,/ A=30 ° / B=45 °(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由. (参考数据:V^1.73,氏勺.41, ^1迄24)考点:勾股定理的应用.专题:应用题.分析:(1)设楼高为X,贝U CF=DE=x,在Rt△ ACF和Rt△ DEB中分别用x表示AC、BD 的值,然后根据AC+CD+BD=150,求出x的值即可;(2)根据(1)求出的楼高X,然后求出20层楼的高度,比较x和20层楼高的大小即可判断谁的观点正确.解答:解:(1)设楼高为x米,贝U CF=DE=x米,•/ Z A=30 ° / B=45 ° / ACF= / BDE=90 °••• AC= 一「;x 米,BD=x 米,••• 一;x+x=150 - 10,解得x=—^=70 (:- 1)(米),V3+1• 楼高70 C 1)米.(2) x=70 (衍-1) £0 ( 1.73 - 1) =70 >0.73=51.1 米V 3X20 米,•我支持小华的观点,这楼不到20层.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用方程思想求解,难度一般.22. ( 9分)(2 013?鄂州)已知:如图,AB为O O的直径,AB丄AC , BC交O O于D, E 是AC 的中点,ED与AB的延长线相交于点F.(1)求证:D E为O O的切线.(2)求证:AB : AC=BF : DF .考点:切线的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连接0D、AD,求出CDA= / BDA=90 °求出/仁/4, / 2=7 3,推出/ 4+ 7 3=7 1+ 7 2=90°根据切线的判定推出即可;(2)证厶ABD CAD,推出垒型,证△ FAD FDB,推出型里,即可得出AC AD ADR D F AB : AC=BF : DF.解答:证明:(1)连结DO、DA,•/ AB为O O直径,••• 7 CDA= 7 BDA=90 °•/ CE=EA,• DE=EA,•7 1 = 7 4,•/ OD=OA,•7 2= 7 3,•/ 7 4+ 7 3=90 °•7 1 + 7 2=90 °即: 7 EDO=90 °••• OD是半径,• DE为O O的切线;(2) •/ 7 3+ 7 DBA=90 ° 7 3+ 7 4=90 °•7 4= 7 DBA,•/ 7 CDA= 7 BDA=90 ° ,•△ ABD CAD,•也凹•AC=75,•/ 7 FDB+ 7 BDO=90 ° 7 DBO+ 7 3=90° °又•/ OD=OB,•7 BDO= 7 DBO,•7 3= 7 FDB,•/ 7 F=7 F,•△ FAD FDB,匚〕=_ AD DF , 丄=_ AC DF ,点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定的应用,主要考查学 生的推理能力,题目比较典型,是一道比较好的题目.23. (10分)(2013?鄂州)某商场经营某种品牌的玩具,购进时的单价是 30元,根据市场调查:在一段时间内,销售单价是 40元时,销售量是 600件,而销售单价每涨 1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为 x 元(x > 40),请你分别用x 的代数式来表示销售 量y 件和销售该品牌玩具获得利润 w 元,并把结果填写在表格中:销售单价(元) x销售量y (件)1000 - 10x销售玩具获得利润 w (元)-10X 2+1300X - 30000(2 )在(1 )问条件下,若商场获得了 10000元销售利润,求该玩具销售单价 x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于 44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?考点:二次函数的应用;一元二次方程的应用 分析:(1) 由销售单价每涨 1元,就会少售出10件玩具得y=600 -( x - 40) x=1000 - x ,2 利润=(1000 - x ) (x - 30) = - 10x +1300x - 30000;(2) 令-10x +1300x - 30000=10000 ,求出 x 的值即可;(3) 首先求出x 的取值范围,然后把 w= - 10x 2+1300x - 30000转化成y= - 10 ( x -265) +12250 ,结合x 的取值范围,求出最大利润. 解答: 解:(1)销售单价(元) x销售量y (件)1000 - 10x销售玩具获得利润 w (元)-10x 2+1300x - 30000 2(2)- 10x +1300x - 30000=10000 解之得:X 1=50, X 2=80答:玩具销售单价为 50元或80元时,可获得10000元销售利润,析式.(3)在(2)问条件下,若抛物线顶点为 B ,与y 轴交于点A ,点E 为线段AB 中点,点C (0, m )是y 轴负半轴上一动点,线段 EC 与线段BO 相交于F ,且OC : OF=2 :,求m 的值.(4) 在(3)问条件下,动点 P 从B 点出发,沿x 轴正方向匀速运动,点 P 运动到什么位 置时(即BP 长为多少),将△ ABP 沿边PE 折叠,△ APE 与厶PBE 重叠部分的面积恰好为 此时的△ ABP 面积的丄,求此时BP 的长度.4/7 A VA V-----------%-XXX备用〔一)备用(二)考点:二次函数综合题. 专题:综合题.分析:(1)首先根据点M 的移动方向和单位得到点 N 的平移方向和单位, 然后按照平移方 向和单位进行移动即可; (2) 将点N 的坐标代入函数的解析式即可求得k 值;(3) 配方后确定点 B 、A 、E 的坐标,根据 CO : OF=2 :;用m 表示出线段 CO 、 FO 和BF 的长,利用S A BEC =S A EBF +S A BFC 冷陆如疋得到有关m 的方程求得 m 的值 即可; (4) 分当/ BPE V/ APE 时、当/ BPE= / APE 时、当/ BPE v/ APE 时三种情况分(3)根据题意得严00-10梵》540丘>44解之得:44$詔62w= - 10x +1300x - 30000= - 10 (x - 65)•/a=- 10v 0,对称轴 x=65当44$詔6时,y 随x 增大而增大. •••当x=46时,W 最大值=8640 (元) 答:商场销售该品牌玩具获得的最大利润为点评:本题主要考查了二次函数的应用的知识点,以及二次函数最大值的求解,此题难度不大.2+122508640 元.解答本题的关键熟练掌握二次函数的性质24. (12分)(2013?鄂州)在平面直角坐标系中, 平移至线段 MN 处(注:M 1与M , N 1与N 分别为对应点). (1 )若M (- 2, 5),请直接写出N 点坐标. 已知 M 1 ( 3, 2), N 1 ( 5, - 1),线段 M 1N 1 (2)在(1)问的条件下,点 N 在抛物线上,求该抛物线对应的函数解类讨论即可.解答: 解:(1)由于图形平移过程中,对应点的平移规律相同,由点M到点M可知,点的横坐标减5,纵坐标加3, 故点N的坐标为(5 - 5,- 1+3),即(0, 2).N (0, 2);/• k=2(。

2014届湖北省鄂州市一中九年级下第二次月考数学试题

2014届湖北省鄂州市一中九年级下第二次月考数学试题

2014年春九年级第二次月考数学试卷(Ⅰ)一、选择题(每题3分,共30分)1、4的算术平方根是A、±2B、21C、2D、-22、如果yx ba321与-12+xy ba是同类项,则x+y的值为A、2B、3C、4D、53、如图,用6个完全相同的小正方体组合成如图所示的主体图形,它的主视图为A B C D4、如图,已知AB∥CD,∠2=135º,则∠1的度数是A、35ºB、45 ºC、55ºD、65º5、如图,已知双曲线)0(<=kxky经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,若A点的坐标为(-6,4),则△AOC的面积为A、6B、8C、9D、126、如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连AF、CF,则图中阴影部分面积为A、2πB、4πC、4π-2D、6π7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=42,则△EFC的周长为A、11B、10C、9D、88、设1x、2x是一元二次方程0342=-+xx的两个根,2)35(22221=+-+axxx,则a的值为A、-2B、4C、8D、109、如图,二次函数)0(2≠++=acbxaxy的图象顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0;②ab42>;③20<++<cba;④10<<b;⑤当1->x时,0>y,其中正确结论的个数是A、5个B、4个C、3个D、2个10、如图,圆柱形容器中,高为1.2米,底面周长为1米,在容器内壁离容器底部0.3m处的点B处有一蚊子。

此时,一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()米。

鄂州市2014年中考模拟数学试题一 有答案

鄂州市2014年中考模拟数学试题一 有答案

第14题图天鄂州市2014年中考模拟 数学试题(一) 有答案一、细心选一选(本题有10个小题,每小题3分,共30分)1.12-的倒数是( ) A .2 B .12C .12-D .2-A ...4.如图,则( ).A .60°B .50°C . 70°D .80°5.若点在反比例函数3y x=-的图象上,且120x x <<,则12y y 、和0的大小关系是( ) A.120y y >> B.120y y << C.120y y >> D.120y y <<6.在Rt △ABC 中,∠C =90°,AC =12,BC =5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A .25πB .65πC .90πD .130π7.如图,四边形ABCD 中,AD ∥BC ,AB=25,BC=4,连接BD ,∠BA D 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为( )A.34B. 23C. 35D.28.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( )A.10%B.31%C.13%D.11%9.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<; ⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤ 10、在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D(m ,0),当四边形ABCD 的周长最短时,mn的值为( ) A.73- B.32- C.27- D.32二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式8a 2-2=_________________.12.汶川大地震时,航空兵空投救灾物质到指定的区域(圆A )如图所示,若要使空投物质落在中心区域(圆B )的概率为12,则B ⊙与A ⊙的半径之比为 . 13.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 14.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用时间比由甲单独完成这项工程所需时间少 天。

2014年武汉市九年级4月调考数学答案答案

2014年武汉市九年级4月调考数学答案答案

2013—2014学年度武汉市部分学校九年级调研测试数学试题参考答案及评分细则2014.4.2411.x (x +2) (x -2). 12.3.28×107. 13.0.3. .15. 15.5156 16.3-12.17.解:方程两边同乘以2x (x -1),去分母得, ………………1分3(x -1)=2x , ………………2分 即3x -3=2x , ………………3分解得:x =3, ………………4分 经检验x =3是原方程的根. ……………… 5分 ∴原方程的解为x =3. ……………… 6分 18.解:把(1,5)代入直线的函数关系式y =kx +4中,得,k +4=5, ……………… 2分 解得,k =1, ………………3分∴直线的函数关系式为y =x +4. ……………… 4分 ∴x +4≤0, ………………5分 ∴x ≤﹣4. ………………6分 19.证明:在△ABE 和△ACD 中, ………………1分∵⎩⎪⎨⎪⎧∠A =∠A ,∠B =∠C ,AE =AD . ………………4分(每写对一对对应关系给1分) ∴△ABE ≌△ACD .(AAS ) ………………5分 ∴AB =AC . ………………6分20.解:(1)C 1(﹣1,﹣3),C 2(3,﹣1); (每写对一个点的坐标给2分,共4分)(2)A 1A 2的长6. ……………… 7分21.(1)a =7,b =12,c =6,补全条形统计图如下:;………………3分(2)这组数据的中位数在35≤x <37的年龄段中. ……………… 4分(3)将两名美国人分别记作M 1、M 2,法国人记作F ,俄罗斯人分别记作E 1、E 2,则随机抽出两人的所有结果列表如下:由……………… 5分其中“刚好是不同国籍的人”的结果有16个. ……………… 6分 ∴P (A )=45. ……………… 7分22.(1)证明:连接AB 交PO 于点M .∵P A 、PB 分别切⊙O 于A 、B 两点, ∴P A =PB ,OP 平分∠APB . ∴AB ⊥PO .即∠AMO =90°. ∵AC 为直径. ∴∠ABC =90°. ∴∠ABC =∠AMO . ∴BC ∥OP .……………… 4分(2)连接AB ,过点A 作AD ⊥PB 于点D ,作直径BE ,连接AE .∵PB 为⊙O 的切线, ∴BE ⊥PB .∴∠PBA +∠ABE =90°. ∵BE 为直径, ∴∠BAE =90°.∴∠E +∠ABE =90°. ∴∠E =∠ABP . ∵∠E =∠C , ∴∠C =∠ABP .由sin ∠P =1213 ,可以设AD =12t ,则P A =13t ,PD =5t .∴BD =8t .∴tan ∠ABD =AD BD =12t 8t =32.∴tan ∠C =32. ………………8分C23. 解:(1)由表中数据判断,销售价格y 与宽x 之间的函数关系不是反比例函数关系. 方法一:如果是二次函数的关系,可设函数解析式为y =ax 2+bx +c .则 242a +24b +c =780,302a +30b +c =900,422a +42b +c =1140,解之得 a =0,b =20,c =300.因此,它们实际上是一次函数关系.其解析式为y =20x +300. 方法二:假设是一次函数关系,可设函数解析式为y =kx +b .则 24k +b =780,30k +b =900,解之得,k =20,b =300.将x =42,y =1140,和x =54,y =1380代入检验,满足条件. 故其解析式为y =20x +300. ………………4分(2)①w =﹣16 x 2+20x +300; ………………8分②w =﹣16(x -60)2+900,所以,当材料板的宽为60cm 时,一张材料板的利润最大,最大利润为900元 ……10分 24.(1)解:∵ED ∥BC ,当DF ∥AC 时,四边形DFCE 为平行四边形.此时,BD AB =BFBC .∵AD =BF =t ,∴BD =5-t .∴5-t 5=t6, ∴t =3011. ………………3分(2)证明:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC. ∵AD =BF ,DE =DB , ∴BF AB =DB BC. ∵∠ABF =∠CBD , ∴△ABF ∽△CBD .∴∠BAF =∠BCD . ……………… 6分 (3)①证明:∵DE ∥BC ,∴△ADM ∽△ABF ,∴AM AF =DM BF . 同理,AM AF =EM CF ,∴DM BF =EMCF . ∴DM ME =BFCF . ∵MN ∥EC , ∴DM ME =DNCN, ∴BF CF =DNCN. ………………8分 ②t =103. ………………10分25.(1)点P 的坐标为(2,4); ………………2分 (2)设点A 、B 的坐标分别为A (x 1,ax 12-4a +4)、B (x 2,ax 22-4a +4). ∵点A 、B 在直线y =2x +b 上,∴2x 1+b =ax 12-4a +4 ①,2x 2+b =ax 22-4a +4 ②. ①-②,得2(x 1-x 2)=a (x 12-x 22),∴a (x 1+x 2)=2.过点B 作BG ∥y 轴,过点P 作PG ∥x 轴,BG 、PG 相交于点G ,过点A 作AH ∥x 轴,过点P 作PH ∥y 轴,AH 、PH 相交于点H .∵PD =PC ,∴∠PDC =∠PCD . ∵AH ∥x 轴,∴∠P AH =∠PDC ,同理,∠BPG =∠PCD , ∴∠AHP =∠PGB . ∴Rt △PGB ∽Rt △AHP .∴BG PG =PH AH. ∴2-x 2ax 22-4a =2-x 1﹣(24a ). ∴x 1+x 2=﹣4.∴a =﹣12. ………………8分y N ). ∴抛物线c 2的解析式为:y =﹣2x +4x +2. ………………12分。

2013年湖北省鄂州市中考数学试题(含答案)

2013年湖北省鄂州市中考数学试题(含答案)

鄂州市2013年初中毕业生学业水平考试数学试题学校:________考生姓名:________ 准考证号: 注意事项:1.本试卷共6页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

6.考生不准使用计算器。

一、选择题(每小题3分,共30分) 1.2013的相反数是( )A .12013B .12013C .3102D .-20132.下列计算正确的是( )A .4312a a a B .93C .20(1)0xD .若x 2=x ,则x =13.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( ) (第3题图) A B C D 4.一副三角板有两个直角三角形,如图叠放在一起,则α的度数是( )A .165°B .120°C .150°D .135° (第4题图) 5.下列命题正确的个数是( )①若代数式222xx x有意义,则x 的取值范围为x ≤1且x ≠0. ②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个 ×108元.③若反比例函数myx(m 为常数),当x >0时,y 随x 增大而增大,则一次函数 y =-2 x + m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x+1,y = x 2中偶函数的个数为2个.A .1B .2C .3D .46.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。

2013年湖北省鄂州市中考数学试题及参考答案(word解析版)

2013年湖北省鄂州市中考数学试题及参考答案(word解析版)

2013年湖北省鄂州市中考数学试题及参考答案与解析一、选择题(每小题3分,共30分)1.2013的相反数是()A.12013-B.12013C.3102 D.﹣20132.下列计算正确的是()A.a4•a3=a12B3=C.(x2+1)0=0 D.若x2=x,则x=13.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为()A.B.C.D.4.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°5.下列命题正确的个数是()有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数myx=(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1 B.2 C.3 D.46.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A .B .C .D .7.如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( )A .32 B .23 C D 8.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为( )A .﹣10B .4C .﹣4D .109.小轩从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息: ①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32a b . 你认为其中正确信息的个数有( )A .2个B .3个C .4分D .5个10.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=,试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)11.若|p+3|=0,则p=.12.下列几个命题中正确的个数为个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.13.若不等式组20x bx a-⎧⎨+⎩≥≤的解集为3≤x≤4,则不等式ax+b<0的解集为.14.已知正比例函数y=﹣4x与反比例函数kyx=的图象交于A、B两点,若点A的坐标为(x,4),则点B的坐标为.15.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为cm.16.如图,△AOB 中,∠AOB=90°,AO=3,BO=6,△AOB 绕顶点O 逆时针旋转到△A′OB′处,此时线段A′B′与BO 的交点E 为BO 的中点,则线段B′E 的长度为 .三、解答题(17~20每题8分,21~22每题9分,23题10分,24题12分,共72分) 17.(8分)先化简,后求值:224222aa a a a a+⎛⎫-÷⎪--⎝⎭,其中a=3.18.(8分)如图正方形ABCD 的边长为4,E 、F 分别为DC 、BC 中点. (1)求证:△ADE ≌△ABF . (2)求△AEF 的面积.19.(8分)一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“鄂”、“州”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,球上的汉字刚好是“鄂”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率P 1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明). 20.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地距离y (千米)与x (小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).21.(9分)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.≈1.41)22.(9分)已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:D E为⊙O的切线.(2)求证:AB:AC=BF:DF.23.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24.(12分)在平面直角坐标系中,已知M 1(3,2),N 1(5,﹣1),线段M 1N 1平移至线段MN 处(注:M 1与M ,N 1与N 分别为对应点). (1)若M (﹣2,5),请直接写出N 点坐标.(2)在(1)问的条件下,点N 在抛物线2163y x x k =++上,求该抛物线对应的函数解析式. (3)在(2)问条件下,若抛物线顶点为B ,与y 轴交于点A ,点E 为线段AB 中点,点C (0,m )是y 轴负半轴上一动点,线段EC 与线段BO 相交于F ,且OC :OF=2m 的值. (4)在(3)问条件下,动点P 从B 点出发,沿x 轴正方向匀速运动,点P 运动到什么位置时(即BP 长为多少),将△ABP 沿边PE 折叠,△APE 与△PBE 重叠部分的面积恰好为此时的△ABP 面积的14,求此时BP 的长度.参考答案与解析一、选择题(每小题3分,共30分) 1.2013的相反数是( ) A .12013-B .12013C .3102D .﹣2013 【知识考点】相反数.【思路分析】直接根据相反数的定义求解. 【解答过程】解:2013的相反数为﹣2013. 故选D .【总结归纳】本题考查了相反数:a 的相反数为﹣a .。

2013-2014学年鄂州市九年级4月调研考试数学试卷及答案

2013-2014学年鄂州市九年级4月调研考试数学试卷及答案

2013-2014学年鄂州市九年级4月调研考试数学试卷及答案数学试题一、选择题(本题有10个小题,每小题3分,共30分) 1.-2的相反数是( ) A .21-B .21 C .-2 D .22.下列运算正确的是( ) A .1234x x x =⋅ B .8143)(x x = C .()034≠=÷x x x xD .743x x x =+ 3.下列四个立体图形中,主视图为圆的是( )A .B .C .D .4.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是()A .7145B .1421 C .53D .721 5.点A 在双曲线xk y =上,AB ⊥x 轴于B ,且△AOB 的面积为3,则k=( )A .3B .6C .±3D .±66.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .2.5B .5C .10D .157.在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,如此的直线最多能够作( )A .2条B .3条C .4条D .6条8.已知关于x 的一元二次方程(a -1)x2-2x +1=0有两个不相等的实数根,则a 的取值范畴是( )A .a >2B .a <2C .a <2且a ≠1D .a <-29.如图,抛物线y1=a (x +2)2-3与1)3(2122+-=x y 交于点A (1,3),过点A 作x 轴的平行线,分不交两条抛物线于点B 、C ,则以下结论:①不管x 取何值,y2总是正数;②a =1;③当x =0时,y1-y2=4;④2AB =3AC .其中正确的是( )A .①②B .②③C .③④D .①④10.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是( )A .(-75,-65) B .(75,65)C .(-75,65)D .(75,-65)二、填空题(每小题3分,共18分) 11.16的算术平方根是____________.12.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是____________.13.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范畴为____________.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的物资转给甲车,然后甲车连续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是____________米/秒.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为____________.16.如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,AC=10,将B C 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是 .三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分)17.(满分8分)先化简,再求值:211a a a a a ⎛⎫+÷⎪--⎝⎭,其中21a =+. 18.(满分8分)如图,在等腰Rt △ABC 中,∠C =90°,正方形DE FG 的顶点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上.(1)求证:△ADE ≌△BGF ;(2)若正方形DEFG 的面积为16,求AC 的长.19.(满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分不用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情形,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请按照以上信息回答:(1)此次参加抽样调查的居民有多少人? (2)将不完整的条形图补充完整.(3)若居民区有8000人,请估量爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D 粽各一个煮熟后,小王吃了俩个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(满分8分)已知关于x 的一元二次方程x2+(m+3)x+m+1=0. (1)求证:不管m 取何值,原方程总有两个不相等的实数根; (2)若x1,x2是原方程的两根,且1222x x -=,求m 的值,并求出现在方程的两根.21.(满分9分)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔DE =453.20米,月亮山海拔CF =442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D 的正上方A 处测得月亮山山顶C 的俯角为α,在月亮山山顶C 的正上方B 处测得东方山山顶D 处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时刻?(精确到0.1秒)22.(满分9分)如图,在△ABC中,AB=AC,∠BAC=54°,以A B为直径的⊙O分不交AC,BC于点D,E,过点B作⊙O的切线,交AC 的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求 AD的长.23.(满分10分)为鼓舞大学毕业生自主创业,某市政府出台了有关政策:由政府和谐,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照有关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府那个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24.(满分12分)如图,在平面直角坐标系中,点O为坐标原点,A 点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点动身沿着OC向点C运动,动点Q从B点动身沿着BA向点A运动,P,Q两点同时动身,速度均为1个单位/秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省鄂州市2013-2014学年下学期4月调研考试九年级数学试题学校: 考生姓名: 准考证号:注意事项:1.本试卷共4页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题有10个小题,每小题3分,共30分) 1.-2的相反数是( )A .- 1 2B . 1 2C .-2D .22.下列运算正确的是( )A .1234x x x =⋅B .8143)(x x =C .()034≠=÷x x x xD .743x x x =+3.下列四个立体图形中,主视图为圆的是( )A .B .C .D .4.在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( )A .7145B .1421C .53 D .721 5.点A 在双曲线xky =上,AB ⊥x 轴于B ,且△AOB 的面积为3,则k =( ) A .3B .6C .±3D .±66.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .2.5B .5C .10D .157.在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作( ) A .2条 B .3条 C .4条 D .6条8.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2 B .a <2 C .a <2且a ≠1 D .a <-29.如图,抛物线y 1=a (x +2)2-3与1)3(2122+-=x y 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B 、C ,则以下结论:①无论x 取何值,y 2总是正数;②a =1;③当x =0时,y 1-y 2=4;④2AB =3AC .其中正确的是( )第9题图A .①②B .②③C .③④D .①④10.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是( )A .(-75,-65) B .(75,65) C .(-75,65)D .(75,-65)二、填空题(每小题3分,共18分)11.16的算术平方根是____________.12.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是____________.13.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范围为____________.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是____________米/秒.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD =2,则EC 的长为____________.第14题图第15题图第16题图16.如图,在Rt △ABC 中,∠ABC =90°,∠C =60°,AC =10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是 .三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分) 17.(满分8分)先化简,再求值:211a a a a a ⎛⎫+÷ ⎪--⎝⎭,其中1a =. 18.(满分8分)如图,在等腰Rt △ABC 中,∠C =90°,正方形DEFG的顶点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上. ⑴求证:△ADE ≌△BGF ;⑵若正方形DEFG 的面积为16,求AC 的长. 19.(满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以D200 220100第18题图下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图. 请根据以上信息回答:⑴本次参加抽样调查的居民有多少人? ⑵将不完整的条形图补充完整.⑶若居民区有8000人,请估计爱吃D 粽的人数?⑷若有外型完全相同的A 、B 、C 、D 粽各一个煮熟后,小王吃了俩个,用列表或画 树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(满分8分)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.⑴求证:无论m 取何值,原方程总有两个不相等的实数根;⑵若x 1,x 2是原方程的两根,且12x x -=m 的值,并求出此时方程的两根. 21.(满分9分)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔DE =453.20米,月亮山海拔CF =442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A 处测得月亮山山顶C 的俯角为α,在月亮山山顶C 的正上方B 处测得东方山山顶D 处的俯角为β,如图,已知tan α=0.15987,tan β=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A 到B 处需多少时间?(精确到0.1秒)AB 22.(满分9分)如图,在△ABC 中,AB =AC ,∠BAC =54°,以为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F . ⑴求证:BE =CE ; ⑵求∠CBF 的度数; ⑶若AB =6,求的长.23.(满分10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x+500.⑴李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?⑵设李明获得的利润为W (元),当销售单价定为多少元时,每月可获得最大利润?⑶物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?第22题图东方山 月亮山第21题图24.(满分12分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以O A 为边作等边三角形OAB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿着OC 向点C 运动,动点Q 从B 点出发沿着BA 向点A 运动,P ,Q 两点同时出发,速度均为1个单位/秒。

当其中一个点到达终点时,另一个点也随之停止。

设运动时间为t秒.⑴求线段BC 的长;⑵过点Q 作x 轴垂线,垂足为H ,问t 为何值时,以P 、Q 、H 为顶点的三角形与△ABC 相似.⑶连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F .设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围.参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)11.4 12.3113.m >-6且m ≠-4.14.20 15.213 16.535-三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分) 17.(满分8分)解:2111111aa a a a a a a a ⎛⎫-÷=⨯=⎪----⎝⎭. …………………4分 当1a =时,原式==. ……………………………4分 18.(满分8分)⑴证明:略 ……………………………4分⑵AC =62 ……………………………4分19.(满分8分)⑴600……………………………2分⑵略……………………………2分 ⑶3200 ……………………………2分 ⑷P=41123= ……………………………2分 20.(满分8分)解:⑴证明:因为△=(m +3)2-4(m -1)=(m +1)2+4.∵无论m 取何值时,(m +1)2+4的值恒大于0,∴原方程总有两个不相等的实数根.……………………………4分⑵∵x 1,x 2是原方程的两根,∴x 1+x 2=-(m +3),x 1x 2=m +1,∵12x x -=2212()x x -=, ∴(x 1+x 2)2-4x 1x 2=8,∴[-(m +3)]2-4(m +1)=8,∴m 2+2m -3=0,解得:m 1=-3,m 2=1. 当m =-3时,原方程化为:x 2-2=0,解得:12x x ==当m =1时,原方程化为:x 2+4x +2=0,解得:1222x x =-+=- …………………4分21.(满分9分)解:在Rt △ABC 中,tan BC AB α=,在Rt △ABD 中,tan AD AB β= ……………………………2分第24题图 第24题备用图∴(tan tan )BC AD AB αβ-=- ……………………………2分 ∴453.20442.008000tan tan 0.159870.15847BC AD AB αβ--===-- ……………………………3分故A 到B 所需的时间为800044.4180t ==(秒) ……………………………1分 答:飞机从A 到B 处需44.4秒. ……………………………1分 22.(满分9分)证明:⑴略……………………………3分⑵∠CBF=27° ……………………………3分 ⑶的长=56π……………………………3分 23.(满分10分)解:⑴当x =20时,y =-10x +500=-10×20+500=300,300×(12-10)=300×2=600,即政府这个月为他承担的总差价为600元. ……………………………3分⑵依题意得,W =(x -10)(-10x +500) =-10x 2+600x -5000 =-10(x -30)2+4000∵a =-10<0,∴当x =30时,W 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元. …………………………3分⑶由题意得:-10x 2+600x -5000=3000,解得:x 1=20,x 2=40.∵a =-10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,W ≥3000. 又∵x ≤25,∴当20≤x ≤25时,W ≥3000.设政府每个月为他承担的总差价为p 元, ∴p =(12-10)×(-10x +500)=-20x +1000. ∵k =-20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元. ……………………4分 24.(满分12分)⑴解:如图l ∵△AOB 为等边三角形 ∴∠BAC =∠AOB =60.∵BC ⊥AB ∴∠ABC =90° ∴∠ACB =30°∠OBC =30°∴∠ACB =∠OBC ∴CO =OB =AB =OA =3∴AC =6 ∴BC = ……………………………4分 ⑵t =0或1 ……………………………4分 ⑶解:如图过点Q 作QN ∥OB 交x 轴于点N∴∠QNA =∠BOA =600=∠QAN ∴QN =QA ∴△AQN 为等边三角形 ∴NQ =NA =AQ =3-t ∴ON =3-(3-t )=t ∴PN =t +t =2t ∴OE ∥QN .∴△POE ∽△PNQ ∴OE PO QN PN = ∴132OE t =-∴3122OE t =- ∵EF ∥x 轴 ∴∠BFE =∠BCO =∠FBE =30° ∴EF =BE ∴m =BE =OB -OE 1322t =+(0<t <3) ……………………………4分。

相关文档
最新文档