概率的进一步认识(整理)

合集下载

第三章概率的进一步认识回顾与思考(教案)

第三章概率的进一步认识回顾与思考(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《第三章概率的进一步认识回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断事件独立性或使用概率来帮助做决策的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解事件独立性、条件概率和贝叶斯定理的基本概念。事件独立性是指两个事件的发生与否互不影响;条件概率是在某一事件发生的条件下,另一事件发生的概率;贝叶斯定理则是用来在已知某一结果时,反推事件发生概率的公式。这些概念在数据分析、决策制定等方面具有重要意义。
在学生小组讨论环节,我发现大家对于概率在实际生活中的应用有很丰富的想法,但有些小组在分享成果时表达不够清晰。针对这个问题,我计划在接下来的课程中,加强学生的口头表达和逻辑思维能力训练,帮助他们更好地展示自己的思考过程。
此外,我还注意到,部分学生在课堂上的参与度不高。为了提高他们的积极性,我将在下一节课尝试采用更多互动性强的教学方法,如小组竞赛、角色扮演等,激发学生的学习兴趣,让他们更主动地参与到课堂中来。
2.提高学生的数据分析能力,学会从实际情境中提取信息,运用概率知识解决实际问题,培养解决复杂问题的能力。
3.培养学生的创新意识和应用意识,将概率知识与社会生活实际相结合,激发学生运用概率知识解决实际问题的兴趣。
4.增强学生的团队合作意识,通过小组讨论和合作完成习题,培养学生的沟通能出问题、分析问题,培养勇于探索的精神。
五、教学反思
在这节课中,我发现学生们对概率的基本概念有了较好的掌握,特别是事件独立性、条件概率和贝叶斯定理。在导入新课环节,通过提问同学们在日常生活中遇到的概率问题,成功引起了他们对本节课的兴趣。在新课讲授环节,我注意引导学生理解这些概念在实际生活中的应用,并尝试用生动的案例进行分析,让学生更好地理解这些抽象的概念。

对概率的进一步认识

对概率的进一步认识

新课标要求:
• 一、运用列举法计算简单事件发生的概率 • 二、知道通过大量的重复实验,可以用频率来估计概率
丢分原因:
(1)没有认真阅读,没有弄清 楚是求放回还是不放回的概率; (2)作图不规范,思维混乱。
02
课时解读
三节
生活中的概率1课时
B C
用频率估计概 率3课时
用树状图或表格求 概率3课时
A
第一节
用树状图计算概率
第一 课时 第二 课时 第三 课时
列表格计算 概率
树状图或表 格求概率
三种试验情况的
第二节
一个 课时
公平性问题
生活中的概 率
第三节
一个 课时
选学内容
用频率估计 概率
数学教学活动实施步骤:
1 2 3 4
活动的 准备
小组成 员分工
数据的记 录和统计
活动时 间分配
THANKS
第六章《对概率的进一步认识》1 2单元解读课时解读
01
单元解读
学习目标:
• 1、进一步认识频率与概率的关系,加深对概率的理解
• 2、会用画树状图和列表等方法计算简单随机事件发生的概率
• 3、能用试验或模拟实验的方法估计一些随机事件发生的概率 • 4、在试验和统计活动中,积累活动经验,体会概率与统计的关系

概率的进一步认识 知识精讲

概率的进一步认识 知识精讲

概率的进一步认识--知识讲解【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题.【要点梳理】要点一、用树状图或表格求概率1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ;(3)用公式计算所求事件A 的概率.即P (A )=nm . 要点二、用频率估计概率1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率n m 接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.要点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率; (2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.【典型例题】 类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .13 B .14 C .12 D .34 【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为14. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少.举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( )A .13B .12C .14D .34【答案】C.。

3概率的进一步认识 回顾与思考 一等奖创新教案

3概率的进一步认识 回顾与思考 一等奖创新教案

3概率的进一步认识回顾与思考一等奖创新教案专题复习课《概率与统计》教学设计一.教学目标:1.知识与技能:(1)能熟练掌握平均数、众数、中位数的定义和公式。

(2)懂得频率、概率之间的关系。

(3)会用列表法、树状图法解决生活中的实际问题(4)了解等可能事件模型。

2.过程与方法:类比集合,培养学生的类比与归纳的数学思想。

3.情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,在参与探究活动中,培养学生的合作精神. 在观察发现中树立探索精神,在探索成功后体验学习乐趣。

二.教学重点与难点:教学重点:复习平均数、众数、中位数的定义和公式,懂得频率、频数、概率之间的关系。

教学难点:会用列表法、树状图法解决生活中的实际问题。

三.课时安排:1节4.教法:根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。

(1)立足基础知识和基本技能,掌握好典型例题,做到重点突出;(2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。

五. 学法:引导学生用观察、类比、归纳、推导方式来实现预定教学目标。

创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。

从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。

达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。

6、教学用具:PPT和iPad7、教学过程:活动一:合作复习:(1)在题上自由选取3-n个向度,结合本章学习的知识,自己的进行整理。

(时间:2分钟)(2)各组内讨论、补充和完善,并小组呈现。

(时间:4分钟)(3)由2-3组分享展示成果,其他组评价和补充。

概率的进一步认识

概率的进一步认识

y 第三章 概率的进一步认识 第一讲 用树状图或表格求概率知识点1. 用列举法求事件的概率:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。

(当事件发生的所有可能结果较少时使用)2. 用列表法求概率:当一次试验要涉及两个因素(例如投掷两枚骰子)并且出现的结果数目较多时,为了不重不漏地列出所有可能结果,通常使用列表法。

3. 用树状图求概率:当一次试验要涉及3个或更多的因素(例如从3个口袋中取球)时,通常使用树状图法。

【典型例题】1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.2.随机掷三枚硬币,出现三个正面朝上的概率是___________________3(2013河南中考)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则两张卡片上数字之积为负数的概率是_______________4.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。

(1)从箱子中任意摸出1个球是白球的概率是_____________.(2)从箱子中任意摸出一个球,不将它放回箱子中,搅均后再摸出1个球,两次摸出的球都是白球的概率是___________________5.一个盒子中有1个红球、1个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球。

求:(1)两次摸到红球的概率;(2)两次摸到不同颜色的球的概率;6.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?7.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验. (1) 一次试验中两张牌的牌面数字和可能有那些值? (2)两张牌的牌面数字和为几的概率最大? (3)两张牌的牌面数字和等于3的概率是多少?8.甲同学口袋中有三张卡片,分别写着数字1,1,2,乙同学口袋中也有三张卡片,分别写着数字1,2,2.两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数则甲胜;否则乙胜。

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。

判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。

北师大版九年级上第三章:概率的进一步认识(精品)学案

北师大版九年级上第三章:概率的进一步认识(精品)学案

概率的进一步认识知识梳理、事件的分类(一)二、概率的概念:由于事件A发生的频率,表示该事件发生的频繁程度,频率越大,事件A发生越频繁,这就意味着事件A发生的可能性也越大。

因此,我们就用这个常数来表示事件A发生的可能性大小。

我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A)。

概率,又称或然率、机会率、机率或可能性。

P (必然事件)=1P (不可能事件)=0O v P (随机事件)v 1 (通常用分数表示)等可能事件:设一个试验的所有可能的结果有n种,每次试验有且只有期中的一种结果出现,如果每种结果出现的可能性相同,那么我们就称这个试验的结果就等可能的,每一个基本事件都是等可能事件。

常考题型题型一、事件的概念1. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质点完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A. 摸出的四个球中至少有一个球是白球B. 摸出的四个球中至少有一个球是黑球C. 摸出的四个球中至少有两个球是黑球D. 摸出的四个球中至少有两个球是白球2. 从标号分别为1、2、3、4、5的5张卡片中,随机抽出1张。

下列事件中,必然事件是(A、标号小于6 B 、标号大于6C标号是奇数 D 、标号是33、把下列事件进行分类A. 如果|a|=|b| ,那么a=bB. 三角形的内角和是360 °C. 明天太阳从西边升起D. 篮球队员在罚球线上投篮一次,未投中E. 实心铁球投入水中会沉入水底F. 抛出一枚硬币,落地后正面朝上抛掷一枚硬币四次,有两次正面朝上G. 打开电视频道,正在播放《十二在线》H. 射击运动员射击一次,命中十环I. 方程x2-2x-仁0 必有实数根J. 单项式加上单项式,和为多项式K. 13名同学中至少有两名同学的出生月份相同L. 体育课上,小刚跑完1000米所用时间为1分钟M. 扇形统计图中,所有百分比的和为100%(1)必然事件:⑵不可能事件:____________________________________________随机事件:______________题型二、频率概率(1)一次概率问题1 •端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外1 11 1 A. 10 B.5C.3D.22•甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )111A. 6 B • 3 C • 23.下列说法正确的是( )B. 随机抛一枚硬币,落地后正面一定朝上C. 同时掷两枚均匀的骰子,朝上一面的点数和为 61D. 在一副没有大小王的扑克牌中任意抽一张,抽到的牌是 6的概率是134.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋1子中随机摸出一个球,“摸出黄球”的概率为 2 3,则袋中白球的个数为()A. 2 B . 3 C . 4 D . 125. 用2, 3, 4三个数字排成一个三位数,则排出的数是偶数的概率为 _______________6. 长度分别为3cm, 4cm, 5cm, 9cm 的四条线段,任取其 中三条能组成三角形的概率是(2)二次概率(用树状图求概率)1. 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()2 在一个不透明的袋子中,有 2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色 放回,再随机地摸出一个球 ,则两次都摸到白球的概率为 。

概率的进一步认识知识点中

概率的进一步认识知识点中

概率的进一步认识知识点中
一、什么是概率
概率是一个变量,表示件事情发生的机率大小。

概率是数学中一种量度,也是一个抽象的概念,包含了多个事件的发生机率。

如果在一系列实验中,一个事件发生的次数越多,那么这种事件发生的可能性就越大,它具有一定的发生概率。

二、概率的定义
概率可以定义为一种事件发生的可能性,它可以通过实验测定和理论计算,可以量化描述一个事件的发生机率,用于计算任何事件是否发生。

常见的概率有绝对概率和相对概率。

绝对概率可以通过实验测定,就是一次实验中其中一种事件出现的频率与实验次数的比值,可用来测定当前实验中发生的概率。

而相对概率,是一种统计和概率比较的方法,它通过比较和计算两个事件发生概率的大小,来测定其中一个事件发生的概率。

三、概率的意义
概率是实际生活中一种重要的概念,它可以用来帮助我们确定事件发生的可能性,指导我们预测未来的情况,以及帮助我们分析从一些随机事件中受益。

此外,它对风险评估和经济分析也很有帮助。

四、概率的应用
概率可以应用于社会科学,金融学,数学,工程学,数据科学,生物学,医学等领域,常用于人们分析不确定的环境,了解系统变换,估计风险。

第3章概率的进一步认识(教案)2023-2024学年九年级上册数学(教案)(北师大版)

第3章概率的进一步认识(教案)2023-2024学年九年级上册数学(教案)(北师大版)
(二)新课讲授
1.理论介绍:首先,我们要了解独立事件的基本概念。独立事件是指两个事件A和B的发生互不影响,它们的概率可以单独计算。这一概念在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币和掷骰子的实验,展示独立事件在实际中的应用,以及如何计算独立事件的概率。
3.重点难点解析:在讲授过程中,我会特别强调独立事件和互斥事件这两个重点。对于难点部分,如n次独立重复试验的概率计算,我会通过举例和比较来帮助大家理解。
第3章概率的进一步认识(教案)2023-2024学年九年级上册数学(教案)(北师大版)
一、教学内容
第3章概率的进一步认识
3.1随机事件的独立性
1.独立事件的定义与判断
2.独立事件的概率计算
3.2事件的互斥性
1.互斥事件的定义与判断
2.互斥事件的概率计算
3.3 n次独立重复试验的概率
1. n次独立重复试验的概率计算
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾
今天的学习,我们了解了独立事件、互斥事件的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(三)实践活动
1.分组讨论:学生们将分成若干小组,每组讨论一个与独立事件相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币实验。这个操作将演示独立事件的基本原理。

新初三概率的进一步认识

新初三概率的进一步认识

31 P(甲获胜)= 9 = 3
解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:
乙出的手势
甲出的手势
S
J
B
S
(S,S)
(S,J)
(S,B)
J
(J,S)
(J,J)
(J,B)
B
(B,S)
(B,J)
(B,B)
以下同解法一
评注:(1)利用列表法、树状图法求概率必须是等可能事件.
(2)对各种可能出现的情况不能遗漏或重复某种可能.
或画树状图法加以说明.
答案:解:方法一
第一次 3
第二次
3 (3,3)
4 (3,4)
5 (3,5)
4
(4,3)
(4,4)
(4,5)
5
(5,3)
(5,4)
(5,5)
方法二
开始
3
4
5
3
4
5
3
4
5
3
4
5
(3,3)(3,4)(3,5) (4,3)(4,4)(4,5) (5,3)(5,4)(5,5)
因此,能组成的两位数有:33,34,35,43,44,45,53,54,55. 组成的两位数有 9 个. 其中,十位上数字与个位上数字之和为 9 的两位数有两个,
同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛一次,赢得两局者为胜,
看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的
中、下等马要强.
(1). 如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?
(2). 如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率

第3章--概率的进一步认识(章目标总览)精选全文

第3章--概率的进一步认识(章目标总览)精选全文

可编辑修改精选全文完整版
第三章概率的进一步认识
本章的主要内容包括:用树状图或表格求概率、用频率来估计概率.
七年级已经认识了许多随机事件,理论地研究了一些简单的随机事件发生的可能性.本章是上述内容的延伸,介绍了两种计算简单事件概率的方法——画树状图法和列表法,以及利用试验频率和理论概率之间的关系,揭示统计推断的一些理论依据,加强概率和统计的联系,加深对概率的理解.通过试验,理解试验次数较大时频率稳定于理论概率,据此估计某一事件发生的概率.在中考中,本章重点在考查概率的相关概念、用列举法求简单事件的概率以及通过频率估计概率.
【本章重点】
用画树状图法或列表法求简单事件的概率、用频率估计概率.
【本章难点】
用恰当的方法求概率以及利用概率知识解决实际问题.
【本章思想方法】
1.掌握数形结合思想.如:通过列表、画树状图或计算几何图形的面积来求解简单事件的概率.
2.体会转化思想.如:在进行模拟试验时,常将不易进行的试验转化为用替代物来进行模拟试验;在计算与图形有关的简单事件的概率时,常转化为求图形的面积来计算.
1用树状图或表格求概率2课时
2用频率估计概率1课时。

概率的进一步认识(知识点汇总 北师9上)

概率的进一步认识(知识点汇总 北师9上)

第三章概率的进一步认识一、用树状图或表格求概率1.利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.2.简单事件概率的计算方法:(1)对于一次完成的事件,直接用部分与总体的比例关系求概率;(2)对于两次完成的事件,可通过列表法或画树状图求概率;(3)对于三次或三次以上完成的事件,通过画树状图求概率.注意:用画树状图或列表的方法求概率:列表法可以不重复、不遗漏地列出所有可能性的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.解题时还要注意题目是放回事件还是不放回事件.二、用概率判断游戏的公平性1.若某游戏不计得分情况,当双方获胜的概率相同,则游戏公平;当双方获胜的概率不相同,则游戏不公平.2.判断游戏公平的方法有:在得分相同的情况下,判断游戏公平性看双方获胜的概率是否相等.在得分不同的情况下,要用各自获胜概率与得分乘积作为判断获胜的标准.注意:公平性问题是概率在日常生活中的一个重要应用,从概率的角度讲,所谓公平就是指有关各方面获胜的概率相等,解决这类问题的关键是准确地计算概率.3.利用转盘等工具求事件的概率时,各种结果的可能性相同,只需要面积相等,如果问题中各部分的面积不相等,需要利用相关的几何知识转换成等面积.注意:利用表格或画树状图的方法求具有两步试验的事件的概率,常与有理数的运算、函数、平面几何、数据的收集与整理等知识相结合,注意转化思想的运用.三、用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,试验的频率渐趋稳定于其概率附近.注意:1.频率与概率的联系与区别:联系:概率是由一系列频率值估计得到的.区别:频率是波动不确定的,概率是稳定确定的.2.随机事件的概率是一个固定值,而事件发生的频率是随着试验的次数变化而波动,只有当大量重复试验时,事件的频率才逐步稳定在事件发生的概率附近.相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。

概率的进一步认识

概率的进一步认识

概率的进一步认识知识精讲1.古典概型(1)古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

(2)古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件Am包含其中的m中结果,那么事件A发生的概率为P(A)=n2.列表法求概率(1)列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。

(2)列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

3.树状图法求概率(1)树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。

(2)运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

4、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

5、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

6、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。

把这些随机产生的数据称为随机数。

知识点01 用树状图或表格求概率的棋盘,在棋盘方格内随机放入棋子,且每一方格内最多放入一枚棋子.【例1】一个33(1)如图①,棋盘内已有两枚棋子,在剩余的方格内随机放入一枚棋子,这三枚棋子恰好能在同一条直线上的概率为__________;(2)如图②,棋盘内已有四枚棋子,在剩余的方格内随机放入两枚棋子,求仅有三枚棋子恰好能在同一条直线上的概率.【例2】某校准备从八年级(1)班、(2)班的团员中选取两名同学作为十四运的志愿者,已知(1)班有5名团员(其中男生3人,女生2人),(2)班有4名团员(其中男生1人,女生3人).(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;(2)如果分别从(1)班、(2)班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.【例3】相约西安,筑梦全运,为迎接十四运,学校开展了运动会志愿者选拔活动.小亮和小贾都很优秀,一同报名参加了选拔活动,但只有一个参加名额.现通过抽卡片的方式决定谁去参加,规则如下:现有两组卡片,第一组为正面分别写有字母X、Y、Z的三张卡片,第二组为正面分别写有字母X、Y、Y、Z的四张卡片,这些卡片除正面字母外其余均相同.将卡片正面朝下洗匀,随机抽一张,记下字母后放回,称为抽卡片一次.(1)若小贾从第二组中抽卡片15次,其中9次抽出的卡片上写有字母Y,求这15次抽出的卡片上写有字母Y的频率;(2)小亮从第一组中抽卡片一次,小贾从第二组中抽卡片一次,若两人抽出的卡片上的字母相同,则小亮去参加;否则,小贾去参加.请问这种抽卡片的方式对两人是否公平?用列表或画树状图的方法说明理由.【例4】.如图,在3×3的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【例5】.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角度数.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.知识点02 用频率估计概率【例1】在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(2)请估计:当次数s很大时,摸到白球的频率将会接近______(精确到0.1);(3)请推算:摸到红球的概率是_______(精确到0.1);(4)试估算:这一个不透明的口袋中红球有______只.【例2】勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x <20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若从七年级随机抽取一名学生,估计这名学生寒假在家做家务的总时间不低于20小时的概率.【例3】如图,两个转盘A ,B 都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A ,B ,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果; (2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数 20 30 50 100 150 180 240 330 450 “和为7”出现的频数 7101630465981110150“和为7”出现的频率0.35 0.33 0.32 0.30 0.31 0.33 0.34 0.33 0.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x <y ,试求出x 与y 的值.1.有三张卡片上分别写有一个等式:1x +、21x -、5,把它们背面朝上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?2.甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1、2、3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1、2、3、4、5、6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜. (1)请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来.(2)这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.当堂提升3.某学校七年级数学兴趣小组组织一次教学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,再通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(2)小组两位组员小张和小李商量做一个游戏,以猜测小军进迷宫的结果比胜负.游戏规则规定:小军如果能进入迷宫中心,小张和小李各得一分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?4.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图、列表)说明其公平性.5.张彬和王华两位同学为得到一张观看足球比赛的入场劵,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,当指针指向阴影区域时,张彬得到入场劵;否则,王华得到入场劵;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出1个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场劵;否则,张彬得到入场劵.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.。

最新新编九年级数学上册第三章概率的进一步认识知识点归纳新版北师大

最新新编九年级数学上册第三章概率的进一步认识知识点归纳新版北师大

第三章 概率的进一步认识1.用树状图或表格求概率2.用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。

因此,各个小长方形的面积的和等于1。

※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。

用一件事件发生的频率来估计这一件事件发生的概率。

可用列表的方法求出概率,但此方法不太适用较复杂情况。

※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100=x 估算出鱼的条数。

(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。

附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

想要不出现太强的考试焦虑,那么最好的办法是,形成自己的掌控感。

1、首先,认真研究考试办法。

这一点对知识水平比较高的考生非常重要。

随着重复学习的次数增加,我们对知识的兴奋度会逐渐下降。

最后时刻,再去重复学习,对于很多学生已经意义不大,远不如多花些力气,来思考考试。

很多老师也会讲解考试的办法。

但是,老师给你的办法,不能很好地提高你对考试的掌控感,你要找到自己的一套明确的考试办法,才能最有效地提高你的掌控感。

有了这种掌控感,你不会再觉得,在如此关键性的考试面前,你是一只被检验、被考察甚至被宰割的绵羊。

2、其次,试着从考官的角度思考问题。

考官,是掌控考试的;考生,是被考试考验的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的进一步认识
• 新世纪教育
数学 孙老师
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
必然事件发生的概率为1(或100%),记作P(必然事件 )=1; 不可能事件发生的概率为0,记作P(不可能事件)=0; 不确定事件发生的概率介于0~1之间, 即 0<P(不确定事件)<1. 0 如果A为不确定事件 ,那么0<P(A)<1. 驶向胜利 ½(50%) 1(100%)
驶向胜 利的彼 岸
想一想
对于前面的摸牌游戏,一次试验中会出现哪些可能的结果 ?每种结果出现的可能性相同吗?
我与他的结果不同: 会出现四种可能的结果:牌面数字为(1,1),牌面数字为 (1,2),牌面数字为(2,1),牌面数字为(2,2). 每种结果出现的可能性相同. 对此你有什么评论?
驶向胜利 的彼岸
小结
拓展
回味无穷
频率与概率的关系 当试验次数很大时,一个事件发生 的频率稳定在相应的概率附近. 因此,我们可以通过多次试验, 用一个事件发生的频率来估计这 一事件发生的概率.
想一想
真知灼见源于实践
概率的等可能性 事实上,在一次试验中,不管摸得 第一张牌的牌面数字为几,摸第二 张牌时,摸得牌面数字为1和2的可 能性是相同的.
369
662 1335 3203 6335 8073 12628 0.902 0.890 0.915
移植总数(n) 成活率(m) 10 8 50 47 270 235 400 369 750 662 1500 1335 3500 3203 7000 6335 9000 8073 14000 12628
随堂练习
是真是假
理性的结论源于实践 操作
从一定高度随机掷一枚均匀的硬币,落地后其朝上的 一面可能出现正面和反面这样两种等可能的结果.小明 正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这 3次都是正面朝上.那么,你认为小明第4次掷硬币,出现 正面朝上的可能性大,还是反面朝上的可能性大,还是 一样大?说说你的理由,并与同伴进行交流.
思 考
柑橘总质量n千克 损坏柑橘质量m千克 柑橘损坏的频率 ) 50 5.50 0.110 100 10.5 0.105 150 15.15 0.101 200 19.42 0.097 250 24.25 0.097 300 30.93 0.103 350 35.32 0.101 400 39.24 0.098 450 44.57 0.099 500 51.54 0.103 从上表可以看出,柑橘损坏的频率在常数_____左右摆动, 并且随统计量的增加这种规律逐渐______,那么可以把柑 橘损坏的概率估计为这个常数.如果估计这个概率为0.1, 则柑橘完好的概率为_______.
试验次数
两张牌的牌面数字和3的频数 两张牌的牌面数字和3的频率 60 90 120 150 180
驶向胜利 的彼岸
28 43 57 73 88
议一议
6
“悟”的功效
探索频率与概率的关系
在上面的试验中,你发现了什么?如果继续增加 试验次数呢?
驶向胜利 的彼岸
议一议
7
“联想”的功能
探索频率与概率的关系
议一议
“悟”的功效
用表格表示概率
第二张牌的牌面数字 第一张牌的牌面数字
1
2
1 2
(1,1) (1,2) (2,1) (2,2)
从上面的树状图或表格可以看出,一次试验可能出现的 结果共有4种:(1,1),(1,2),(2,1),(2,2),而且每种结果 出现的可能性相同.也就是说,每种结果出现的 概率都是 ?
在掷硬币的试验中,当试验总次数很大时,硬币落地后 正面朝上的频率与反面朝上的频率稳定在1/2附近,我 们说,随机掷一枚均匀的硬币,硬币落地后正面朝上的 概率与反面朝上的概率相同,都是1/2. 类似地,在上面的摸牌试验中,当试验次数很大时,两 张牌的牌面数字和等于3的频率也稳定在相应的概率附 近.因此,我们可以通过多次试验,用一个事件发
小结
拓展
回味无穷
用树状图或表格表示概率
利用树状图或表格可以清晰地表示 出某个事件发生的所有可能出现的 结果,从而较方便地求出某些事件 发生的概率.
用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相 m 等时,我们可以用 P (A) = 的方式得出概率,当试 n 验的所有可能结果不是有限个,或各种可能结果发生的可 能性不相等时,我们一般还要通过统计频率来估计概率. 在同样条件下,大量重复试验时,根据一个随机事件发生 的频率所逐渐稳定到的常数,可以估计这个事件发生的率.
为简单起见,我们能否直接把表中500千克柑橘对 应的柑橘损坏的频率看作总的柑橘损坏的频率?能 否看作柑橘损坏的概率?
练 习
某农科所在相同条件下做了某作物种子发芽率的试验, 结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000 发芽种子个数 94 187 282 338 435 530 624 718 814 981 发芽种子频率
0.94 0.94 0.94 0.85 0.87 0.88 0.89 0.90 0.90 0.98
一般地,1 000千克种子中大约有多少是不能发芽的?
种子个数 100 200 300
发芽种子个数 94 187 282
发芽种子频率
400
500 600 700
338
435 530 624
800
900 1000
驶向胜利 的彼岸
例题欣赏
行家看“门道”
学以致用
随机掷一枚均匀的硬币两次,至少有一次正面朝上 的概率是多少?
正 正 开始 正 (反,正) (反,反) 反 (正,反) (正,正) 请你用 列表的 方法解 答


总共有4种结果,每种结果出现的可能性相同,而至少有 一次正面朝上的结果有3种:(正,正),(正,反),(反,正) 因此至少有一次正面朝上的概率是3/4.
频数 频率 概率
二. 思考解答
问题1 某林业部门要考查某种幼树在一定条件的移植的成活 率,应采用什么具体做法? 下表是一张模拟的统计表,请补出表中的空缺,并完成表后的 m ) 填空. 移植总数(n) 成活率(m) 成活的频率(
10 8 0.80 n
50
270
47
235 0.870
400
750 1500 3500 7000 9000 14000
m 成活的频率 ( ) n 0.80 0.94 0.870
0.923 0.883 0.890 0.915 0.9的频率在 _________左右摆动,并且随着统计数据的增加, 这种规律愈加明显,所以估计幼树移植成活率的概 率为________
问题2 某水果公司以2元/千克的成本新进了10 000千克的柑橘, 如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘 (已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适? 销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑 橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成此 表. m 柑橘总质量n千克 损坏柑橘质量m千克 柑橘损坏的频率 n ) 50 5.50 0.110 100 10.5 0.105 150 15.15 200 19.42 250 24.25 300 30.93 350 35.32 400 39.24 450 44.57 500 51.54
下课了!
结束寄语
• 统计的基本思想: • 用样本去估计总体. • 用频率去估计概率.
的彼岸 不可能 发生 可能 发生 必然 发生
回顾与思考
普查,总体,个体,样本, 抽查,频数,频率
普查 为了一定的目的,而对考察对象进行全面的调查,称 为普查; 总体,个体 所要考察对象的全体,称为总体,而组成总体的 每一个考察对象称为个体; 抽样调查,样本 从总体中抽取部分个体进行调查,这种调 查称为抽样调查;其中,从总体中抽取的一部分个体叫做总 体的一个样本; 频数,频率 在考察中,每个对象出现的次数 驶向胜 称为频数,而每个对象出现的次数与总次数 利的彼 的比值称为频率. 岸
做一做
概率的表示方法?
开始
用树状图表示概率
实际上,摸第一张 第一张牌的 1 2 牌时,可能出现的结 牌面数字 果是:牌面数字为1 第二张牌的 1 2 1 2 或2,而且这两种结 牌面数字 果出现的可能性相 同;摸第二张牌时, 所有可能出 (1,1) (1,2) (2,1) (2 现的结果 情况也是如此.因此 ,我们可以用右面的 驶向胜利 树状图或下面的表 的彼岸 格来表示所有可能 出现的结果:
生的频率来估计这一事件发生的概率.
两张牌的牌面数字和等于3的理论概率等于?
练习
再“玩”一把
用实际行动来证明 我能行
六个同学组成一个小组,根据原来的试验分别 汇总其中两人,三人,四人,五人,六人的试验数 据,相应得到试验60次,90次,120次,150次,180 次时两张牌的牌面数字和等于2的频率,并绘制 相应的统计图表.能据此估计两张牌的牌面数字 和等于2的概率大约是多少吗?
718
814 981
0.94 0.94 0.94 0.85 0.87 0.88 0.89 0.90 0.90 0.98
一般地,1 000千克种子中大约有多少是不能发芽的?
1.经过某十字路口的汽车,它可能继续直行,也可能向左或向 右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部 继续直行的概率为 ( A. 1 3 B. 2 3 C. 1 9 D. ) 1 2
m n
根据估计的概率可以知道,在10 000千克柑橘中完好柑 橘的质量为
10 000×0.9=9 000千克,完好柑橘的实际成本为
相关文档
最新文档