九上概率的进一步认识知识点复习
北师大数学九年级上册第三章概率的进一步认识
第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A. B. C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮, 即能让灯泡发光的概率是=.故选C .随练2、 在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子( ) A.1颗B.2颗C.3颗D.4颗【答案】 B【解析】 解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、 有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色; (2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】 (1)白(2)16(3)公平【解析】 (1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】 列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、 一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________. 【答案】 38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、 有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】 710【解析】 列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =. 例题4、 在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是( ) A.12 B.35 C.710 D.45 【答案】 B【解析】 所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、 把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________. 【答案】49【解析】 列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =. 随练2、 在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________. 【答案】 25【解析】 画树状图如下:共有25种情况,当点C 的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P (直角三角形)102255==.用频率估计概率例题1、 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率 【答案】 D【解析】 本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答. ∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率, ∴D 选项说法正确. 故选:D .例题2、 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1). 【答案】 0.9【解析】 (0.9230.8830.8900.9150.9050.8970.902)70.9x =++++++÷≈例题3、 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据 (1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________. (3)试估算口袋中黑、白两种颜色的球有多少只.【答案】 (1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】 (1)根据题意可得当n 很大时,摸到白球的概率将会接近0.6.移植总数() 成活数() 成活的频率摸球次数() 摸到白球次数()摸到白球的频率()(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、 如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).【答案】 0.5【解析】 由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、 某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格: (2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】 (1)见解析;(2)0.7;(3)0.7;(4)252 【解析】 (1)(2)当n 很大时,频率将会接近 681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n ) 0.56 0.60 0.52 0.52 0.49 0.51 0.50转动转盘的次数 落在“铅笔”的次数落在铅笔的频率转动转盘的次数 落在“铅笔”的次数落在铅笔的频率A.49B.13C.16 D.19【答案】 D【解析】 列表得:∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为19.2、 在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P 1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A ,B ,C ,D 表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P 2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】 (1)嘉嘉抽取一张卡片上的数是勾股数的概率P 1=34(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】 (1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P 1=34;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种, 其中抽到的两张卡片上的数都是勾股数的有6种,∴P 2=612=12,∵P 1=34,P 2=12,P 1≠P 2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、 从﹣4、3、5这三个数中,随机抽取一个数,记为a ,那么,使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率____.黑 白 白 黑 (黑,黑) (黑,白) (黑,白) 白 (黑,白) (白,白) (白,白) 白 (黑,白) (白,白) (白,白)A BC D A(A ,B ) (A ,C ) (A ,D ) B (B ,A )(B ,C )(B ,D ) C (C ,A ) (C ,B )(C ,D )D (D ,A ) (D ,B )(D ,C )【答案】13【解析】 由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a |×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、 王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】 王红【解析】 共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大. 5、 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________. (3)试估算口袋中黑、白两种颜色的球有多少只.【答案】 (1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】 (1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.摸球次数() 摸到白球次数()摸到白球的频率()6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
概率的进一步认识
概率的进一步认识知识精讲1.古典概型(1)古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
(2)古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件Am包含其中的m中结果,那么事件A发生的概率为P(A)=n2.列表法求概率(1)列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
3.树状图法求概率(1)树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
4、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
5、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
6、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
知识点01 用树状图或表格求概率的棋盘,在棋盘方格内随机放入棋子,且每一方格内最多放入一枚棋子.【例1】一个33(1)如图①,棋盘内已有两枚棋子,在剩余的方格内随机放入一枚棋子,这三枚棋子恰好能在同一条直线上的概率为__________;(2)如图②,棋盘内已有四枚棋子,在剩余的方格内随机放入两枚棋子,求仅有三枚棋子恰好能在同一条直线上的概率.【例2】某校准备从八年级(1)班、(2)班的团员中选取两名同学作为十四运的志愿者,已知(1)班有5名团员(其中男生3人,女生2人),(2)班有4名团员(其中男生1人,女生3人).(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;(2)如果分别从(1)班、(2)班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.【例3】相约西安,筑梦全运,为迎接十四运,学校开展了运动会志愿者选拔活动.小亮和小贾都很优秀,一同报名参加了选拔活动,但只有一个参加名额.现通过抽卡片的方式决定谁去参加,规则如下:现有两组卡片,第一组为正面分别写有字母X、Y、Z的三张卡片,第二组为正面分别写有字母X、Y、Y、Z的四张卡片,这些卡片除正面字母外其余均相同.将卡片正面朝下洗匀,随机抽一张,记下字母后放回,称为抽卡片一次.(1)若小贾从第二组中抽卡片15次,其中9次抽出的卡片上写有字母Y,求这15次抽出的卡片上写有字母Y的频率;(2)小亮从第一组中抽卡片一次,小贾从第二组中抽卡片一次,若两人抽出的卡片上的字母相同,则小亮去参加;否则,小贾去参加.请问这种抽卡片的方式对两人是否公平?用列表或画树状图的方法说明理由.【例4】.如图,在3×3的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【例5】.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角度数.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.知识点02 用频率估计概率【例1】在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(2)请估计:当次数s很大时,摸到白球的频率将会接近______(精确到0.1);(3)请推算:摸到红球的概率是_______(精确到0.1);(4)试估算:这一个不透明的口袋中红球有______只.【例2】勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x <20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若从七年级随机抽取一名学生,估计这名学生寒假在家做家务的总时间不低于20小时的概率.【例3】如图,两个转盘A ,B 都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A ,B ,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果; (2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数 20 30 50 100 150 180 240 330 450 “和为7”出现的频数 7101630465981110150“和为7”出现的频率0.35 0.33 0.32 0.30 0.31 0.33 0.34 0.33 0.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x <y ,试求出x 与y 的值.1.有三张卡片上分别写有一个等式:1x +、21x -、5,把它们背面朝上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?2.甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1、2、3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1、2、3、4、5、6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜. (1)请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来.(2)这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.当堂提升3.某学校七年级数学兴趣小组组织一次教学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,再通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(2)小组两位组员小张和小李商量做一个游戏,以猜测小军进迷宫的结果比胜负.游戏规则规定:小军如果能进入迷宫中心,小张和小李各得一分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?4.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图、列表)说明其公平性.5.张彬和王华两位同学为得到一张观看足球比赛的入场劵,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,当指针指向阴影区域时,张彬得到入场劵;否则,王华得到入场劵;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出1个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场劵;否则,张彬得到入场劵.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.。
九数学三概率的进一步认识
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面 朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
开始
第一枚硬币 正
反
第二枚硬币 正 反
正 反
所有可能出现的结果 (正,正) (正,反)
(反,正) (反,反)
树 状 图
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面 朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
第二枚硬币 第一枚硬币
正 反
正
(正,正) (反,正)
反
(正,反) (反,反)
表 格
由表可知:总共有 4 种等可能结果.
小明获胜的结果有 1 种:(正,正),P(小明获胜)=
探究题
一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中
一次摸出2个球,2个球都是红球的可能性是( C )
A、 1 3
B、1 2
C、1 D、1
6
4
如何画树状图或列表,需注意什么?
注意:拿第2个球时第1个球并没有放回,两次拿的球不可 能是同一个球,列表时要注意“对角线”上的表格就划去。 类似这种“不放回”求概率的尽量画树状图
正 反
反
(正,正) (正,反) (反,正) (反,反)
由图可知:共 4 种结果,每种结果出现的可能性相同.其中至少 有一次正面朝上的有 3 种:(正,正)(正,反)(反,正)
∴P = 3 (至少有一次正面朝上) 4
练一练
1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率
是_____1__.
一般地,如果在一次试验中,有n种可能的结果,并且 它们发生的可能性都相等,事件A包含其中m种结果, 那么事件A发 生的概率为:
第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,
∴P(A处买到最低价格礼物)= .
合作探究
(2)作出树状图如下:
九年级数学上册第3章 概率的进一步认识
本课程,若小波和小睿两名同学每人随机选择其中一门课
程,则小波和小睿选到同一门课程的概率是( B )
A.21
B.13
C.61
D.91
数学
2.在一个口袋中有3个完全相同的小球,把它们分别标号为
1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小
球,则两次取的小球的标号相同的概率为( A )
A.31
(C ) A.甲 B.甲和乙 C.丙 D.甲、乙、丙三人赢的机会均等
数学
4.小明和小亮做游戏,先是各自背着对方在纸上写一个不
大于100的正整数,然后都拿给对方看.他们约定:若两人 所写的数都是奇数或都是偶数,则小明获胜;若两个人所写
的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏
(C ) A.对小明有利 C.是公平的
B.16
C.21
D.91
数学
3.“扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程
马拉松”,B.“10公里”,C.“迷你马拉松”.小明参加
了该项赛事的志愿者服务工作,组委会随机将志愿者分配到
三个项目组.
1
(1)小明被分配到“迷你马拉松”项目组的概率为 3 ;
数学
(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分 参赛选手作如下调查:
数学
知识要点4 判断游戏的公平性 【例4】甲、乙两人玩游戏,判定游戏公平的标准是( D ) A.游戏的规则由甲方确定 B.游戏的规则由乙方确定 C.游戏的规则由甲、乙双方商定 D.游戏双方要各有50%赢的机会
数学 【例 5】如图,可以自由转动的转盘被 3 等分,指针落在每个 扇形内的机会均等.小明和小华利用这个转盘做游戏,若采 用下列游戏规则,你认为对双方公平吗?请用列表或画树状 图的方法说明理由.
人教版数学九上概率的进一步认识知识点复习+习题)
第三章 概率的进一步认识一、本章知识结构图1. 生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, 必然事件:在一定条件下,有些事件事先能肯定它一定发生。
不可能事件:在一定条件下,有些事件事先能肯定它一定不会发生。
2、不确定事件:我们事先无法肯定它会不会发生的事件称为不确定事件或随机事件。
不确定事件发生的可能性是有大小的。
注:、① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<1二、用树状图或列表法求概率1、频率与概率的含义:在实验中,每个对象出现的频繁程度不同,每个对象出现的次数叫频数,而每个对象出现的次数与总次数的比值为频率,即频率=频数/总次数。
把刻画事件A 发生的可能性大小的数值,称为事件A 发生的概率。
注:频率是指在一次实验中某个对象出现的次数与总次数的比,概率是通过大量重复实验中频率的稳定性而得到的一个0~1之间的常数,它反映了事件发生可能性的大小。
2、利用稳定的频率估计某一事件发生的概率在进行试验时,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近,可以通过多次试验用一个事件发生的频率来估计这一事件发生的概率。
注:可以用稳定的频率估计某一事件发生的概率,但不能说频率等于概率,其区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性。
试验时应主要试验的随机性,要保证足够多的试验次数,随着试验次数的增加,频率的波动就会越小,即趋于相对稳定状态,得到的概率仅仅是估计值,而不是准确值。
3、用树状图或列表法求概率 定义:当出现的结果的可能性相同时,将所有结果展示出来,符合条件的结果与所有结果的比值即为这一事件的概率。
列表法求概率:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
列表法的应用场合:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
九年级数学概率知识点
九年级数学概率知识点在九年级数学学科中,概率作为一个重要的知识点,是对事件发生可能性的度量。
通过概率的学习,我们可以对随机事件进行分析和判断。
本文将介绍九年级数学中的一些概率知识点,帮助大家更好地掌握这一内容。
一、基本概率理论1. 概率的定义和性质概率是指某个事件发生的可能性大小。
在数学中,用P(A)表示事件A的概率,概率的取值范围在0到1之间。
当事件A不可能发生时,概率为0;当事件A一定发生时,概率为1。
另外,所有事件的概率之和为1。
2. 事件的分类事件分为互斥事件和相对事件。
互斥事件指的是两个事件不能同时发生,即它们的交集为空集;而相对事件则指的是两个事件可以同时发生,即它们的交集不为空集。
3. 加法法则和乘法法则加法法则指的是,对于互斥事件,它们的概率之和等于各个事件概率的总和。
乘法法则指的是,对于相对事件,它们的概率之积等于各个事件概率的乘积。
二、用排列组合求概率1. 排列排列是指从给定的元素中选出一部分进行排列,按照一定的顺序进行排列。
排列的计算公式为:A(n, m) = n!/(n-m)!,其中n为总元素数,m为选取的元素数。
2. 组合组合是指从给定的元素中选出一部分进行组合,不考虑顺序。
组合的计算公式为:C(n, m) = n!/((n-m)! * m!),其中n为总元素数,m为选取的元素数。
3. 应用案例通过排列组合的方法,可以解决一些实际问题。
例如,从一副扑克牌中随机抽取5张,求得到同花顺的概率等。
三、条件概率和独立事件1. 条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
2. 乘法定理和全概率公式乘法定理是计算联合概率的方法,全概率公式则是计算条件概率的方法。
3. 独立事件独立事件是指两个事件发生与否相互独立,一个事件的发生不影响另一个事件的发生。
第三章概率的进一步认识回顾与思考课件
二、典例讲授 9.有两组牌,每组牌都是4张,牌面数字分别是1,2, 3,4,从每组牌中任取一张,求抽取的两张牌的数字 之和等于5的概率,并画出树状图. 解:树状图如图.
共有16种等可能的情况,和为5的情况有4种 ∴P(和为5)=1/4.
二、典例讲授
的概率为( C)
A.
B.
C.
D.
二、典例讲授
2.一个袋中装有2个黑球3个白球,这些球除颜色外,
大小、形状、质地完全相同,在看不到球的情况下,
随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同
的概率是( A)
A. 2
5
B. 3
5
C. 8
25
D. 13
25
二、典例讲授
率是0.25,则本来盒中有白色棋子( C )
A. 8颗
B. 6颗
C. 4颗 D. 2颗
二、典例讲授
8.一个密闭不透明的盒子里有若干个白球,在不允 许将球倒出来的情况下,为估计白球的个数,小刚 向其中放入8个黑球,摇匀后从中随机摸出一个球记 下颜色,再把它放回盒中,不断重复,共摸球400次,
其中88次摸到黑球,估计盒中大约有白球( A )
二、典例讲授 解:(1)画树状图如下:
共有12种可能出现的方程. (2)∵方程有两个不相等的实数根 ∴Δ>0,即 a2-4b>0 ∴a2>4b
5 P(方程中有两个不相等实根)= 12
二、典例讲授
13.某商场为了吸引顾客,开展有奖促销活动,设立了 一个可以自由转动的转盘,转盘被分成4个面积相等的 扇形,四个扇形区域里分别标有“10元”“20 元”“30元”“40元”的字样(如图). 规定:同一日内,顾客在本商场每消费满100元就可以 转动转盘一次,商场根据转盘指针指向区域所标金额 返还相应数额的购物券,某顾客当天消费240元,转了 两次转盘. (1)该顾客最少可得__2_0__元购物券,最多可得__8_0_ 元购物券;
九上概率的进一步认识知识点复习.doc
第三章概率的进一步认识一、本章知识结构图树状图或表格求概率专题一用树状图和列表法计算事件发生的概率1.一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为3的概率.2.甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1 个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.专题二概率的应用3.(2009 -重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4 (如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球, 小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为。
的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由.【知识要点】用树状图和列表法计算涉及两步实验的随机事件发生的概率.【方法技巧】列表法或画树状图法可以不重笈不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放回与不放回,结果是完全不一样的.石石琨靛<^教E区域50次仞次300次石子落在。
北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件
果3枚鸟卵全部成功孵化,则3只雏鸟都为雄鸟的概
1
率为____8___.
课后作业
1.(2023·禅城区校级月考)将分别标有“最”“美”“中 ”“国”四个汉字的小球装在一个不透明的口袋中,
这些小球除汉字以外其他完全相同,每次摸球前先搅
匀,随机摸出一球,不放回,再随机摸出一球,两次
1
是乡村公路A的概率为____2___;
(2)用列表或画树状图的方法,求小华两段路程都选 省级公路的概率.
解:(2)画树状图如图:
共有6种等可能的结果,其中小华两段路程都选省级 公路的结果有1种,
∴小华两段路程都选省级公路的概率为
1 6
.
9. 甲、乙、丙三位好朋友随机站成一排拍合影,甲没有
2
站在中间的概率为____3___.
发展历程和文化价值.
1
(1)小明选择“B.雨花石彩绘”项目的概率是___4__;
(2)用画树状图或列表的方法,求小明和小刚恰好选
择同一项目采访的概率. 解:(2)依题意,列表如下:
共有16种等可能的结果,其中小明和小刚恰好选择同
一项目采访的结果有4种, ∴小明和小刚恰好选择同一项目采访的概率为
4 =1 16 4
摸出的球上的汉字组成“中国”的概率是
()
A
A. 1 B.1
6
8
C.1 4
D.5 16
2.(2023·电白区期中)学校组织学生外出集体劳动时,
为九年级学生安排了三辆车,九年级的小明与小亮都
可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆
车的概率为
A.
1 3
B.
2 3
北师大版九年级上册数学《用树状图或表格求概率》概率的进一步认识说课教学复习课件
卡片标记的数字之和为偶数,则按照小明的想法参加敬老服 务活动,若抽出的两张卡片标记的数字之和为奇数,则按照 小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平 吗?请说明理由.
解:不公平.
理由如下:列表得
小亮
和
4
小明
4
8
5
9
6
10
5
6
9
10
10
11
11
12
由表可知,共有 9 种等可能的结果,其中和为偶数的有 5 种结 果,和为奇数的有 4 种结果,
2. 能够借助概率的大小判断游戏的公平性.(难点)
课前预习
(一)知识探究 当事件涉及多种可能的结果时,可选择 画画树树状状图图 或 列表 列出所有等可能出现的结果.当事件涉及三个或更多 的因素时,为了不重不漏地列出所有可能的结果,通常采用 树树状状图图 列出所有可能出现的结果.
(二)预习反馈
1. 用 2,3,4 三个数字排成一个三位数,则排出的数是
知识点 2 判断游戏公平性 例2 小石和小丁利用盒子里的三张卡片做游戏,卡片上分别写有 A, A,B,这些卡片除了字母外完全相同.从中随机摸出一张卡片记下字母, 放回盒子后充分搅匀,再从中随机摸出一张卡片记下字母.如果两次摸 到的卡片字母相同则小石获胜,否则小丁获胜,这个游戏公平吗?请用 画树状图或列表的方法说明理由.
【思路点拨】用 A,a 表示第 1 张的上下部分,用 B,b 表示第 2 张的上下部分,用 C,c 表示第 3 张的上下部分,画 树状图展示所有 9 种等可能的结果数,再找出这两张恰好能 拼成原来的一幅画的结果数,然后根据概率公式求解.
解:用 A,a 表示第 1 张的上下部分, 用 B,b 表示第 2 张的上下部分, 用 C,c 表示第 3 张的上下部分,
概率初中九年级知识点梳理
概率初中九年级知识点梳理概率是数学中一个非常重要的概念,它与我们的日常生活息息相关。
在初中九年级的数学课程中,概率也是一个重点内容。
本文将梳理初中九年级概率知识点,并深入探讨其实际应用。
1. 简单事件与必然事件概率的计算是基于事件的发生与否进行的。
在概率的计算中,我们常常称发生概率为1的事件为必然事件,称发生概率为0的事件为不可能事件。
对于初学者来说,简单事件是一个非常关键的概念。
简单事件是指只包含一个基本结果的事件,如掷一次骰子只出现一面的事件。
2. 概率的计算方法概率的计算方法有频率法和几何法两种。
频率法根据长期试验的结果来估计事件发生的概率。
比如,我们可以多次掷一枚骰子,记录每个面出现的次数,并计算出每个面的频数。
然后通过频数与总次数的比值,可以得到每个面出现的概率。
几何法则是通过面积来求解概率。
如果事件的样本空间可以用一个几何形状表示,我们可以根据几何图形的面积来计算事件的概率。
比如,当我们将一个正方形划分为几个子区域时,每个子区域的面积与事件发生的概率成比例,而样本空间的面积则等于1。
3. 多个事件的组合与计算在实际问题中,常常涉及到多个事件的组合与计算。
其中包括与、或、互斥事件等。
与事件是指两个或多个事件同时发生的情况。
当我们计算两个事件同时发生的概率时,可以将概率相乘。
比如,掷一次骰子正好出现1点且是偶数的概率可以通过“出现1点的概率”乘以“是偶数的概率”来计算。
或事件是指两个或多个事件中至少有一个发生的情况。
当我们计算两个事件中至少有一个发生的概率时,可以将概率相加,并减去两个事件同时发生的概率。
比如,掷一次骰子出现1点或出现偶数的概率可以通过“出现1点的概率”加上“是偶数的概率”再减去“出现1点且是偶数的概率”来计算。
互斥事件是指两个事件发生时不可能同时发生的情况,即两个事件的交集为空集。
当两个事件互斥时,它们的概率相加等于整个样本空间的概率。
比如,掷一次骰子既出现1点又出现2点的概率为0,因为1点和2点是互斥事件。
九年级概率数学知识点归纳总结
九年级概率数学知识点归纳总结概率是数学中的一个重要分支,它研究的是随机事件发生的可能性。
九年级学生在学习概率数学知识时,需要掌握一些基本概念和技巧。
本文将对九年级概率数学知识点进行归纳总结,帮助学生们更好地学习和理解概率。
一、概率的基本概念在学习概率之前,我们首先需要了解一些基本概念。
概率是指事件发生的可能性大小,通常用0到1之间的数字表示。
概率为0的事件是不可能事件,概率为1的事件是必然事件。
而对于其他事件,概率介于0到1之间。
概率的计算方法有理论概率和实际概率两种,其中理论概率是根据事件的可能性计算的,实际概率是通过实验或观察得到的。
二、事件的枚举与计数在概率计算中,我们常常需要对事件进行枚举与计数。
对于一个事件,我们可以通过列举所有可能的结果来进行枚举,然后通过计数的方法求得事件发生的可能性。
这个过程中,我们需要注意排列与组合的区别。
排列指的是从一堆对象中挑选出若干个进行排列,考虑顺序;而组合是不考虑顺序的,只关心对象的选择。
三、概率的加法与乘法规则在计算复合事件的概率时,我们可以使用概率的加法与乘法规则。
加法规则适用于互斥事件,即两个事件不能同时发生;而乘法规则适用于独立事件,即一个事件的发生不会影响另一个事件的发生。
根据加法规则,互斥事件的概率等于各个事件概率之和;根据乘法规则,独立事件的概率等于各个事件概率的乘积。
四、频率与概率在概率的实际应用中,我们常常通过频率来估计概率。
频率指的是通过大量的实验或观察来统计事件发生的次数,然后计算事件的实际概率。
当实验次数足够大时,频率趋近于概率。
因此,频率可以作为概率的近似值,来指导我们的实际决策。
五、事件的独立性与相关性在概率计算中,事件的独立性与相关性是两个重要的概念。
独立事件指的是一个事件的发生与另一个事件的发生无关,两者之间没有任何关联;相关事件指的是一个事件的发生与另一个事件的发生有关,两者之间存在某种关联性。
对于独立事件,我们可以通过乘法规则计算其概率;对于相关事件,我们需要考虑它们之间的关联程度,可以使用条件概率或贝叶斯公式来计算。
北师大版九年级上册数学第三章概率的进一步认识
3.1.1 用树状图或表格求概率
学习目标
1.会用画树状图或列表的方法计算简单随机事件发生的概率; (重点) 2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可 能情况.(难点) 3.会用概率的相关知识解决实际问题.
导入新课
做一做:小明、小凡和小颖都想去看周末电影,但只有一张 电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规 则如下:
我们可以用树状图或表格表示所有可能出现的结果.
树状图
开始
第一枚硬币
正
反
第二枚硬币
正
反 正 反
ห้องสมุดไป่ตู้
所有可能出现的结果
(正,正) (正,反) (反,正) (反,反)
表格
第二枚硬币 第一枚硬币
正
反
正
(正,正) (反,正)
反 (正,反) (反,反)
总共有4中结果,每种结果出现的可能性相同.其中: 小明获胜的概率: 小颖获胜的概率: 小凡获胜的概率:
小明
小颖
小凡
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜; 如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝 上,小凡获胜.
讲授新课
用树状图和表格求概率
问题1:你认为上面游戏公平吗? 活动探究: (1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填 写下面的表格:
抛掷的结果 两枚正面朝上 两枚反面朝上 一枚正面朝上,一枚反面朝上 频数 频率
树状图
画树状图如图所示: 开始
A盘
白色
红色
B盘 黄色 蓝色 绿色 黄色 蓝色 绿色
列表法
B盘 A盘
白色 红色
黄色
九年级数学上册概率知识点
九年级数学上册概率知识点概率是九年级数学上册非常重要的一个知识点,它不仅仅在数学中发挥作用,还可以应用到日常生活以及其他学科中。
本文将详细介绍九年级数学上册中涉及到的概率知识点,包括基础概念、概率的计算方法以及概率在实际问题中的应用。
一、基础概念在学习概率之前,我们首先要了解一些基础概念。
概率是事件发生的可能性大小的一种衡量方式。
我们常用0到1之间的数值来表示概率,其中0表示不可能事件,1表示必然事件。
例如,掷一枚均匀的骰子,出现1的概率为1/6,即1/6的可能性。
另外,事件的互斥和对立是概率计算中的两个重要概念。
互斥事件指的是两个或多个事件不能同时发生,对立事件指的是两个事件中至少有一个会发生。
二、概率的计算方法在概率的计算方法中,我们需要掌握频率法、几何法和古典概率法。
1. 频率法:通过实验的统计结果来估算概率。
例如,在进行一系列相同的试验中,我们记录事件发生的次数,然后将发生的次数除以试验总次数,得到事件发生的频率。
频率趋近于一个固定值时,就是事件的概率。
2. 几何法:通过求事件的几何概率来计算。
几何概率是指事件发生可能性与样本空间中的所有可能性之比。
例如,一个正方形纸片上有一圆和一正方形,如果我们随机选取一个点,点所在的位置在圆内的可能性即为事件发生的几何概率。
3. 古典概率法:适用于每个事件发生的可能性相等的情况。
通过计算有利事件数与样本空间中总事件数的比值来计算概率。
例如,一副标准扑克牌中黑桃的数量是13,总牌数是52,那么摸到一张黑桃牌的概率即为13/52=1/4。
三、概率在实际问题中的应用概率不仅仅是数学中的抽象概念,它还可以应用到实际生活中。
下面将介绍两个与概率相关的实际问题。
1. 事件的独立性:在一系列独立的事件中,每个事件的发生不会影响其他事件的发生。
例如,连续掷两枚均匀的骰子,每一次的掷骰结果都不会对其他次的掷骰结果造成影响。
那么两次掷骰都是掷到6的概率即为单次掷骰结果是6的概率的平方,即1/6 *1/6 = 1/36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章概率的进一步认识
一、本章知识结构图
树状图或表格求概率
专题一用树状图和列表法计算事件发生的概率
1. 一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4.
(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;
(2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小
球的标号的和为3的概率.
2.甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1
个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球
的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.
(1)求乙盒中蓝球的个数;
(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.
专题二概率的应用
3.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如
亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,
小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏
公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由.
【知识要点】
用树状图和列表法计算涉及两步实验的随机事件发生的概率.
【方法技巧】
列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放
回与不放回,结果是完全不一样的.
2. 用频率估计概率
专题 事件发生的频率与概率之间的关系
1. 在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能
有( )
A 、15个
B 、20个
C 、30个
D 、35个
2. 一个不透明的盒子中放有4张扑克牌,牌面上的数字分别3,4,5,x ,这些扑克牌除数字外都相同.甲、乙
两人每次同时从盒子中各随机摸出1张牌,并计算摸出的这2张牌面上的数字之和.记录后都将牌放回盒子摸牌总次数 10 20 30 60 90 120 180 240 330 450 “和为9”出现的频数 1 9 14 24 26 37 58 82 109
150
“和为9”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33 0.33
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为9”的频率将稳定在它的概率附近,试估计出现“和为9”的概率;
(2)根据(1),若x 是不等于3,4,5的自然数,试求x 的值.
3. 小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:
依此估计此封闭图形ABC 的面积是 米2.
【知识要点】
通过实验.理解当实验次数较大时,实验频率稳定于理论概率附近.并据此估计某一事件发生的概率.
二、知识过关
1.一个暗箱里装有10个黑球,8个白球,12个红球,每个球出颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) (A )
31 (B)81 (C)154 (D)11
4 2.在数字节120 011 220 010 210 210 210 210 210 200中,0出现的频数与频率分别是 . 3.某学校有320名学生,现对他们的生日进行统计(可以不同年) ( ) A.至少有两人生日相同 B.不可能有两人生日相同
C.可能有两人生日相同,且可能性较大
D.可能有两人生日相同,但可能性较小
4.下列说法正确的是()
A.某事件发生的概率为1
2
,就是说,在两次重复的试验中必有一次发生。
B.一个袋子中装有100个球,小美摸了8次,每次都只摸到黑球,没摸到白球,这说明袋子里面只有黑球
C.将两枚一元硬币同时抛下,可能出现的情形有:①两枚为正,②两枚均为反,③一正一反,所以出现一正一反的概
率是1 3
D.全年级有400名同学,一定会有2人同一天过生日.
5.袋子中装有8个白球和若干个黑球,(除颜色外其他都相同),小华从袋中任意摸出一球,记下颜色后又放回袋中,摇均后又摸出一球,再记下颜色,做了100次后,共有25次摸出白球,据此估计袋中黑球有( )
A.24个
B.20个
C.16个
D.30个
6.估计6个人中有2个人的生肖相同的概率时,可用下列方法模拟试验:
①用12个编有号码、大小相同的球代替试验. ②在12张纸条上写上数字1~12,进行抽签试验;
③用6个编有号码、大小相同的球代替试验;④用6张写有数字1~6的纸条进行抽签试验.
其中正确的是()
A. ①②
B.②③
C. ③④
D.①④
7.下列模拟掷硬币的试验不正确的是()
A.用计算器随机地取数,取奇数相当于正面朝上,去偶数相当于硬币正面朝下.
B.在袋中装两个小球,分别标上1和2,随机地摸球,摸出1表示硬币正面朝上.
C.早,额偶皮大小王的扑克牌中随机2抽一张,抽到红色牌表示硬币正面朝上.
D.将1,2,3,4,5分别写在5张纸上,搓成团,每次随机取一张,取到奇数号表示硬币正面朝.
8.在一所有4000名学生的学校随机调查了150人,其中有120人上学之前吃早餐.在这所学校里随便问一个人,上学之前吃过早餐的概率大约是____________.
9.为估计一自然保护区梅花鹿的数量,保护区工作者第一次捕获100只,作上标记,放回保护区,第二次捕获80只,带记号的有4只,那么该保护区有梅花鹿大约______________只.
10.任意抛掷两枚均匀的骰子,出现“向上的点数之和大于6”的概率为____________________.
11. 368个同学中至少有2个同学同一天过生日的概率是____________________.
12.“一方有难,八方支援”,地震牵动着全国人民的心,汉中市某医院准备从甲、乙、丙三位医生和A、B两名护士中
选出一位医生和一名护士支援灾区.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;
(2)求恰好选中医生甲和护士A的概率.。