数学北师大版八年级下册因式分解复习课教学设计

合集下载

最新北师大版八年级数学下册-第四章单元综合复习-《因式分解》复习教案

最新北师大版八年级数学下册-第四章单元综合复习-《因式分解》复习教案

第四章因式分解●教学目标(一)教学知识点1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.2.熟悉本章的知识结构图.(二)能力训练要求通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力.(三)情感与价值观要求通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.●教学重点复习综合应用提公因式法,运用公式法分解因式.●教学难点利用分解因式进行计算及讨论.●教学方法引导学生自觉进行归纳总结.●教具准备投影片三张第一张(记作§4.6 A)第二张(记作§4.6 B)第三张(记作§4.6 C)●教学过程Ⅰ.创设问题情境,引入新课[师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.Ⅱ.新课讲解(一)讨论推导本章知识结构图[师]请大家先回忆一下我们这一章所学的内容有哪些?[生](1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.[师]很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)[生](二)重点知识讲解[师]下面请大家把重点知识回顾一下.1.举例说明什么是分解因式.[生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.[师]学习因式分解的概念应注意以下几点:(1)因式分解是一种恒等变形,即变形前后的两式恒等.(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.2.分解因式与整式乘法有什么关系?[生]分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法.3.分解因式常用的方法有哪些?[生]提公因式法和运用公式法.可以分别用式子表示为:ma+mb+mc=m(a+b+c)a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)24.例题讲解投影片(§4.6 A)[例1]下列各式的变形中,哪些是因式分解?哪些不是?说明理由.(1)x 2+3x+4=(x+2)(x+1)+2(2)6x 2y 3=3xy·2xy 2(3)(3x -2)(2x+1)=6x 2-x -2(4)4ab+2ac=2a (2b+c )[师]分析:解答本题的依据是因式分解的定义,即把一个多项式化成几个整式的积的形式是因式分解,否则不是.[生]解:(1)不是因式分解,因为右边的运算中还有加法.(2)不是因式分解,因为6x 2y 3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解.(3)不是因式分解,而是整式乘法.(4)是因式分解.投影片(§4.6 B ) [例2]将下列各式分解因式.(1)8a 4b 3-4a 3b 4+2a 2b 5;(2)-9ab+18a 2b 2-27a 3b 3;(3)41-91x 2; (4)9(x+y )2-4(x -y )2;(5)x 4-25x 2y 2;(6)4x 2-20xy+25y 2;(7)(a+b )2+10c (a+b )+25c 2.解:(1)8a 4b 3-4a 3b 4+2a 2b 5=2a 2b 3(4a 2-2ab+b 2);(2)-9ab+18a 2b 2-27a 3b 3=-(9ab -18a 2b 2+27a 3b 3)=-9ab (1-2ab+3a 2b 2);(3)41-91x 2=(21)2-(31x )2 =(21+ 31x )(21-31x ); (4)9(x+y )2-4(x -y )2=[3(x+y )]2-[2(x -y )]2=[3(x+y)+2(x-y)][3(x+y)-2(x-y)]=(3x+3y+2x-2y)(3x+3y-2x+2y)=(5x+y)(x+5y);(5)x4-25x2y2=x2(x2-25y2)=x2(x+5y)(x-5y);(6)4x2-20xy+25y2=(2x)2-2·2x·5y+(5y)2=(2x-5y)2;(7)(a+b)2+10c(a+b)+25c2=(a+b)2+2·(a+b)·5c+(5c)2=[(a+b)+5c]2=(a+b+5c)2投影片(§4.6 C)[例3]把下列各式分解因式:(1)x7y3-x3y3;(2)16x4-72x2y2+81y4;解:(1)x7y3-x3y3=x3y3(x4-1)=x3y3(x2+1)(x2-1)=x3y3(x2+1)(x+1)(x-1)(2)16x4-72x2y2+81y4=(4x2)2-2·4x2·9y2+(9y2)2=(4x2-9y2)2=[(2x+3y)(2x-3y)]2=(2x+3y)2(2x-3y)2.[师]从上面的例题中,大家能否总结一下分解因式的步骤呢?[生]可以.分解因式的一般步骤为:(1)若多项式各项有公因式,则先提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.Ⅲ.课堂练习1.把下列各式分解因式(1)16a 2-9b 2;(2)(x 2+4)2-(x+3)2;(3)-4a 2-9b 2+12ab;(4)(x+y )2+25-10(x+y )解:(1)16a 2-9b 2=(4a )2-(3b )2=(4a+3b )(4a -3b );(2)(x 2+4)2-(x+3)2=[(x 2+4)+(x+3)][(x 2+4)-(x+3)]=(x 2+4+x+3)(x 2+4-x -3)=(x 2+x+7)(x 2-x+1);(3)-4a 2-9b 2+12ab=-(4a 2+9b 2-12ab )=-[(2a )2-2·2a·3b+(3b )2]=-(2a -3b )2;(4)(x+y )2+25-10(x+y )=(x+y )2-2·(x+y )·5+52=(x+y -5)22.利用因式分解进行计算(1)9x 2+12xy+4y 2,其中x=34,y=-21; (2)(2b a +)2-(2b a -)2,其中a=-81,b=2. 解:(1)9x 2+12xy+4y 2=(3x )2+2·3x·2y+(2y )2=(3x+2y )2当x=34,y=-21时 原式=[3×34+2×(-21)]2 =(4-1)2=32=9(2)(2b a +)2-(2b a -)2 =(2b a ++ 2b a -)(2b a +-2b a -) =ab当a=-81,b=2时 原式=-81×2=-41. Ⅳ.课时小结1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.2.利用因式分解简化某些计算.Ⅴ.课后作业复习题 A 组Ⅵ.活动与探究求满足4x 2-9y 2=31的正整数解.分析:因为4x 2-9y 2可分解为(2x+3y )(2x -3y )(x 、y 为正整数),而31为质数.所以有⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解:∵4x 2-9y 2=31∴(2x+3y )(2x -3y )=1×31∴⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解得⎩⎨⎧==58y x 或⎩⎨⎧-==58y x 因所求x 、y 为正整数,所以只取x=8,y=5.●板书设计 §4.6回顾与思考一、1.讨论推导本章知识结构图2.重点知识讲解(1)举例说明什么是因式分解.(2)分解因式与整式乘法有什么关系? (3)分解因式常用的方法有哪些? (4)例题讲解例1、例2、例3(5)分解因式的一般步骤二、课堂练习三、课时小结四、课后作业。

数学北师大版八年级下册第四章因式分解复习课教学设计

数学北师大版八年级下册第四章因式分解复习课教学设计

第四章因式分解复习课教学设计学习目标1、 经历梳理知识与技能、形成知识体系的过程,提高归纳总结的能力。

2、 进一步巩固因式分解的概念和方法,熟练的对多项式进行因式分解,加深理解因式分解与整式乘法的互逆关系。

3、进一步加强运用因式分解解决一些数学问题,发展分析问题,解决问题的能力。

一、课前预习1、 举例说明什么是分解因式。

2、 分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、制作本章的知识结构图。

设计意图:1、活动目的:学生通过回顾与思考,将本章的主要知识点串联来.起把知识进行梳理,并且培养学生的语言表达能力.2、注意事项:学生对因式分解的概念与两种常用方法以及分解因式与整式乘法的互逆关系有了较清楚的认识与理解,但语言叙述严谨性不够,有待加强.二、自主学习1、直接写出因式分解的结果2.下列各式的因式分解是否正确?如果不正确,应怎样改正? 你能从中得到什么启示?()()()()()()()()4914641533433232217122422223+-++-+--+--x x y y ay ax y x x b x a x x ()()()()()()()()()()()32222421222223-+-=-+-=------=-+--=+-n m n n m m n m m n m mn m n m n m mn c b a a ac ab a x x x x x x总结归纳因式分解的步骤和注意事项:活动目的:加深学生对因式分解概念的认识.注意事项:引导学生说出相应的理由.三、典型例题1.把下列各式因式分解:2、 利用分解因式计算和求值()()()()()()()()()()41215164416832222261222422432+++-++----+-x x a a b b a a b a ab b a x x x ()()()()()()的值。

求已知22991001012222221,12322221198991001y xy x y x ++=++-+-++活动目的:(1)分类讲解分解因式的两种基本方法,加强学生对因式分解的基本技能训练;(2)增强学生在分解因式过程中运用整体思想进行运算.注意事项:前五题学生完成得较好,但最后一题,有的学生处理时显得有些茫然,教师在讲解时,应引导学生先化简整理,再考虑用公式或其它方法进行因式分解。

数学北师大版八年级下册复习《因式分解》导入

数学北师大版八年级下册复习《因式分解》导入

复习《因式分解》
一、知识回顾
(一)、因式分解定义:
把一个______________________________,这种变形叫做因式分解.
(二)、整式乘法与分解因式的联系:
mc mb ma ++ )(c b a m ++
22b a - ))((b a b a -+
222b ab a ++ 2)(b a +
222b ab a +- 2)(b a -
上面从左到右的变形叫做__ ____,从右边到左边的变形是__ ____, 这二种变形是__ ____关系.
(三)、分解因式的方法:
1、提公因式法:如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,这种因式分解方法叫做提公因式法.
确定公因式的方法:
(1) 定系数:取各系数的_ ___________
(2) 定字母:取相同字母的_ _________
下列多项式的公因式是什么
1.mc mb ma ++ 公因式是_____
2.)()(x y b y x a -+- 公因式是 _____
3.32223cx x b x a -+- 公因式是 _____
2、运用公式法:
(1)平方差公式:__ ____________
公式特点:A 、左边是 ___项,是平方的形式,且前面的符号为 _ ______;
B 、右边是二个括号相乘,里面__ ___ _____.
1.=-92x _____________
2.=-942x _ _ __ __
3.=-2209.016y x _ _____
4.=-+9)
(42y x _ __ __ __。

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计一. 教材分析《因式分解》是北师大版数学八年级下册第4章第1节的内容。

本节课的主要内容是利用提公因式法和公式法分解因式。

因式分解是中学数学中的重要内容,是解决许多数学问题的基础。

通过本节课的学习,使学生掌握因式分解的方法,提高解题能力。

二. 学情分析学生在七年级已经接触过简单的因式分解,对因式分解有初步的认识。

但八年级的因式分解内容更加系统和复杂,需要学生有一定的逻辑思维能力和抽象思维能力。

根据学生的实际情况,我将采用循序渐进的教学方法,引导学生逐步掌握因式分解的方法。

三. 教学目标1.知识与技能:使学生掌握提公因式法和公式法分解因式的方法。

2.过程与方法:通过独立探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.重点:提公因式法和公式法分解因式。

2.难点:如何引导学生发现和运用提公因式法和公式法的规律。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生独立思考和合作交流,提高学生解决问题的能力。

六. 教学准备1.准备相关案例和练习题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,激发学生的兴趣。

2.呈现(10分钟)呈现因式分解的方法,包括提公因式法和公式法。

通过讲解和示例,让学生初步理解这两种方法。

3.操练(10分钟)让学生独立完成一些因式分解的练习题,巩固所学的知识。

4.巩固(5分钟)对学生的练习情况进行反馈,解答学生的问题,帮助学生巩固因式分解的方法。

5.拓展(5分钟)通过一些综合性的练习题,引导学生运用因式分解的方法解决问题,提高学生的解题能力。

6.小结(5分钟)对本节课的内容进行总结,强调因式分解的方法和注意事项。

7.家庭作业(5分钟)布置一些因式分解的练习题,让学生回家后巩固所学知识。

北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计

北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计
-完成课本第94页至第96页的练习题,重点关注提公因式法、平方差公式、完全平方公式的应用。
-从练习题中选取3道题目进行详细解答,要求步骤清晰、符号准确。
2.提高作业:
-设计一道综合性的因式分解题目,要求学生运用所学知识解决问题。
-分析并解答一道实际应用题,让学生体会因式分解在生活中的应用。
3.拓展作业:
作业要求:
1.学生需独立完成作业,认真思考,确保作业质量。
2.家长督促孩子按时完成作业,关注学习进度。
3.教师将对作业进行认真批改,及时反馈,帮助学生发现并解决问题。
4.结合实际应用,展示因式分解在解决问题中的价值,提高学生的数学应用意识。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,针对以下问题进行讨论:
1.因式分解的常用方法及其适用条件。
2.如何灵活运用因式分解解决实际问题。
3.在因式分解过程中,如何避免常见的错误和困惑。
4.分享各自在因式分解学习中的心得体会和成功经验。
-自我评价:鼓励学生进行自我反思,总结学习过程中的收获和不足,不断调整学习方法。
4.教学策略:
-对于学习困难的学生,提供个别辅导,加强基础知识的学习,提高他们的自信心。
-对于学习优秀的学生,设计具有挑战性的题目,鼓励他们深入探究,培养创新思维。
-创设开放性的学习环境,让学生在轻松的氛围中学习,减少学习压力。
北师大版八年级数学下册第四章因式分解《因式分解》回顾与思考教学设计
一、教学目标
(一)知识与技能
1.理解因式分解的概念,掌握因式分解的基本方法,如提公因式法、平方差公式、完全平方公式等;
2.能够运用因式分解解决实际问题,如求解多项式方程、简化代数表达式等;

数学北师大版八年级下册第四章 因式分解复习课教案

数学北师大版八年级下册第四章  因式分解复习课教案

(a b) (a b) 2 2ab 3 3 2 (2)
2




39
(五)课后检测
3ab 1、多项式 12a 2 b 3ab 各项的公因式是___________ ;
2、一个长方形面积是(x2-9)米2,其长(x+3)米. (x-3) 米. 用含有x 的整式表示它的宽为_______
2、若 a b 3, ab 2, 求a 3 a 2 b ab 2 b 3 的值。 解: a b 3, ab 2
a a b ab b
3 2 2
2 2
3
a ( a b) b ( a b) (a b)(a b )
2 2
2 14 abc 7 ab 49 ab c (2 )
(3)xx y y y x (4) 9a b 16a b
2
2
3 2 2 (5 ) 3 x 12 x y 12 xy
10、设n为整数.求证:(2n+1)2-25能被4整除. 证明: (2n 1) 2 25
2
(m n)(m 2)
(2n 1) 5
2
2
(2n 1 5)(2n 1 5) (2n 6)(2n 4) 4(n 3)(n 2)
所以(2n+1)2-25能被4整除
(四)合作提升
1、求证:无论x、y为何值,4 x 2 12 x 9 y 2 30 y 35 的值恒为正。
(三)训练
1、下列从左边到右边的变形,是因式分解的是( B ) A、 (3 x)(3 x) 9 x 2 B、m 3 n 3 (m n)(m 2 mn n 2 )

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。

本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。

但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。

因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。

2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:因式分解的方法。

2.难点:灵活运用各种方法进行因式分解,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考,培养学生的创新能力。

3.小组合作学习:培养学生团队协作能力和解决问题的能力。

六. 教学准备1.准备相关教案、PPT、教学素材等。

2.准备黑板、粉笔、投影仪等教学用品。

3.提前让学生预习本节课的内容,了解因式分解的基本概念。

七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。

2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。

引导学生了解各种方法的特点和应用。

3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。

教师巡回指导,解答学生的疑问。

北师大版八年级数学下册 因式分解 教案

北师大版八年级数学下册  因式分解 教案

因式分解【教学目标】一、知识与技能:1.使学生了解因式分解的意义,理解因式分解的概念。

2.认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

二、能力训练:1.由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

2.由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

3.通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

三、情感与态度:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

【教学重点】理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形。

【教学难点】对分解因式与整式关系的理解【教学方法】情景投入,探索讨论法【教学过程】一、板书课题,揭示教学目标二、创设情景,导入新课993 能被哪些数整除?你是怎么得出来的?1.活动内容:992.学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?3.活动目的:引导学生把这个式子分解成几个数的积的形式,强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

4.注意事项:学生对于本环节问题的理解则显得比较轻松,学生能回答出99993-能被100,99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式。

5.效果反馈:你能尝试把a a -3化成几个整式的乘积的形式吗?与同伴交流。

三、看谁算得准1.活动内容:计算下列式子:(1)3x (x -1)= ;(2)m (a+b+c )= ;(3)(m +4)(m -4)= ;(4)(y -3)2= ;(5)a (a +1)(a -1)= 。

2.根据上面的算式填空:(1)ma+mb+mc = ;(2)3x 2-3x = ;(3)m 2-16= ;(4)a 3-a = ;(5)y 2-6y +9= 。

北师大版八年级下册4.1因式分解(教案)

北师大版八年级下册4.1因式分解(教案)
举例Байду номын сангаас释:
-难点在于如何引导学生从多项式中提取公因式,例如在多项式4x² + 5x + 1中找出公因式。
-解释平方差公式和完全平方公式的适用条件,通过具体题目(如将x² - 6x + 9分解为(x - 3)²)来帮助学生识别和运用这些公式。
-在解决综合问题时,如求解含绝对值符号的方程,指导学生如何先进行因式分解,再根据不同情况讨论解的取值。
2.教学难点
-找出多项式的公因式:学生在寻找多项式的公因式时可能存在困难,特别是在多项式项数较多时。
-判断并运用平方差公式和完全平方公式:学生需要理解平方差和完全平方的结构特点,才能准确应用这些公式进行因式分解。
-灵活运用因式分解解决综合问题:学生需要将因式分解与其他数学知识(如方程、不等式等)结合,解决更复杂的数学问题。
2.提高学生的数学运算能力:使学生能够熟练运用提公因式法、平方差公式和完全平方公式进行因式分解,简化数学表达式,提高解题效率。
3.增强学生的数学建模意识:培养学生将现实问题转化为数学问题,通过因式分解解决实际问题的能力,提高数学建模素养。
4.培养学生的合作交流能力:在小组讨论和互动中,使学生学会倾听、表达、交流与合作,提高团队协作能力。
北师大版八年级下册4.1因式分解(教案)
一、教学内容
本节课选自北师大版八年级下册第四章第一节“因式分解”。教学内容主要包括以下两个方面:
1.因式分解的概念与意义:使学生理解因式分解的定义,掌握因式分解在简化计算、解决方程中的应用。
2.因式分解的方法与步骤:引导学生掌握以下几种因式分解方法:
(1)提公因式法:找出多项式中的公因式,并将其提取出来。
平方差公式和完全平方公式的应用对学生而言也是一个难点。我发现他们在判断何时使用这些公式方面存在困难。在今后的教学中,我可以设计一些更具针对性的练习,让学生在不同的情境中应用这些公式,从而提高他们的识别和应用能力。

北师大版数学八年级下册4.1《因式分解》教学设计

北师大版数学八年级下册4.1《因式分解》教学设计

北师大版数学八年级下册4.1《因式分解》教学设计一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学中的重要内容,它为学生提供了将多项式分解成几个整式乘积的方法,有助于简化代数表达式,培养学生解决问题的能力。

本节课的内容是因式分解的定义、方法和应用,学生需要掌握因式分解的基本技巧,并能够运用到实际问题中。

二. 学情分析学生在之前的学习中已经掌握了整式的乘法,具备了一定的代数基础。

但对于因式分解的概念和方法,可能还存在一定的困惑。

因此,在教学过程中,需要关注学生的学习需求,引导学生通过观察、操作、思考、交流,逐步掌握因式分解的方法。

三. 教学目标1.知识与技能:让学生理解因式分解的概念,掌握因式分解的方法,能将多项式正确地分解成几个整式乘积。

2.过程与方法:通过观察、操作、思考、交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:如何引导学生发现因式分解的规律,并将规律应用到实际问题中。

五. 教学方法采用问题驱动法、合作学习法、引导发现法等,充分调动学生的积极性,引导学生主动参与课堂讨论,发现和总结因式分解的方法。

六. 教学准备1.课件:制作因式分解的PPT,内容包括因式分解的定义、方法及应用。

2.学具:为学生准备练习纸、草稿纸等学习用品。

3.教学视频:准备相关的教学视频,以便在课堂上进行演示和讲解。

七. 教学过程1.导入(5分钟)利用教学视频,介绍因式分解在实际问题中的应用,激发学生的学习兴趣。

引导学生思考:如何将一个多项式分解成几个整式乘积?2.呈现(10分钟)讲解因式分解的定义和方法,通过PPT展示例题,让学生跟随老师一起解题,体会因式分解的过程。

3.操练(10分钟)让学生独立完成练习题,教师巡回指导,解答学生遇到的问题。

在此过程中,关注学生的解题方法,引导学生发现规律。

4.巩固(10分钟)小组合作学习,讨论如何将多项式正确地分解成几个整式乘积。

北师大版八年级下第二章分解因式的复习教案

北师大版八年级下第二章分解因式的复习教案

北师大版八年级下第二章分解因式的复习教案.4.3分式方程课型:新授学生姓名:_________[目标导航]1、学习目标(1)知识目标:①用分式方程的数学模型反映现实情境中的实际问题。

②用分式方程来解决现实情境中的问题。

(2)能力目标:①经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。

②认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。

(3)情感目标:①经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣。

②培养学生的创新精神,从中获得成功的体验。

2、学习重点:①审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型。

②根据实际意义检验解的合理性。

3、学习难点:寻求实际问题中的等量关系,寻求不同的解决问题的方法。

[课前导学]1、课前复习:2、课前预习:某单位将沿街的一部分房屋出租。

每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元(1)找出这一情境的等量关系。

(2)根据这一情境,你能提出哪些问题?(3)利用方程求出这两年每间房屋的租金各是多少?设第一年每间租金为x元,则第二年每间租金为元。

于是:第一年出租房屋的间数是,第二年出租房屋的间数是。

当然,第一年、第二年出租房屋的间数不会发生变化,于是可得方程:3、课前学记(课前学习疑难点、教学要求建议)[课堂研讨]1、新知探究,例题讲解例1、某市从今年1月1日起调整居民用水价格,每立方米水费上涨。

小丽家去年12份的水费是15元,而今年7月份的水费则是30元。

已知小丽家今年7月份的用水量比去年12份的用水量多5,求该市今年居民的用水价格。

分析:请列出此题中的两个等量关系:;。

解:设该市去年居民用水的价格是,则该市今年居民的用水价格是根据题意:可列方程:解之得:x检验:答:小结:列分式方程解应用题的一般步骤是:。

2、随堂练习,巩固提高(要求列分式方程)(1)小明和同学一起去书店买书。

北师大版八年级数学下册第四章《因式分解》复习 教案

北师大版八年级数学下册第四章《因式分解》复习 教案

第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。

2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。

初中数学-八年级下册《因式分解》教案、教学设计

初中数学-八年级下册《因式分解》教案、教学设计

《因式分解》教案、教学设计北师大版初中数学八年级下册一、说教材《因式分解》选自北师大版初中数学八年级下册第四章第一节。

在此之前,已经学习了有理数的乘法分配率、整式乘法等知识,以后学习因式分解法解方程、分式。

因此,本节课具有承上启下的过渡作用。

【教学目标】1.掌握因式分解的概念、原理及其与与整式乘法的关系2.在探索因式分解概念的过程,渗透“特殊到一般”的数学思想,提升推理能力。

3.在丰富的教学活动中,培养严谨的数学思维【教学重点】掌握因式分解的概念、原理及其与与整式乘法的关系【教学难点】因式分解与整式乘法的关系二、说学情学生的思维从经验型逐步向理论型成长,注意力易分散、爱发表见解。

以上都是我在教学过程中会需要注意的地方。

三、说教法学法我主要采用的教学方法为讲授法、提问法、讨论法和练习法。

学法为小组合作交流、自主探究。

这样的方法来发挥学生的主体作用,教师的主导作用。

四、说教学过程(一)导入新课引导学生回顾有理数的乘法分配律,并通过多媒体展示题目:,提出问题:这个式子能被100整除吗?学生利用乘法分配率将导入中的式子进行变形,容易发现上述的式子能被100整除,追问:解决问题的关键是什么?进而引出本节课的课题。

(二)探究新知活动一初步感知因式分解提出问题:把99换成a,你能尝试把化成几个整式乘积的形式吗?引导学生一同桌为单位讨论交流,利用乘法分配律和平方差公式得。

活动二探索因式分解的概念多媒体展示课本中做一做,提出问题:你能写出相应的关系式吗?引导学生以前后四人为一小组进行讨论交流,预留5分钟时间,讨论结束后,请小组代表分享答案:生1:图1大长方形的面积,得关系式:ma+mb+mc=m(a+b+c);生2:图2用同样的方法得到:归纳给出因式分解的概念。

活动三探索因式分解与整式乘法的关系多媒体呈现做一做题目,请学生独立完成,并继续组内讨论交流运算过程的特点,明确区分因式分解与整式的乘法。

(三)巩固练习请学生完成课本中随堂练习第一题,集体订正答案。

北师大版八下数学《因式分解》复习教案

北师大版八下数学《因式分解》复习教案

第四章因式分解●教学目标(一)教学知识点1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.2.熟悉本章的知识结构图.(二)能力训练要求通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力.(三)情感与价值观要求通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.●教学重点复习综合应用提公因式法,运用公式法分解因式.●教学难点利用分解因式进行计算及讨论.●教学方法引导学生自觉进行归纳总结.●教具准备投影片三张第一张(记作§4.6 A)第二张(记作§4.6 B)第三张(记作§4.6 C)●教学过程Ⅰ.创设问题情境,引入新课[师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.Ⅱ.新课讲解(一)讨论推导本章知识结构图[师]请大家先回忆一下我们这一章所学的内容有哪些?[生](1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.[师]很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)[生](二)重点知识讲解[师]下面请大家把重点知识回顾一下.1.举例说明什么是分解因式.[生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.[师]学习因式分解的概念应注意以下几点:(1)因式分解是一种恒等变形,即变形前后的两式恒等.(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.2.分解因式与整式乘法有什么关系?[生]分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法.3.分解因式常用的方法有哪些?[生]提公因式法和运用公式法.可以分别用式子表示为:ma+mb+mc=m(a+b+c)a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)24.例题讲解投影片(§4.6 A)个整式的积的形式是因式分解,否则不是.[生]解:(1)不是因式分解,因为右边的运算中还有加法.(2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解.(3)不是因式分解,而是整式乘法.(4)是因式分解.投影片(§4.6 B)[生]可以.分解因式的一般步骤为:(1)若多项式各项有公因式,则先提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.Ⅲ.课堂练习1.把下列各式分解因式(1)16a 2-9b 2;(2)(x 2+4)2-(x+3)2;(3)-4a 2-9b 2+12ab;(4)(x+y )2+25-10(x+y )解:(1)16a 2-9b 2=(4a )2-(3b )2=(4a+3b )(4a -3b );(2)(x 2+4)2-(x+3)2=[(x 2+4)+(x+3)][(x 2+4)-(x+3)]=(x 2+4+x+3)(x 2+4-x -3)=(x 2+x+7)(x 2-x+1);(3)-4a 2-9b 2+12ab=-(4a 2+9b 2-12ab )=-[(2a )2-2·2a·3b+(3b )2]=-(2a -3b )2;(4)(x+y )2+25-10(x+y )=(x+y )2-2·(x+y )·5+52=(x+y -5)22.利用因式分解进行计算(1)9x 2+12xy+4y 2,其中x=34,y=-21;(2)(2ba +)2-(2ba -)2,其中a=-81,b=2.解:(1)9x 2+12xy+4y 2=(3x )2+2·3x·2y+(2y )2=(3x+2y )2当x=34,y=-21时 原式=[3×34+2×(-21)]2 =(4-1)2=32=9(2)(2b a +)2-(2b a -)2 =(2b a ++ 2b a -)(2b a +-2b a -) =ab 当a=-81,b=2时 原式=-81×2=-41. Ⅳ.课时小结1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.2.利用因式分解简化某些计算.Ⅴ.课后作业复习题 A 组Ⅵ.活动与探究求满足4x 2-9y 2=31的正整数解.分析:因为4x 2-9y 2可分解为(2x+3y )(2x -3y )(x 、y 为正整数),而31为质数.所以有⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解:∵4x 2-9y 2=31∴(2x+3y )(2x -3y )=1×31∴⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+3132132y x y x 解得⎩⎨⎧==58y x 或⎩⎨⎧-==58y x 因所求x 、y 为正整数,所以只取x=8,y=5. ●板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章因式分解复习教学设计
回顾与思考
一、学生起点分析
学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵敏,对稍繁复的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.
学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵敏运用,因此,本节课的教学目标是:
1.知识与技能:
(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;
(3)能熟练地综合运用几种因式分解方法.
2.过程与方法:
(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;
(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.
三、教学过程分析
本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用.
第一环节知识回顾
活动内容:1、举例说明什么是分解因式。

2、分解因式与整式乘法有什么关系?
3、分解因式常用的方法有哪些?
4、试着画出本章的知识结构图。

活动目的:学生通过回顾与思考,将本章的主要知识点串联起来.注意事项:学生对因式分解的概念与两种常用方法以及分解因式与整式乘法的互逆关系有了较清晰的认识与理解,但语言叙述严谨性不够,有待加强.
第二环节总结归纳(分五个知识点进行归纳训练)
活动内容:知识点一:对分解因式概念的理解
例1.下列式子从左到右的变形中是分解因式的为()。

活动目的:加深学生对因式分解概念的认识.
注意事项:引导学生说出相应的理由.
活动内容:
知识点二:利用提公因式法分解因式
例2.把下列各式分解因式
知识点三:利用公式法分解因式
例3.把下列各式分解因式
活动目的:(1)分类讲解分解因式的两种基本方法,加强学生对因式分解的基本技能训练;(2)增强学生在分解因式过程中运用整体思想进行运算.注意事项:前五题学生完成得较好,但最后一题,有的学生处理时显得有些茫然,教师在讲解时,应引导学生先化简整理,再考虑用公式或其它方法进行因式分解。

第三环节小试牛刀
活动内容:练一练:把下列各式分解因式
活动目的:持续两次使用公式法进行分解因?。

当多项式形式上是二项式时,应?虑用平方差公式,当多项式形式上是三项式时,应考虑用完全平方公式。

注意事项:区分两个公式法分解因式。

第四环节总结归纳
活动内容:知识点四:综合运用多种方法分解因式
例4.把下列各式分解因式
活动目的:考察学生综合运用各种方法进行分解因式的能力,同时归纳分解因式的大凡步骤和方法。

注意事项:先观察是否有公因式,若有公因式提出后是否具有平方差公式或完全平方公式特征,若有使用公式法;若都没有,则考虑将多项式进行重新整理或分组后进行分解因式。

活动内容:知识点五:运用分解因式进行计算和求值
你能根据所学知识找到计算上面算式的简易方法吗?请你利用你找到的简易方法计算下式:
活动目的:使学生了解因式分解在计算中的作用,例5考察分别考察运用公式法和提公因式法的应用,例6、例7考察分解因式后的整体代入求值,例8由分外到大凡鼓励学生自主发现规律特征,找到解决问题的方法。

总之,应用因式分解来解决实际问题不失为一个有用的办法.
注意事项:乍一看,学生从前未接触过这种题型,因而不知从何下手,但在老师的引导和启发下,部分学生能解决提出的问题.
第五环节能力提升
活动内容:知识点六:分解因式的实际应用
活动目的:加强因式分解在实际生活中的应用,发展学生对因式分解的应用能力,提高解决问题的能力.
注意事项:将数学与实际生活结合到一起是部分学生的薄弱环节,但对于学生是一个有益的尝试,教师的引导应注意以下两个步骤:先将多项式因式分解;再将数据代入.
第六环节活学活用
活动内容:练一练作业解因式:
(1)3am²-3an²
(2)a3+2a2+a
(3) (x+y)²-10(x+y)+25
(4)x2+2x-3
(5)若x2+2x-6y+y2 =-10 ,求x,y的值。

活动目的:通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和例外层次的需求.第1题主要考察学生对因式分解的实际应用能力,需要将实际问题转化为数学算式,再利用因式分解的特性求解;第2、3题主要考察学生对完全平方式的掌握,中等程度以上的学生都应该能解答;但第三题有两种情况需要考虑,部分学生被负号所迷惑只写了一个答案。

注意事项:注重学生将实际问题转化为数学问题的能力,同时需正确理解完全平方式的意义。

四、教学设计反思
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很简易掌握。

但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。

这样直接导致有些题目分解错误,有些题目分解不完全。

所以在因式分解的步骤这一块还要继续加强。

其实公式法分解因式。

学生比较会将平方差和完全平方式混淆。

这是对公式理解不透彻,彼此的特征区别还未真正掌握好。

大体上可以从以下方面进行区分。

如果是两项的平方差则在提取公因式后优先考虑平方差公式。

如果是三项则优先考虑完全平方式进行因式分解。

培养学生的整体观念,灵敏运用公式的能力。

注重总结做题步骤。

这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的大凡步骤①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那?可尝试运用公式;
③如果用上述方法不能分解,那么可以尝试变形后选择分解方法;④分解因式,必须进行到每一个多项式因式都不能再分解为止。

另外,解题步骤教师应在黑板上示范,多做题、多小考,反复强调,在复习时还要加以巩固。

相关文档
最新文档