高斯定理
高数高斯定理
![高数高斯定理](https://img.taocdn.com/s3/m/e37cc1760a4c2e3f5727a5e9856a561252d321f2.png)
高数高斯定理高数高斯定理,也称为高斯积分定理,是数学中的一个重要定理,它建立了曲线、曲面和体积之间的联系。
该定理是由德国数学家高斯在19世纪中期提出的,被广泛应用于物理学、工程学等领域。
高斯定理的基本思想是将空间中的曲面和曲线与曲面内部的体积联系起来。
它将曲面的积分与曲面内部的体积积分相联系,从而实现了将高维空间中的问题转化为低维空间中的问题求解。
这一思想在数学和物理学中具有重要的意义。
根据高斯定理,对于一个封闭的曲面S,通过该曲面内部的任何一点P引出的曲线都是闭合的。
曲面S将空间分为两个部分,内部和外部。
高斯定理指出,通过曲面S内部的体积的通量等于通过曲面S上的边界的曲面积分。
这一定理可以表示为以下公式:∮S F·dS = ∭V (∇·F) dV其中,F是一个矢量场,S是曲面的边界,V是曲面S所包围的体积,∮S表示曲面上的积分,∭V表示体积上的积分,∇·F表示矢量场F 的散度。
高斯定理在物理学中有广泛的应用。
例如,它可以用于计算电场的通量、电荷分布和电势的关系。
根据高斯定理,通过一个闭合曲面的电场通量等于该曲面内部的电荷分布除以介电常数。
这个公式不仅可以用于计算电场,还可以用于计算其他物理量,如磁场、流体力学中的流量等。
在工程学中,高斯定理也被广泛应用。
例如,在流体力学中,可以使用高斯定理来计算液体或气体通过封闭曲面的流量。
在传热学中,高斯定理可以用来计算热通量。
在结构力学中,高斯定理可以用来计算力的分布和应力的大小。
高数高斯定理是数学中的一个重要定理,它建立了曲线、曲面和体积之间的联系。
该定理广泛应用于物理学、工程学等领域,可以用于计算电场、磁场、流体力学中的流量和传热学中的热通量等物理量。
高斯定理的应用使得问题的求解变得更加简洁和高效,对于理解和解决实际问题具有重要的意义。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/f4e6fae3aeaad1f346933f47.png)
电场强度E 在任意面积上的面积分
高斯定理
称为电场强度对该面积的通量。根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即
高斯定理
, (1)
这就是高斯定理。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
高斯定理
பைடு நூலகம், (3)
在研究电介质中的静电场时,这两种形式的高斯定理特别重要。
高斯定理的微分形式为
高斯定理
。
即电位移的散度等于该点自由电荷的体密度。在均匀线性介质区内,则为
高斯定理
。
静电场的高斯定理可以推广到非静态场中去,不论对于随时间变化的电场还是静态电场,高斯定理都是成立的,它是麦克斯韦方程组的组成部分。
高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。
矢量分析的重要定理之一。穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理
高斯定理数学
![高斯定理数学](https://img.taocdn.com/s3/m/4c626ddf541810a6f524ccbff121dd36a32dc4f0.png)
高斯定理数学高斯定理,又称为高斯-奥斯特罗格雷定理(Gauss-Ostrogradsky theorem),是描述向量场通过曲面的流量密度与该曲面边界上环绕该曲面沿法向量方向的一圈线积分之间的关系的定理,是矢量分析的重要内容之一,也是工程中常用的理论。
$$\oint_S \textbf{F} \cdot \textbf{n} dS = \iiint_V \nabla \cdot \textbf{F} dV$$$\textbf{F}$ 表示某个向量场,$S$ 表示一个逐片光顺的曲面,$V$ 为该曲面所包围的立体。
$\textbf{n}$ 表示曲面上某一点的法向量,$\nabla \cdot \textbf{F}$ 为向量场 $\textbf{F}$ 的散度。
该式中左边表示 $\textbf{F}$ 向外通过曲面 $S$ 的流量密度。
左侧积分的意思是,对于曲面 $S$ 的每一点,对由该点到曲面外侧的垂直方向的投影所围成的小面积$dS$ 进行积分,得到整个曲面通过的总流量密度。
右边表示 $\textbf{F}$ 在立体$V$ 中的散度。
右侧积分的意思是,对于立体 $V$ 中的每一点,计算该点的散度,然后对整个立体进行积分,得到散度在整个立体中的总量。
高斯定理适用于任意的向量场,包括电场、磁场等。
它可以用来推导一些物理方程,并在基础数学领域中起到重要作用。
对于电场,高斯定理可以用来计算电通量,即电场向外通过一个立体的总电量。
对于静电场和恒定电场来说,高斯定理可以推导出库仑定律。
对于磁场,高斯定理可以用来推导出安培环路定理。
高斯定理在物理学和工程学中有非常广泛的应用,是理解和解决问题的重要工具之一。
高斯定理的证明可以通过追踪微小体积元素上的向外流量来完成。
假设该体积元素为$\Delta V$,体积元素表面上带有一小片面积为 $\Delta S$,该片面积的法向量表示为$\textbf{n}$。
向量场 $\textbf{F}$ 在该面积上的流量为 $\textbf{F} \cdot\textbf{n} \Delta S$,如果对所有该体积元素上的面积进行累计,则构成了整个曲面的流量,并得到了高斯定理的左侧积分:$$\oint_S \textbf{F} \cdot \textbf{n} dS$$接下来,可以通过施加散度定理来将该定理转化为该向量场的散度在这个立方体中的积分:证明中还需要使用到一些高等数学的知识,如积分中值定理等,具体证明过程相对复杂。
大学物理 高斯定理
![大学物理 高斯定理](https://img.taocdn.com/s3/m/75f0f2926e1aff00bed5b9f3f90f76c660374c7a.png)
引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。
高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。
本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。
正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。
1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。
2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。
2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。
2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。
3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。
3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。
4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。
4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。
5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。
高斯定理(电磁学)
![高斯定理(电磁学)](https://img.taocdn.com/s3/m/2b9e319877eeaeaad1f34693daef5ef7ba0d12fe.png)
证明方法
高斯定理的证明通常基于库仑定律、电场线性质和微积分等 基本原理。通过选择适当的闭合曲面和运用微积分中的高斯 公式,可以推导出高斯定理。
推导过程
首先,根据库仑定律,电场线从正电荷发出,终止于负电荷 或无穷远处。然后,通过选取适当的闭合曲面,将电荷包围 在其中,运用高斯公式和高斯定理的推导过程,最终得到高 斯定理的数学表述。
要点一
总结词
高斯定理在其他领域也有广泛的应用,如电场、量子力学 、光学等。
要点二
详细描述
高斯定理在电场中可以用来计算电场的分布和强度,以及 电通量的计算等问题。在量子力学中,高斯定理可以用来 研究波函数的性质和演化。在光学中,高斯定理可以用来 研究光场的分布和强度,以及光通量的计算等问题。
05
高斯定理的扩展和深化
磁场中的应用
总结词
高斯定理在磁场中也有广泛的应用,它可以 帮助我们理解和计算磁场的分布和强度。
详细描述
在磁场中,高斯定理可以用来计算球形区域 内磁场的分布和强度,通过球面上的磁场强 度的积分可以得到球内的磁场。此外,高斯 定理还可以用来研究磁场线的闭合性质,以 及磁通量的计算等问题。
其他领域的应用
引力场中的应用
总结词
高斯定理在引力场中也有重要的应用,它可以帮助我们理解和计算引力场的分布和强度。
详细描述
在引力场中,高斯定理可以用来计算球形区域内物质的质量分布,通过球面上的引力场强度的积分可以得到球内 的质量。此外,高斯定理还可以用来研究引力场的空间分布,通过球面上的引力场强度的分布,可以推导出球内 引力场的分布情况。
高斯定理的应用条件
适用范围
高斯定理适用于任何线性、非自相互作用、电荷连续分布的电场。对于非线性、 自相互作用或离散分布的电荷,高斯定理可能不适用。
物理高斯定理
![物理高斯定理](https://img.taocdn.com/s3/m/1fc42f3502d8ce2f0066f5335a8102d276a261d5.png)
物理高斯定理
物理高斯定理,也称为高斯通量定理,是一种描述电场,磁场和重力场行为的定理。
在电场中,高斯定理描述电通量穿过一个闭合曲面的总量,与该曲面包围的电荷量成正比。
这个定理是电场理论的基础之一,它可以帮助我们计算电荷分布和电势等量。
在磁场中,高斯定理告诉我们,磁通量穿过一个闭合曲面的总量为零。
这个定理被称为“安培环路定理”,因为这是基本的电路理论之一。
在重力场中,高斯定理可以用来计算曲面内部的万有引力势能。
当一个重力场的质量密度在一个闭合曲面内处处均匀时,曲面内的总重力无穷小。
高斯定理是现代物理学的重要概念,它帮助我们理解各种场的行为,并解决复杂的物理问题。
【电磁学】高斯定理
![【电磁学】高斯定理](https://img.taocdn.com/s3/m/1d547824a31614791711cc7931b765ce05087af1.png)
【电磁学】高斯定理在高中物竞以及高考物理中经常出现高斯定理(高考物理中一般可以用对称法,填补法等等解出),建议阅读时间:7分钟一、高斯定理简介高斯定理(Gauss' law)也称为高斯通量理论(Gauss' flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。
高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
在麦克斯韦方程组中也有麦克斯韦方程组对麦克斯韦方程组有兴趣的同学可以看看这篇文章,不过以后我也会讲的给一个百度百科的解释[1]好,我们开始了二、电场线电场线密度:经过电场中任一点,作一面积元 dS 并使它与该点的场强垂直,若通过 dS 面的电场线条数为 dN ,则电场线密度为 E=\frac{dN}{dS}可见,电场线密集处电场强度大,电场线稀疏处电场强度小电场强度通量:在电场中穿过任意曲面的电场线的总条数称为穿过该面的电通量,用 \phi_{c} 表示.匀强电场: \phi_{e}=EScos\theta ;非匀强电场:d\phi_{e}=EdS \Rightarrow \phi_{e}=\int_{S}^{}E·dS(哈哈,打不来矢量,看着有点恼火)3.电通量的正负在电磁学中是这样规定:1.对于不闭合的曲面(平面)S,可以任意选取电场线穿进S产生的电通量为正或为负,也就是说完全取决于 dS 与 E 的夹角.\theta<\frac{π}{2}时, \phi_{e}>0 ;\theta>\frac{π}{2}时, \phi_{e}<02.对于闭合的曲面(如球面),规定选取电场线穿出时的电通量为正.\phi_{e}=\iint_{S}EdS三、高斯定理内容穿过一封闭曲面的电通量与封闭曲面所包围的du电荷量成正比。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/5e17a81c650e52ea5518985c.png)
λ
∑q
r
∑ q = λh
φ = ∫∫S EdS cosθ =
φ左底 = φ右底 = 0
φ = φ左底 + φ侧 + φ右底
ε0
h
Q E⊥dS , cosθ = 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ = φ侧 = ∫∫侧 EdS cosθ
侧面上各点的场强 E 大小相等,方向 大小相等, 与法线相同。 与法线相同。
E = E+ − E− = 0
+σ
−σ
E+ E− E+
极板右侧
E = E+ − E− = 0
E+
E−
E−
两极板间
σ σ σ + = E = E+ + E− = 2ε 0 2ε 0 ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
E
n
r
λ
φ = E ∫∫侧 dS
= E 2πrh =
∑q
ε0
λh = ε0
λ E= 2πε 0r
h
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
例3:无限大带电平面,面电荷密度为 σ, :无限大带电平面, 求平面附近某点的电场强度。 求平面附近某点的电场强度。 解:作底面积为 S , 高为 h 的闭合圆柱面, 的闭合圆柱面, σ
S
r
ε0 σS 2ES = ε0 σ E= 2ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ=
∑q
例4:两无限大带电平面(平行板电容 :两无限大带电平面( 器),面电荷密度分别为 +σ 和 −σ , ),面电荷密度分别为 电容器内、外的电场强度。 求:电容器内、外的电场强度。 解:极板左侧
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/5ff88850ad02de80d4d840b7.png)
2)作半径为 )
E(r)
S + +
r 的高斯球面 (R ≤ r < ∞)
q q
+ + +
依高斯定理: 依高斯定理:
r+ +
S
+
+
+ +
∫ E dS = ε ∑q
S 0 S内
1
i
∫ E cos0 dS = ε ∑q
0 S内
1
i
E4πr =
2
1
ε0
q
q
2
E∫ dS =
S
1
ε0
q
q
E(r) =
4πε0r
O+ + + S1 +σ E= + 1
X
ε0
S内
ε0
例3)求一无限长,单位长度带电λ的直圆柱带电 )求一无限长,单位长度带电λ 体的电场. 已知: 体的电场. 已知:λ,R 求:E(r) 结论:电场以 结论: + + 对称性分析: 解:对称性分析: 中心轴线为对 +++ + + + +++ + + 称. +++ + + + + +++ + + + + ++ E + + + + +++ + + + + +++ + + + +++ + + + +++ + + +++ + + + + + ++++ ++ ++ + ++++ + ++ +++ + ++ + +
高斯定理证明
![高斯定理证明](https://img.taocdn.com/s3/m/69ccb93303768e9951e79b89680203d8cf2f6a53.png)
高斯定理证明
高斯定理是电磁学中的一个重要定理,也称为高斯第一定理、高斯-奥波尔兹定理或高斯-斯托克斯定理。
它是电场、磁场和流体动力学中的基本方程之一,描述电场、磁场和流体速度的场在一个闭合曲面上的性质。
高斯定理可以用来计算电场通过一个任意形状的闭合曲面的总通量,它的数学表达式为:
∮E · dA = 1/ε₀ · ∫∫∫ρ dV
其中:
- ∮E · dA表示电场E与曲面元dA的点乘积(即电场E沿曲面法向量方向的分量与曲面元面积的乘积)之和。
- ε₀为电场中的真空介电常数,其值为8.854×10⁻¹²
C²/(N·m²)。
- ∫∫∫ρ dV表示在闭合曲面内的电荷密度ρ乘以体积元dV 之和。
高斯定理的证明分为两个步骤:
1. 假设电场E是有限个点电荷的叠加,可以根据库仑定律得到电场E与闭合曲面上各点的点乘积之和等于电荷与外部点产生的共同电势的梯度在该点上的点乘积之和。
2. 利用极限的思想,将点电荷的数量无限逼近,使得点电荷产生的电场可以看作一个连续的场,通过对电场的积分可以得到闭合曲面上的总通量。
综上所述,高斯定理的证明基于库仑定律和极限的思想,将点电荷的叠加近似为连续的电场场源,通过对电场的积分计算闭合曲面上的总通量。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/e6d1c79b08a1284ac8504367.png)
1
4π0
q r3
rdS
e
S de
q
q
dS
S 4π0r 2
4π0r 2
dS q
S
0
Φe 与r 无关q ,也就是说,无论高斯面多大,总 电通量都为 0 ,即通过各球面的电力线总条数相 等。 说明点电荷的电力线可以延伸到无限远处。 9
2. 点电荷在任意封闭曲面内
穿过球面S1和S2的电场线,必定也穿 过闭合曲面S。所以穿过任意闭合曲
e ES cos 或 e E S
S cos
(3) 非均匀电场强度电通量
de E dS
通过任一曲面S 的电通量:
e de EdS
S
S
5
思考题:电场线与电通量的区别
(4) 任意闭合曲面的电通量:
e d e E dS
S
S
一个闭合曲面把整个空间分割成两部分: 内部空间和外部空间
外法线矢量:指向曲面外部空间的法线矢量 内法线矢量:指向曲面内部空间的法线矢量
S2
S
E
面 S的电通量必然为q/ 0 ,即
q S1
Φe
s
Ev dSv
q
0
• 点电荷为-q时,通过任意闭合曲面的电通量
Φe
S
Ev
dSv
q
0
电场线是穿入闭合曲面的。
10
3. 任意闭合曲面S包围多个点电荷q1、q2、…、qn 根据电通量的定义和电场强度的叠加原理,其电通
量可以表示为
Φe
E
S
dS
(E1
其实高斯定理不仅适用于静电场,还可用于变化的电 场,比库仑定律更广泛,是Maxwell方程组之一
16
简述高斯定理
![简述高斯定理](https://img.taocdn.com/s3/m/b09c603bbb1aa8114431b90d6c85ec3a87c28bd0.png)
简述高斯定理
高斯定理,亦称高斯散度定理或高斯-奥斯特罗格拉斯定理,是关于矢量场的一个重要定理,描述了矢量场的流量与场源之间的关系。
1805年德国数学家卡尔·弗里德里希·高斯首次发现并证明了这一定理,因此得名。
高斯定理主要描述了一个任意形状的封闭曲面所包围的矢量场的总量,即该曲面内部的流量。
具体而言,它表达了矢量场经过曲面的流量与场源的强度之间的关系,其中场源指的是矢量场的发源点或密度。
在物理学和工程学等领域,高斯定理可用于求解过程中涉及到的矢量场参数,如电场、磁场、流体动力学等。
例如,在电场计算中,可以通过高斯定理求出导体表面的电场强度分布情况,从而判断导体是否会带电或产生电荷等现象。
高斯定理的简单形式是:曲面的通量等于场源的流量,即
∮S F·dS = ∫∫∫V div(F) dV
其中,S为任意形状的封闭曲面,F为矢量场,V为曲面所包围的空间,div(F)为矢量场的散度。
该式左侧表示曲面S对矢量场F的流量,右侧表示场源强度即矢量场F的散度,二者相等。
需要注意的是,由于高斯定理的适用范围限制在封闭曲面内部,因此如果存在曲面S内部的场源,则其贡献需要另行考虑。
总之,高斯定理为描述矢量场的变化、流量和散度等方面提供了重要的理论基础,对物理学、工程学及其他相关领域的研究和应用具有重要的指导作用。
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/860fc57aa8114431b90dd861.png)
e E dS (E1 E2 E3 ) dS
S
S
S E1 dS S E2 dS S En dS 2 q2 qqi 1
e
E
S
dS
e1
e2
en
1
0
qi
inside ,i
• 注意!
• 电场强度E是所有电荷产生的,无论是闭曲面内 还是外,公式中E取曲面上的值;
dS
S
0
2.包围一个点电荷的任意曲面
de E dS '
q
4 0r2
rˆ
dS'
nˆ
d dS r2
q d
4 0
q
d 4
S
e
S
d e
q
0
3.一个点电荷在任意闭曲面外,电通量 为零
de E dS '
q
4 0r2
rˆ
dS'
nˆ
E
dS ''
dS '
q
4.由叠加原理,任意电荷系高斯定理成立
E S
dS
1
0
qi
inside ,i
立体角
d
dS r2
d
dS ' r2
rˆ
dS '
cos
r2
nˆ
E
dS '
闭曲面对内任一点
d 4
S
dS
d rˆ
证明高斯定理
1.一个点电荷,闭曲面为以点电荷为心的球面
d e
E dS
EdS
1
4 0
q r2
dS
r
q
E
q
q
q
5-3 高斯定理
![5-3 高斯定理](https://img.taocdn.com/s3/m/925bed7302768e9951e73853.png)
q
高斯面
r
4 3 pR 3
可见,球体内场强随 线性增加 线性增加。 可见,球体内场强随r线性增加。 均匀带电球体电场强度曲线如 上图。 上图。
+ q + + + + + + + + + + + + + + + + + +
上页 下页 返回 退出
例2
均匀带电无限大平面的电场. 均匀带电无限大平面的电场. 高斯面:作轴线与平面垂直的圆柱形高斯面, 高斯面:作轴线与平面垂直的圆柱形高斯面, 底面积为S,两底面到带电平面距离相同。 底面积为 ,两底面到带电平面距离相同。
r E=
lr v e 2 r 2pe0R
上页 下页 返回 退出
(2)当r>R 时,
λ E= 2 0r πε
r E=
E λ 2πε0R
∑q = λl
矢量式为: 矢量式为:
r l er 2pe0r
Er 关系曲线
r
均匀带电圆柱面的电场分布
l
−1
∝r
R
0
r
上页 下页 返回 退出
均匀带电球体空腔部分的电场, 例4 均匀带电球体空腔部分的电场,球半径为R, 在球内挖去一个半径为r( 在球内挖去一个半径为 (r<R)的球体。 )的球体。 试证:空腔部分的电场为匀强电场,并求出该电场。 试证:空腔部分的电场为匀强电场,并求出该电场。 证明: 用补缺法证明。 证明: 用补缺法证明。 在空腔内任取一点p, 在空腔内任取一点 , 设该点场强为 E E r1 设想用一个半径为r且体电荷密度与大球相 设想用一个半径为 且体电荷密度与大球相 c 同的小球将空腔补上后, 同的小球将空腔补上后,p点场强变为 E 1 u r v o pE r uu
高斯定理
![高斯定理](https://img.taocdn.com/s3/m/96f4cad649649b6648d74772.png)
同 学 们 好§8-3 高斯定理德国数学家和物理学家。
长期从事于数学并将数学应用 于物理学、天文学和大地测量 学等领域的研究.著述丰富,成 就甚多。
他一生中共发表323篇 (种)著作,提出404项科学创 见。
在CGS电磁系单位制中磁感应强 高斯(德 ) 度的单位定为高斯,便是为了 ( 1777-1855) 纪念高斯在电磁学上的卓越贡 献。
一.电场强度通量 通过电场中某一给定面的电场线的总条数叫做通 过该面的电通量。
1.匀强电场,规则面积下的电通量Sθ ESΨe = ES⊥SSΨe = ES⊥ = ES cosθ2.非匀强电场或不规则面积下的通量 r v 面积元矢量: dS = dS e n r 面积元范围内 E 视为均匀 微元分析法:以平代曲; 以不变代变。
dSr dSθr ES(1)通过面元的电通量:r r dΨe = EdS⊥ = E (dS cosθ ) = E ⋅ dS(1) 通过面元的电通量:πr r dΨe = EdS⊥ = E(dS cosθ ) = E ⋅ dSθ < θ > θ = π π2 2 2 dΨe > 0 dΨe < 0 dΨe = 0r dSθdSr ESr r (2)通过曲面 S 的电通量 Ψe = ∫s d Ψe = ∫s E ⋅ d S(3) 通过封闭曲面的电通 量r r Ψe = ∫ E ⋅ dSs通过封闭曲面的电通量r r Ψe = ∫ E ⋅ dSsr n规定:封闭曲面外法向为正 穿入的电场线 穿出的电场线r n rEΨe < 0 Ψe > 0r nS二、 高斯定理 高斯定理的导出 库仑定律 高斯 定理电场强度叠加原理 1.点电荷电场中电通量与电荷的关系 (1)曲面为以电荷为中心的球面E=Sq 4 π ε 0rS2r2v dSv v Ψe = ∫ E ⋅ dS = ∫qΨe =q4 πε 0 rdS+ε0(2)曲面为包围电荷的任意封闭曲面dΨe =q 4 πε 0 r2dS cos θq dS' = 2 4π ε0 r其中立体角dS' = dΩ 2 r q q Ψe = ∫ dΨ = ε 0 4 πε 0v v dS' dS+rθv dS'v dS(3)曲面为不包围电荷的任意封闭曲面r v d Ψ1 = E 1 ⋅ d S 1 > 0v v dΨ2 = E 2 ⋅ dS 2 < 0v E2qv dS 2v dS 1 vE1d Ψ1 + d Ψ 2 = 0 v v ∫ E ⋅ dS = 0S2.点电荷系电场中通量 与电荷的关系v v Ψe = ∫ E ⋅ dS = ∫Sv v v E = E1 + E2 + LS iq1q2v EvdSv v ∑ Ei ⋅ dSsSqi=i (内)∑∫eSv v Ei ⋅ dS +i (外)∑ ∫v Eiv v Ei ⋅ dSQ∴ Ψ =i (外)∑∫Sv ⋅ d S = 01i (内)∑ ∫Sv v E i ⋅dS =ε0i ( 内)∑qi曲面上各点处电场强度:nE E E E r L r r r +++=21(包括S 内、S 外,所有电荷的贡献)只有S 内的电荷对穿过S 的电通量有贡献。
[数学]高斯定理
![[数学]高斯定理](https://img.taocdn.com/s3/m/5574c5f584254b35eefd349b.png)
r
R
1 2 r
o
r
21
讨论: 1. 求均匀带电球面( R , q)的电场分布,并画出
E ~ r 曲线.
高斯面:半径 r 的同心球面
E
qr 40 r 3
0
(r R) (r R )
E
1 r2
o R r
22
2. 如何理解带电球面 r R 处 E 值突变? 计算带电球层( R1 , R2 , )
s
(球对称、轴对称、面对称三种类型,后两种情 况通常具有无限长,无限大的特征)
1 3.由高斯定理 E dS
s
0
q
内
求出电场的大小,
34
并说明其方向.
•典型带电体 E 分布:
点电荷电场
E
qr 4 0 r 3
E 2 0 r 垂直于带电直线 qxi E 40 ( x 2 R 2 )3 2
1
0
q
内
只有 S 内的电荷对穿过 S 的电场强度通量有贡献13
三 .高斯定理 静电场中,通过任意封闭曲面(高斯面)的电电场 强度通量等于该封闭曲面所包围的电量代数和的1 0 倍:
1 E d S q 内
s
0
14
关于高斯定理的讨论:
1 E dS q内
dS
1)通过面元的电通量
E
de EdS E( dScos ) E dS
2
dS
S
2
2
2)通过曲面 S 的电通量 e sd e s E dS 3)通过封闭曲面的电通量 e E dS 8
高斯定理的解释和公式
![高斯定理的解释和公式](https://img.taocdn.com/s3/m/050595d54bfe04a1b0717fd5360cba1aa8118cd2.png)
高斯定理的解释和公式
高斯定理,也称为散度定理,是数学中的一个重要定理。
它描述了一个向量场通过一个封闭曲面的总量。
高斯定理在物理学和工程学的许多领域中都有广泛的应用,如电磁学、流体力学和热传导等。
高斯定理的数学表达形式如下:
对于一个平滑的三维矢量场F=(Fx,Fy,Fz),定义一个封闭曲面S来围绕一个具有体积V的区域D。
那么,高斯定理可以写作:
∬S F·dS = ∭D ∇·F dV
其中,F·dS表示向量场F在曲面元dS上的点积积分,∇·F表示向量场F的散度,dV表示体积元。
这个定理的物理解释是,对于一个流经封闭曲面的流体量,其发散性(流出和流入区域的总和)等于其在包围该区域的体积中的源和汇的总量。
高斯定理的应用非常广泛。
在电磁学中,它可以用来计算通过一个闭合曲面的电场强度和磁场强度的总量。
在流体力学中,它可以用来计算液体或气体通过一个封闭曲面的流量。
在热传导中,它可以用来计算热量通过一个封闭曲面的扩散量。
总之,高斯定理提供了一个非常强大的工具,用于计算向量场通过封闭曲面的总量。
它在物理和工程学中的应用使得我们能够更好地理解和分析各种自然现象和工程问题。
高 斯 定 理
![高 斯 定 理](https://img.taocdn.com/s3/m/d24a927bbf1e650e52ea551810a6f524ccbfcbd5.png)
1.3 高斯定理
静电场是由电荷所激发的,通过电场空间某一给定闭合 曲面的电通量与激发电场的场源电荷必定有确定的关系。德 国科学家高斯通过缜密运算论证了这个关系,并提出了著名 的高斯定理。该定理给出了通过任何曲面S的电通量φe与闭 合曲面内部所包围的电荷之间的关系。下面就以点电荷为例 来讨论。
(3)利用高斯定理解出场强E。
【例7-4】求点电荷Q的电场强度的分布情况。
S
0
由此可见,通过此球面的电通量等于球面内的电荷量q除以 真空电容率ε0 ,与球面半径无关。
(2)一个正点电荷q,被任意闭合曲 面S′和球面S同时包围,如下图所示。根 据电力线的连续性可知,凡是通过球面S 的电力线都一定通过曲面S′。所以通过闭 合曲面S′的电通量等于通过球面S的电通 量,均为 q/ε0 。
物理学
高斯定理
1.1 电场线
电场线是空间中一系列假想的曲线,主要反映电场的特
征,描述电场中各点场强E的大小和方向。为此,对电场线作
如下规定:
(1)电场线上每一点的切线方向与该点场强E的方向一
致。这样,电场线的方向就反映了场强方向的分布情况。
(2)在任一场点,使通过垂直于场强E的单位面积的电
场线数目(称为电场线密度),正比于该点处场强E的大小。
2.非均匀电场的电通量
在非均匀电场中,为了求出通过任意曲面S的电通量φe, 可以把曲面S分成无限多个面元dS,如下图所示。此时,面元 dS可以近似看成一个平面,并且在面元的范围内电场强度可 以近似看成大小相等、方向相同的匀强电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、高斯定理(Gauss theorem )
高斯简介 高斯(Carl Friedrich Gauss 1777~1855)
高斯长期从事于数学并将数学应用于物理学、 天文学和大地测量学等领域的研究,主要成就: (1)物理学和地磁学:关于静电学、温差电和 摩擦电的研究、利用绝对单位(长度、质量和时 间)法则量度非力学量以及地磁分布的理论研究。 (2)光学 :利用几何学知识研究光学系统近 轴光线行为和成像,建立高斯光学。 (3)天文学和大地测量学中:如小行星轨道的 德国数学家、 计算,地球大小和形状的理论研究等。 天文学家和物理 (4)试验数据处理:结合试验数据的测算,发 学家。高斯在数 展了概率统计理论和误差理论,发明了最小二乘 学上的建树颇丰, 法,引入高斯误差曲线。 有“数学王子” (5)高斯还创立了电磁量的绝对单位制。 15 美称。
i内 i内
e
• 闭合曲面上各点的场强 E 是闭合面内、外全部电荷共同
q
i内
产生的合场强,而非仅由闭合面内电荷所产生。
E 表面
q
i内
q
i外
• 闭合面外的电荷对总通量无贡献。 • 高斯定理适用于静电场和运动电荷的电场,是电磁场基 本规律之一。 • 静电场是有源场。电力线起始于正电荷,终止于负电荷 。
轴对称分布:包 括无限长均匀带 电的直线,圆柱 面,圆柱壳等;
无限大平面电荷: 包括无限大的均 匀带电平面,平 板等。
步骤:
1.进行对称性分析,即由电荷分布的对称性,分析场强分 布的对称性,判断能否用高斯定理来求电场强度的分布 (常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求: ①待求场强的场点应在此高斯面上, ②穿过该高斯面的电通量容易计算。 一般地,高斯面各面元的法线矢量n与E平行或垂直,n与 E平行时,E的大小要求处处相等,使得E能提到积分号外 面; 3.计算电通量和高斯面内所包围的电荷的代数和,最后由高 斯定理求出场强。
2
E
q
n
dS dSn
1 q
2
dS E
4 0 R
dS
q
e
=
S
d e
2
q
S
4π ε0 R
q ε0
2
dS
+
r
q 4π ε0 R
S dS =
结果表明,穿过此球面的电通量与球半径无关,只 与q和ε0有关.通过各球面的电场线总条数相等。
高斯定理的应用
例1. 求球面半径为R,带电为q的均匀带电球面的电场的 空间分布。 解: 电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面. 2 q S E dS E 4r 0
E
q
40 r
2
rR时,高斯面无电荷,
E =0
+ + + +
+
+ +
R
q
S
S
电场线
S'
q
+
r
S
③不包围点电荷q的任意闭合曲面S的电通 量恒为零.
S
由于电场线的连续性可知, 穿入与穿出任一闭合曲面 的电通量应该相等。所以 当闭合曲面无电荷时,电 通量为零。
q
( 4 ) 若由许多点电荷组成系 个点电荷, 加原理,得 n 个点电荷在闭合曲面
统,闭合曲面
S 包围 k
三、静电场的高斯定理 (Electrostatic field of the Gauss theorem) 四、高斯定理的应用 (The application of the Gauss theorem) 小结
6-3 电场线 高斯定理
一、电场线 (The electric field lines)
Φe 2 0
Φe 3 q
0
S1
S2
S3
23
四、高斯定理的应用( The application of the Gauss theorem )
当场强分布具有某种特殊的对称性时,应用高斯定理能比 较方便求出场强。求解的关键是选取适当的高斯面。常见的 具有对称性分布的源电荷有:
球对称分布:包 括均匀带电的球 面,球体和多层 同心球壳等
复 习
• • • • • • • 电荷的量子化 电荷守恒定律 库仑定律 静电场的概念 电场强度 电场强度叠加原理 电场强度的计算
§ 6-3 电场线 高斯定理(The electric field lines Gauss theorem )
一、电场线 (The electric field lines) 二、电通量 (electric flux)
对于包围点电荷q的任意封闭曲面 可在外或内作一以点电荷为中 心的同心球面 S ,使 S 内只有点 电荷,如图所示。 由电场线的连续性可知,穿 过 S的电场线都穿过同心球 面 S ,故两者的电通量相等, 均为 q ε 0 。 结论说明,单个点电荷包围 在任意闭合曲面内时,穿过 该闭曲面的电通量与该点电 荷在闭曲面内的位置无关。
由前面的结果得
e
k
E dS
S
k
qi
i 1
0
0
1
0
q
i 1
k
i
式中
q 表示在闭合曲面内电荷
i i 1
电量的代数和。
如果在真空中场源是若干个点电荷,则穿过任 一闭合曲面的总电通量等于该闭合曲面包围的电荷 电量的代数和(净电荷)的 1 0 倍。 ——真空中 的高斯定理
讨论
将 q 2 从 A 移到 B
q2
A
点 P 电场强度是否变化? 穿过高斯面
P*
s 的 Φ 有否变化?
e
q2
s
B
q1
在点电荷 q 和 q 的静电场中,做如下的三 个闭合面 S 1 , S 2 , S 3 , 求通过各闭合面的电通量 . q Φe 1 E d S q q S1 0
+
r
+
+
+ + + +
q
+ +
高斯定理的应用
rR时,高斯面包围电荷q,
E= Q 4 0 r
2
结果表明:均匀带电 球面外的电场分布象 球面上的电荷都集中 在球心时所形成的点 电荷在该区的电场分 布一样。
+ R + + + + +
q 40 R
2
+
+ +
+
q
+ + E
+ + + +
r
r
2
d e E dS
e
E
en
dS
E
Φe
dΦ
Φe
将曲面分割为无限多个面元 d S,由于面元很小,
s
E dS
s E cos d S
所以每一个面元上场强可以认为是均匀电场 。
12
2、电通量的正负
d Φ e E co s d S
数学表达式: e
1 E dS
S
0
q
i 1
n
i内
电荷连续分布:
1 E dS
S
0
dV
V
3、关于高斯定理的说明( Instructions on the Gauss theorem )
• 表明通过闭合曲面的 e 与闭合曲面所包围的 q 之间 的量值关系,而非闭合曲面上的 E 与 q 之间的关系。
E
2
dS1
整个闭合曲面的电通量为
e = E d S
S
E2
1
E1
13
例: 求通过一个与点电荷q 同心的球面S的电通量
解:球面上各点的场强方向与其径向相同。 球面上各点的场强大小由库仑定律给出。
4 0 R d e E dS E dS
高斯定理的应用
3. 高斯定理的应用举例 (Examples of
the application of the Gauss theorem)
条件: 电荷分布具有较高的空间对称性 1. 均匀带电球面的电场 2. 均匀带电球体的电场 3. 均匀带电无限大平面的电场
4.均匀带电无限长直线的电场
5. 均匀带电无限长圆柱面的电场 6. 均匀带电球体空腔部分的电场
+
+
7
2、几种典型的电场线分布(Several typical electric field line distribution)
一对不等量异号点电荷的电场线
2q
q
8
2、几种典型的电场线分布(Several typical electric field line distribution)
带电平行板电容器的电场线
0
R
Er 关系曲线
r
高斯定理的应用
例2、求半径为R,带电量为q的均匀带电球体的场 强分布。 解: 电场分布也应有球对称性,方向沿径向。 q 电荷体密度为 4 3
R
3
作同心且半径为r的高斯面
S
2 E dS E 4 r
q
0
3
r
R
E
q
4 0 r
•非闭合曲面: 电通量的结果可正可负,完全取决 于面元 d S 与 E 间的夹角 :
2 时 , d e 0,