立体几何—建系难
高考必会题型篇:用空间向量解决立体几何问题中的建系技巧(四十五)
真题 2(2013 湖南)如图,在直棱柱 ABCD -
A1
B1C1
D 1
中,AD∥BC
,BAD
90
,AC
BD ,
BC 1, AD AA1 3.
(I)证明: AC B1D ;
(II)求直线 B1C1 与平面 ACD1 所成角的正弦值.
真题 3(天津卷)如图,四棱柱 ABCD-A1B1C1D1 中, 侧棱 A1A⊥底面 ABCD,AB//DC,AB⊥AD,AD=CD=1, AA1=AB=2,E 为棱 AA1 的中点.
z z
y y
x x
类型四:找“直角”
●题型分析 本题中没有三条两两垂直的直线,但有许多垂直的直线,可做为两条 坐标轴.
备考指津
题型和解题技巧归纳总结
1.有三条两两垂直的直线(墙角)时建系最方便; 2.没有明显的“墙角”时需通过条件或辅助线“找墙角”或“造墙角”; 3.实在没有时可借助直角建系,另一条坐标轴“悬空”.
(Ⅰ)证明 B1C1⊥CE; (Ⅱ)求二面角 B1-CE-C1 的正弦值. (Ⅲ)设点 M 在线段 C1E 上,且直线 AM 与平面
ADD1A1 所成角的正弦值为
2 ,求线段 AM 的长. 6
真题 4(北京卷)如图,在三棱柱 ABC-A1B1C1 中,AA1C1C
是边长为 4 的正方形, 平面 ABC⊥平面 AA1C1C,AB=3,BC=5.
类型一:用“墙角”
z zyxx Nhomakorabeaz
y y
x
类型二:找“墙角”
例 2.(北京卷)如图,在三棱柱
ABC-A1B1C1 中,AA1C1C 是边长为 4 的正方形, 平面 ABC⊥平面
AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面 ABC; (2)求二面角 A1-BC1-B1 的
通过“底图”突破立体几何的建系难点
通过“底图”突破立体几何的建系难点作者:常艳龙宇来源:《中学教学参考·理科版》2019年第08期[摘; ;要]学生常常通过向量解决立体几何问题,而如何选择建系的原点是一大难点.通过对“底图”的分析,能为学生建系提供思考的方向.[关键词]底图;建系;立体几何[中图分类号]; ; G633.6; ; ; ; [文献标识码]; ; A; ; ; ; [文章编号]; ; 1674-6058(2019)23-0024-02解决立体几何问题有几何法和空间向量法.几何法涉及辅助线的添加及空间关系的理解.与几何法相比,向量法的思维量小,所以向量法成为更多学生的首选.运用向量法的一大难点在于坐标系的建立.本文介绍一种以“底图”为思考出发点的建系策略,供读者参考.这里说的“底图”是指立体图形中的底面图形.一、题目题1:如图1,多面体[ABCDEF]中,底面[ABCD]为菱形,[∠BAD=60°],[AB=2],[DF=BE=1],[AF=CE=3],且平面[ADF⊥]底面[ABCD],平面[BCE⊥]底面[ABCD].(1)证明:[EF⊥]平面[ADF];(2)求二面角[A-EF-C]的余弦值.分析:该几何体的底面为有一个角为[60°]的菱形,[△ADF]与[△BCE]为全等三角形,且所在的平面与底面垂直.该图形与2015年新课标Ⅰ卷理科第18题极为相似,现展示如下.题2:如图2,四边形[ABCD]为菱形,[∠ABC=120°],[E]、[F]是平面[ABCD]同一侧的两点,[BE⊥]平面[ABCD],[DF⊥]平面[ABCD],[BE=2DF],[AE⊥EC].(1)证明:平面[AEC⊥]平面[AFC];(2)求直线[AE]与直线[CF]所成角的余弦值.分析:兩个图的底面相同,图1有两个侧面与底面垂直,图2的四个侧面均与底面垂直.二、常见的“底图”及建系策略利用空间向量解题的关键在于建立空间直角坐标系.建系的关键在于对“底图”的认识,我们可以仅仅考虑“底图”,对于常见的“底图”,熟悉相关的几何性质与建系方法,有助于我们突破整个立体图形的建系难点.1.有一个角为[60°]的菱形如图3-1,如何建立平面直角坐标系求得对应的坐标呢?结合菱形的相关性质,可以选择[AC]与[BD]的交点[O]([∵AC⊥BD]),或四条边的中点,如[AD]的中点[E]([∵AD⊥BE]),或四个顶点进行建系.具体如图3-2.2.筝形筝形是指有一条对角线所在直线为对称轴的四边形,与菱形定义相对应.本文仅介绍几个常见的筝形图形及建系方法.如图4-1,本文选择了一组对角为[60°],[120°]或[60°],[90°]的筝形进行研究.可仿照图3-2的建系方式,以[AC]与[BD]的交点[O],或各边的中点及四个顶点进行建系.具体如图4-2.3.矩形在某些以折叠为背景的图形中,常常是矩形,具体如图5.利用三角形相似或向量等方法可容易证明[AE⊥BD].即可以选择以[AE与BD]的交点[O]进行建系.三、解法呈现解法一:有了上面的“底图”分析作为基础,学生就可以有效地解决题1的建系问题.如图6-1建系,以[AD]的中点[O]为原点,建立空间直角坐标系,也可选择[AC]与[BD]的中点或[A,B,C,D]进行建系,得到各个点的空间坐标.[O(0,0,0)],[A(1,0,0)],[B(0,3,0)],[C(-2,3,0)],[D(-1,0,0)],[E-12,3,32],[F-12,0,32].关于点[E,F]的坐标,可根据其所在平面计算.结合上面的坐标即可解决所有问题.对于题2,可如图6-2建系,以[AC与BD]的交点[G]建立空间直角坐标系.对应的各点坐标如下:设菱形[ABCD]的棱长为[2],则有[G(0,0,0)],[A(0,-3,0)] ,[B(1,0,0)] ,[C(0,3,0)] ,[D(-1,0,0)],[E(1,0,2)],[F-1,0,22 ].解法二:题1中,两个侧面[△ADF]和[△BCE]为全等的直角三角形.结合上文中的“折叠”模型,将图1中的[△ADF]和[△BCE]分别绕[AD,BC]旋转即可获得一个完整的“矩形”.具体如图7-1.设[AD]与[EF]的交点为[O],根据图5,可在点[O]处建系,具体如图7-2.对应的各点的坐标如下:[O(0,0,0)],[A43,0,0],[B23,3,0],[C-43,3,0],[D-23,0,0],[E0,3,32],[F0,0,32] .根据以上的坐标即可获得问题的解.两种解答模式的基本思路一致,均是以“底图”进行思考.除了上面的几种“底图”外,常见的“底图”还有三角形、梯形等.教师在平时的教学中,应让学生学会分析“底图”,将建系的难点从空间维度降低到平面维度.对此,平面图形的几何性质,特别是垂直关系就显得尤为重要,在平时的训练中要注意对该类性质的积累.(责任编辑黄桂坚)。
2020年高考数学立体几何建系困难问大题精做
2020年高考数学立体几何建系困难问大题精做1.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD 的正方形,ABE △和BCF △均为正三角形,在三棱锥P ABC -中: (1)证明:平面PAC ⊥平面ABC ;(2)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二2.矩形ABCD 中,1AB =,2AD =,点E 为AD 中点,沿BE 将ABE △折起至PBE △,如图所示,点P 在面BCDE 的射影O 落在BE 上.(1)求证:面PCE ⊥面PBE ;(2)求平面PCD 与平面PBE 所成锐二面角的余弦值.3.如图1,在矩形ABCD 中,AB =BC =点E 在线段DC 上,且DE ,现将AED △沿AE 折到AED '△的位置,连结CD ',BD ',如图2.(1)若点P 在线段BC 上,且BP =,证明:AE D P ⊥'; (2)记平面AD E '与平面BCD '的交线为l .若二面角B AE D --'为2π3,求l 与平面D CE '所成角的正弦值.4.如图,在四棱锥P ABCD-中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCD,=,PA与平面PBC.PA PD(1)求侧棱PA的长;(2)设E为AB中点,若PA AB≥,求二面角B PC E--的余弦值.【解析】(1)设AC 的中点为O ,连接BO ,PO .由题意,得PA PB PC ==1PO =, 1AO BO CO ===.∵在PAC △中,PA PC =,O 为AC 的中点,∴PO AC ⊥,∵在POB △中,1PO =,1OB =,PB =,222PO OB PB +=,∴PO OB ⊥. ∵ACOB O =,AC ,OB ⊂平面,∴PO ⊥平面ABC ,∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC .(2)由(1)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC , ∴BMO ∠是直线BM 与平面PAC 所成的角,且1tan BO BMO OM OM∠==, ∴当OM 最短时,即M 是PA 的中点时,BMO ∠最大. 由PO ⊥平面ABC ,OB AC ⊥,∴PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =-,()1,0,1PC =-,31,0,22MC ⎛⎫=- ⎪⎝⎭.设平面MBC 的法向量为()111,,x y z =m ,则由00BC MC ⎧⋅=⎪⎨⋅=⎪⎩m m 得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3=m .设平面PBC 的法向量为()222,,x y z =n ,由00BC PC ⎧⋅=⎪⎨⋅=⎪⎩n n 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1=n .cos ,⋅===⋅n m m n n m .由图可知,二面角P BC M --2.【答案】(1)详见解析;(2)11. 【解析】(1)在四棱锥P BCDE -中,BE CE ==,2BC =,从而有CE BE ⊥, 又∵PO ⊥面BCDE ,而CE ⊂面BCDE ,∴CE PO ⊥,而PO 、BE ⊂面PBE ,且POBE O =,由线面垂直定理可证CE ⊥面PBE ,又CE ⊂面PCE ,由面面垂直判断定定理即证面PCE ⊥面PBE . (2)由条件知OP ⊥面BCDE ,过点E 做OP 的平行线EZ ,又由(1)知EC ⊥面PBE ,以EB 、EC 、EZ 分别为x 、y 、z 轴建立空间直角坐标系, 如图所示:P ⎝⎭,()C,D ⎛⎫ ⎪ ⎪⎝⎭,22CP ⎛=⎝⎭,22DC ⎛⎫= ⎪ ⎪⎝⎭, 面PBE 的一个法向量为()10,1,0=n , 设面PCD 的法向量为()2,,x y z =n,则有00xx y +==,设平面PCD 与平面PBE 所成锐二面角为θ,与12,n n 互补,则cos θ, 故平面PCD 与平面PBE 所成二面角的余弦值为11. 3.【答案】(1)详见解析;(2. 【解析】证明:(1)先在图1中连结DP ,在Rt ADE △中,由AD BC ==,DE得1tan2DAE ∠=,在RtPCD △中,由DC AB ==,PC BC BP ====, 得1tan 2PDC ∠=,∴tan tan PDC DAE ∠=∠,则PDC DAE ∠=∠,∴90DOE ∠=︒,从而有AE OD ⊥,AE OP ⊥,即在图2中有'AE OD ⊥,AE OP ⊥, ∴AE ⊥平面'POD ,则AE D P ⊥';解:(2)延长AE ,BC 交于点Q ,连接'D Q ,根据公理3得到直线'D Q 即为l , 再根据二面角定义得到2π'3D OP ∠=.在平面'POD 内过点O 作底面垂线, 以O 为原点,分别为OA , OP ,及所作垂线为x 轴、y 轴、z 轴建立空间直角坐标系, 则(0,D '-,()1,0,0E -,()11,0,0Q -,()3,4,0C -, ('11,1,D Q =-,()2,4,0EC =-,('1,ED =-,设平面D EC '的一个法向量为(),,x y z =n ,由240'0EC x y ED x y⎧⋅=-+=⎪⎨⋅=-=⎪⎩n n ,取1y =,得2,1,⎛= ⎝⎭n . ∴l 与平面'D CE 所成角的正弦值为'15cos ,'5'D Q D Q D Q⋅==⋅n nn . 4.【答案】(1)1PA =或PA ;(2.【解析】(1)取AD 中点O ,BC 中点M ,连结OP ,OM ,∵PA PD =,∴OP AD ⊥, 又∵平面PAD ⊥平面ABCD ,OP 平面PAD ,平面PAD 平面ABCD AD =,∴OP ⊥平面ABCD ,∴OP OA ⊥,OP OM ⊥, 又∵ABCD 是正方形,∴OA OM ⊥,以O 为原点OA ,OM ,OP 为x ,y ,z 轴建立空间直角坐标系O xyz -(如图),则1,0,02A ⎛⎫ ⎪⎝⎭,1,0,02D ⎛⎫- ⎪⎝⎭,1,1,02B ⎛⎫ ⎪⎝⎭,1,1,02C ⎛⎫- ⎪⎝⎭,设()()0,0,0P c c >,则1,1,2PB c ⎛⎫=- ⎪⎝⎭,()1,0,0CB =,设平面PBC 的一个法向量为()1111,,x y z =n ,则有1111120x y cz x ⎧+-=⎪⎨⎪=⎩,取11z =,则1y c =,从而()10,,1c =n ,设PA 与平面PBC 所成角为α,∵1,0,2PA c ⎛⎫=- ⎪⎝⎭,∴111sin cos ,PA PA PA α⋅====⋅n n n 234c =或213c =, ∴1PA =或PA =. (2)由(1)知,1PAAB ≥=,∴1PA =,c , 由(1)知,平面PBC 的一个法向量为()10,,1c ⎛⎫== ⎪ ⎪⎝⎭n ,设平面PCE的一个法向量为()2x y z =,,n ,而11,,02CE ⎛⎫=- ⎪⎝⎭,1,1,2PC ⎛=- ⎝⎭,∴102102x y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩取1x =,则2y =,z =(2=n ,设二面角B PC E --的平面角为β,∴12cos cos ,β===n n , 根据图形得β为锐角,∴二面角B PC E --.。
(完整版)立体几何解答题的建系设点问题
立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面z z 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即xOy 为轴与底面的交点z 2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:,x y (1)尽可能的让底面上更多的点位于轴上,x y (2)找角:轴要相互垂直,所以要利用好底面中的垂直条件,x y (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),+这个过程不能省略。
3、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若,则222AB AC BC +=AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出(),,0x y 0z =坐标,强烈建议在旁边作出底面的平面图进行参考2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)()'11,,A x y z ()22,,0A x y 1212,x x y y == 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
(完整版)立体几何解答题的建系设点问题
立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
3、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考 2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
2020高考数学----立体几何中的建系设点问题
第63炼 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
立体几何中不易建系的用空间向量证明垂直问题。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
高中数学讲义微专题63 立体几何中的建系设点问题
微专题63 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高中数学立体几何建系设点专题
2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。
用向量法解立体几何题,建系求点是关键
用向量法解立体几何题,建系求点是关键发布时间:2021-08-17T17:13:25.967Z 来源:《中小学教育》2021年11期4月作者:梁业兴[导读] 利用空间向量法解立体几何题,可把抽象的空间图形关系转化为具体的数量运算梁业兴中山市龙山中学广东省中山市 528471摘要:利用空间向量法解立体几何题,可把抽象的空间图形关系转化为具体的数量运算,并有很强的规律性和可操作性,但在实际教学中发现,学生对某些几何体存在建系求点上的困难.本文主要通过实例探讨解决问题的办法.关键词:立体几何、向量法、建系求点向量是近代数学中最重要和最基本的数学概念之一,是具有几何形式和代数形式的“双重身份”的概念,是沟通代数与几何的桥梁.将空间向量引入高中数学,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具.解题时,只需建立合适的空间直角坐标系,求出相关点的坐标,然后化为向量问题,通过进行向量运算,即可转化为几何问题.在这里,建系求点将是解决问题的关键.一、问题的提出学生用向量法解如下高考真题(例1)时容易求错或无法求出点P的坐标.二、问题分析学生用向量法解立体几何题主要的错误有两个:一是建系不合理,二是求错甚至不会求点的坐标.主要原因有两个方面:一方面是图形认知障碍.平面几何图形反映图形的真实情况,但在立体几何中,由于是用斜二侧画法画成的直观图,图形往往不能反映原形的真实结构和全部特点.例如在“水平放置的平面图形的直观图画法”中,正方形、矩形在水平放置后呈平行四边形,以及在图中看上去明显不垂直的两条线段却偏要证明他们互相垂直,明显是锐角的实际上却是一个钝角等;另一方面是缺乏空间想象能力.由于空间想象能力是一个比较复杂、抽象的思维过程,想象能力从二维到三维的拓展难度较大,在实际教学中,学生往往不易建立空间概念,在脑海中难以形成较为准确、直观的几何模型,不能灵活运用一些重要元素之间的位置关系,没掌握一些解题技巧(如局部图形建立平面直角坐标系作平面化处理),造成点的坐标求错,甚至求不出来等.三、解决问题之建系方法研究学生建系不合理,主要集中在x轴与y轴的建立,原因就是对图形的认知有障碍.所以主要方法就是把图形还原——局部平面化处理.画出底面的平面图,把建x,y轴的问题放在平面几何里完成.分析:作底面平面图如图3,图4,图5所示.由此平面图可以比较清楚地看到以那两条互相垂直的直线分别为x 轴、y 轴为宜,且方便写出平面内各点的坐标.可以看到建系的方法并不唯一,要根据题意选用一个合适的坐标系.点评:平面内常见的垂直关系有:菱形、正方形的对角线;等腰、等边三角形的中线与底边(三线合一);直径所对圆周角的两边;或在某个三角形中知道两边一角,先用余弦定理求出第三边,再用勾股定理证明线线垂直等.四、解决问题之求点方法研究(一)垂线法在空间直角坐标系中,有些点的坐标可以通过向坐标平面或坐标轴作垂线,再求出垂线段的长,从而写出点的坐标.点评:点E为线段PD的三等分点,个别学生可能会类比中点坐标公式,容易犯“将P、D坐标相加除以3得到E点坐标”这样的错误.此题还可以用下面的向量法解决.(二)向量法在空间直角坐标系中,利用两向量相等,可以求出点的坐标.点评:在线上是否存在一个点满足某个要求的题型通常可以利用三点共线设,再利用向量相等用表示出未知点的坐标,再根据已知条件待定.利用向量相等对处理比较难作垂线或容易作错垂线的题目来说,效果更好.如例3.(三)待定系数法设出所求点的坐标,再利用题目给出的已知条件,如:线段的长度、线线角、线面角、面面角等,列出方程组,解方程组即可求出所求点的坐标.用向量法来解决例1,如下:证明:(1)连接 AC 、BD,设AC 与BD相交于点O,则AC⊥BD.以O为坐标原点,OA、OB所在直线分别为 x 轴、y 轴建立如图11所示的空间直角坐标系,由图观察可知,此二面角为钝角,所以二面角的余弦值为.点评:因为底面ABCD是菱形,对角线 AC 与 BD 互相垂直,所以可以以对角线的交点O为坐标原点,OA、OB所在直线分别为 x 轴、y轴建立空间直角坐标系,那么点P的坐标将是解决问题的关键.这里采用待定系数法,根据题目给出的线段的长度:,列方程组求解即可求出P点的坐标,使得问题迎刃而解.参考文献[1]徐晓宇,屈黎明.向量法解立体几何题的点坐标求法——2017年高考浙江卷立体几何解答题的方法总结. 《数学教学》,2018(8):33~36.[2]卢学渊.向量法解立体几何题时动点的设法.《数学学习与研究:教研版》,2012(11):107~107.。
用空间向量解决立体几何问题的建系策略
分析!1)连接AC交BF于点G,连接 EG,结合线面平行的性质可得PA%EG,再 由E为PC的中点,得G为AC的中点,则
△AFG^^CBG,得到 AF — BC — ]aD —
1,即F为AD的中点,可得四边形DCBF为 平行四边形,再由AD丄DC,得BF丄AD,可 得BF丄平面PAD,进一步得到平面BEF丄 平面PAD " (2)由面面垂直转化为线面垂 直,结合底面是直角梯形,可以以D为坐标 原点建系。分析得到F为AD的中点,也可 以以F为坐标原点建系。P点坐标未知,需 要先设坐标,比如设P (0,0,),由PC与底 面ABCD所成的角为60°可求解3。
点的坐标是用空间向量解决立体几何问题的
BCD。
关键所在。下面以典型的几何体:棱柱、棱锥、
证法二:如图2,以C
多面体为载体,以典型的问题情境设计:求线
为坐标原点,CA , CB.
面角、求二面角、探索性问题、翻折问题为背
CC]所在直线分别为e
景,剖析建立空间直角坐标系的常用途径。
轴,y轴,w轴,建立空间
论也可以B为坐标
原点,z轴与OC平
行(z轴悬空)建系,
如图4所示。求点C
的坐标
利用
CC* $ AA* &求点 D
的坐标可以利用
图4
------ > 1 -------->
A1D $yA 1C1。本题第(2)问的解答以O为
坐标原点建系为例。
解:(1)因为 #$A$1 $ #$$1A,所以 AB$B$1,所以四边形A1ABB1为菱形。
底面直角梯形,BC/AD , AD丄 DC , BC $ CD $ 1 , AD $ 2 , PA $ PD , E 为
立体几何中的建系设点讲解学习
(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来
由这条规律出发,在写空间中的点时,可看下在底面的投影ቤተ መጻሕፍቲ ባይዱ,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的 点,其投影为 ,而 所以 ,而其到底面的距离为 ,故坐标为
以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:
3、需要计算的点
(3)找对称关系:寻找底面上的点能否存在轴对称特点
3、常用的空间直角坐标系满足 轴成右手系,所以在标 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。
二、典型例题:
例1:在三棱锥 中, 平面 , , 分别是棱 的中点, ,试建立适当的空间直角坐标系并确定各点坐标
例2:在长方体 中, 分别是棱 上的点, , ,建立适当的直角坐标系并写出点的坐标。
例3:如图,在等腰梯形 中, , , 平面 ,且 ,建立适当的直角坐标系并确定各点坐标。
小炼:建立坐标系的最重要的条件就是线面垂直(即 轴),对于 轴的选取,如果没有已知线段,可以以垂足所在的某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴。
例4:已知四边形 满足 , 是 中点,将 翻折成 ,使得平面 平面 , 为 中点
思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。
例5:如图,已知四棱锥 的底面是菱形,对角线 交于点 ,且 平面 ,点 为 的三等分点(靠近 ),建立适当的直角坐标系并求各点坐标
高中数学讲义立体几何中的建系设点问题
OyxzF E GHIJ O yxzA'C'BB'C D'A微专题63 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直:①如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):①正方形,矩形,直角梯形②等腰三角形底边上的中线与底边垂直(三线合一)③菱形的对角线相互垂直④勾股定理逆定理:若222ABACBC ,则ABAC(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1)坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:,0,0x y 轴:0,,0y z 轴:0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为(2)底面上的点:坐标均为,,0x y ,即竖坐标0z ,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I2、空间中在底面投影为特殊位置的点:如果'11,,A x y z 在底面的投影为22,,0A x y ,那么1212,x x y y (即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
不好建系的立体几何大题
不好建系的立体几何大题为确保文章长度达到1000字以上,我将为你提供一个立体几何的例题,同时附上详细解答。
题目:一个长方体的长、宽、高分别为3cm、4cm和5cm,求该长方体的长对角线与斜面的夹角。
解答:首先,我们可以确定该长方体的长对角线。
长对角线是连接长方体的对角线,其长度可以通过勾股定理计算。
设长对角线的长度为d,则有:d² = (长)² + (宽)² + (高)².代入长方体的长、宽、高的值进行计算:d² = 3² + 4² + 5²= 9 + 16 + 25= 50.对方程两边进行开方,得到长对角线的长度d:d = √50.接下来,我们需要求出长方体斜面的夹角。
由于长方体有六个面,其中两个面正好构成一个斜面。
设斜面与长方体底面平行,则两个斜面面上的直线与长方体的边平行。
假设该长方体底面为ABCD,斜面为EFGH。
其中,A、B、C、D分别为底面的四个顶点,E、F、G、H分别为斜面的四个顶点。
分别连接AE、BF、CG、DH,我们可以得到四条平行边,它们与底面ABCD是平行的。
此时,长方体底面ABCD与斜面EFGH构成一个平行四边形。
我们可以通过计算平行四边形的对角线之间的夹角来确定斜面的夹角。
设ABCD的对角线为AC,斜面EFGH的对角线为EH。
我们已经计算了长方体底面ABCD的对角线AC。
根据之前的计算结果:AC = √(长)² + (宽)²= √(3² + 4²)= √(9 + 16)= √25= 5.同样地,我们可以计算斜面EFGH的对角线EH。
设EH的长度为x,则有:x² = (底面对角线AC)² + (高)².代入底面对角线AC的值进行计算:x² = 5² + 5²= 25 + 25= 50.对方程两边进行开方,得到斜面的对角线EH的长度x:x = √50.现在我们可以计算出平行四边形ACEH的两条对角线的长度,它们分别是5和√50。
一道理科立几题的难因分析
jC _ D, 又 C 上A D D,且 A AA ,. D 上 面 D E .C ‘
A E, c D 又 Dc面 A C . A C B D,. B D上面 A E ’ 面 D .
C E,即 F为 在面 C E上 的射影 ,则 B ( 、 5 , D D 3/
63. ,)
所以无论 从那方面来看 ,此题都应该是一道较简
而 大多数没 有完成 此题 的同学还是 卡在 了 点
( ) 目的条件背景简单 , 2题 图形结构新颖而不陌生 , 类似于 20 、0 8年广东高考立几题. 0 6 20 () 3 设问的方式很常规 , 是常见的一证一求问题 . () 4 人手 的第 ( ) 1 问简单 , 一般的同学都能完成. 第 () 1 问证 明 :" - C E, C ‘ . AEj面 D 又 Dc面 C E, D
・
. .
() 1求证 : 平面 A C B D上平面 A E; D () 2 求二面角 D B — — C E的平面角的正切值 .
看 似 简 单 的原 因 :
() 1本题的排位在六道 大题 中的第三位 , 按常规前
三 道 题是 中等 偏 易 的题 目.
C3 / ,o, o ,)E060 ( , ,) (、 0 ) , 0 , (,, 0 6 3 . , o( 0
‘
.
的坐标 , 同学们 习惯 了找 坐标 , 但 点在底 面的射影 在哪里呢?不知道 . 在做对此题 的同学中有相 当部分 同 学是猜对 日点坐标 的.
事实上 , 在圆 O内, 可作 以 C D D、 E为边的圆 内接
矩 形 C E , 接 B , 图 2可 证 B / E则 B D F连 F如 , FA / F面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥中,,,为的中点,.(1)求的长; (2)求二面角的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因PA ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝ ⎛⎭⎪⎫0,-1,z 2,又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB→=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =2 3(舍去-2 3),所以|PA →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为1=(x 1,y 1,z 1),平面FAB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为3 78.例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD . 取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.因此二面角A -PD -C 的大小为π-arccos 63. 解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0).设平面PCD 的法向量为1=(x ,y ,z ),则1·PC →=(x ,y ,z )·(2 2,-2,-2)=0, 1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面PAD 的法向量为2=(m ,p ,q ),则2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1).于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63.由于〈,2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos63. 例3(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C 求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=23. 所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ). 由AB 1→⊥A 1C →,有8-h 2=0,h =22. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎪⎨⎪⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即 ⎩⎪⎨⎪⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63.所以二面角A 1-CD -C 1的平面角的余弦值为63. 例4(2012高考真题江西理20)(本题满分12分)如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC . 因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25,由(1)得平面BB 1C 1C 的法向量是OE →=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n|OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010. 例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1= 5.图1-4现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA 1⊥BC ; (2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值.【答案】解:(向量法):(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD . 由BB 1C 1C 为矩形知,DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1, 又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA1→〉=-21×22+-42=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1,由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得 sin ∠D 1DA 1=55, cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55.即二面角A -BC -A 1的余弦值为-55.。