高一数学必修4三角函数知识点及典型练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,
与角
终边相同的角的集合}{
|2,k k z
ββπα=+∈
,
弧度制,弧度与角度的换算,
弧长l
r α=、扇形面积2
1122
s lr r α==,
二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距
离是22r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x
y
a =tan ,它们都是以角
为自变量,以比值为函数值的函数。
三角函数值在各象限的符号:
三:同角三角函数的关系式与诱导公式: 1. 平方关系:2
2
sin
cos 1αα+= 2. 商数关系:
sin tan cos α
αα
=
3.诱导公式——口诀:奇变偶不变,符号看象限。
*
正弦
:
余弦
&
正切
》
4. 两角和与差公式 :()()()sin sin cos cos sin cos cos cos sin sin tan tan tan 1tan tan αβαβαβαβαβαβαβ
αβαβ⎧
⎪±=±⎪⎪
±=⎨⎪
±⎪±=⎪⎩
5.二倍角公式:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα⎧
⎪=⎪=-=-=-⎨⎪⎪=
-⎩
余弦二倍角公式变形:
222cos 1cos2,2sin 1cos2αααα=+=-
第二、三角函数图象和性质
基础知识:1、三角函数图像和性质
2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五
点法作sin()y A x ωϕ=+简图:五点分别为:
、 、 、 、
。 3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+ 周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。 5、三角函数最值类型:(1)y =a sin x +b cos x 型函数最值的求法:常转化为y =
(x +ϕ)
;
(2)y =a sin 2x +b sin x +c 型:常通过换元法(令sinx=t ,[]1,1t ∈-)转化为y =at 2+bt +c 型:
(3)同一问题中出现sin cos ,sin cos ,sin cos x x x x x x +-•,求它们的范围时,一般是令sin cos x x t
+=或21sin cos sin cos 2t x x t x x --=⇒•=或21
sin cos 2
t x x -•=-,转化为关于t 的二次函数来解决
三、三角形知识:
(1)AB C ∆中,c b a ,,分别为C B A ,,的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>。 (2)在AB C ∆中,A+B+C=180°。
基础练习:
1、tan(600)-= . sin 225︒= 。
2、α
的终边与6
π的终边关于直线x y =对称,则α=_____。
3、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2. ~
4、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于
5
、函数y =的定义域是_____ __
6、
的结果是 。 7、已知)2,23(,1312cos ππαα∈=
,则=+)4
(cos π
α 。 8、若均βα,为锐角,==+=ββααcos ,5
3
)(sin ,552sin 则 。 9、化简=+-)12
sin 12(cos )12sin
12(cos
π
πππ
10、 根据sin sin 2sin cos 22αβαβαβ+-+=及cos cos 2sin sin
22
αβαβ
αβ+--=-,若
sin sin cos ),(0,),(0,)3
θϕϕθθπϕπ+=
-∈∈且,计算 ____.θϕ-=
11、集合{2
π
π4ππ|+≤≤+
k k αα,∈k Z}中的角所表示的范围(阴影部分)是( )
)
(A )
(
B )
(C ) (D )
12、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π
-=的图象-------------( )
(A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3π单位 (D )向右平移个3
π
单位
13、已知0tan ,0sin ><θθ,那么θ是 。
14.已知点P (tan α,cos α)在第三象限,则角α的终边在
15.若cos 0,tan 0αα<>= 。
。
16.已知α是第二象限角,那么
2
α
是 ( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角