高中物理电场常见问题及解题方法
高中物理电场
![高中物理电场](https://img.taocdn.com/s3/m/2342a0ee6e1aff00bed5b9f3f90f76c661374cd4.png)
高中物理电场篇一:高中物理电场总结(最新_强烈推荐)物理电场总结1. 深刻理解库仑定律和电荷守恒定律。
(1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
即:其中k为静电力常量,k=9.0×10 9 N?m2/c2成立条件:① 真空中(空气中也近似成立),② 点电荷。
即带电体的形状和大小对相互作用力的影响可以忽略不计。
(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。
(2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。
2. 深刻理解电场的力的性质。
电场的最基本的性质是对放入其中的电荷有力的作用。
电场强度E是描述电场的力的性质的物理量。
(1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强。
这是电场强度的定义式,适用于任何电场。
其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。
电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。
(2)点电荷周围的场强公式是:(3)匀强电场的场强公式是:3. 深刻理解电场的能的性质。
,其中Q是产生该电场的电荷,叫场源电荷。
,其中d是沿电场线方向上的距离。
(1)电势φ:是描述电场能的性质的物理量。
① 电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。
② 电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。
③ 当存在几个“场源”时,某处合电场的电势为各“场源”在此处电场的电势的代数和。
④ 电势差,A、B间电势差UAB=ΦA-ΦB;B、A间电势差UBA=ΦB-ΦA,显然UAB=-UBA,电势差的值与零电势的选取无关。
高中物理电场与磁场题解技巧
![高中物理电场与磁场题解技巧](https://img.taocdn.com/s3/m/7b671554b94ae45c3b3567ec102de2bd9605defd.png)
高中物理电场与磁场题解技巧在高中物理学习中,电场与磁场是一个非常重要的内容,也是学生们普遍感到困惑的难点之一。
本文将为大家介绍一些解决电场与磁场问题的技巧,帮助学生们更好地理解和应用相关知识。
一、电场问题解题技巧1. 确定电场的性质:在解决电场问题时,首先需要明确电场的性质。
例如,题目中给出了电场的电势分布图,我们可以根据电势的变化情况来判断电场的性质。
若电势随距离增加而减小,则电场是向外的;若电势随距离增加而增大,则电场是向内的。
2. 利用电场的叠加原理:当存在多个电荷时,可以利用电场的叠加原理来求解电场的强度。
具体方法是将各个电荷的电场矢量相加,得到总电场的矢量。
在实际操作中,可以将电场矢量进行分解,再根据三角形法则或平行四边形法则进行合成。
举例来说,假设有两个点电荷Q1和Q2,分别位于坐标原点和点P(x,y)上。
要求点P处的电场强度E,可以先求出Q1和Q2分别在点P处产生的电场强度E1和E2,然后将两个矢量相加得到总电场强度E。
3. 利用高斯定律:在某些情况下,可以利用高斯定律来简化电场问题的求解。
高斯定律表明,通过任意闭合曲面的电场通量等于该曲面内的电荷代数和与真空介电常数的乘积。
当问题具有一定的对称性时,可以选择合适的高斯面,使得电场与法线方向相同或相反,从而简化计算。
此外,高斯定律还可以用于求解无限长直线电荷和均匀带电球面等问题。
二、磁场问题解题技巧1. 利用安培环路定理:在解决磁场问题时,可以利用安培环路定理来求解磁场的强度。
安培环路定理表明,通过任意闭合回路的磁场环流等于该回路内的总电流代数和的乘积。
在应用安培环路定理时,需要注意选择合适的回路,使得回路上的磁场和电流方向相同或相反。
通过计算回路上的磁场环流,可以求解出磁场的强度。
2. 利用比奥萨伐尔定律:比奥萨伐尔定律是描述通过导线产生的磁场的规律。
该定律表明,通过导线的磁场强度与电流强度成正比,与导线与磁场的夹角成正比。
在应用比奥萨伐尔定律时,可以利用右手定则来确定磁场的方向。
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析
![高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析](https://img.taocdn.com/s3/m/6ba8fa8f6edb6f1afe001f32.png)
设此时的圆心位置为 O ,有: Oa r sin 30
OO 3d Oa 解得 OO d
即从 O 点进入磁场的电子射出磁场时的位置距 O 点最远
所以 ym 2r 2d 电子束从 y 轴正半轴上射入电场时的纵坐标 y 的范围为 0 y 2d 设电子从 0 y 2d 范围内某一位置射入电场时的纵坐标为 y,从 ON 间射出电场时的位
);
(3) 0 B 16mv0 或 15qL
B 16mv0 3qL
【解析】 【分析】 (1)a、b 碰撞,由动量守恒和能量守恒关系求解碰后 a、b 的速度; (2)碰后 a 在电场中向左做类平抛运动,根据平抛运动的规律求解 P 点的位置坐标; (3)要使 b 球不从 CD 边界射出,求解恰能从 C 点和 D 点射出的临界条件确定磁感应强度的 范围。 【详解】 (1)a 匀速,则
解得: L 9 d 4
当3 d 2y 2y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正 确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经 常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的 应用.
6.如图所示,荧光屏 MN 与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标 x0 6cm ,在第一象限 y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度 E 1.6105 N / C ,在第二象限有半径 R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方 向垂直 xOy 平面向外.磁场的边界和 x 轴相切于 P 点.在 P 点有一个粒子源,可以向 x 轴 上方 180°范围内的各个方向发射比荷为 q 1.0108C / kg 的带正电的粒子,已知粒子的
高中物理电磁学电场题详解
![高中物理电磁学电场题详解](https://img.taocdn.com/s3/m/0eea39d1988fcc22bcd126fff705cc1754275f52.png)
高中物理电磁学电场题详解电场是高中物理电磁学中的一个重要概念,也是考试中常见的题型。
在本文中,我将详细解析几个电场题目,并提供解题技巧和指导,帮助高中学生更好地理解和应用电场知识。
题目一:两个点电荷的电场强度已知两个点电荷q1和q2,它们的电荷量分别为Q1和Q2,它们之间的距离为r。
求点电荷q1产生的电场强度E1和点电荷q2产生的电场强度E2。
解析:根据库仑定律,两个点电荷之间的电场强度与它们的电荷量和距离的平方成反比。
所以,点电荷q1产生的电场强度E1与q1的电荷量Q1和距离r的平方成正比,即E1 ∝ Q1/r^2。
同理,点电荷q2产生的电场强度E2与q2的电荷量Q2和距离r的平方成正比,即E2 ∝ Q2/r^2。
题目二:电场强度与电势的关系已知一个电场中,某点的电场强度为E,电势为V。
求证电场强度E与电势V之间存在以下关系:E = -dV/dr。
解析:电场强度与电势之间存在一定的关系,即电场强度E等于电势V对距离r的导数的负值。
这是因为电势是电场的势能,而电场强度则是电势的斜率。
所以,E =-dV/dr。
题目三:均匀带电圆环的电场强度已知一个半径为R、总电荷量为Q的均匀带电圆环,求它在圆环轴线上某点的电场强度E。
解析:对于均匀带电圆环,在圆环轴线上任意一点的电场强度E与该点到圆心的距离r有关。
根据电场叠加原理,可以将圆环视为无数个点电荷的叠加。
对于每一个点电荷dq,它产生的电场强度dE与它到该点的距离r有关,即dE ∝ dq/r^2。
由于圆环是均匀带电的,所以dq = Qdθ/2πR,其中dθ是一个微小的角度。
将dq代入上式,可得dE ∝ (Qdθ/2πR)/r^2。
将所有微小的电场强度叠加起来,即可得到整个圆环在该点的电场强度E。
通过以上的例题解析,我们可以得出一些解题技巧和指导:1. 理解电场强度的概念和定义,掌握电场强度与电荷量、距离的关系。
2. 理解电场强度与电势的关系,掌握电场强度的定义和计算方法。
高中物理静电场中疑难问题处理方法总结
![高中物理静电场中疑难问题处理方法总结](https://img.taocdn.com/s3/m/8ef6940f0740be1e640e9a00.png)
一
( a )
( b )
二、 等效 法 处 理 叠加 场 各 种 性 质 的 场 具 有 叠 加 性 , 即几 个 场 可 以 同时 占据 同一 空间 , 从 而形 成 叠 加 场 。对 于 叠 加 场 中 的 力 学 问 题 , 可 以根 据 力的独立作用 原理分别 研究每一种 场力对 物体 的作用效果 , 也 可 以 同 时研 究 几 种 场 力 共 同作 用 的效 果 ,将 叠 加 场 等 效 为 个 简单 场 , 然后与重力场 中的力学问题进行类 比. 利 用 力 学 的规 律 和 方 法 进行 分析 与解 答 。 例题 : 半 径 为r 的绝 缘 光 滑 圆 环 固 定 在 竖 直 平 面 内 , 环 上 套 有 一 质 量 为 m、 带 正电的珠子 , 空 间 存 在 水 平 向右 的 匀 强 电场 ,如 图 1 — 8 — 9 所
中 物 理 静 电 场 中 疑 难 问 题 处 理 方 法 总 结
韩 仲 新
( 张家 口市 宣 化 第 一 中学 , 河北 张家 E l 0 7 5 1 0 0 ) 在 高 中 阶段 . 很 多学生 都感 到物 理难 学 , 其 实 高 中 阶 段 研究 的大 多是理 想情 况 , 把它们 处理 成物 理模 型 , 更 容 易 记 忆 。对 于 电 磁 场 知 识 , 场 是 客 观 存 在 的一 种 特 殊 物 质 , 并 不 是 由微 观 粒 子 组 成 的 , 而 电场又是 电磁 场 的重要 知识 , 它 看 不 见、 摸不着 , 初 学 时 很 难 全 面 把 握 它 的特 性 。静 电 场 中 的 问题 般 涉 及 的 物 理 量 较 多 ,往 往 需 要 把 讨 论 的 问 题 和 力 学 、 电 学 知识相结合 , 处 理 起 来 有 一 定 难 度 。下 面 以几 个 静 电场 中 的疑难小 问题 为例 , 通 过介绍 处理 的方法 , 帮 助 初 学 者 开 拓 思路 , 寻找灵感 。 等 分 法 计 算 匀 强 电场 中 的 电势 在 匀强 电场 中 , 沿任 意一个 方 向上 。 电 势 下 降 都 是 均 匀 的, 故 在 同 一 条 直 线 上 相 同 间 距 的 两 点 电 势 差 相 等 。 如 果 把 某两 点间的距离分 为几段 , 则 每 段 两 端 点 的 电 势 差 等 于 原 电 势差 的1 / n .像 这 样 采 取 等 分 间距 求 电势 问 题 的 方 法 叫 做 等
高中物理-专题四第1课时 电场和磁场基本问题
![高中物理-专题四第1课时 电场和磁场基本问题](https://img.taocdn.com/s3/m/0c2e27cb0342a8956bec0975f46527d3240ca667.png)
专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。
电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。
(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。
(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。
注意:式中d为两点间沿电场方向的距离。
2.电场能的性质(1)电势与电势能:φ=E p q。
(2)电势差与电场力做功:U AB=W ABq=φA-φB。
(3)电场力做功与电势能的变化:W=-ΔE p。
3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。
(2)电场线越密的地方,等差等势面也越密。
(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。
4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。
(2)洛伦兹力的大小和方向:F洛=q v B sin θ。
注意:θ为v与B的夹角。
F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。
5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。
1.主要研究方法(1)理想化模型法。
如点电荷。
(2)比值定义法。
如电场强度、电势的定义方法,是定义物理量的一种重要方法。
(3)类比的方法。
如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。
2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。
(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。
(3)利用W AB=qU AB来求。
3.电场中的曲线运动的分析采用运动合成与分解的思想方法。
4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。
高中物理电场强度题解题技巧
![高中物理电场强度题解题技巧](https://img.taocdn.com/s3/m/dd7c12fc59f5f61fb7360b4c2e3f5727a5e92483.png)
高中物理电场强度题解题技巧在高中物理学习中,电场强度是一个重要的概念。
掌握电场强度的计算方法和解题技巧对于解决与电场强度相关的物理题目非常关键。
本文将介绍几种常见的电场强度题型,并提供解题技巧和实例,帮助高中学生更好地理解和应用电场强度概念。
一、点电荷电场强度计算点电荷电场强度的计算是电场强度题目中最基础的部分。
对于一个带电粒子,其电场强度的大小与距离的平方成反比。
具体计算公式为:E = k * q / r^2其中,E表示电场强度,k为电场常数,q为点电荷的电荷量,r为距离。
在计算时,需注意单位的转换和数值的代入。
例如,已知一个电荷量为2μC的点电荷,距离它0.5m处的电场强度为多少?解题思路:根据公式E = k * q / r^2,代入数据得到 E = 9 * 10^9 * 2 * 10^-6 /(0.5)^2 = 72 N/C。
因此,距离0.5m处的电场强度为72 N/C。
二、均匀带电球壳电场强度计算均匀带电球壳的电场强度计算是电场强度题目中的一个典型例子。
对于一个均匀带电球壳,其电场强度在球壳外部与距离成正比,在球壳内部电场强度为零。
具体计算公式为:E = k * Q / r^2其中,E表示电场强度,k为电场常数,Q为球壳的总电荷量,r为距离。
例如,已知一个带电球壳的总电荷量为4μC,距离球壳0.2m处的电场强度为多少?解题思路:根据公式E = k * Q / r^2,代入数据得到 E = 9 * 10^9 * 4 * 10^-6 /(0.2)^2 = 90 N/C。
因此,距离球壳0.2m处的电场强度为90 N/C。
三、电偶极子电场强度计算电偶极子是由两个相等大小、异号电荷组成的系统。
电偶极子的电场强度在远离电偶极子轴线的地方近似为:E ≈ k * p / r^3其中,E表示电场强度,k为电场常数,p为电偶极矩,r为距离。
例如,已知一个电偶极子的电偶极矩为2 × 10^-9 C·m,距离电偶极子轴线1m处的电场强度为多少?解题思路:根据公式E ≈ k * p / r^3,代入数据得到E ≈ 9 × 10^9 * 2 × 10^-9 / (1)^3 = 18 N/C。
高中物理电场解题方法技巧
![高中物理电场解题方法技巧](https://img.taocdn.com/s3/m/3904deab65ce05087632139f.png)
高中物理电场解题方法技巧一. 重难点解析:1. 电场强度的计算方法(1)定义式:q FE =适用于任何电场,E 与F 、q 无关,E 的方向规定为正电荷受到电场力的方向。
(2)点电荷的电场的强度:2r Q kE =。
说明:①电场中某点的电场强度的大小与形成电场的电荷电量有关,与场电荷的电性无关,但电场中各点场强方向由场电荷电性决定。
②由定义式知:电场力F=qE ,即电荷在电场中所受的电场力的大小由电场和电荷共同决定;电场力的方向由场强方向和电荷电性决定;正电荷在电场中所受电场力的方向与场强方向一致,负电荷在电场中所受电场的方向与场强方向相反。
③如果空间几个电场叠加,则空间某点的电场强度为各电场在该点电场强度的矢量和,应据矢量合成法则——平行四边形定则合成;当各场强方向在同一直线上时,选定正方向后做代数运算合成。
例1. 图(a )中AB 是某电场中一条电场线,(b )表示放在电场线上a 、b 两点上的检验电荷的电荷量与所受电场力大小间的函数关系,指定电场力方向由A 向B 为正向,由此可判定A. 场源可能是正点电荷,在A 侧B. 场源可能是正点电荷,在B 侧C. 场源可能是负点电荷,在A 侧D. 场源可能是负点电荷,在B 侧 答案:D例2. 如下图所示,一边长为a 的正六边形,六个顶点都放有电荷,试计算六边形中心O 点处的场强。
解析:根据对称性有两对连线上的点电荷产生的场强互相抵消,只剩下第三对电荷+q 、q -,在O 点产生场强,21akq2E E ==合,方向指向右下角处的q -。
答案:2akq22. 电场力做功的计算方法(1)根据电势能的变化与电场力做功的关系计算。
电场力做了多少功,就有多少电势能和其他形式的能发生相互转化。
(2)应用公式AB qU W =计算。
①正负号运算法:按照符号规约把电量q 和移动过程的始、终两点的电势能差AB U 的值代入公式AB qU W =。
符号规约是:所移动的电荷若为正电荷,q 取正值;若为负电荷,q 取负值;若移动过程的始点电荷A ϕ高于终点电势B ϕ,AB U 取正值;若始点电势A ϕ低于终点电势B ϕ,AB U 取负值。
高中物理电荷和电场问题解题技巧总结
![高中物理电荷和电场问题解题技巧总结](https://img.taocdn.com/s3/m/c906ceba03d276a20029bd64783e0912a2167c21.png)
高中物理电荷和电场问题解题技巧总结在高中物理学习中,电荷和电场问题是非常重要的内容。
掌握解题技巧可以帮助学生更好地理解和应用相关知识。
本文将总结一些解题技巧,以便学生和家长们能够更好地应对这类问题。
一、电荷问题解题技巧1.理解电荷的基本概念在解决电荷问题之前,首先需要理解电荷的基本概念。
电荷是物体所带的一种基本属性,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
掌握这些基本概念是解决电荷问题的基础。
2.运用库仑定律库仑定律是描述电荷之间相互作用的定律。
它表明,两个电荷之间的力与它们之间的距离的平方成反比。
在解题过程中,可以运用库仑定律计算电荷之间的力大小。
例如,有两个电荷分别为q1和q2,它们之间的距离为r,根据库仑定律,它们之间的力F可以表示为F=k*q1*q2/r^2,其中k为比例常数。
3.运用超定原理在一些电荷分布问题中,可能会给出多个电荷和它们的位置,要求求解某一点的电场强度或电势差。
此时,可以运用超定原理,即将每个电荷对求解点的贡献分别计算,然后将它们相加。
这样可以简化问题的求解过程。
4.利用电荷守恒定律电荷守恒定律是指在一个封闭系统中,电荷的总量保持不变。
在解决一些电荷分布变化的问题时,可以利用电荷守恒定律来求解未知的电荷量。
例如,有一个封闭系统,其中两个物体分别带有电荷q1和q2,它们之间发生了电荷转移,最终总电荷保持不变。
可以利用电荷守恒定律,通过求解方程q1+q2=常数来求解未知电荷量。
二、电场问题解题技巧1.理解电场的基本概念电场是由电荷产生的一种物理场,它可以对其他电荷产生作用力。
理解电场的基本概念对于解决电场问题至关重要。
电场强度E表示单位正电荷所受到的力的大小,方向与力的方向相同。
电场强度的大小与电荷的大小和距离的平方成反比。
2.运用叠加原理在电场问题中,可能会给出多个电荷和它们的位置,要求求解某一点的电场强度。
此时,可以运用叠加原理,即将每个电荷对求解点的电场强度分别计算,然后将它们相加。
高中物理解决电场的力与能的性质问题常用的思想与方法学法指导
![高中物理解决电场的力与能的性质问题常用的思想与方法学法指导](https://img.taocdn.com/s3/m/7ef9c068be23482fb4da4c56.png)
高中物理解决电场的力与能的性质问题常用的思想与方法高考越来越重视对学生能力的考查,所谓能力就是对知识和方法的灵活应用,只有掌握科学的思维方法才能正确地分析解决问题,现把电场力的力、能性质单元常用的方法和适用题型总结如下。
运用整体法与隔离法解带电体的受力问题:方法综述:在处理物理问题时,首先遇到的关键问题之一就是研究对象的选取,选取研究对象的基本方法有两种:一是整体法,即以多个物体组成的系统为研究对象,它适用于求解不涉及系统内各物体间相互作用的问题;二是隔离法,即把研究对象从整体中隔离出来,它适用于求解系统内物体间相互作用的问题,在很多物理问题中,研究对象的选择方案是多样的,研究对象的选择方法不同会影响求解的繁简程度,对于连结体问题,如果能够运用整体法,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便,因此当不计物体间相互作用的内力,或物体系统内的物体的运动状态相同,一般优先考虑整体法,但对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法和隔离法相结合的方法。
在解决两个或两个以上的带电体组成的系统的力学问题时,就要根据解决问题的需要灵活的选取合适的方法。
典例分析:例1.如图1所示,竖直固定挡板PO 与水平固定挡板OQ 之间,有水平向左的匀强电场E ,两挡板均光滑绝缘,现有A 、B 两球(可看作质点)质量相同且带相同电荷量的正电荷,当A 球受竖直向下的推力F 作用时,A 、B 两球处于静止状态,此时两球之间的距离为l ,若使小球A 在推力F 作用下沿挡板PO 向O 点移动一小段距离后,小球A 与B 重新处于静止状态,此过程中下列结论正确的是: ( )A .竖直固定挡板PO 对A 球的弹力不变B .水平固定挡板QO 对B 球的弹力变大C .两球之间的距离减小D .推力F 逐渐减小解析:以AB 整体为研究对象,在水平方向上由平衡条件得A N F =2qE ;竖直方向上B N F =2mg+F 。
高中物理电磁学中电场问题的解题技巧
![高中物理电磁学中电场问题的解题技巧](https://img.taocdn.com/s3/m/d6bcc9f4a0c7aa00b52acfc789eb172ded6399ae.png)
高中物理电磁学中电场问题的解题技巧在高中物理学习中,电磁学是一个重要的内容,其中电场问题是学生们常常遇到的难题之一。
本文将介绍一些解决电场问题的技巧,帮助学生们更好地理解和解决这类问题。
一、电场的概念和基本性质在解决电场问题之前,首先需要对电场的概念和基本性质有一个清晰的认识。
电场是指电荷周围所产生的一种物理场,它具有方向和强度的特性。
电场的强度用电场强度E表示,是一个矢量量,方向与电荷正电子相反。
电场强度的大小与电荷量和距离的平方成反比。
二、电场问题的解题步骤解决电场问题的一般步骤如下:1. 确定问题的条件和要求:首先要仔细阅读题目,理解问题的条件和要求。
例如,题目可能给出电荷的大小和位置,要求计算某一点的电场强度或电势能等。
2. 确定问题的解题方法:根据问题的条件和要求,选择合适的解题方法。
电场问题常常可以通过使用库仑定律、叠加原理和电场线分析等方法来解决。
3. 进行必要的计算和分析:根据所选的解题方法,进行必要的计算和分析。
在计算过程中,要注意单位的转换和数值的精度,确保计算结果的准确性。
4. 检查和解释答案:在得到计算结果之后,要进行检查和解释。
检查计算过程中是否有错误,解释计算结果是否符合物理规律和问题要求。
三、解题技巧举例下面通过几个具体的例子,来说明解决电场问题的技巧:例1:两个相同电荷的带电粒子分别位于x轴上的点A和点B,求它们之间的电场强度。
解析:根据叠加原理,可以将问题分解为两个单电荷问题。
分别计算点B处由A点电荷产生的电场强度和点A处由B点电荷产生的电场强度,然后将两个电场强度矢量相加即可得到所求的结果。
例2:一个电量为Q的点电荷位于原点,求电场强度为E的位置离原点的距离。
解析:根据库仑定律,可以得到电场强度与距离的关系为E=kQ/r^2,其中k为比例常数。
将已知条件代入该公式,可以解得距离r的值。
例3:一个带电粒子在电场中受到的力为F,电荷量为q,求电场强度E。
解析:根据电场强度的定义E=F/q,可以得到电场强度与受力和电荷量的关系。
高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
![高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析](https://img.taocdn.com/s3/m/de5157f4a45177232e60a21d.png)
【点睛】
本题的关键是分析小球的受力情况,来确定小球的运动情况.从力和能两个角度研究动力学问题是常用的思路.
9.如图所示,x轴的上方存在方向与x轴成 角的匀强电场,电场强度为E,x轴的下方存在垂直纸面向里的匀强磁场,磁感应强度 有一个质量 ,电荷量 的带正电粒子,该粒子的初速度 ,从坐标原点O沿与x轴成 角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O点出发后第四次经过x轴时刚好又回到O点处,设电场和磁场的区域足够宽,不计粒子重力,求:
(1)电场反向后匀强电场的电场强度大小;
(2)整个过程中电场力所做的功。
【答案】(1) (2)
【解析】(1)设t末和2t末小物块的速度大小分别为 和 ,电场反向后匀强电场的电场强度大小为E1,小金属块由A点运动到B点过程:
,
小金属块由B点运动到A点过程:
联立解得: ,则: ;
(2)根据动能定理,整个过程中电场力所做的功:
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有 能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小 ,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间.
解得
(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为
由类平抛规律 ,
由几何知识可得x=y,解得
两点间的距离为 ,代入数据可得
高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析
![高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析](https://img.taocdn.com/s3/m/b0fc4618ec3a87c24128c48b.png)
高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。
现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。
小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。
取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。
【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。
(3)Q 、C 两点间的距离为0.5625m 。
【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。
高中物理电场题型归纳
![高中物理电场题型归纳](https://img.taocdn.com/s3/m/19a3c8b76394dd88d0d233d4b14e852458fb399d.png)
高中物理电场题型归纳在高中物理的学习中,电场是一个重要且具有一定难度的知识点。
电场相关的题型丰富多样,理解并掌握这些题型对于我们学好物理至关重要。
接下来,就为大家归纳一下常见的高中物理电场题型。
一、电场强度的计算这是电场中最基础的题型之一。
电场强度的定义式为 E = F / q ,其中 F 是电荷所受的电场力,q 是电荷量。
但在具体题目中,常常需要结合电场的叠加原理来求解。
例如,多个点电荷产生的电场中某点的电场强度,就需要分别计算每个点电荷在该点产生的电场强度,然后再进行矢量合成。
另外,还有匀强电场中电场强度与电势差的关系 E = U / d ,其中U 是两点间的电势差,d 是沿电场方向两点间的距离。
二、电势与电势能电势是描述电场能的性质的物理量。
某点的电势等于该点与零电势点之间的电势差。
而电势能则是电荷在电场中具有的势能,其大小与电荷量和电势有关,即 Ep =qφ 。
在这类题型中,经常会让我们比较不同位置的电势高低,或者判断电荷在电场中移动时电势能的变化情况。
比如,正电荷在电势越高的地方电势能越大,负电荷则相反。
三、电场中的做功问题电荷在电场中移动时,电场力会做功。
电场力做功与路径无关,只与初末位置的电势差有关,其计算公式为 W = qU 。
这类题目通常会给出电荷的电荷量、初末位置的电势差,让我们计算电场力做的功。
有时还会涉及到动能定理,即电场力做功等于电荷动能的变化量。
四、电容器相关问题电容器是储存电荷的装置。
电容器的电容 C = Q / U ,其中 Q 是电容器所带的电荷量,U 是电容器两极板间的电势差。
常见的题型包括:电容器的电容变化、电容器充电放电过程中的电量和电压变化、以及与电容器相连的电路中的电流和电压变化等。
比如,改变电容器两极板间的距离、正对面积或电介质,会导致电容发生变化,进而影响电容器的电荷量和电压。
五、带电粒子在电场中的运动这是电场中的重点和难点题型。
带电粒子在电场中可能做直线运动,也可能做曲线运动。
【高中物理】高中物理知识点:匀强电场
![【高中物理】高中物理知识点:匀强电场](https://img.taocdn.com/s3/m/5d866d1e910ef12d2af9e7e0.png)
【高中物理】高中物理知识点:匀强电场匀强电场:1、定义:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场。
匀强电场中的电场线是间距相等且互相平行的直线。
2、场源:相距很近,带有等量异种电荷的一对平行金属板之间的电场,除边缘部分外,可以看做匀强电场电场中图像类问题的解法:1.电场的E―x图像与φ一x图像在给定了电场的E―x图像时,可以由图线确定x 轴上各点场强的大小及方向。
此外还可以确定x轴上各点的电势变化情况:E―x图线与x轴所围图形的面积表示电势差。
在给定了电场的φ―x图像时,除了可以直接确定x轴上各点电势的高低及电势变化情况,还可以确定x 轴上各点场强(或沿x轴方向上的场强分量)的大小及方向:图线斜率大小表示场强大小,斜率正负表示场强方向。
当E一x图像或φ一x图像与粒子运动相结合时,可利用电场力与场强、加速度的关系及电场力做功与动能、电势能和电势等的关系来解决涉及粒子电性、电场力、电势能、动能、速度、加速度等的相关问题。
在这类题目中,还可以把E―x图像或φ一x图像假设为我们熟悉的、符合给定变化规律的某一种电场,利用这种已知电场的电场线分布、等势面分布或场源电荷来处理相关问题。
2.粒子运动的v一t图像当带电粒子只在电场力作用下运动时,如果给出了粒子运动的速度图像,则从速度图像上能确定粒子运动的加速度方向、加速度大小变化情况,进而可将粒子运动中经历的各点的场强方向、场强大小、电势高低等情况判定出来。
3.粒子运动的v一x图像在v一x图像中,图像的斜率并不是粒子运动的加速度,虽然从 v一x图像仍可判定粒子是加速运动还是减速运动,但加速度的大小变化情况却不一定能够判定出来,如在图中,图线的某点切线斜率:所以在粒子经过某位置时的加速度a=kv。
图线①③所表示的粒子在运动中加速度增大,图线④⑤ 所表示的粒子在运动中加速度减小,而图线②⑥表示的粒子在运动中加速度变化情况不能确定。
在能够确定粒子运动中加速度的变化情况之后,解决问题的方法与已知v―t图像相同。
高中物理静电场与电场力的计算方法
![高中物理静电场与电场力的计算方法](https://img.taocdn.com/s3/m/f0106cfc5ebfc77da26925c52cc58bd63086936b.png)
高中物理静电场与电场力的计算方法静电场和电场力是高中物理中重要的概念和计算题型。
本文将详细介绍静电场和电场力的计算方法,并通过具体题目的举例,说明其考点和解题技巧。
一、静电场的计算方法静电场是指电荷周围的电场,可以通过电场强度来描述。
电场强度的计算方法如下:1. 对于点电荷:点电荷产生的电场强度与距离的关系由库仑定律给出,即E = kQ/r^2,其中E表示电场强度,k为电场常量,Q为电荷量,r为距离。
2. 对于均匀带电球壳:带电球壳产生的电场强度在球壳外部是与距离成反比的,即E = kQ/r^2,其中E表示电场强度,k为电场常量,Q为球壳上的总电荷量,r为距离。
3. 对于均匀带电平板:带电平板产生的电场强度在平板两侧是均匀的,大小为E = σ/2ε0,其中E表示电场强度,σ为平板上的电荷面密度,ε0为真空介电常数。
通过以上计算方法,可以求解不同情况下的电场强度,进而帮助解决与电场相关的问题。
二、电场力的计算方法电场力是电荷在电场中受到的力,可以通过库仑定律来计算。
电场力的计算方法如下:1. 对于点电荷:电荷在电场中受到的电场力与电场强度和电荷量的乘积成正比,即F = qE,其中F表示电场力,q为电荷量,E为电场强度。
2. 对于带电球壳:电荷在带电球壳电场中受到的电场力为零。
这是因为带电球壳内部的电场强度为零,所以电荷在球壳内部不受力。
3. 对于带电平板:电荷在带电平板电场中受到的电场力与电荷量和电场强度的乘积成正比,即F = qE,其中F表示电场力,q为电荷量,E为电场强度。
通过以上计算方法,可以求解不同情况下电荷在电场中受到的电场力,进而帮助解决与电场力相关的问题。
三、题目举例及解析1. 题目:一个点电荷Q在距离它r的地方产生的电场强度大小为E,求点电荷Q的电荷量。
解析:根据电场强度的计算方法E = kQ/r^2,可以求解出点电荷Q的电荷量。
2. 题目:一个带有电荷量Q的均匀带电球壳半径为R,求球壳外某点的电场强度。
高中物理重难点易错专题 带电粒子(带电体)在电场中的运动问题(解析版)
![高中物理重难点易错专题 带电粒子(带电体)在电场中的运动问题(解析版)](https://img.taocdn.com/s3/m/fb44960730126edb6f1aff00bed5b9f3f90f72d3.png)
带电粒子(带电体)在电场中的运动问题目录一、考向分析二、题型及要领归纳热点题型一 优化场区分布创新考察电偏转热点题型二 利用交变电场考带电粒子在运动的多过程问题热点题型三 借助电子仪器考带电粒子运动的应用问题热点题型四 带电粒子(带电体)在电场和重力场作用下的抛体运动热点题型五 带电粒子(带电体)在电场和重力场作用下的圆周运动三、压轴题速练考向分析1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、运动分析、能量观点。
4.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
5.用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常更简捷。
具体方法有:(1)用动能定理处理思维顺序一般为:①弄清研究对象,明确所研究的物理过程。
②分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功。
③弄清所研究过程的始、末状态(主要指动能)。
④根据W=ΔE k列出方程求解。
(2)用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:①利用初、末状态的能量相等(即E1=E2)列方程。
②利用某些能量的减少等于另一些能量的增加列方程。
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)
![高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)](https://img.taocdn.com/s3/m/e83f5b49b14e852459fb578f.png)
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=L v =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t 2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=代入解得 12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得2 21221 L qE nEvn md n B=-⋅++v0=4.00.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3、4)第二种情况:L=n(2v0t+2Rsinα)+v0t+2Rsinα把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得2(1)21221L qE n Evn md n B+=-⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).3.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P运动到Q点所经历的时间之比.【答案】22B qLEm=;2BEttπ=【解析】【分析】【详解】(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,则有2vqv B mR=由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为14圆周,故有2R=以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()225qE mg mg v +==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-, 所以22211528m gy x q B=-+ 点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.图中是磁聚焦法测比荷的原理图。
高中的理求电场强度的六种特殊方法
![高中的理求电场强度的六种特殊方法](https://img.taocdn.com/s3/m/da111cc5647d27284a735182.png)
求电场强度的六种特殊方法吴 强〔山东省泰山外国语学校 山东 泰安 271000〕电场强度是电场中最基本、最重要的概念之一,也是高考的热点。
求解电场强度的基本方法有:定义法E =F/q ,真空中点电荷场强公式法E =KQ/r 2,匀强电场公式法E =U/d ,矢量叠加法E =E 1+E 2+E 3……等。
但对于某些电场强度计算,必须采用特殊的思想方法。
一、镜像法镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。
例1.〔2005年上海卷4题〕如图1,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心.假设图中a 点处的电场强度为零,根据对称性,带电薄板在图中b 点处产生的电场强度大小和方向如何?(静电力恒量为k)解析:均匀带电薄板在a,b 两对称点处产生的场强大小相等,方向相反,具有对称性。
而带电薄板和点电荷+q 在a 点处的合场强为零,那么E a =2kq d ,方向垂直于薄板向右,故薄板在b 处产生的场强大小为E b =E a =2kq d,方向垂直于薄板向左。
点评:利用镜像法解题的关键是根据题设给定情景,发现其对称性,找到事物之间的联系,恰当地建立物理模型。
二、微元法微元法就是将研究对象分割成假设干微小的的单元,或从研究对象上选取某一“微元〞加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。
例2.如图2所示,均匀带电圆环所带电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面的称轴上的一点,OP =L ,试求P 点的场强。
解析:设想将圆环看成由n个小段组成,当n相当大时,每一小段都可以看作点电荷,其所带电荷量Q′=Q/n,由点电荷场强公式可求得每一小段带电体在P处产生的场强为)(222L R n kQ nr kQ E +== 由对称性知,各小段带电环在P处的场强E,垂直于轴的分量Ey相互抵消,而其轴向分量Ex之和即为带电环在P处的场强EPθcos )(22L R n Q nknE E x P +== 2322)(L R QL k +=点评:严格的说,微分法是利用微积分的思想处理物理问题的一种思想方法,对考生来说有一定的难度,但是在高考题中也时而出现,所以,在复习过程中要进行该方法的思维训练,以适应高考的要求。
高中物理解题思路:电场叠加问题的处理四
![高中物理解题思路:电场叠加问题的处理四](https://img.taocdn.com/s3/m/81be91e7c77da26925c5b0d7.png)
高中物理解题思路:电场叠加问题的处理四直线AB上均匀分布着密度为ρ的正电荷(单位长度的带电量为ρ),P到AB的距离为R,求P点的场强。
分析与解:以P为为圆心做一个与直线AB相切的圆,认为圆弧上也均匀分布着线密度为ρ的正电荷,在AB上任取一微元ΔL(C 点),圆弧上对应一微元ΔL′,令PC=r,则ΔL在P点处的场强为:∴Ei=Ei′由此可见,直线AB上的电荷在P点的场强可由弧MQN进行等效替代,设∠APB=α(由AB的长度可以算出)在弧MQN上任取一小段ΔLi,它在P点产生的电场为:∴∵α=180°题型:力学实验中速度的测量问题题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量。
速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:vt/2=v平均=(v0+v)/2,Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt。
题型:电容器问题题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面。
思维模板:电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关.平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理解题方法指导物理题解常用的两种方法:分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。
这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。
综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。
综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。
实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。
正确解答物理题应遵循一定的步骤第一步:看懂题。
所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。
”要养成这样一个习惯:不懂题,就不要动手解题。
若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。
第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。
第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。
四、电场解题的基本方法本章的主要问题是电场性质的描述和电场对电荷的作用,解题时必须搞清描述电场性质的几个物理量和研究电场的各个规律。
1、如何分析电场中的场强、电势、电场力和电势能(1)先分析所研究的电场是由那些场电荷形成的电场。
(2)搞清电场中各物理量的符号的含义。
(3)正确运用叠加原理(是矢量和还是标量和)。
下面简述各量符号的含义:①电量的正负只表示电性的不同,而不表示电量的大小。
②电场强度和电场力是矢量,应用库仑定律和场强公式时,不要代入电量的符号,通过运算求出大小,方向应另行判定。
(在空间各点场强和电场力的方向不能简单用‘+’、‘-’来表示。
)③电势和电势能都是标量,正负表示大小.用qU =ε进行计算时,可以把它们的符号代入,如U 为正,q 为负,则ε也为负.如U 1>U 2>0,q 为负,则021<<εε。
④ 电场力做功的正负与电荷电势能的增减相对应,W AB 为正(即电场力做正功)时,电荷的电势能减小,B A εε>;W AB 为负时,电荷的电势能增加B A εε<。
所以,应用B A B A AB U U q W εε-)=-(=时可以代人各量的符号,来判定电场力做功的正负。
当然也可以用)-(B A U U q 求功的大小,再由电场力与运动方向来判定功的正负。
但前者可直接求比较简便。
2、如何分析电场中电荷的平衡和运动电荷在电场中的平衡与运动是综合电场;川力学的有关知识习·能解决的综合性问题,对加深有关概念、规律的理解,提高分析,综合问题的能力有很大的作用。
这类问题的分析方法与力学的分析方法相同,解题步骤如下:(1)确定研究对象(某个带电体)。
(2)分析带电体所受的外力。
(3)根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键。
(4)根据物理过程,已知和所求的物理量,选择恰当的力学规律求解。
(5)对所得结果进行讨论。
【例题4】 如图7—3所示,如果H 31 (氚核)和He 24(氦核)垂直电场强度方向进入同—偏转电场,求在下述情况时,它们的横向位移大小的比。
(1)以相同的初速度进入,(2)以相同的初动能进入;(3)以相同的初动量进入;(4)先经过同一加速电场以后再进入。
分析和解带电粒子在电场中所受电场力远远大于所受的重力,所以重力可以忽略。
带电粒子在偏转电场受到电场力的作用,做类似于平抛的运动,在原速度方向作匀速运动,在横向作初速为零的匀加速运动。
利用牛顿第二定律和匀加速运动公式可得22)mqE21at21yvl(==(1)以相同的初速度v0进入电场,因E、l、v0都相同,所以mqy∝323241=⨯⨯==HeHeHHeHHmqmqyy(2)以相同的初动能E k0进入电场,因为E、l、mv2都相同,所以qy∝21==eHHeHqqyyH(3)以相同的初动量p0进入电场,因为E、l、mv0都相同,由qmmvqEmlvlmqEy∝==2222)(221834231=⨯⨯==HeHHHeHHmqmqyy(4)先经过同一加速电场加速后进入电场,在加速电场加速后,粒子的动能1221qUmv=(U1为加速电压)由 12122024421U El qU qEl v l m qE y === 因E 、l 、U 1是相同的,y 的大小与粒子质量、电量无关,所以:11=e H H y y 注意 在求横向位移y 的比值时,应先求出y 的表达式,由题设条件,找出y 与粒子的质量m 、电量q 的比例关系,再列出比式求解,这是求比值的一般方法。
3、如何分析有关平行板电容器的问题在分析这类问题时应当注意(1)平行板电容器在直流电路中是断路,它两板间的电压与它相并联的用电器(或支路)的电压相同。
(2)如将电容器与电源相接、开关闭合时,改变两板距离或两板正对面积时,两板电正不变,极板的带电量发生变化。
如开关断开后,再改变两极距离或两板正对面积时,两极带电量不变,电压将相应改变。
(3)平行板电容器内是匀强电场,可由dUE =求两板间的电场强度,从而进—步讨论,两极板问电荷的叫平衡和运。
4、利用电力线和等势面的特性分析场强和电势电力线和等势面可以形象的描述场强和电势。
电荷周围所画的电力线数正比于电荷所带电量。
电力线的疏密,方向表示电场强度的大小和方向,顺电力线电势降低,等势面垂直电力线等……可以帮助我们去分析场强和电势【例题】 有一球形不带电的空腔导体将一个负电荷—Q 放入空腔中,如图所示。
问:(1)由于静电感应,空腔导体内、外壁各带什么电空腔内、导体内、导体外的电场强度,电势的大小有何特点,电场强度的方向如何(2)如将空腔导体内壁接地;空腔导体内外壁各带什么电空腔内、导体内、导体外的场强,电势有何变比(3)去掉接地线,再将场电荷-Q拿走远离空腔导体后,空腔导体内、外壁各带什么电空腔内、导体内、导体外部的场强、电势又有什么变化分析和解本题利用电力线进行分析比较清楚(1)把负电荷放人空腔中,负电荷周围将产生电场,(画出电力线其方向是指向负电荷)自由电子由低电势到高电势(电子逆电力线运动)发生静电感应,使导体内壁带有电量为Q的正电荷,导体外壁带有电量为Q的负电荷,如图所示。
空腔导体里外电力线数一样多(因电力线数正比于电量)空胶外电力线指向金属导体(电力线止于负电荷)。
越靠近空腔导体场强越大。
导体中无电力线小,电场强度为零,空腔内越靠近负电荷Q电力线越密,电场强度也越大。
顺电力线电势降低,如规定无穷远电势为零,越靠近空腔导体电势越低,导体内部电势相等,空腔内越靠近负电荷Q电势越低。
各处的电势均小于零。
(2)如把空腔导体内壁接地,电子由低电势到高电势,导体上的自由电子将通过接地线进入大地,静电平衡后导体内壁仍带正电,导体外壁不带电。
由于电力线数正比于场电荷,场电荷-Q未变所以空腔内的电力线分布未变,空腔内的电场强度也不变。
导体内部场强仍为零。
由于导体外壁不带电,导体外部无电力线,导体外部场强也变为零。
(要使导体外部空间不受空腔内场电荷的影响,必须把空腔导体接地。
)在静电平衡后,导体与地电势相等都等于零,导体内部空腔中电势仍为负,越靠近场电荷电势越低,各处电势都比导体按地以前高。
(3)如去掉接地线,再把场电荷拿走远离空腔导体时,由于静电感应,导体外表面自由电子向内表面运动.到静电平衡时,导体内表面不带电,外表面带正电,带电量为Q。
这时导体内部和空腔内无电力线,场强都变为零,导体外表面场强垂直导体表面指向导体外,离导体越远,电力线越疏,场强越小。
顺电力线电势减小,无穷远电势为零,越靠近导体电势越高。
导体上和空腔内电势相等,各点电势均大于零。
当导体接地时,导体外表面不带电,也可用电力线进行分析。
如果外表面带负电,就有电力线由无穷远指向导体,导体的电势将小于零,与导体电势为零相矛盾。
如果导体外表面最后带正电,则有电力线由导体外表面指向无穷远,则导体电势将大于零,也与地等电势相矛盾.所以,本题中将导体接地时,导体外表面不再带电。
3、利用等效和类比的方法进行分析当我们研究某一新问题时,如果它和某一学过的问题类似,就可以利用等效和类比的方法进行分析。
【例题】摆球的质量为m,带电量为Q,用摆长为Z的悬线悬挂在场强为E的水平匀强电场中。
求:(1)它在微小摆动时的周期;(2)将悬线偏离竖直位置多大角度时,小球由静止释放,摆到悬线为竖直位置时速度刚好是零。