电气工程概论复习重点
电气工程考研复习攻略重点内容整理
电气工程考研复习攻略重点内容整理前言:电气工程考研是对学生综合能力的一次全面考察,需要广泛掌握电气工程相关的知识和技能。
本文旨在整理电气工程考研复习的重点内容,帮助考生更好地备战考试。
一、电磁场与电磁波电磁场是电气工程中的重要基础内容之一,包括静电场、静磁场以及电磁波等。
重点内容有电场与电荷分布、磁场与磁荷分布、电场与磁场的关系、电磁波的特性等。
考生需要熟悉电场和磁场的计算方法,了解电磁波的传播规律。
二、电路理论电路理论是电气工程的核心内容,重点包括电路的基本定律和定理、电路的稳态与暂态分析、交流电路与三相电路等。
考生需要熟悉欧姆定律、基尔霍夫定律、戴维南定理等电路分析方法,并能够应用于实际电路问题的求解。
三、电力系统电力系统是电气工程的重要组成部分,包括电力的输送与分配、电力设备与工程、电力市场与经济等内容。
重点包括电力系统的拓扑结构与节点分析、电力传输线路与变压器、电力负荷与电能质量等。
考生需要掌握电力系统的基本概念、设计原理和运行调控的相关知识。
四、控制理论控制理论是电气工程中的重要学科,涉及机电一体化、自动化控制、信号处理等方面。
重点内容有控制系统的数学模型与传递函数、控制系统的稳定性与性能分析、PID控制器与调节等。
考生需要掌握控制系统的基本原理和设计方法,理解各类常见的控制算法。
五、电力电子技术电力电子技术是电气工程中的新兴学科,广泛应用于电力系统的调节与控制。
重点包括电力电子器件的原理与特性、电力电子变换器与逆变器、电力电子应用与调试等。
考生需要了解电力电子技术的基本原理和应用技能,掌握电力电子设备的特点与性能分析方法。
六、电气工程材料与绝缘技术电气工程材料与绝缘技术是电气工程中的重要支撑技术,关乎电气设备的安全与可靠性。
重点内容包括绝缘材料与绝缘系统、电气设备与绝缘性能、绝缘材料的应用与试验等。
考生需要了解各类常见的电气工程材料,掌握绝缘技术的基本原理和应用方法。
七、电能转换与利用电能转换与利用是电气工程中的关键环节,包括发电、输电、配电以及电力负荷的终端利用等。
电气工程知识点梳理
电气工程知识点梳理电气工程是一门关于电力的学科,涉及到电力的产生、传输、分配以及应用等方面。
在电气工程领域中,有许多重要的知识点需要掌握。
本文将对电气工程中的一些核心知识点进行梳理和总结。
一、电路基础知识1. 电流和电压:电流是电荷在单位时间内通过导体的量,单位是安培;电压是单位电荷所具有的能量,单位是伏特。
2. 电阻和电导:电阻是导体对电流的阻碍程度,单位是欧姆;电导是导体对电流的导通程度,单位是西门子。
3. 电路定律:包括欧姆定律、基尔霍夫定律和瓦特定律等,用于描述电路中电流、电压和功率之间的关系。
二、电力系统1. 发电系统:包括火力发电、水力发电、核能发电和风力发电等各种发电方式。
2. 输电系统:将发电厂产生的电能通过变压器和输电线路输送到各个用电地点。
3. 配电系统:将输电系统输送过来的高压电能通过变压器降压后分配给各个用户。
4. 电力负荷:指用电设备对电能的需求量,包括工业负荷、商业负荷和居民负荷等。
三、电机与变压器1. 电机:包括直流电机和交流电机,用于将电能转换为机械能。
2. 变压器:用于改变交流电的电压,包括升压变压器和降压变压器。
四、电力设备与保护1. 断路器:用于保护电路免受过载和短路等故障的损害。
2. 隔离开关:用于隔离电路,确保维修和检修的安全。
3. 接地系统:用于将电气设备的金属外壳与地面连接,以保证人身安全。
4. 避雷器:用于保护电气设备免受雷击损害。
五、自动化控制1. 控制系统:包括开环控制和闭环控制,用于实现对电气设备的自动化控制。
2. 传感器与执行器:传感器用于感知环境参数,执行器用于执行控制指令。
3. PLC控制:可编程逻辑控制器,用于实现工业自动化控制。
六、电气安全与维护1. 电气安全:包括电气设备的绝缘检测、接地保护、过载保护等,以确保电气设备的安全运行。
2. 电气维护:包括定期检查、维修和保养等,以保证电气设备的正常运行。
七、能源与环境保护1. 能源管理:包括能源的合理利用和节能措施的实施,以减少能源的消耗。
电气工程概论考试复习重点
第一章绪论(注:由于填空简答没有明确是哪些,所以请各位同学自主选择性背诵)1.电能的特点和电能生产必须满足的要求?答:特点:电能可以大规模生产;电能运输简单,便于大容量、远距离传输和分配;电能方便转换和易于控制;电能代替其他能源可以提高能源利用效率,被称为“节约的能源”。
要求:安全,在电能的生产、传输、分配和使用的过程中,不应发生人身和设备事故;可靠,要保持足够的备用容量和备用能源,以保证电能用户对供电可靠性的要求;优质,保证电能的良好质量,以满足电能用户对电压、频率和波形的质量要求;经济,建设投资要省,尽可能减少能源消耗以及网损等。
2.什么是电力系统?答:由发电厂内的发电机、电力网内的变压器和电力线路以及用户的各种用电设备,按照一定的规律连接而组成的统一整体,称为电力系统。
3.为什么要组建大型电力系统?答:提高供电的可靠性,组成电力系统后由于装机容量大,并列运行机组多,抗干扰能力强,并且大型电力系统在各地区之间互供电能,互为备用,提高供电可靠性;减少系统装机容量,利用地区之间的时间差、季节性,错开高峰负荷用电,削弱系统负荷的尖峰,因而在满足用电高峰负荷条件下,减少系统装机容量;减少系统备用容量,大型电力系统所需备用容量,要比按各个发电厂孤立运行时所需备用容量的总和小的多;采用高效率大容量的发电机组,一个电力系统的最大单机容量受电力系统容量的制约,所以需要使用大型电力系统,拥有足够的备用容量;合理利用能源,充分发挥水电在系统中的作用。
4.电力系统的特点?答:电能不能大量存储;暂态过程十分短暂;地区性特点较强;与国民经济各部门有着极为密切的关系。
5.对电力系统的要求?答:为用户提供充足的电力;保证供电的安全可靠;保证良好的电能质量;提高电力系统运行经济性。
6.电能的质量指标?答:电压、频率、波形。
7.为什么要规定电力系统额定电压?简述发电机、变压器和电力线路的额定电压与电力系统额定电压之间的关系。
《电气工程概论》第一章 电机与电器基础(第1节)课堂笔记及练习题
《电气工程概论》第一章电机与电器基础(第1节)课堂笔记及练习题主题:第一章电机与电器基础(第1节)学习时间:2015年9月28日--10月4日内容:我们这周主要学习绪论以及第一节开关电器的部分内容,主要学习开关电器的技术参数,低压断路器(自动开关)的用途、分类、选择要点,低压控制器的用途、选用。
通过绪论的学习对电气工程概论这门课程有个总体的了解,同时要对低压断路器(自动开关)、低压控制的概念以及技术参数和使用方法重点掌握。
绪论1.电气工程的历史和形成电气工程是研究电磁领域的客观规律及其应用的科学技术,以电工科学中的理论和方法为基础而形成的工程技术。
根据电气工程学科的发展现状,可将其分为相对独立的五个分学科:电力系统及其自动化技术、电机与电器及其控制技术、高电压与绝缘技术、电力电子技术和电工新技术,其结构简图如下:2.电气工程的地位和发展电气工程学科在国家科技体系中具有特殊的重要地位。
1)是国民经济的一些基本工业(能源、电力、电工制造等)所依靠的技术科学;2)是另一些基本工业(交通、铁路、冶金、化工、机械等)必不可少的支持技术;3)是一些高新技术的重要科技组成部分。
3.电气工程的展望1)20世纪中叶以来,以电子信息技术为核心的新技术革命正在兴起,冲击着所有传统科学,包括基础科学、技术科学、综合科学,甚至社会科学等在内的广大领域。
2)有人统计,最近20年中的科技创造和发明超过了过去两千年中创造发明的总和。
3)在技术科学范围内,不少学科都发生了“旧貌换新颖”的变化,电工学科的巨大变化也十分显著。
第一章电机与电器基础第一节开关电器1.1.1概述1.开关电器概述(1)断路器:电力网正常工作和发生故障时关合和开断电路。
(2)隔离开关:将高压设备与电源隔离,以保证检修工作人员的安全。
(3)熔断器:电路发生故障或短路时,依靠熔件的熔断来开断电路。
(4)低压控制电器:接通和分断低压交、直流的控制电路。
其中,高压断路器是电力系统中最重要的高压开关电器,不但要用于关合、开断正常线路工作,更主要是用来在电力系统发生短路故障时自动切断短路电流。
电气工程概论第三章-电力电子
电气工程概论
3.1 功率半导体器件
图3-2示出了各种功率半导体器件的工作范围
电气工程概论
3.1 功率半导体器件
二、大功率二极管
大功率二极管属不可控器件,在不可控整流、电感性负载回路 的续流等场合均得到广泛使用。
(一)大功率二极管的结构 大功率二极管的内部结构是一个具有P型、N型半导体、一个PN 结和阳极A、阴极K的两层两端半导体器件,其符号表示如图33(a)所示。 从外部构成看,也分成管芯和散热器两部分。一般情况下, 200A以下的管芯采用螺旋式(图3-3(b) ),200A以上则采用平板 式(图3-3(c) )。
1. 电压参数
(1)断态重复峰值电压UDRM 取断态不重复峰值电压UDSM的90%定义为断态重复峰值电压UDRM, “重复”表示这个电压可以以每秒50次,每次持续时间不大于 10ms的重复方式施加于元件上。
电气工程概论
3.1 功率半导体器件
(2)反向重复峰值电压URRM
取反向不重复峰值电压URSM的90%为定义为反向重复峰值电压 URRM,这个电压允许重复施加。
电气工程概论
3.1 功率半导体器件
三、晶闸管(SCR)
晶闸管是硅晶体闸流管的简称,其价格低廉、工作可靠,尽管 开关频率较低,但在大功率、低频的电力电子装置中仍占主导 地位。 (一)晶闸管的结构 晶闸管是大功率的半导体器件,从总体结构上看,可区分为管 芯及散热器两大部分,分别如图3-7及图3-8所示。
晶闸管常应用于低频的相控电力电子电路,有时也在高频电力电子电路中 得到应用,如逆变器等。在高频电路应用时,需要严格地考虑晶闸管的开 关特性,即开通特性和关断特性。
(1)开通特性 晶闸管由截止转为导通的过程为开通过程。图3-11给出了
电气工程概论知识点汇总
电气工程概论知识点汇总1,电气工程可分为:电器与电机及其控制技术,电力电子技术,电力系统及其自动化技术,高电压与绝缘技术,电工新技术。
2,开关电器是指用来关合和开断电路的电器。
断路器的作用:主要用在电力网正常工作和发生故障时关合和开断电路。
隔离开关作用:用来将高压设备与电源隔离,以保证检修人员的安全.熔断器作用:用来在电路发生故障或短路时依靠熔件的熔断来开断电路。
低压控制电气:用于接通和分断低压交,直流的控制电路。
3,SF6断路器SF6的作用是灭弧和绝缘介质.高压断路器是电力系统中最重要的高压开关电器,不但要用于关合,开断正常线路工作,更主要用来在电力系统发生短路故障时自动的切断短路电流。
低压断路器主要用于配电线路和电气设备的过载,欠压,失压和短路保护,是低压开关中性能最完善的开关,常在低压大功率电路中作为主控电器。
4,断路器的额定电流是指截流部分和接触部分设计时所根据的电流.熔体的额定电流是指熔体本身所允许通过的最大电流.对同一熔断器来说,通常可分别装入不同额定电流的熔体,最大的熔体额定电流可与熔断器的额定电流相同.5,触头结构经历的三个阶段:圆盘形触头,横向磁场触头,纵向磁场触头。
6,变压器主要由导磁铁心及两个紧密耦合的绕组组成.7,电压互感器的作用:把高电压转换成100V或50V二次电压,供保护、计量、仪表装置使用,对一次设备和二次设备进行隔离。
电流互感器的作用:将很大的一次电流转变为1A或的5A二次电流;为测量装置和继电保护的线圈提供电流;对一次设备和二次设备进行隔离。
8,电流互感器二次绕组不允许开路,二次绕组和外壳必须可靠接地,以防止因绝缘击穿而危害人身安全。
电压互感器二次绕组不允许短路,二次绕组和铁心必须可靠接地,二次负载不易接太多,以免降低负载阻抗,影响测量准确度。
9,并联电容器主要用在交流电系统中进行无功补偿,提高功率因数,降低线路损耗,充分发挥输电设备的效能。
10,电抗器主要用与实现对电力系统和工业用户的限流,无功补偿,移项等功能,对提高电能质量,提高电网运行的可靠性,降低系统故障率具有重要意义。
电气工程考研复习重点总结
第一章电力系统的基本概念、元件参数及等值电路1、电力系统是由生产、输送、分配和消费电能的发电机、变压器、电力线路和电力用户组成的整体。
2、电力网:由变压器、电力线路等变换、输送、分配电能设备所组成的部分。
3、对电力系统的基本要求:(1)保证安全可靠的供电(2)要有合乎要求的电能质量(3)要有良好的经济性(4)尽可能减小对生态环境的有害影响。
保证安全可靠地发、供电是电力系统运行的首要要求。
4、电力系统的接线方式按供电可靠性分为:有备用和无备用。
无备用:每个负荷只能靠一条线路去得电能(单回路放射性、干线式和树状网络)有备用:双回路或双电源供电(环形网络:供电可靠性高,比较经济,但是故障时电能质量差。
)5、负荷分类:a、一级负荷:中断供电后果极为严重,可能危及人身安全,使工业生产造成难以修复的损坏,造成国民经济重大的损失。
采用两个独立电源供电。
b、二级负荷:负荷中断供电造成大量减产,使城市中大量居民的正常活动受到影响。
采用两个电源或双回路供电。
c、三级负荷:不属于第一、二级负荷,停电影响不大的其他负荷,如工厂的附属车间,小城镇和农村的公共负荷。
采用一个电源供电。
6、电力系统的负荷(即电力系统的综合用电负荷):系统中所有电力用户的用电设备所消耗的电功率总和。
电力系统的供电负荷:综合用电负荷加上电力网的功率损耗是个发电厂应该供给的功率,称电力系统的供电负荷。
电力网络损耗:电厂供电负荷与综合用电负荷的差。
网损率=电力网损耗/供电量。
降低网损的技术措施:(1)、提高用户的功率因素,减小线路输送的无功功率。
(2)、改善网络中的功率分布。
(3)、合理地确定电力网的运行电压水平。
(4)、组织变压器的经济运行。
(5)、对原有电网进行技术改造。
(下册P133)7、负荷曲线(包含日负荷曲线和年负荷曲线):负荷随时间的变化。
日负荷曲线作用:安排日发电计划和确定系统运行方式的重要依据。
年负荷曲线作用:安排发电设备的检修计划,同时也为制定发电机组或发电厂的扩建或新建计划提供依据。
电气工程学科概论复习提纲
电气信息概论复习提纲
题型:
填空题,简答题,论述题
第一章:
莱顿蓄电瓶,避雷针,库仑定律,电流的发现,伏打电池,奥斯特电流的磁效应,安培定律,欧姆定律,电磁感应定律。
第二章:
电动机的原理,电动机也叫驱动装置,发电机,实用发电机,交流发电机和交流电动机;交流发电机和远距离输电;电力系统的优越性;电磁学理论;电子管有线通信;无线通信;现代计算机的结构及逻辑基础;控制的基本原理;经典控制理论与现代控制理论的数学模型
第三章:
电类专业的划分;两大电类专业的具体分科;动力领域的电类专业,信息领域的电类专业;
第三章:
专业定位;。
电气工程基础整理的知识点大全
1、直流输电优点优点:与交流输电相比,直流输电具有稳定性好,控制灵活等优点,特别适合于跨海输电、大区域电网互联、远距离输电及风力发电等非工频系统与工频系统的联网。
在输电线路导线截面相等、对地绝缘水平相同的条件下,双极直流输电的线路造价及功率损耗均比三相交流输电要少,约为其2/3。
直流输电的缺点:1.由于触发角和逆变角的存在,不论换流装置是工作于整流状态还是逆变状态,其交流侧的电流相位总会滞后于电压相位,因此换流装置在运行中要消耗大量无功功率。
正常运行时,整流侧所需的无功功率为直流功率的30%-50%,逆变侧为40%-60%,所以必须进行无功功率补偿。
2.换流装置在运行中会同时在换流站的交流侧和直流侧产生谐波电压和谐波电流,为了抑制谐波,在交流侧和直流侧都需要装设滤波装置,在直流侧还需装设平波电抗器。
3.由于换流装置要用大量容量大,电压高的可控硅阀器件,换流站的造价较高,部分抵消了因线路投资低而带来的经济效益。
4.直流高压断路器不能利用电流过零的条件来熄弧,其制造困难,限制了直流输电向多端直流电网的发展。
2、潜供电流的定义在超高压线路运行中,时常会发生因雷击闪络等原因所产生的单相电弧接地故障。
在具有单相重合闸的线路中,当故障相被切除后,通过健全相对故障相的静电和电磁耦合,在接地电弧通道中仍将流过不大的感应电流,称为潜供电流或二次电流。
3灵活交流输电系统:以大功率可控硅部件组成的电子开关代替现有的机械开关,灵活自如地调节电网电压、功角和线路参数。
使电力系统变得更加灵活、可控、安全可靠。
从而能在不改变现有电网结构的情况下提高系统的输送能力,增加其稳定性 。
FACTS 控制设备接入电力系统的方式:并联型:静止无功补偿器SVC 静止同步调相器STATCOM串联型:可控串联补偿器TCSC 混合型:统一潮流控制器UPFC4名词解释:1、输电线路的耐雷水平:在线路防雷设计中把线路绝缘不发生闪络的最大雷电流幅值叫耐雷水平。
电气工程概论复习资料
电气工程概论复习资料第二章电机电器及其控制技术1.电机的作用:电能的生产传输和分配,驱动各种机械和装备,控制电机。
2.电机的发展历史:初始阶段为永磁式发电机,实用度不高,1845年惠斯通用电磁铁职称第一台电磁铁发电机,1866年西门子制成第一台自激式发电机,自激原理的发现是永磁式发电机想励磁式发电机发展的关键,1870年格拉姆支撑了环形电枢自激发电机,之后出现了铁芯开槽法,1880爱迪生制造了大型直流发电机,1885研制出两相异步电动机,1888年第一台三相交流异步电动机诞生。
3.随着电工科学,材料科学,计算机科学及控制技术的发展,电机的发展又进入了新的阶段。
特别是电力电力,微机控制技术,永磁材料和超导材料的发展,给电机的发展注入了新的活力。
4.电机的分类,可按照应用的电流种类,功能分类,运行速度,功率分类,不乏有特种电机。
5.同步电机中发电机应用较多,异步电机中电动机拖动应用更多6.异步电机的工作原理和异步的含义:定子绕组接三相对称交流电,在气隙中建立基波圆形旋转磁动势,从而产生旋转磁场;气隙磁场与转子绕组有相对运动,切割转子绕组,产生电动势,转子带电;带电转子在变化磁场中受到电磁力的作用,从而产生电磁转矩。
转子便在电磁转矩的作用下旋转起来。
电机转速与旋转磁场不可能同步,始终存在转差率,因此称为异步电动机;异步电动机转子电流是通过电磁感应作用产生的,所以又称为感应电动机。
7.同步电机选取:转子强度和固定转子绕组考虑,用隐极同步电机(气隙均匀,转子圆柱形),当转子速度和离心力较小时,采用凸极同步电机(不均匀,极弧范围气隙小,极间部分气隙大)。
8.永磁无刷电动机分为方波驱动和正弦波驱动,随着稀土永磁材料技术,电力电子技术,计算机控制技术,和微电机制造工艺的提升,使得该电机发展及性能不断提高。
9.对起动、调速及制动没有特殊要求时(水泵、通风机、输送机、传送带),选用笼型电机;对重载起动的机械(起重机、卷扬机、锻压机及重型机械),选用绕线转子电机。
电气工程概论复习总结
电⽓⼯程概论复习总结课程名称:电⽓⼯程学科概论电学的起源:掌握电学发展历程中的六件重要事件⼀、摩擦起电公元前585年,泰利斯发现摩擦起电(电=磁)1600年,吉尔伯特指出电磁之间差别,并定义“电体”与“⾮电体”(电≠磁)1660年,葛利克制成摩擦起电机并观察到带电体的放电现象1709年,霍克斯贝改进摩擦起电机⼆、莱顿蓄电瓶的发明1745年,荷兰莱顿居民卡那阿斯发现盛⽔的⼤玻璃瓶能蓄电。
⼤学教授马森布罗克做实验证实——莱顿蓄电瓶出现。
法国科学家诺莱特等⼈改进莱顿蓄电瓶。
莱顿瓶的实质——电容器。
三、征服雷电1752年7⽉,富兰克林进⾏风筝实验——揭⽰闪电本质1753年,富兰克林发明避雷针——雷电被征服富兰克林利⽤天电充电进⾏⼤量实验,解释物体带电原因,并提出电荷概念四、电流的发现18世纪70年代,卡⽂迪什提出电荷⼒与电荷间的距离的平⽅成反⽐,并提出静电电容、电容率、电势等概念。
1785年,库仑提出库仑定律,并做实验证明——电学进⼊定量计算和精密测量阶段1780年,伽伐尼发现电流——电学从静电研究到电流研究1800年,伏打发明伏打电池五、电产⽣磁1820年4⽉,奥斯特发现电流的磁现象1820年底,安培提出安培定律,规定电流⽅向,并提出分⼦电流假说1826年,欧姆提出欧姆定律六、转磁为电在经历的⽆数次失败后,法拉第终于在1831年11⽉提出电磁感应定律。
⾃此,⼈们打开电⼒世界的⼤门,⼤规模的实际应⽤成为可能。
此后,法拉第还发现⾃感现象,提出场和⼒线的概念,预⾔电磁波的存在……电⽓化世界建⽴的基础标志:转磁为电成功七、拉开电⽓化世界的帷幕1878年,莫尔建⽴起第⼀条有线电报线——揭开近代通信的序幕1879年,爱迪⽣创造⽩炽灯成功——世界开始享受光明1895年,马可尼实现了⽆线电通信——揭开⽆线电通信的帷幕1928年,兹沃⾥⾦研制电⼦显像管成功——电视成为⼤众娱乐中⼼和传播媒介1945年,莫克莱研制计算机成功。
电气工程概论重点
电气工程概论重点第一章绪论电能(de)基本要求:1.安全 2.可靠 3.优质 4.经济能量(de)形式:机械能,热能,化学能,辐射能,电能和核能能量(de)转换:形态,空间(输送),时间(储存)电力系统(de)基本概念:由发电机、电力网内(de)变压器和电力线路以及用户(de)各种用电设备,按照一定(de)规律连接而组成(de)统一整体,称为电力系统.电力系统(de)特点:1.电能不能大量存储 2.暂态过程十分短暂 3.地区性特点较强 4.与国民经济各部门有着极为密切(de)关系.对电力系统(de)要求:1.为用户提供充足(de)电力 2.保证供电(de)安全可靠 3.保证良好(de)电能质量4.提高电力系统运行经济性大型电力系统(de)优势:1提高供电(de)可靠性,2减少系统装机量,3减少系统备用容量,4采用高效率大容量发电机组,5合理利用能源,充分发挥水电在系统中(de)作用电能质量(de)主要指标有电压、频率和波形.为什么要规定电力系统额定电压为了使电力系统和电气设备制造厂(de)生产标准化、系列化和统一化,电力系统(de)电压等级应有统一(de)标准.发电机,变压器和电力线路(de)额定电压与电力系统(de)额定电压(de)关系:发电机(de)容量一般比电力系统高5%,升压变压器(de)一次绕组(de)额定电压比电力系统高5%,二次高10%,降压器一次与电力系统相同,二次绕组高10%,电力线路和电力系统额定电压相同电力系统电压等级特点: 1.发电机(de)额定电压较电力系统(de)额定电压高出5%.2.电力变压器(de)一次绕组是接受电能(de),相当于受电设备,其一次绕组(de)额定电压应等于电力系统(de)额定电压,对于直接和发电机连接(de)升压变压器(de)一次绕组额定电压应等于发电机(de)额定电压,使之相互配合.3.电力变压器(de)二次绕组是提供电能(de),相当于供电设备,其二次绕组(de)额定电压较电力系统额定电压高出10%.但在3、6、10kV电压时,如短路阻抗小于%(de)配电变压器,则其二次绕组(de)额定电压比同级电网(de)额定电压高出5%.第二章电气设备(de)原理与功能变压器:利用电磁感应原理吧一种电压等级(de)交流电转换成相同频率(de)另一电压等级(de)交流电能. 采用高压输电能减少线路损耗变压器分类:油浸式,干式以及水冷式变压器额定值:1额定容量,2额定电压3额定电流4阻抗电压5短路损耗6空载损耗7空载电流百分值8链接组号变压器(de)过负荷能力:指在较短(de)时间累所能输出(de)功率,在一定条件下,可以超出变压器(de)额定容量发电站和变电站(de)主要作用:生产,输送和分配电能;根据电力系统要求投切线路;见识主要设备(de)工作状态;队主要设备进行定期(de)检修和维护;迅速消除故障,尽量减小故障(de)影同步发电机(de)非正常状态:过负荷运行,异步运行,不对称运行发电机励磁系统(de)基本要求:1有足够(de)强励顶值电压,2具有足够(de)励磁电压上升速度3有足够(de)调节容量,4应运行稳定,工作可靠,相应快速,调节平滑,具有足够(de)电压调节精度转差率:转差率为转子转速n 与同步转速0n 之差(0n -n )对同步转速0n (de)比值,以s 表示,则s=(0n -n )/0n异步电机三种运行状态:1. 电动机状态 当0<n<0n 即0<s<1时2. 发电机状态 n>0n ,s<03. 电磁制动状态 n<0,s>14. 最大转矩Tm=k ’U^2/2X 20三相异步电动机(de)启动方式:全压启动,降压启动,绕线型电机(de)启动 断路器(de)基本技术数据(断路器是开关电器)1. 额定电压N U . 额定电压是指断路器长期工作(de)标准电压(线电压).它决定着断路器(de)绝缘尺寸,也决定断路器(de)熄弧条件.断路器可以在~倍(de)系统额定电压下正常工作.2. 额定电流N I 额定电流是指断路器长时间允许通过(de)最大工作电流.额定电流决定着断路器(de)导电回路(de)几何尺寸.3. 额定开断电流Nbr I 额定开断电流是指断路器在额定电压下能保证正常开断(de)最大短路电流.该电流是断路器开断能力(de)一个重要参数.开断电流和电压有关,在低于额定电压时,断路器开断电流可以提高,但由于灭弧装置机械强度(de)限制,开断电流有一极限值,该极限值称为极限开断电流.4. 短路关合电流NCl I 在额定电压下,能可靠关合、开断(de)最大短路电流称为额定关合电流,它是表征断路器灭弧能力、触头和操动机构性能(de)重要参数之一.断路器合闸于有潜伏性故障(de)线路时,就要经历一个先合后跳(de)操作循环,此时只有断路器(de)额定关合电流大于冲击电流,才能可靠地开断. 5. 热稳定电流th I 表示断路器承受短路电流热效应(de)能力.我国规定4s 内所能承受(de)热稳定电流为额定热稳定电流.通常断路器(de)热稳定电流等于它(de)额定开断电流.6. 动稳定电流es i 动稳定电流亦称为极限通过电流,是指断路器承受短路电流电动力效应(de)能力.即指断路器处在合闸位置时,允许通过(de)短路电流最大峰值.动稳定电流决定于导电部分及支持绝缘子部分(de)机械强度,并决定于触头(de)结构形式.7. 全开断(分闸)时间ab t 全开断时间是指断路器从接到分闸命令瞬间到电弧完全熄灭为止(de)时间间隔.全开断时间是用来表征断路器开断过程快慢(de)一种参数.该参数是断路器固有分闸时间与燃弧时间之和.8. 合闸时间on t 合闸时间是指断路器从接到合闸命令瞬间到各相(de)触点均接触为止(de)时间间隔.9. 额定断流容量Nbr S 断流容量综合反映断路器(de)开断能力,与额定电压和额定开断电流两个因素有关,Nbr S =3N U Nbr I互感器 互感器(de)主要作用是:把高电压和大电流按比例地换成低电压(100V 或100/3V )和小电流(5A 或1A ),以便提供测量和继电保护所需(de)信号,并使测量仪表和继电保护装置标准化、小型化;把高电压(一次)部分与低电压(二次)部分相互隔离,且互感器二次侧均接地,以保证运行人员和设备(de)安全. 互感器(de)分类及作用是什么互感器二次侧为何必须接地互感器分为电压互感器,电流互感器和新型互感器,(作用同上)互感器二次侧均接地,以保证运行人员和设备(de)安全.电流互感器在运行中,为什么二次绕组不允许开路当电流互感器二次绕组开路时,2•I =0,则二次侧磁动势2•F =0,而使一次侧磁动势1•F 全部用来励磁,即0•F =1•F ,从而使铁心中(de)合成磁动势较正常情况下增大很多倍,并使铁心严重饱和.铁心中磁通(de)变化d φ/dt 成正比,因此,二次绕组将在磁通过零时,感应产生很高(de)尖顶波电动势,其值可达数千甚至上万伏,这对工作人员及仪表、继电器等都是极其危险(de).同时由于磁感应强度剧增,铁心损耗大大增加,铁心会产生严重过热,损坏线圈(de)边缘.此外铁心中还会有剩磁,使互感器误差增大.因此,电流互感器在运行中,二次回路是不允许开路(de).若需断开某个仪表和继电器,必须先将该仪表或继电器绕组短路后,才能断开仪表和继电器.第三章电气设备(de)分类与系统一次设备:生产,输送,分配和使用电能(de)设备二次设备:一次设备和系统(de)运行状态进行测量,控制,监视和保护(de)设备 电力系统分为:发电系统,输变电系统,配电系统,用电系统2、火电厂(de)生产流程及特点火电厂(de)种类虽很多,但从能量转换(de)观点分析,其生产过程却是基本相同(de),概括地说是把燃料(煤)中含有(de)化学能转变为电能(de)过程.整个生产过程可分为三个阶段:① 燃料(de)化学能在锅炉中转变为热能,加热锅炉中(de)水使之变为蒸汽,称为燃烧系统;② 锅炉产生(de)蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;③由汽轮机旋转(de)机械能带动发电机发电,把机械能变为电能,称为电气系统.分类标准:按燃料,按原动机,按供出能源,按发电厂总装机容量,按蒸汽压力和温度,按供电范围特点:1布局灵活.2一次性投建设资少3耗煤量大4动力设备繁多5大型发电机组有停机到开机并带满负荷时间久6各种排放物污染大3水力发电:生产过程,从河流高处火水库内引水,利用水(de)压力或流速冲动水轮机旋转,将水能转变成机械能,然后由水轮机带动发电机旋转,将机械能转变成电能.特点:能量转换过程中损耗小,发电效率高分类:堤坝式水电厂,引水式发电厂和混合式水电厂特点:1水能是再生能源2可综合利用3发电成本低,效率高4运行灵活5可储蓄可调节6建设和生产受自然环境影响7建设投资大,工期长4抽水蓄能电厂工作原理抽水蓄电厂是以一定水量作为能量载体,通过能量转换向电力系统提供电能.为此,其上、下游均需有水库以容蓄能量转换所需要(de)水量.在抽水蓄能电厂中,必须兼备抽水和发电两类设施.在电力负荷低谷时(或丰水时期),利用电力系统(de)富余电能(或季节性电能),将下游水库中(de)水抽到上游水库,以位能形式储存起来;待到电力系统负荷高峰时(或枯水时期),再将上游水库中(de)水放下,驱动水轮发电机组发电,并送往电力系统,这时,用以发电(de)水又回到下游水库.显而易见,抽水蓄能电厂既是一个吸收低谷电能(de)电力用户(抽水工况),又是一个提供峰荷电力(de)发电厂在电力系统中作用:调峰,填谷,备用,调频,调相,黑启动,蓄能第二节输变电系统输变电系统组成:变换电压(de)设备,接通和开断电路(de)开关电器,防御过电压,限制故障电流(de)电器,无功补偿设备,载流导体,接地装置功能:将发电厂生产(de)电能经过输变电系统配给给配电系统和用户电气主接线形式:有汇流母线和无汇流母线,有汇流母线(de)形式有单母线,单母线分段,单母线分段带旁路母线,双母线,双母线分段,双母线带旁路母线和一台半断路器接线.无汇流母线形式有单元接线,桥式接线和角形接线.双母线带旁路断路器(de)电器主接线形式检修某一出线时,不中断回路步骤:w2,w1正常供电,接通旁路断路器QF2旁边(de)母线隔离开关和和旁路母线隔离开关,再闭合QF2,是旁路母线W3带点,若W3故障则由几点保护装置断开QF2,若W3正常,闭合QS4,断开QF4,再断开QF4两端隔离开关,此时即可不中断回路供电检修高压直流输电系统就是将送端系统(de)高压交流电,经换流变压器变压,由换流器将高压交流转换成高压直流,通过直流输电线路输送到另一端换流站,再由换流器将高压直流转换成高压交流,然后经过换流变压器与受端交流电网相连,将电能送至受端系统.通常将交流转换成直流称为整流,实现整流功能(de)装置称为整流器;将直流转换成交流称为逆变,实现逆变功能(de)装置称为逆变器.整流器和逆变器统称为换流器.配电系统组成及作用:配电系统处于电力系统末端,把发电系统或输变电系统与用户连接起来,向用户分配电能和供给电能(de)重要环节,组成包括配电变电站,高低压配电线路和接户线在内(de)整个配电网和设备常用(de)几个重要指标1.供电可靠率 供电可靠率=1—(统计期间总时间用户平均停电时间)×100% 2.网损率 网损率=总供电量电力网电能损耗量×100% 3.电压合格率 电压合格率是指电力系统某点电压在统计时间内电压合格(de)时间占总时间(de)百分比.电压合格率有日电压合格率、月电压合格率和年电压合格率之分.电压系统负荷 按供电(de)可靠性划分一类负荷(亦称一级负荷)二类负荷(亦称二级负荷)三类负荷(亦称三级负荷)负荷曲线:描述某一段时间内用电负荷(de)大小随时间变化规律(de)曲线 日负荷曲线是描述一天24h 负荷变化情况(de)曲线,分为日有功负荷曲线和日无功负荷曲线.日负荷曲线对电力系统(de)规划设计和运行十分有用,它是安排日发电计划、确定各发电厂发电任务和系统运行方式以及计算用户日用电量等(de)重要依据.年负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线,分为年最大负荷曲线和年持续负荷曲线.年最大负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线.年持续负荷曲线是按一年内系统负荷数值(de)大小及其持续小时数依次由大到小排列绘制而成(de)曲线.这种曲线可用来安排发电计划及进行可靠性估计.如果用户始终保持最大负荷P m ax 运行,经过T m ax 时间后所消耗(de)电能恰好等于全年(de)实际耗电量,则称T m ax 为年最大负荷利用小时数,即T m ax =m ax P A =m ax 1P 87600Pdt 年最大负荷利用小时数(de)大小,在一定程度上反映了实际负荷在一年内(de)变化程度.消弧线圈(de)作用及其使用范围:当发生单相接地故障时,接地故障与消弧线圈构成另一个回路,接地故障相接地电流中增加了一个感性电流,和装设消弧线圈前(de)容性电流方向相反,相互补偿较少了接地故障点(de)故障电流,使电弧易于自行熄灭,从而避免引起各种危害,提高了供电可靠性,范围:3-6kv 电力网30A,10kv 电力网20A,35-60kv 电力网10A消弧线圈一般运行在过补偿状态原因:在过补偿方式下,即使电力网运行方式改变,也不会发展成为全补偿方式,致使电力网发生谐振,同事,由于消弧线圈有一定(de)裕度,今后电力网发展线路增多,对地电容增加后,原有消弧线圈还可以继续使用.第四章 设备工作接地与保护接地第一节 概述工作接地 为了保证电气设备在正常或发生故障情况下可靠工作而采取(de)接地.工作接地一般都是通过电气设备(de)中性点来实现(de),所以又称为电力系统中性点接地.保护接地为了保证工作人员接触时(de)人身安全,将一切正常工作时不带电而在绝缘损坏时可能带电(de)金属部分接地,称为保护接地.保护接零在中性点直接接地(de)低压电力网中,把电气设备(de)外壳与接地中性线(也称零线)直接连接,以实现对人身安全(de)保护作用,称为保护接零(或简称接零).防雷接地为了防止雷击和过电压对电气设备及人身造成危害,必须将强大(de)雷电流安全导入大地,以此为目(de)(de)接地称为防雷接地,也称过电压保护接地.防静电接地为消除生产过程中产生(de)静电积累引起触电或爆炸而设置(de)接地称为防静电接地.第二节工作接地(中性点接地)我国电力系统(de)中性点接地方式主要有四种,即中性点不接地(中性点绝缘)、经消弧线圈接地、中性点直接接地和经电阻接地.根据电力系统中发生单相接地故障时接地故障电流(de)大小,可将中性点接地(de)方式分为两类:一类是小电流接地系统,包括中性点不接地和经消弧线圈接地;另一类为大电流接地系统,包括中性点直接接地和经电阻接地.电力系统中性点经消弧线圈接地时,有三种补偿方式,即全补偿方式、欠补偿方式和过补偿方式.①若选择消弧线圈(de)电感时,使得I L=I C,则接地电容电流将全部被补偿,接地故障点电流为零,此即全补偿方式.采用全补偿方式使接地电流为零似乎很理想,但实际上此时容抗等级感抗,系统会发生串联谐振,产生很大(de)谐振电流,并在消弧线圈(de)阻抗上形成很高(de)电压降,使中性点(de)对地电位大为升高,可能会损坏设备(de)绝缘.②若I L<I C,则接地故障点有未被补偿(de)电容电流流过,这种补偿方式称为欠补偿方式.采用欠补偿方式时,当电力网运行方式改变而切除部分线路时,整个电力网对地电容抗将减小,有可能发展为全补偿方式,导致电力网发生谐振,危及系统安全运行;此外,欠补偿方式容易引起铁磁谐振过电压等其他问题,所以很少被采用.③若I L>I C,则接地故障点有剩余(de)电感电流流过,这种补偿方式称为过补偿方式.在过补偿方式下,即使电力网运行方式改变而切除部分线路时,也不会发展成为全补偿方式,致使电力网发送谐振.同时,由于消弧线圈有一点(de)裕度,今后电力网发展,线路增多、对地电容增加后,原有消弧线圈还可以继续使用.因此,实际上大多采用过补偿方式.保护接地与接零方式混用(de)危害及中性线重复接地(de)必要性如果同时采用了接地和接零两种保护方式,若实行保护接地(de)设备发生故障,则中性线(de)对地低呀压将会升高到电源相电压(de)一半或更高.这时,实行保护接零(de)所有设备上,便会带有统样(de)高电位,使设备外壳等金属部分将呈现较高(de)对地电压,从而危及操作人员(de)安全.所以同一低压配电系统内,保护接地与保护接零这两种不同(de)方式一定不能混用.在中性点直接接地(de)低压配电系统中,为确保接零保护方式(de)安全可靠,防止中性线断线所造成(de)危害,系统中除了工作接地外,还必须在整个中性线(de)其他部位再行接地,称之为重复接地.当中性点直接接地(de)低压配电系统实行重复接地后,可保证在万一出现中性线断线(de)情况下,配电系统(de)保护方式可以从保护接零(de)TN方式转化为保护接地(de)TT方式,从而减轻触点(de)危险程度.保护接地方式及其作用:1 IT接地,通过降低接地电阻Re以及限制设备外壳接地电压Ue(de)值 2 TT接地通过接地电流使回路(de)过电流装置动作而切断故障电路3TN 接地一般情况下使熔断器熔断或自动开关跳闸,从而切断电源保障人生安全.一台半断路器接线单元接线双母线带旁路母线接线 QF2—专用旁路断路器;QS1、QS2—旁路隔离开关;W3—旁路母线第五章 电压、功率及电能损耗(de)计算工程上常用(de)几个计算量1. 电压降落 指网络元件首、末端电压(de)相量差(1•U —2•U )2. 电压损耗 指网络元件首、末端电压(de)数值差(1U —2U ) 电压损耗=N U U U 21-×100% 3. 电压偏移 指网络中某点(de)实际电压值与网络额定电压(de)数值差(N U U -)电压偏移常以百分比值表示,即 电压偏移=NN U U U -×100% 4. 输电效率 指线路末端输出(de)有功功率2P 与线路首端输入(de)有功功率1P (de)比值,常以百分值表示,即 输电效率=%10012⨯P P 中枢点是指那些反映系统电压水平(de)主要发电厂或枢纽变电站(de)母线,系统中大部分负荷由这些节点供电.1. 逆调压 高峰负荷时升高电压(N U )、低谷负荷时降低电压(N U )(de)中枢点电压调整方式,称为逆调压.这种方式适用于中枢点供电线路长,负荷变化范围较大(de)场合.2. 顺调压 高峰负荷时允许中枢点电压略低(N U )、低谷负荷时允许中枢点电压略高(U).N3.常调压在任何负荷下都保持中枢点电压为基本不变(de)数值,取(~)UN第六章短路故障分析与计算短路所谓“短路”就是电力系统中一切不正常(de)相与相之间或相与地之间发生通路(de)情况.短路(de)四种类型三相短路、两相短路、单相接地短路、两相接地短路有名值(任意单位)标幺值标幺值=位)基准值(与有名值同单序阻抗:元件三相参数对称时,元件两端某一序(de)电压降与通过该元件同一序电流(de)比值.。
电气工程概论
电能质量主要(zhǔyào)指标的影响因素、主 要(zhǔyào)危害以及可采用的解决方法见表 1-5。
2022/1/8
19
第十九页,共77页。
3.提高电力系统(diàn lì xì tǒnɡ)运行的经济 性
(1)在发电环节,要综合各类发电厂的运行 特点,合理安排其发电顺序,实现电源的优化 组合。
第十三页,共77页。
2.保证良好的电能质量 衡量电能质量的主要指标有电压、波形和频率。 (1)电压 电压质量一般用电压偏差、电压波动和闪变以及三
相电压不平衡度三个指标来衡量。
(1-1)
U % U U N 100% UN
式中:△U% 为电压偏差;U电网某点的实际运行 (yùnxíng)电压;UN 为额定电压。
2022/1/8
26
第二十六页,共77页。
变压器二次绕组的额定电压,是指变压器空载情况下的 额定电压。
变压器带负载运行时,其一,二次绕组均有电压降,如按 变压器满载时一、二次绕组压降为5%考虑,为使满载 时二次绕组端电压仍高出电力网额定电压5%,用于补 偿线路的电压降,则必须(bìxū)选变压器二次绕组的额定 电压比电力网额定电压高出10%。
我国规定的用户受电端的电压偏差见表1-2。
2022/1/8
14
第十四页,共77页。
表1-2 用户供电电压(diànyā)允许变化范 围
2022/1/8
15
第十五页,共77页。
电压波动是指电压在系统中作快速、短时的变 化,变化更为剧烈的电压波动称为(chēnɡ wéi) 闪变。
电压波动一般用电网某点电压最大值与最 小值之差对电网额定电压的百分比表示,即
2022/1/8
30
第三十页,共77页。
电气工程概论复习资料
电气工程学科(专业代码0806) first-grade discipline(Electrical Engineering——The branch of engineering science that studies the uses of electricity and the equipment for power generation and distribution and the control of machines and communication). 它是工程科学的一个分支,主要研究电气系统的应用和发配电设备与机械的控制及通信。
包含的二级学科:>>Motor & Electric Appliances 电机与电器>>Power System Automation 电力系统及其自动化>>High Voltage and Insulation Technology 高电压与绝缘技术>>Power Electronics and Electrical Drives 电力电子与电力传动>>Theory and New Technology of Electrical Engineering 电工理论与新技术1、MATLAB是美国Mathwork公司自1984年开始推出的一种使用简便的工程计算语言,由于其强大的数值运算能力和开放灵活的应用界面而在科学技术和工程应用的各个领域得到广泛的应用.其数学计算部分提供了强大的矩阵处理和绘图功能。
在工程仿真方面,MATLAB提供的软件几乎支持各个工程领域。
2、微机版本的SPICE称为PSpice,国外许多大学课程和电路及电子学方面的大学教科书均编入了基于PSpice的例子和练习,熟悉PSpice有利于在电力电子学课程中学习。
3、EMTP (Electro-Magnetic Transient Program) 是用于电力系统电磁暂态分析的仿真软件,是电力系统中高电压等级的电力网络和电力电子仿真应用最广泛的程序。
电气工程概论 熊信银重点概念总结
1.大型电力系统能带来那些技术经济效益:①提高供电的可靠性②减少系统装机容量③减少系统备用容量④采用高效率大容量的发电机组⑤合理利用资源,充分发挥水电在系统中的作用。
2.⑴电力系统的主要特点:①电能不能大量储存②暂态过程十分短暂③地区性特点较强④与国民经济密切相关。
⑵对电力系统的要求:①为用户提供充足的电力②保证供电的安全可靠③保证良好的电能质量④提高电力系统运行经济性3.简述衡量电能质量的主要指标,并举例说明其重要性。
①电压:电热装置消耗的功率与电压的平方成正比,过高的电压将损坏设备,过低的电压则达不到所需要的温度。
②频率:频率降低将使电动机的转速下降,影响生产效率和电机的寿命;频率增高会使转速上升,增加功率消耗,使经济性降低。
③波形:影响电机的正常运行和效率,危害电气设备的安全运行,例如谐波放大或谐振过电压烧坏变电站中无功补偿电容器。
4.为什么要规定电力系统额定电压?简述发电机变压器和电力线路的额定电压与电力系统额定电压之间的关系。
①对一个国家来说不可能建设一条输电线路就确定一个电压等级,这样会造成设备通用性差,备用设备增加,网络连接和管理都困难。
因此为了使电力系统和电气设备制造厂的生产标准化系列化和统一化,电力系统的电压等级应有统一的标准。
②发电机比系统额定电压高5%。
变压器一次绕组和系统额定电压相等,二次绕组比系统额定电压高10%。
电力线路的额定电压和系统额定电压相等。
5.①互感器的分类:电压互感器和电流互感器。
②原理:电磁感应原理③作用:电压互感器是一种电压变换装置,有电压变换和隔离两重作用,它将高电压转变为低电压(一般为100V),供给仪表和继电保护装置实现测量、计量、保护等作用。
电流互感器是一种电流变换装置,有电流变换和隔离两重作用,它将大电流转变为低压小电流(一般为5A),供给仪表和继电保护装置实现测量、计量、保护等作用。
④使用注意事项:电流互感器工作时二次侧不能开路,电压互感器工作时二次侧不能短路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气工程概论复习重点第一章绪论电气工程专业代码:0806在研究生学科专业目录中,电气工程包含的5个二级学科:电气工程是工学门类中的一个一级学科,包含电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论新技术等5个二级学科。
电气工程的英文:Electrical Engineering电气工程的定义:The branch of engineering science that studies the uses of electricity and the equipment for power generation and distribution and the control of machinesand communication.工程科学的一个分支,研究电气的应用和发配电设备与机械的控制以及通信。
电气科学与工程学科分类:电机电器学:普通电机的启动、运行、控制新型电机、微特电机高低压电器PLC电力系统:新型输配电系统电力系统运行与优化电能质量(电压质量和电流质量)电工材料学:导电材料及其特性磁性材料及其特性电工半导体高电压与绝缘:高电压的生成与控制过电压及其防护电力电子学:电力电子元器件及集成电力电子变流技术电力电子控制技术新能源与新发电技术:可再生能源发电节电新技术电能储存新技术分布式电源系统与独立电力系统电气工程师:应掌握电工理论、电子技术、自动控制理论、信息处理、计算机及其控制、网络通信等宽广领域的工程技术基础和专业知识。
1马力(horsepower)=735.49875W电气工程常用计算机程序:MATLAB:广泛应用于电气工程领域,也可用于控制系统和信号处理。
PSpice:更趋向于实际应用,应用面广、易于掌握、有大量的可用器件模型库。
EMTP:用于电力系统电磁暂态分析。
第二章电机电器及其控制技术电机的原理:电机是以电磁刚硬现象为基础实现机械能与电能之间的转换以及变换电能的机械,包括旋转电机和变压器两大类。
电机的主要作用:1、电能的生产、传输和分配2、驱动各种生产机械和装备3、作为各种控制系统和自动化、智能化装置的重要元件电机的分类:电机是进行机电能量转换或信号转换的点刺激些装置的总称。
所应用的电流种类:直流电机和交流电机。
在应用中的功能:将机械功率转换为电功率——发电机;将电功率转换为机械功率——电动机;将电功率转换为另一种形式的电功率——输出和输入有不同的电压——变压器;输出与输入有不同的波形——变流机;输出与输入有不同的频率——变频机;输出与输入有不同的相位——移相机;在机电系统中起调节、放大和控制作用——控制电机。
运行速度:静止设备——变压器;没有固定的同步速度——直流电机;转子速度永远与同步速度有差异——异步电机;速度等于同步速度——同步电机;速度可以在宽广范围内随意调节——交流换向器电机。
功率大小:大型电机、中小型电机和微型电机。
发电机:将机械能转变为电能的机械。
大型发电机主要是同步发电机。
隐极同步电机:转子周围线速度极高,细长的圆柱体转子,结构与加工工艺较复杂,用于火力发电;凸极同步电机:极数多、直径大、轴向长度短、转速较低、结构与加工工艺较简单,用于水力发电。
电动机:在生产上用的电动机主要是三相感应电动机,结构简单、成本低廉、坚固耐用。
变压器(transformer):将一种电压的电能变换为另一种电压的电能的装置。
特种电机:永磁无刷电机:永磁无刷电动机分为两类:Brushless DC Motor(BLDCM)和Permanent Magnet Synchronous Motor(PMSM)。
使用位置传感器及功率电子开关代替传统直流电动机中的电刷和换向器,是一种集永磁电动机、电力电子技术、微机技术和现代控制技术为一体的装置。
位置传感器是无刷电机的重要部件;无刷直流电机可以通过改变电压调速;通过改变相序转向。
直线电机:linear motor,将圆周运动变为直线运动。
与旋转电机传动相比,直线电机传动主要具有下列优点:(1) 直线电机由于不需要中间传动机械,因而使整个机械得到简化,提高了精度,减少了振动和噪音;(2) 快速响应:用直线电机驱动时,由于不存在中间传动机构的惯量和阻力矩的影响,因而加速和减速时间短,可实现快速启动和正反向运行;(3) 仪表用的直线电机,可以省去电刷和换向器等易损零件,提高可靠性,延长使用寿命。
步进电动机:Stepping Motor,把电脉冲信号变换成角位移以控制转子转动,在自动控制装置中作为执行元件。
步进电机必须加驱动才可以运转,驱动型号必须为脉冲信号,没有脉冲的时候,步进电机静止。
转动的速度和脉冲的频率成正比。
步进电机具有瞬间启动和急速停止的优越特性。
改变脉冲的顺序,可以方便的改变转动的方向。
因此,目前打印机,绘图仪,机器人,等等设备都以步进电机为动力核心。
超导电机:超声波压电电动机:Ultrasonic Motor,简称为USM,实现了电能与摩擦力之间的转化。
特点:(1) 结构简单、紧凑。
(2) 无需齿轮减速机构,可实现直接驱动。
(3)动作响应快(毫秒级),控制性能好。
(4)不产生磁场,也不受外界磁场干扰。
(5)运行噪声小。
(6)摩擦损耗大,效率低,只有10%—40%。
(7)输出功率小,目前实际应用的只有10W左右。
汽轮发电机:用于火力发电厂和核电厂,同步电机的一种,隐极式同步发电机。
水轮发电机:用于水力发电厂,同步电机的一种,凸极式同步发电机。
风力发电机:永磁无刷直流发电机。
电动机种类的选择:从交流或直流、机械特性、调速与起动性能、维护及价格等方面考虑。
电动机的启动:鼠笼异步电动机:直接启动、降压启动、软启动。
直流电机:直接启动、串联电阻启动、软启动。
同步电动机:同步电动机本身没有启动转矩,启动时采用异步启动法,当启动到接近同步转速时再投入励磁,牵入同步运行。
电动机的调速:直流调速、交流调速。
电动机的制动:能耗制动、反接制动、回馈制动。
不同种类电机形成的原因:电磁转矩由气隙中励磁磁场与被感应部件中电流所建立的磁场相互作用产生。
如果两个磁场均由直流电流产生,则形成直流电机;如果两个磁场分别由不同频率的交流电流产生,则形成异步电机;而如果一个磁场有直流电流产生,另一磁场由交流电流产生,则形成同步电机。
同一台电机既可以作为发电机又可以作为电动机运行。
电器的定义:电器指所有用电的器具,但是在电气工程中,电器特指用于对电路进行接通、分断、对电路参数进行变换,以实现对电路或用电设备的控制、调节、切换、检测和保护等作用的电工装置、设备和组件。
电机(包括变压器)属生产和变换电能的机械,习惯上不包括在电器之列。
电器的分类:按功能可分为:1、用于接通和分断电路的电器,主要有刀开关、接触器、负荷开关、隔离开关、断路器等。
2、用于控制电路的电器,主要有电磁起动器、星-三角起动器、自耦减压起动器等。
3、用于切换电路的电器,主要有转换开关、主令电器等。
4、用于检测电路系数的电器,主要有互感器、传感器等。
5、用于保护电路的电器,主要有熔断器、断路器、限流电抗器、避雷器等。
低压电器:工作交流电压在1000V及以下,直流电压在1500V及以下。
高压电器:工作交流电压在1000V以上,直流电压在1500V以上。
高压电器:断路器(Circuit-breaker):电力网正常工作和发生故障时关合和开断电路,具有灭弧装置。
隔离开关(Disconnector):将高压设备与电源隔离,以保证检修工作人员的安全。
熔断器(Fuse):电路发生故障或短路时,依靠熔件的熔断来开断电路。
互感器:互感器是利用变压器的电磁感应原理,将大电量信号变换为小电量信号以方便测量的一种设备,可分为电流互感器和电压互感器。
电流互感器二次侧绕组绝对不允许开路。
电流互感器的二次侧绕组和外壳必须可靠接地,以防止因绝缘击穿而危害人身安全。
电压互感器的二次侧绕组绝对不允许短路。
电压互感器的二次侧绕组和铁芯必须可靠接地。
电压互感器的二次侧负载不易接太多,以免降低负载阻抗,影响测量准确性。
避雷器:避雷器实质上是一种放电器,可优先于被保护电器放电动作,限制由线路传来的雷电冲击电压和操作过电压,完成保护后迅速恢复原来对地绝缘的状态,准备下次保护动作,同时使系统恢复正常工作状态。
目前常用的有:碳化硅阀型避雷器、金属氧化锌避雷器等。
低压电器:第三章电力系统及其自动化技术一次能源:可直接提供热、光、动力等,主要包括植物能源、矿物能源、可再生能源、核能。
二次能源:由一种或多种一次能源经过转换或加工得到的能源产品,二次能源更具有优越性,其利用效率高、清洁、方便。
电力工业的主要生产环节:发电,输电,变电,配电,用电。
电力系统的概念:电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助系统,按规定的技术和经济要求组成的一个统一系统。
全国联网的优越性:能更经济合理的开发利用各种一次能源,能解决能源资源与负荷分布地区间的不平衡问题;可以错开用电高峰低谷,减少装机和备用;有利于采用标准化大型设备,节省投资和提高运行经济性;便于故障时相互支援,提高运行安全性;便于集中管理,实现经济调度和电力合理分配。
一次设备:发电、变电、输电、配电、用电等设备成为电力主设备,主要有发电机、变压器、架空线路、电缆、断路器、母线、电动机、照明设备、电热设备等。
一次系统:由主设备构成的系统称为主系统或一次系统。
二次设备:测量、监视、控制、继电保护、安全自动装置、通信、以及各种自动化系统等用于保证主系统安全、稳定、正常运行的设备称为二次设备。
二次系统:二次设备构成的系统称为辅助系统或二次系统。
电力系统的基本要求:满足用户需求(数量和质量需求);安全可靠性要求;经济性要求;环保和生态要求。
电力系统技术上发展的特征:大机组、大电网、大电厂、高电压、高度自动化。
中国电网的发展格局:西电东送、南北互供、全国联网。
电力负荷的分级:一级负荷:对一级负荷中断供电,将可能造成生命危险、损坏设备、破坏生产过程,使大量产品报废,给国民经济造成重大损失,使市镇生活发生混乱。
二级负荷:对二级负荷停止供电,将造成大量减产,交通停顿,使城镇居民生活受到影响。
三级负荷:不属于一、二级负荷的其他负荷。
HVDC我国的电压等级:超高压输电电压(EHV):330KV,500KV,750KV,1000KV高压输电电压(HV):220KV高压配电电压(HV):35~110KV中压配电电压(MV):1~35KV低压配电电压(LV):1KV以下(380/220V)电力系统稳态分析:又称为静态分析,主要研究电力系统稳态运行方式的性能,包括潮流分析、静态稳定性分析和功率分析。
电磁暂态分析(故障分析):主要研究电力系统发生故障时的电磁暂态过程,计算故障电流、电压及其在电网中的分布。