基础_巩固练习_直线与圆锥曲线
数学课件(新教材人教A版强基版)第八章直线和圆圆锥曲线必刷小题15直线与圆
若点 P 在圆 C 上,则 x20+y20=1,圆心到直线 l:x0x+y0y=1 的距离 d= x201+y20=1,此时直线 l 与圆 C 相切; 若直线 l 与圆 C 相切,则 d= x201+y20=1,即 x20+y20=1,此时点 P 在 圆 C 上. 综上知,“点P(x0,y0)在圆C上”是“直线l与圆C相切”的充要条件.
因为圆心到直线
l
的距离为
1= 2
22,
所以圆 x2+y2=2 上有且仅有 3 个点到直线 l:x-y+1=0 的距离等于
22,B 选项错误; C1的圆心为(1,2),半径为3;C2的圆心为(-1,-1),半径为2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
所以圆心距为 4+9= 13≠3+2,C 选项错误; 圆x2+y2+2x=0的圆心为A(-1,0),半径为1, x-y 1表示圆上的点 B(x,y)与点 C(1,0)连线的斜率, 当直线BC与圆A相切时,如图所示, AB=1,AC=2,所以∠BCA=π6, 结合对称性可知x-y 1的取值范围是- 33, 33,D 选项正确.
当过点P(2,2)的直线l1斜率不存在时,l1的方程为x=2,与圆(x-1)2 +y2=1相切,满足题意;
当过点P(2,2)的直线l1斜率存在时, 设l1的方程为y-2=k(x-2),即kx-y-2k+2=0, ∴圆(x-1)2+y2=1 的圆心到 l1 的距离 d=|k-0k-2+2k1+2|=1,解得 k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14. 过 点 P(2,2) 的 直 线 l1 与 圆 (x - 1)2 + y2 = 1 相 切 , 则 直 线 l1 的 方 程 为 _3_x_-__4_y_+__2_=__0_或__x_=__2__.
精编高二文科数学直线与圆锥曲线的位置关系题型与练习
精编高二文科数学直线与圆锥曲线的位置关系题型与练习 1直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是_____. 2.已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长 3:己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于B 、D 两点,且BD 的中点为()1,3M . 求C 的离心率;5:已知椭圆M :)1(12222≥>=+b a by a x 的离心率为23,点P (0,3/2)到椭圆M 上的点的最远距离为7,(1)求此椭圆的方程 (2)若直线y=kx+4交椭圆M 于A ,B 两点,且OA ,OB 的斜率之和为2,(O 是坐标原点),求斜率k 的值6已知椭圆C :22221x y a b +=(a>b>0F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =(A )1 (B (C (D )27.(本小题满分12分)已知抛物线C :22(0)y px p =>过点A (1 , -2)。
(I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的L 的方程;若不存在,说明理由。
8..若椭圆221axby +=与直线1x y +=交于A,B 两点,M 为AB 的中点,直线OM(O 为原点)的斜率,又OA OB ⊥,求此椭圆的方程。
变式1:已知直线y x b =+与抛物线22x y =交于A,B 两点,且OA OB ⊥(O 为坐标原点),则b 的值是_________________9.已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差都是1。
(Ⅰ)求曲线C 的方程(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有FA <0?若存在,求出m 的取值范围;若不存在,请说明理由。
圆锥曲线基础题有答案
2一、选择题:1. 已知椭圆2x25 2. 3. 4. 5. 圆锥曲线基础训练+ Z =1上的一点P 到椭圆一个焦点的距离为 3,则 16 A . 2 若椭圆的对称轴为坐标轴, 2 2x y , —=1 9 16 A . B . B . 3 长轴长与短轴长的和为 2 2x y , 一+L=1 C. 25 16 25 C 5 18,焦距为 2+— =1 或 16动点 A . P 到另一焦点距离为P 到点M (1,0)及点N(3,0)的距离之差为 D . 7则椭圆的方程为2+ — =1 D .以上都不对 16 25 2,则点P 的轨迹是 双曲线 抛物线y 5 A .2 若抛物线 B.双曲线的一支 22=10x 的焦点到准线的距离是 C.两条射线D . —条射线 15C. 2 y 2=8x 上一点P 到其焦点的距离为9,则点P 的坐标为 A . (7, ±用 B . (14,±届) C. (7, ±2714) D . (—7, ±2714) B . 5 D . 10二、填空题 6. 7. 8.9. 3 若椭圆x 2+my 2 =1的离心率为 —,则它的长半轴长为 _______________2 双曲线的渐近线方程为 x ±2y = 0 ,焦距为10 ,这双曲线的方程为2 2 若曲线 +丄 =1表示双曲线,则k 的取值范围是 4+k 1 -k抛物线y 2 = 6x 的准线方程为 ■ 10.椭圆5x 2 +ky 2=5的一个焦点是(0,2),那么k = 三、解答题 11. k 为何值时,直线y = kx +2和曲线2x 2 + 3y 2= 6有两个公共点?有一个公共点?没有公共点?12.在抛物线y =4x 2上求一点,使这点到直线y=4x-5的距离最短。
13.双曲线与椭圆有共同的焦点 F 1(0, -5), F 2(O,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
高二数学(人教B版)选修2-1全册同步练习:2-5直线与圆锥曲线
2.5直线与圆锥曲线一、选择题1.若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( )A .(-3,3)B .[-3,3]C .(-2,2)D .[-2,2][答案] B[解析] 由题意可知,直线所过的定点(2,b )应在双曲线上或内部,即y 2≤x 2-1,∴b 2≤3,∴-3≤b ≤ 3.2.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则|AB |的值为( ) A.837 B.163 C.83 D.1637 [答案] B[解析] 抛物线y 2=4x 的焦点F 为(1,0),过F 且倾斜角为π3的直线方程为y =3(x -1),联立得方程组⎩⎨⎧y =3(x -1)y 2=4x得关于x 的一元二次方程3x 2-10x +3=0.①设交于A (x 1,y 1)B (x 2,y 2)两点.则x 1x 2是①的两根.有x 1+x 2=103.|AB |=|AF |+|BF |=x 1+x 2+p =103+2=163.故选B.3.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( ) A.π6或5π6 B.π4或3π4 C.π3或2π3 D.π2[答案] B[解析] 由焦点弦长公式|AB |=2p sin 2θ得 6sin 2θ=12,∴sin θ=22. ∴θ=π4或34π.故选B. 4.(2009·山东烟台4月)已知抛物线y 2=4x 上一点P (x 0,y 0),若y 0∈[1,2],则|PF |的范围是( )A.⎣⎡⎦⎤14,1B.⎣⎡⎦⎤54,2C .[1,2]D .[2,3][答案] B[解析] ∵y 0∈[1,2],∴x 0∈⎣⎡⎦⎤14,1,由定义|PF |=1+x 0∈⎣⎡⎦⎤54,2.故选B.5.直线y =x +m 与椭圆x 24+y 2=1有两个不同的交点,则m 的范围是() A .-5<m <5 B .m <-5,或m > 5C .m < 5D .-5<m < 5[答案] D[解析] 将y =x +m 代入x 24+y 2=1,有5x 2+8mx +4m 2-4=0,Δ=64m 2-80(m 2-1)>0,得m 2<5,∴-5<m < 5.6.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A .(23,43)B .(43,73)C .(-23,13D .(-43,-13)[答案] C[解析] 设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2).则⎩⎨⎧ x 214+y 212=1x 224+y 222=1,两式相减得14(x 1-x 2)(x 1+x 2)+12(y 1-y 2)(y 1+y 2)=0y 1-y 2x 1-x 2=-14(x 1+x 2)12(y 1+y 2)=k∴-x 02y 01,又y 0=x 0+1∴x 0=-23,y 0=13. 7.以双曲线y 2-x 23=1的一个焦点为圆心,离心率为半径的圆的方程是( ) A .(x -2)2+y 2=4B .x 2+(y -2)2=2C .(x -2)2+y 2=2D .x 2+(y -2)2=4[答案] D[解析] 双曲线焦点在y 轴上,离心率e =2,∴圆心在y 轴上,半径R =2.故选D.8.(2009·浙江)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若AB →=12BC →,则双曲线的离心率是( ) A.2 B.3 C.5 D.10 [答案] C[解析] 由已知,直线方程为x +y -a =0,两渐近线为x a ±y b=0. 由⎩⎪⎨⎪⎧ x +y -a =0bx -ay =0得x B =a 2a +b . 由⎩⎪⎨⎪⎧x +y -a =0bx +ay =0得x C =a 2a -b . ∵AB →=12BC →,∴2(x B -x A )=x C -x B , ∴3x B =2x A +x C ,∴3a 2a +b =a 2a -b+2a ,解得b =2a , ∴c 2=a 2+b 2a 2=5,∴e = 5. 故选C.9.已知a >b >0,e 1与e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b 2=1的离心率,则lg e 1+lg e 2的值( )A .一定是正值B .一定是零C .一定是负值D .符号不确定[答案] C[解析] ∵e 1=a 2-b 2a ,e 2=a 2+b 2a, ∴e 1e 2=a 4-b 4a 2=1-⎝⎛⎭⎫b 2a 22<1. ∴lg e 1+lg e 2=lg(e 1·e 2)<0.故选C.10.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 21的离心率为( ) A.54B.52C.32D.54[答案] B[解析] 椭圆离心率e =32,即c a =32⇒a 2-b 2a 2=34,∴b 2a 2=14,则1+b 2a 2=54. ∴双曲线的离心率为e ′=52.故选B. 二、填空题 11.若抛物线y 2=2px 的焦点与双曲线x 23-y 2=1的右焦点重合,则p 的值等于______. [答案] 4[解析] 由已知F ⎝⎛⎭⎫p 2,0与F 2(2,0)重合, ∴p 2=2,∴p =4. 12.点M (5,3)到抛物线x 2=ay (a >0)的准线的距离为6,那么抛物线的方程是______.[答案] x 2=12y[解析] ∵抛物线x 2=ay (a >0)的准线方程为y =-a 4,∴a 4+3=6,∴a =12, ∴抛物线方程为x 2=12y .13.双曲线x 2-y 2=9被直线x -2y +1=0截得的弦长为________.[答案] 4335 [解析] ⎩⎪⎨⎪⎧x 2-y 2=9x -2y +1=0,3y 2-4y -8=0 y 1·y 2=-83,y 1+y 2=43. l =1+1k 2·(y 1+y 2)2-4y 1·y 2=5·169+323=4335. 14.(2008·全国Ⅰ)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.[答案] 2[解析] 把抛物线方程改写为x 2=1a(y +1)得顶点(0,-1),又原点为焦点, ∴1a=4, ∴抛物线x 2=4(y +1)与x 轴交于两点(2,0),(-2,0).∴所求面积为12×4×1=2. 三、解答题15.直线l :y =2x +1与抛物线y 2=12x 交于A (x 1,y 1),B (x 2,y 2)两点,求线段AB 的长.[解析] 由⎩⎪⎨⎪⎧y =2x +1,y 2=12x ,得4x 2-8x +1=0, 由韦达定理,得x 1+x 2=2,x 1x 2=14. ∴|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)(22-4×14)=15. 16.过椭圆x 22+y 2=1的一个焦点F 作直线l 交椭圆于A ,B 两点,椭圆的中心为O ,当△AOB 的面积最大时,求直线l 的方程.[解析] 过椭圆焦点F (1,0)的直线l 垂直于x 轴时,可知此时△AOB 的面积等于22. 当l 不垂直x 轴时,可设直线l 的方程为y =k (x -1).因为|OF |是定值1,所以△AOB 的面积可以用12×1×|y 1-y 2|(其中y 1,y 2是A ,B 的纵坐标)来计算. 将y =kx -k 代入x 22+y 2=1,消去x ,得(1+2k 2)y 2+2ky -k 2=0. 由根与系数的关系可得(y 1-y 2)2=8k 4+8k 2(2k 2+1)2=2-2(2k 2-1)2<2. 可以看出|y 1-y 2|<2,此时△AOB 的面积小于22,所以直线l 的方程为x =1或x =-1. 17.(2010·湖北文,20)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.[分析] 本小题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.[解析] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:(x -1)2+y 2-x =1(x >0)化简得y 2=4x (x >0)(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m y 2=4x 得y 2-4ty -4m =0,此时Δ=16(t 2+m )>0.于是⎩⎪⎨⎪⎧y 1+y 2=4t y 1·y 2=-4m ① 又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2)FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1·x 2-(x 1+x 2)+1+y 1y 2<0②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-(y 214+y 224)+1<0⇔(y 1y 2)26+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0③由①式,不等式③等价于m 2-6m +1<4t 2④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+2 2由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任意一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).18.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0),(O 为原点)(1)求双曲线C 的方程.(2)若直线l 1:y =kx +2与双曲线恒有两个不同的交点A 和B ,且OA →·OB →>2,求k 的取值范围.[解析] (1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知得a =3,c =2,再由a 2+b 2=22,得b 2=1.所以双曲线C 的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1得 (1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,即k 2≠13且k 2<1.① 设A (x A ,y A )、B (x B ,y B ),则x A +x B =62k 1-3k 2,x A x B =-91-3k 2, 由OA →·OB →>2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1. 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0. 解此不等式得13<k 2<3.② 由①②得13<k 2<1. 故k 的取值范围为(-1,-33)∪(33,1).。
(完整版)圆锥曲线常见题型及答案
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
直线与圆锥曲线的位置关系练习题
直线与圆锥曲线的位置关系时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.已知双曲线kx 2-y 2=1的一条渐近线与直线l :2x +y +1=0垂直,则此双曲线的离心率是( )解析:由题知,双曲线的渐近线方程为kx 2-y 2=0,即y =±kx .由题知直线l 的斜率为-2,则可知k =14,代入双曲线方程kx 2-y 2=1,得x 24-y 2=1,于是,a 2=4,b 2=1,从而c =a 2+b 2=5,所以e =52.答案:A (2.抛物线y 2=8x 的焦点到双曲线x 212-y24=1的渐近线的距离为( )A .1解析:由题意可知,抛物线y 2=8x 的焦点为(2,0),双曲线x 212-y24=1的渐近线为y =±33x ,所以焦点到双曲线的渐近线的距离为|2×±3|3+9=1.答案:A3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )-y 26=1 -y 25=1 -y 23=1 -y 24=1解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), …由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b 2=1x 22a 2-y22b 2=1,两式作差得: y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1. 答案:B{4.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 -1 +2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C 5.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16 C .4解析:由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y .得x 2-3x -4=0,%∴x A=-1,x D=4,直线3x-4y+4=0恰过抛物线的焦点F(0,1),∴|AF|=y A+1=54,|DF|=y D+1=5,∴|AB| |CD|=|AF|-1|DF|-1=116.故选B.答案:B图16.如图1,过双曲线上左支一点A作两条相互垂直的直线分别过两焦点,其中一条与双曲线交于点B,若三角形ABF2是等腰直角三角形,则双曲线的离心率为())解析:设|AF2|=|AB|=x(x>0),则|BF2|=2x.由双曲线定义知,2x-|BF1|=2a①,x-|AF1|=2a②,由①②知x=22a,∴|AF1|=(22a-2a).在Rt△F1AF2中,|AF1|2+|AF2|2=4c2.即(22-2)2a2+(22a)2=4c2,解得e=5-22,故选B.答案:B二、填空题(每小题8分,共计24分)7.斜率为3的直线l过抛物线y2=4x的焦点且与该抛物线交于A,B两点,则|AB|=________.·解析:图2如图2,过A 作AA 1⊥l ,过B 作BB 1⊥l ,抛物线y 2=4x 的焦点为F (1,0),直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.答案:1638.已知双曲线x 2-y23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA →1·PF →2的最小值为________. 解析:由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则PA→1=(-1-x ,-y ),PF →2=(2-x ,-y ),PA →1·PF →2=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x-5的图象的对称轴为x =18,∴当x =1时,PA →1·PF→2取最小值-2. 答案:-2【9.过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4=________.解析:设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,x =my -m 消去x ,得y 2-2mpy +2pm =0,∴y 1+y 2=2pm ,y 1y 2=2pm ,(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2-8pm .又焦点(p2,0)在x -my +m =0上,∴p =-2m ,∴|y 1-y 2|=4m 4+m 2,∴S △OAB =12×p 2|y 1-y 2|=22,即-m m 4+m 2=2,平方得m 6+m 4=2.答案:2三、解答题(共计40分)10.(10分)已知中心在原点,焦点在x 轴上,离心率为255的椭圆的一个顶点是抛物线y =14x 2的焦点,过椭圆右焦点F 的直线l 交椭圆于A 、B 两点,交y 轴于点M ,且MA→=λ1AF →,MB →=λ2BF →. (1)求椭圆的方程; |(2)证明:λ1+λ2为定值.解:(1)由题易知b =1,e =1-b a 2=255, 解得a 2=5,故椭圆的方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),M (0,y 0),由F (2,0),MA →=λ1AF →,得⎩⎨⎧x 1=2λ11+λ1y 1=y1+λ1.由MB →=λ2BF →,得⎩⎨⎧x 2=2λ21+λ2y 2=y1+λ2.又A 、B 在椭圆上,将其分别代入椭圆方程整理知, λ1,λ2是方程λ2+10λ+5-5y 20=0的两根, 所以λ1+λ2=-10为定值.}11.(15分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,短轴长为2.(1)求椭圆的标准方程;(2)过点F 1的直线l 与该椭圆交于M 、N 两点,且|F 2M →+F 2N →|=2263,求直线l 的方程.解:(1)由条件有⎩⎪⎨⎪⎧c a =22,b =a 2-c 2=1,解得a =2,c =1.则椭圆的标准方程为x 22+y 2=1. (2)由(1)知F 1(-1,0)、F 2(1,0).若直线l 的斜率不存在,则直线l 的方程为x =-1. %将x =-1代入椭圆方程得y =±22.不妨设M (-1,22)、N (-1,-22),∴F 2M →+F 2N →=(-2,22)+(-2,-22)=(-4,0).∴|F 2M →+F 2N →|=4,与题设矛盾.∴直线l 的斜率存在.设直线l 的斜率为k ,则直线l 的方程为y =k (x +1), 设M (x 1,y 1)、N (x 2,y 2),则⎩⎨⎧x 22+y 2=1,y =kx +1,消去y 得(1+2k 2)x 2+4k 2x +2k 2-2=0.由根与系数的关系知,x 1+x 2=-4k 21+2k 2,从而y 1+y 2=k (x 1+x 2+2)=2k1+2k 2.[又∵F 2M →=(x 1-1,y 1),F 2N →=(x 2-1,y 2),∴F 2M →+F 2N →=(x 1+x 2-2,y 1+y 2).∴|F 2M →+F 2N →|2=(x 1+x 2-2)2+(y 1+y 2)2=(8k 2+21+2k 2)2+(2k 1+2k 2)2=416k 4+9k 2+14k 4+4k 2+1. ∴416k 4+9k 2+14k 4+4k 2+1=(2263)2,化简得40k 4-23k 2-17=0.解得k 2=1或k 2=-1740(舍去).∴k =±1.∴所求直线l 的方程为y =x +1或y =-x -1.12.(15分)(2011·江苏高考)—图3如图3,在平面直角坐标系xOy中,M、N分别是椭圆x2 4+y22=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C.连结AC,并延长交椭圆于点B.设直线PA的斜率为k.(1)当直线PA平分线段MN时,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意的k>0,求证:PA⊥PB.解:(1)由题设知:a=2,b=2,故M(-2,0),N(0,-2),所以线段MN中点的坐标为(-1,-22).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以k=-22-1=22.图4(2)直线PA的方程为y=2x,代入椭圆方程得x24+4x22=1,#解得x=±23,因此P(23,43),A(-23,-43).于是C(23,0),直线AC的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0. 因此d =|23-43-23|12+12=223. (3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2.记μ=21+2k 2,则P (μ,μk ), A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k 2,其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μ3k 2+22+k 2或x =-μ.因此B (μ3k 2+22+k 2,μk 32+k 2).于是直线PB 的斜率k 1=μk 32+k 2-μk μ3k 2+22+k 2-μ=k 3-k 2+k 23k 2+2-2+k 2=-1k .因此k 1k =-1,所以PA ⊥PB .证法二:设P (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A (-x 1,-y 1),C (x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB上,所以k 2=0--y 1x 1--x 1=y 12x 1=k2.从而k 1k +1=2k 1k 2+1=2·y 2-y 1x 2-x 1·y 2--y 1x 2--x 1+1=2y 22-2y 21x 22-x 21+1=x 22+2y 22-x 21+2y 21x 22-x 21=4-4x 22-x 21=0. 因此k 1k =-1,所以PA ⊥PB .(。
2012高考数学复习专题------直线与圆锥曲线问题的处理方法(1)(精选练习题和答案)
2012高考数学复习专题------直线与圆锥曲线问题的处理方法(1)(精选练习题和答案)学生巩固练习 1 斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为( ) A 2 B 554 C 5104 D 5108 2 抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( ) A x 3=x 1+x 2 B x 1x 2=x 1x 3+x 2x 3 C x 1+x 2+x 3=0 D x 1x 2+x 2x 3+x 3x 1=03 正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________4 已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p(1)求a 的取值范围(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值5 已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6)(1)求双曲线方程(2)动直线l 经过△A 1P A 2的重心G ,与双曲线交于不同的两点M 、N ,问 是否存在直线l ,使G 平分线段MN ,证明你的结论6、、如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积命题意图 直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题 本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法” 知识依托弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想 错解分析将直线方程代入抛物线方程后,没有确定m 的取值范围 不等式法求最值忽略了适用的条件 技巧与方法 涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算 解法一 由题意,可设l 的方程为y =x +m ,其中-5<m <0由方程组⎩⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0 ① ∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0,解得m <1,又-5<m <0,∴m 的范围为(-5,0)设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2,∴|MN |=4)1(2m -点A 到直线l 的距离为d∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128 ∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号故直线l 的方程为y =x -1,△AMN 的最大面积为解法二 由题意,可设l 与x 轴相交于B (m,0),l 的方程为x = y +m ,其中0<m <5由方程组24x y m y x=+⎧⎨=⎩,消去x ,得y 2-4 y -4m =0 ①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(-4)2+16m =16(1+m )>0必成立,设M (x 1,y 1),N (x 2,y 2)则y 1+ y 2=4,y 1·y 2=-4m ,∴S △=1211(5)||(522m y y m --=- =451()22m -≤=∴S △≤82,当且仅当51()(1)22m m -=+即m =1时取等号 故直线l 的方程为y =x -1,△AMN 的最大面积为参考答案: 1 解析 弦长|AB |=55422t -⋅⋅≤5104 答案 C 2 解析 解方程组⎩⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=a k ,x 1x 2=-a b ,x 3=-k b ,代入验证即可 答案 B 3 解析 设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长 答案18或50 4 解 (1)设直线l 的方程为 y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0 ∴|AB |=224)(42a p a -+⋅≤2p ∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a 4p (2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ),由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p ,则有x =222,2212121a x x y y y p a x x -+=+=+=+=p ∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ),从而N 点坐标为(a +2p ,0)点N 到AB 的距离为p a p a 22|2|=-+ 从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅ 当a 有最大值-4p 时,S 有最大值为2p 2 5 解 (1)如图,设双曲线方程为2222b y a x -=1 由已知得321,166********=+==-a b a e b a ,解得a 2=9,b 2=12 所以所求双曲线方程为12922y x -=1 (2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0),∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2) 则有22121112221212224129108124,493129108x x x y y y y y x x x y ⎧+=-=⎧-⎪⇒==⎨⎨+=--=⎪⎩⎩,∴k l =34 ∴l 的方程为y =34 (x -2)+2, 由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0∵Δ=16-4×28<0,∴所求直线l 不存在 课前后备注。
课时7-8 直线与圆锥曲线的位置关系(1)(2)
直线与圆锥曲线的位置关系(1)一.复习目标:直线和圆锥曲线的位置关系:相交、中点弦等问题。
二.基础训练:1、 过点(2,4)所作直线与抛物线y 2=8x 有且只有一个公共点,这样的直线有 ( )A 、一条B 、两条C 、三条D 、四条 2、设椭圆22143xy+=的长轴两端点为M 、N ,异于M 、N 的点P 在椭圆上,则PM 与PN的斜率之积为 ( ) A 、34- B 、43- C 、34 D 、433、已知过抛物线y 2=4x 焦点F 的弦AB 被F 分成长为m 、n 两部分,则11mn+等于( )A 、1B 、2C 、3D 、4 4、直线y=kx+1与椭圆2215xym+=恒有公共点,则m 的取值范围是 ( )A 、m ≥1且m ≠5B 、m ≥1C 、m ≠5D 、m ≤55、椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是 ;三、例题分析:1. 直线1:+=kx y l 与双曲线12:22=-yx C 的右支交于不同的两点A 、B 。
求实数k 的取值范围。
2.过点()1,1-P ,作直线与椭圆12422=+yx交于A 、B 两点,若线段AB 的中点恰为P点,求AB 所在的直线的方程和线段AB 的长度。
3. 已知双曲线1422=-yx和定点⎪⎭⎫ ⎝⎛21,2P ;(1) 过P 点可以作几条直线与双曲线C 只有一个公共点;(2) 双曲线C 的弦中,以P 点为中点的弦21P P 是否存在?说明理由。
4、中心在原点,焦点在x 轴上的椭圆,它的离心率为2,与直线x+y-1=0相交于M 、N两点,若以MN 为直径的圆经过坐标原点,求椭圆方程。
四、反馈练习: 1、若不论k 为何值时,直线y=k(x-2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( ) A .)3,3(-B .],[33-C .(-2,2)D .[-2,2]2、已知点(4,2)是直线L 被椭圆所截得的线段的中点,则L 的方程是( ) A.x -2y=0 B.x +2y -4=0 C.2x+3y+4=0 D.x+2y -8=03、过原点与双曲线22143xy-=-交于两点的直线的斜率的取值范围是 ;4、若焦点是(0,±的椭圆截直线3x -y-2=0所得弦的中点的横坐标是12,则椭圆方程是 ; 5、椭圆22194xy+=的焦点为F 1、F 2,点P 为其上动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是 ; 6、对于椭圆2219yx+=,是否存在直线L ,使L 与椭圆交于不同的两点M 、N ,且线段MN 恰好被直线102x +=平分,若存在,求出L 的倾斜角的范围;若不存在,请说明理由。
(完整word版)圆锥曲线基础知识专项练习
圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
对口升学数学复习《圆锥曲线》练习题
《圆锥曲线》练习题练习1——椭圆1 (一)选择题:1.椭圆的两个焦点分别为F 1 (-4,0), F 2 (4,0),且椭圆上一点到两焦点的距离之和为12,则椭圆的方程为 ( )(A )1362022=+y x (B )112814422=+y x (C )1203622=+y x (D )181222=+y x 2. P 为椭圆192522=+y x 上一点,则△P F 1F 2的周长为 ( ) (A )16 (B )18 (C )20 (D )不能确定3.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的取值是( ) (A )-16<m<25 (B )29<m<25 (C )-16<m<29 (D )m>29 4.若方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围( ) (A )(0,+∞) (B )(0,2) (C )(1,+∞) (D )(0,1)5.椭圆11692522=+y x 的焦点坐标是 ( ) (A )(±5,0) (B )(0,±5) (C )(0,±12) (D )(±12,0)6.已知椭圆的方程为22218x y m+=,焦点在x 轴上,则其焦距为 ( ) (A )228m - (B )2m -22 (C )282-m (D )222-m7.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈( ) (A )(0,4π] (B )(4π,2π) (C )(0,4π) (D )[4π,)2π8.椭圆2255x ky +=的一个焦点是(0,2),那么k 等于 ( )(A )-1(B )1(C )5(D )9.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为 ( )(A )32 (B )16 (C )8 (D )410.已椭圆焦点F 1(-1,0)、F 2(1,0),P 是椭圆上的一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆的方程为 ( )(A )221169x y += (B )2211612x y += (C )22143x y += (D )22134x y += (二)填空题:1.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
高三数学 知识点精析精练18 直线与圆锥曲线
2014高三数学知识点精析精练18:直线与圆锥曲线【复习要点】直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 【例题】【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程. 解:设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2) 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0, Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0, 由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2 ①又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积. 解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy m x y 42,消去y ,得x 2+(2m -4)x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N , ∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0)设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P (1,2)。
【精品含答案】高考一轮复习8.4直线与圆锥曲线的位置关系基础训练题(理科)
2009届高考一轮复习8.4 直线与圆锥曲线的位置关系基础训练题(理科)注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分100分,考试时间45分钟。
第I 卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. (易错警示题)直线01k y kx =++-与椭圆116y 25x 22=+公共点的个数为( ) (A )0 (B )1 (C )2 (D )随k 值而改变2. 设双曲线2222by a x -1=(0a >,0b >)的半焦距为c ,离心率为45,若直线kx y =与双曲线的一个交点的横坐标恰为c ,则k 等于( )(A )54± (B )53± (C )209± (D )259±3. 如图,过抛物线px 2y 2=(0p >)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BF |2|BC |=,且3|AF |=,则此抛物线的方程为( )(A )x 9y 2=(B )x 6y 2=(C )x 3y 2=(D )x 3y 2=4. 抛物线)0a (ax y 2≠=的准线与x 轴交于点P ,直线l 经过点P ,且与抛物线有公共点,则直线l 的倾斜角的取值范围是( )(A )]4,0[π(B )],43[]4,0[πππ(C )]43,4[ππ(D )]43,2(]2,4[ππππ5. (2007·四川高考)已知抛物线3x y 2+-=上存在关于直线0y x =+对称的相异两点A 、B ,则|AB |等于( )(A )3 (B )4 (C )23 (D )246. 椭圆1by ax 22=+与直线x 1y -=交于A 、B 两点,若过原点与线段AB 中点的直线的倾斜角为︒30,则ba的值为( ) (A )43(B )33(C )23 (D )3第II 卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。
专题练 第26练 直线与圆锥曲线的位置关系
第26练 直线与圆锥曲线的位置关系1.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( )A .2B .2 2C .3D .3 2 答案 B解析 方法一 由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2). 不妨取A (1,2), 则|AB |=(1-3)2+(2-0)2=8=2 2.方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴, 所以|AB |=22+22=8=2 2.2.(2020·全国Ⅰ)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( ) A.72 B .3 C.52 D .2 答案 B解析 方法一 由题意知a =1,b =3,c =2, F 1(-2,0),F 2(2,0),如图,因为|OF 1|=|OF 2|=|OP |=2,所以点P 在以F 1F 2为直径的圆上, 故PF 1⊥PF 2,则|PF 1|2+|PF 2|2=(2c )2=16.由双曲线的定义知||PF 1|-|PF 2||=2a =2, 所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4, 所以|PF 1||PF 2|=6,所以△PF 1F 2的面积为12|PF 1||PF 2|=3.方法二 由双曲线的方程可知,双曲线的焦点F 1,F 2在x 轴上, 且|F 1F 2|=21+3=4.设点P 的坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧x 20-y 203=1,x 20+y 20=2,解得|y 0|=32.所以△PF 1F 2的面积为 12|F 1F 2|·|y 0|=12×4×32=3. 方法三 由二级结论焦点△PF 1F 2的面积 S =b 2tan θ2=3tan 45°=3.3.(2014·全国Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94答案 D解析 由已知得焦点坐标为F ⎝⎛⎭⎫34,0, 因此直线AB 的方程为y =33⎝⎛⎭⎫x -34, 即4x -43y -3=0.方法一 联立抛物线方程化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立抛物线方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94.4.(2013·全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1, ②由①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2,又k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1.5.(多选)(2022·新高考全国Ⅰ)已知O 为坐标原点,点A (1,1)在抛物线C :x 2=2py (p >0)上,过点B (0,-1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =-1 B .直线AB 与C 相切 C .|OP |·|OQ |>|OA |2 D .|BP |·|BQ |>|BA |2 答案 BCD解析 如图,因为抛物线C 过点A (1,1),所以1=2p ,解得p =12,所以C :x 2=y 的准线为y=-14,所以A 错误;因为x 2=y ,所以y ′=2x ,所以y ′|x =1=2,所以C 在点A 处的切线方程为y -1=2(x -1),即y =2x -1,又点B (0,-1)在直线y =2x -1上,所以直线AB 与C 相切,所以B 正确;设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 2=y 得x 2-kx +1=0,所以x 1+x 2=k ,x 1x 2=1,且Δ=k 2-4>0,得k >2或k <-2, 所以|OP |·|OQ |=x 21+y 21·x 22+y 22=(x 21+x 41)(x 22+x 42)=(1+x 21)(1+x 22)·x 1x 2=1+(x 1+x 2)2-2x 1x 2+x 21x 22=k 2>2=|OA |2,所以C 正确;|BP |·|BQ |=x 21+(y 1+1)2·x 22+(y 2+1)2=x 21+(x 21+1)2·x 22+(x 22+1)2 =(x 41+3x 21+1)(x 42+3x 22+1)=x 41x 42+(3x 21x 22+3)(x 21+x 22)+x 41+x 42+9x 21x 22+1 =6(x 21+x 22)+x 41+x 42+11 =6(x 21+x 22)+(x 21+x 22)2+9=6(k 2-2)+(k 2-2)2+9 =(k 2+1)2=k 2+1>5=|BA |2,所以D 正确.6.(2015·全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 答案 12 6解析 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时11APF AF F F PF S S S ==△△△- 7.(2019·全国Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝⎛⎭⎫34,0, 故|AF |+|BF |=x 1+x 2+32,由题设可得x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 令Δ>0,得t <12,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2, 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得y 2-2y +2t =0, 所以y 1+y 2=2,从而-3y 2+y 2=2, 故y 2=-1,y 1=3,代入C 的方程得x 1=3,x 2=13,即A (3,3),B ⎝⎛⎭⎫13,-1, 故|AB |=4133. 8.(2022·新高考全国Ⅰ)已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan ∠P AQ =22,求△P AQ 的面积.解 (1)将点A 的坐标代入双曲线方程得4a 2-1a 2-1=1,化简得a 4-4a 2+4=0,得a 2=2, 故双曲线C 的方程为x 22-y 2=1.由题易知直线l 的斜率存在, 设直线l 的方程为y =kx +m , P (x 1,y 1),Q (x 2,y 2),联立直线l 与双曲线C 的方程,消y 整理得 (2k 2-1)x 2+4kmx +2m 2+2=0, 故x 1+x 2=-4km2k 2-1,x 1x 2=2m 2+22k 2-1.k AP +k AQ =y 1-1x 1-2+y 2-1x 2-2=kx 1+m -1x 1-2+kx 2+m -1x 2-2=0,化简得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0, 故2k (2m 2+2)2k 2-1+(m -1-2k )⎝ ⎛⎭⎪⎫-4km 2k 2-1-4(m -1)=0, 整理得(k +1)(m +2k -1)=0, 又直线l 不过点A ,即m +2k -1≠0, 故k =-1.(2)不妨设直线P A 的倾斜角为θ⎝⎛⎭⎫0<θ<π2, 由题意知∠P AQ =π-2θ, 所以tan ∠P AQ =-tan 2θ=2tan θtan 2θ-1=22,解得tan θ=2或tan θ=-22(舍去). 由⎩⎪⎨⎪⎧y 1-1x 1-2=2,x 212-y 21=1,得x 1=10-423,所以|AP |=3|x 1-2|=43(2-1)3,同理得x 2=10+423,所以|AQ |=3|x 2-2|=43(2+1)3.因为tan ∠P AQ =22, 所以sin ∠P AQ =223,故S △P AQ =12|AP ||AQ |sin ∠P AQ=12×43(2-1)3×43(2+1)3×223=1629.9.(2022·赤峰模拟)若椭圆x 216+y 29=1的弦被点(2,1)平分,则这条弦所在的直线方程是( )A .x -2y =0B .3x +y -7=0C .x +2y -4=0D .9x +8y -26=0答案 D解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2).则x 2116+y 219=1,x 2216+y 229=1, 两式作差可得(x 1-x 2)(x 1+x 2)16=-(y 1-y 2)(y 1+y 2)9,所以y 1-y 2x 1-x 2=-9(x 1+x 2)16(y 1+y 2)=-9×416×2=-98=k AB.即弦所在直线的斜率为-98,直线方程为y-1=-98(x-2),整理得9x+8y-26=0.10.抛物线y2=4x的焦点弦被焦点分为长是m和n的两部分,则m与n的关系是() A.m+n=mn B.m+n=4C.mn=4 D.无法确定答案 A解析抛物线的焦点F(1,0),准线x=-1,设焦点弦所在直线方程为y=k(x-1),把它代入y2=4x得k2x2-2(k2+2)x+k2=0,设焦点弦与抛物线交点分别为A(x1,y1),B(x2,y2),则x1x2=1,由抛物线定义得|AF|=x1+1,|BF|=x2+1,∴m+n=(x1+1)+(x2+1)=(x1+x2)+2,mn=(x1+1)(x2+1)=x1x2+(x1+x2)+1=(x1+x2)+2,∴m+n=mn.11.(多选)(2022·茂名模拟)已知抛物线C:x2=4y的焦点为F,准线为l,P是抛物线C上第一象限的点,|PF|=5,直线PF与抛物线C的另一个交点为Q,则下列选项正确的是() A.点P的坐标为(4,4)B.|QF|=5 4C.S△OPQ=10 3D.过点M(x0,-1)作抛物线C的两条切线MA,MB,其中A,B为切点,则直线AB的方程为x0x-2y+2=0答案ABD解析对于A,因为|PF|=5,所以由抛物线的定义得y P+1=5,即y P=4,所以x2P=4y P=16,且点P在第一象限,所以坐标为(4,4),则A正确;对于B ,l PF 的直线方程为y =34x +1,由y =34x +1与x 2=4y 联立得,Q ⎝⎛⎭⎫-1,14, 由两点间的距离公式得|QF |=54,则B 正确;对于C ,S △OPQ =12|OF ||x P -x Q |=12×1×5=52,则C 错误;对于D ,设A (x 1,y 1),B (x 2,y 2), 由x 2=4y得,y =x 24,则y ′=x2,MA 的切线方程为y -y 1=x 12(x -x 1),即y -y 1=x 12x -x 212,由x 21=4y 1得,y =x 12x -y 1, 把点M (x 0,-1)代入y =x 12x -y 1得,x 0x 1-2y 1+2=0, 同理x 0x 2-2y 2+2=0,即A (x 1,y 1),B (x 2,y 2)两点满足方程x 0x -2y +2=0, 所以AB 的方程为x 0x -2y +2=0,则D 正确.12.(2022·玉林模拟)抛物线y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线l 交抛物线于A ,B 两点,则|AF |·|BF |的最小值是( ) A .2 B. 2 C .4 D .2 2 答案 C解析 由题意知p =2,∵1|AF |+1|BF |=2p =1,∴1=1|AF |+1|BF |≥21|AF |·1|BF |, 得|AF |·|BF |≥4.13.(2022·杭州模拟)已知双曲线H 的两条渐近线互相垂直,过H 的右焦点F 且斜率为3的直线与H 交于A ,B 两点,与H 的渐近线交于C ,D 两点.若|AB |=5,则|CD |=______. 答案 3 5解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则其渐近线方程为y =±bax ,因为双曲线H 的两条渐近线互相垂直, 所以a =b ,所以渐近线方程为y =±x , 所以双曲线方程为x 2a 2-y 2a 2=1(a >0),则右焦点F (2a ,0),所以直线方程为y =3(x -2a ), 设A (x 1,y 1),B (x 2,y 2),将y =3(x -2a )代入x 2a 2-y 2a 2=1(a >0)化简得,8x 2-182ax +19a 2=0,所以x 1+x 2=92a 4,x 1x 2=19a 28,所以|AB |=1+9·(x 1+x 2)2-4x 1x 2 =10×10a 216=5,解得a 2=4,即a =2, 所以直线方程为y =3(x -22),由⎩⎪⎨⎪⎧ y =x ,y =3(x -22),得⎩⎪⎨⎪⎧x =32,y =32,由⎩⎪⎨⎪⎧y =-x ,y =3(x -22),得⎩⎨⎧x =322,y =-322,所以|CD |=⎝⎛⎭⎫32-3222+⎝⎛⎭⎫32+3222 =3 5.14.(2022·贵港模拟)已知斜率为k (k >0)的直线过抛物线C :y 2=4x 的焦点F 且与抛物线C 相交于A ,B 两点,过A ,B 分别作该抛物线准线的垂线,垂足分别为A 1,B 1,若△A 1BB 1与△ABA 1的面积之比为2,则k 的值为________. 答案 2 2解析 由抛物线C :y 2=4x 得F (1,0),直线AB 的方程为y =k (x -1), 设点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k 2+4)x +k 2=0, Δ=(2k 2+4)2-4k 4=16(k 2+1)>0,由根与系数的关系可得x 1x 2=1,x 1+x 2=2k 2+4k2,由已知和抛物线定义知111A BB ABA S S △△=12|BB 1|·|A 1B 1|12|AA 1|·|A 1B 1|=|BB 1||AA 1|=|BF ||AF |=2, 所以|BF |=2|AF |,故由焦半径公式得x 2+1=2(x 1+1), 即x 2=2x 1+1,故⎩⎪⎨⎪⎧x 2=2x 1+1,x 1x 2=1,x 1+x 2=2k 2+4k2,k >0,解得⎩⎪⎨⎪⎧x 1=12,x 2=2,k =22(负值舍去).所以k 的值为2 2.15.(2022·无锡模拟)如图,A 1,A 2是双曲线x 29-y 23=1的左、右顶点,B 1,B 2是该双曲线上关于x 轴对称的两点,直线A 1B 1与A 2B 2的交点为E .(1)求点E 的轨迹Γ的方程;(2)设点Q (1,-1),过点Q 的两条直线分别与轨迹Γ交于点A ,C 和点B ,D .若AB ∥CD ,求直线AB 的斜率.解 (1)由题意知,A 1(-3,0),A 2(3,0). 设B 1(x 0,y 0),B 2(x 0,-y 0)(x 0≠±3),则x 209-y 203=1, 则直线A 1B 1的方程为y =y 03+x 0(x +3),直线A 2B 2的方程为y =y 03-x 0(x -3),两式相乘得y 2=y 209-x 2(x 2-9), 即y 2=-13(x 2-9),所以点E 的轨迹Γ的方程为 x 29+y 23=1(x ≠±3,x ≠0). (2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 设AQ →=λQC →,则⎩⎪⎨⎪⎧1-x 1=λ(x 3-1),-1-y 1=λ(y 3+1),即⎩⎪⎨⎪⎧x 3=1+λ-x 1λ,y 3=-(1+λ)-y 1λ,代入椭圆方程,得[(1+λ)-x 1]29λ2+[(1+λ)+y 1]23λ2=1,即4(1+λ)29λ2-2(1+λ)λ2⎝⎛⎭⎫x 19-y 13+1λ2⎝⎛⎭⎫x 219+y 213 =1,即4(1+λ)29-2(1+λ)⎝⎛⎭⎫x 19-y 13=λ2-1,① 同理可得4(1+λ)29-2(1+λ)⎝⎛⎭⎫x 29-y 23=λ2-1,② 由②-①,得x 19-y 13=x 29-y 23,所以3(y 1-y 2)=x 1-x 2,所以直线AB 的斜率k =y 1-y 2x 1-x 2=13.16.(2022·玉林模拟)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)过M ⎝⎛⎭⎫1,32,N ⎝⎛⎭⎫3,12两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →?若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,请说明理由. 解 (1)将M ,N 的坐标代入椭圆E 的方程得⎩⎨⎧1a 2+34b 2=1,3a 2+14b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以椭圆E 的方程为x 24+y 2=1.(2)假设满足题意的圆存在,其方程为x 2+y 2=R 2,其中0<R <1, 设该圆的任意一条切线AB 和椭圆E 交于A (x 1,y 1),B (x 2,y 2)两点, 当直线AB 的斜率存在时,设直线AB 的方程为 y =kx +m ,①将其代入椭圆E 的方程并整理得(4k 2+1)x 2+8kmx +4m 2-4=0, 由根与系数的关系得x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,②因为OA →⊥OB →, 所以x 1x 2+y 1y 2=0,③将①代入③并整理得(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0, 联立②得m 2=45(1+k 2),④因为直线AB 和圆相切, 因此R =|m |1+k 2,由④得R =255,所以存在圆x 2+y 2=45满足题意.当直线AB 的斜率不存在时,易得x 21=x 22=45, 由椭圆方程得y 21=y 22=45,显然OA →⊥OB →, 综上所述,存在圆x 2+y 2=45满足题意.当直线AB 的斜率存在时,由①②④得 |AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2(x 1-x 2)2 =1+k 2(x 1+x 2)2-4x 1x 2=1+k 2⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1 =1+k 216+64k 2-16m 2(1+4k 2)2=455(1+k 2)(1+16k 2)(1+4k 2)2=45516k 4+17k 2+116k 4+8k 2+1=4551+9k 216k 4+8k 2+1 =4551+916k 2+1k2+8,由16k 2+1k 2≥8,得1<1+916k 2+1k2+8≤54,即455<|AB |≤5, 当直线AB 的斜率不存在时,易得|AB |=455, 所以455≤|AB |≤ 5.综上所述,存在圆心在原点的圆x 2+y 2=45满足题意,且455≤|AB |≤ 5.[考情分析] 直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查,难度为高档.一、弦长、面积问题 核心提炼判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断. 弦长公式:|AB |=1+k 2|x 1-x 2|, 或|AB |=1+1k2|y 1-y 2|. 练后反馈题目 1 5 6 8 11 13 15 16 正误错题整理:二、中点弦问题 核心提炼解决圆锥曲线“中点弦”问题的方法1.根与系数的关系法:联立直线与圆锥曲线的方程得到方程组,消元得到一元二次方程后,由根与系数的关系及中点坐标公式求解.2.点差法:设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1),B(x2,y2),将这两点坐标代入圆锥曲线的方程,并对所得两式作差,得到一个与弦AB的中点和直线AB的斜率有关的式子,可以大大减少计算量.练后反馈题目49正误错题整理:三、圆锥曲线中二级结论的应用核心提炼1.椭圆焦点三角形面积为b2tan α2(α为|F1F2|的对角).2.双曲线焦点三角形面积为b2tan α2(α为|F1F2|的对角).3.抛物线的有关性质:已知抛物线y2=2px(p>0)的焦点为F,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),则(1)|AB|=x1+x2+p=2psin2α(α为直线l的倾斜角).(2)以AB为直径的圆与抛物线的准线相切.(3)1|AF|+1|BF|=2p.练后反馈题目2371012 正误错题整理:1.[T2补偿](2022·亳州模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若△ABF 的面积为2a 2,则双曲线的离心率为( )A. 2B. 3 C .2 D. 5 答案 B解析 如图所示,设双曲线的左焦点为F ′,连接AF ′,BF ′,因为以AB 为直径的圆恰好经过双曲线的右焦点F (c ,0), 所以S △AF ′F =2a 2,且∠F ′AF =π2,根据双曲线焦点三角形面积公式12PF F S △=b 2tan θ2得2a 2=b 2, 结合c 2=a 2+b 2,得2a 2=c 2-a 2⇒c 2=3a 2⇒e 2=3⇒e = 3.2.[T3补偿](2022·新乡模拟)已知抛物线C :y 2=2px (p >0)的准线x =-1与x 轴交于点A ,F 为C 的焦点,B 是C 上第一象限内的点,则|AB ||BF |取得最大值时,△ABF 的面积为( )A .2B .3C .4D .6 答案 A解析 由题意可知,-p2=-1,所以p =2,则y 2=4x ,A (-1,0),F (1,0).过点B 作准线x =-1的垂线,垂足为D ,如图,由抛物线的定义可知,|AB ||BF |=|AB ||BD |=1sin ∠BAD,要使|AB ||BF |取得最大值,则sin ∠BAD 取得最小值,需直线AB 与C 相切. 由题意知,直线AB 的斜率一定存在, 故设直线AB 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y 可得,k 2x 2+(2k 2-4)x +k 2=0,所以Δ=(2k 2-4)2-4k 4=0,解得k =±1, 因为B 是C 上第一象限内的点,所以k =1, 此时k 2x 2+(2k 2-4)x +k 2=0为x 2-2x +1=0, 则x =1,故B (1,2),故S △ABF =12×|AF |×|y B |=12×2×2=2.3.[T4补偿](多选)(2022·梅州模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,且PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143,过点M (-2,1)的直线l 交椭圆于A ,B 两点,且A ,B 关于点M 对称,则下列结论正确的有( ) A .椭圆的方程为x 29+y 24=1B .椭圆的焦距为 5C .椭圆上存在2个点Q ,使得QF 1―→·QF 2―→=0 D .直线l 的方程为8x -9y +25=0 答案 AD解析 因为PF 1⊥F 1F 2,|PF 1|=43,|PF 2|=143,所以c =12|PF 2|2-|PF 1|2=5,a =12(|PF 1|+|PF 2|)=3,则b =2, 所以椭圆的方程为x 29+y 24=1,椭圆的焦距为25,故A 正确,B 错误; 由QF 1―→·QF 2―→=0知∠F 1QF 2=90°, 所以点Q 在以F 1F 2为直径的圆上,因为c >b ,所以圆与椭圆有4个交点,故C 错误;因为过点M (-2,1)的直线交椭圆于A ,B 两点,且A ,B 关于点M 对称, 所以点M (-2,1)为弦AB 的中点, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 219+y 214=1,x 229+y224=1,两式相减得(x 1+x 2)(x 1-x 2)9=-(y 1+y 2)(y 1-y 2)4,则k AB =y 1-y 2x 1-x 2=-49·x 1+x 2y 1+y 2=89,所以直线l 的方程为y -1=89(x +2),即8x -9y +25=0,故D 正确.4.[T9补偿](2022·运城模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,直线x -2y +b =0与椭圆交于P ,Q 两点,且PQ 的中点为E ,O 为原点,则直线OE 的斜率是________. 答案 -43解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,所以e =ca =1-b 2a 2=33, 所以b 2a 2=23,设P (x 1,y 1),Q (x 2,y 2),所以k PQ =y 1-y 2x 1-x 2=12,E ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 因为P ,Q 在椭圆上,所以⎩⎨⎧ x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式作差得x 21-x 22a 2+y 21-y 22b 2=0, 即y 21-y 22x 21-x 22=-b 2a 2, 即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-23, 即k PQ ·k OE =-23, 所以k OE =-43. 5.[T16补偿](2022·重庆模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,焦距为4. (1)求椭圆的标准方程;(2)过椭圆右焦点F 的动直线l 交椭圆于A ,B 两点,P 为直线x =3上的一点,是否存在直线l 与点P ,使得△ABP 恰好为等边三角形,若存在,求出△ABP 的面积;若不存在,请说明理由.解 (1)依题意得c a =63,c =2, 又∵a 2=b 2+c 2,∴a 2=6,b 2=2,∴椭圆的标准方程为x 26+y 22=1. (2)当直线l 的斜率不存在时,等边△ABP 不存在,故直线l 的斜率存在.设直线l :y =k (x -2),联立椭圆方程整理得(3k 2+1)x 2-12k 2x +12k 2-6=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12k 23k 2+1,x 1x 2=12k 2-63k 2+1, ∴|AB |=1+k 2|x 1-x 2|=263k 2+1(k 2+1). 记线段AB 的中点为M (x 0,y 0),则x 0=6k 23k 2+1,y 0=-2k 3k 2+1, 又x P =3,k MP =-1k, ∴|MP |=1+1k2|x 0-x P | =k 2+1k 2·3(k 2+1)3k 2+1, 要满足题目要求,则需要|MP |=32|AB |, 即k 2+1k 2·3(k 2+1)3k 2+1=32·263k 2+1(k 2+1), ∴k =±1,经检验k =±1均符合题意. ∴|AB |=6,S △ABP =332.。
圆锥曲线基础练习题及答案
圆锥曲线基础练习题及答案一、选择题:x2y2??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516A.2B. C.D.72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为x2y2x2y2x2y2x2y2??1B.??1 C.??1或??1 D.以上都不对A.9162516251616253.动点P到点M及点N的距离之差为2,则点P的轨迹是A.双曲线 B.双曲线的一支 C.两条射线D.一条射线4.抛物线y2?10x的焦点到准线的距离是51 B.C. D.1025.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A.A.,那么k?三、解答题11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点?12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。
13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
22214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.2y21 经过坐标原点的直线l与椭圆?1相交于A、B两2点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角.16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程.参考答案1.D 点P到椭圆的两个焦点的距离之和为2a?10,10?3?72.C a?2b?18,a?b?9,2c?6,c?3,c2?a2?b2?9,a?b?1 x2y2x2y2??1或??1 得a?5,b?4,?251616253.D PM?PN?2,而MN?2,?P在线段MN的延长线上4.B p?10,p?5,而焦点到准线的距离是p5.C 点P到其焦点的距离等于点P到其准线x?? 2的距离,得xP?7,yp??x2y2??1,a?1;.1,或2当m?1时,1my2x2a2?b231212??1,e??1?m?,m?,a??4,a?当0?m?1时,11a244mmx2y21设双曲线的方程为x2?4y2??,,焦距2c?10,c2?25.205当??0时,x2??y24?1,4?25,??20;x21,?25,20 当??0时,??4?48.??0,?0,k?1,或k??49.x??y23p32p?6,p?3,x22y2x25??1,c2??1?4,k?1 10.1焦点在y轴上,则51k k三、解答题11.解:由??y?kx?222?2x?3y?6,得2x2?32?6,即x2?12kx?6?0??144k2?24?72k2?48当??72k?48?0,即k?时,直线和曲线有两个公共点;或k??33 时,直线和曲线有一个公共点;或k??3 当??72k?48? 0,即k?2当??72k?48?0,即2时,直线和曲线没有公共点。
直线与圆锥曲线的位置关系专题训练
直线与圆锥曲线的位置关系专题训练一、选择题1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2), 则x 1x 2=( )A .-2B .-12C .-4D .-1162.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 33.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 4.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( )A .3 2B .2 3 C.303 D.3265.已知双曲线x 24-y 2b2=1(b >0)的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .56.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]7.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆(x +4)2+y 2=1和 (x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11 C .8,12 D .10,128.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该双曲线交于A ,B 两点,若OA →+OB →与向量n =(-3,-1)共线,则双曲线C 的离心率为( )A. 3B.233C.43D .39.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A.2613 B.22613 C.21313 D.4131310.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在该双曲线的右支上,且|PF 1|+|PF 2|=10a ,PF 1→·PF 2→=-6a 2,则双曲线的离心率为( )A .2B .4 C. 2 D. 6 二、填空题11.设过椭圆x 22+y 2=1的右焦点F 的直线交椭圆于A ,B 两点,AB 的中点为P ,O 为坐标原点,则OP →·PF→的取值范围为________. 12.已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,在抛物线AOB 这段曲线上有一点P ,则△APB 的面积的最大值为________.13.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 14.设P 为直线l :x +y =4上任意一点,椭圆x 212+y 24=1的两个焦点为F 1,F 2,则l 与椭圆的位置关系是______,|PF 1|+|PF 2|的最小值是________.三、解答题15.已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O ,F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.16.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4 2.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.直线与圆锥曲线的位置关系专题训练答案一、选择题1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2), 则x 1x 2=( )A .-2B .-12C .-4D .-116解析:由y =2x 2,得x 2=12y .其焦点坐标为F (0,18),取直线y =18,则其与y =2x 2交于A (-14,18),B (14,18),∴x 1x 2=⎝ ⎛⎭⎪⎫-14·⎝ ⎛⎭⎪⎫14=-116.答案:D2.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 3解析:根据已知条件得c =16-m 2,则点⎝ ⎛⎭⎪⎪⎫16-m 2,2216-m 2在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =22(m =-22舍). 答案:B3.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l的条数为( )A .4B .3C .2D .1 解析:①斜率不存在时,方程为x =1符合.②设斜率为k ,y -1=k (x -1),kx -y -k +1=0.⎩⎪⎨⎪⎧4x 2-y 2=4,y =kx -k +1,(4-k 2)x 2+(2k 2-2k )x -k 2+2k -5=0.当4-k 2=0,k =±2时符合;当4-k 2≠0,Δ=0,亦有一个答案,∴共4条. 答案:A4.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( )A .3 2B .2 3 C.303 D.32 6解析:设y -1=k (x -1),∴y =kx +1-k . 代入椭圆方程,得x 2+2(kx +1-k )2=4. ∴(2k 2+1)x 2+4k (1-k )x +2(1-k )2-4=0. 由x 1+x 2=4kk -12k 2+1=2,得k =-12,x 1x 2=13.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4-43=83.∴|AB |=1+14·263=303.答案:C5.已知双曲线x 24-y 2b2=1(b >0)的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .5解析:由题,易得抛物线的焦点为(3,0),∴双曲线的右焦点为(3,0),∴b 2=c 2-a 2=9-4=5,∴双曲线的一条渐近线方程为y =52x ,即5x -2y =0,∴所求距离为d =|35|5+4= 5.答案:A6.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4] 解析:设直线方程为y =k (x +2),与抛物线联立方程组,整理,得ky 2-8y +16k 2=0.当k =0时,直线与抛物线有一个交点,当k ≠0时,由Δ=64-64k 2≥0,解得-1≤k ≤1且k ≠0,综上-1≤k ≤1.答案:C 8.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆(x +4)2+y 2=1和 (x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11 C .8,12 D .10,12解析:如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA |+|PB |=2a =10,连接PA ,PB 分别与圆相交于M ,N 两点,此时|PM |+|PN |最小,最小值为|PA |+|PB |-2R =8;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时|PM |+|PN |最大,最大值为|PA |+|PB |+2R =12,即最小值和最大值分别为8,12.答案:C8.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该双曲线交于A ,B 两点,若OA →+OB →与向量n =(-3,-1)共线,则双曲线C 的离心率为( )A. 3B.233C.43D .3解析:由题意得直线方程为y =x +c ,代入双曲线的方程并整理可得(b 2-a 2)x 2-2a 2cx -a 2c 2-a 2b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a 2c b 2-a 2,y 1+y 2=x 1+x 2+2c =2b 2c b 2-a 2,∴OA →+OB →=⎝ ⎛⎭⎪⎫2a 2c b 2-a 2,2b 2c b 2-a 2,又∵OA →+OB →与向量n =(-3,-1)共线,∴2a 2c b 2-a 2=3·2b 2c b 2-a 2,∴a 2=3b 2,又c 2=a 2+b 2,∴e =c a =233.故选B.答案:B9.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A.2613 B.22613 C.21313 D.41313解析:由题意可知,c =2,由e =c a =2a.可知e 最大时需a 最小.由椭圆的定义|PA |+|PB |=2a ,即使得|PA |+|PB |最小,设A (-2,0)关于直线y =x +3的对称点D (x ,y ),由⎩⎪⎨⎪⎧y -0x +2·1=-1,0+y 2=-2+x2+3,可知D (-3,1).所以|PA |+|PB |=|PD |+|PB |≥|DB |=12+52=26,即2a ≥26.所以a ≥262,则e =c a ≤2262=22613.故选B.答案:B10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在该双曲线的右支上,且|PF 1|+|PF 2|=10a ,PF 1→·PF 2→=-6a 2,则双曲线的离心率为( )A .2B .4 C. 2 D. 6解析:由双曲线的定义及已知可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=10a ,即⎩⎪⎨⎪⎧|PF 1|=6a ,|PF 2|=4a ,则cos ∠F 1PF 2=PF1→·PF 2→|PF 1→|·|PF 2→|=-6a 26a ·4a =-14,设双曲线的焦距为2c (c >0),由余弦定理可得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos ∠F 1PF 2,即4c 2=36a 2+16a 2-2×6a ×4a ×(-14),所以c 2=16a 2,故双曲线的离心率为c a=4.故选B.答案:B 二、填空题11.设过椭圆x 22+y 2=1的右焦点F 的直线交椭圆于A ,B 两点,AB 的中点为P ,O 为坐标原点,则OP →·PF→的取值范围为________. 解析:椭圆x 22+y 2=1的右焦点为F (1,0),当直线AB 的斜率存在时,设AB 的方程为y =k (x -1),代入椭圆方程x 22+y 2=1中,得(1+2k 2)x 2-4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 1+x 2=4k 21+2k 2,所以x 0=2k 21+2k 2,y 0=k (x 0-1)=-k1+2k 2,OP →=⎝⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,PF →=⎝ ⎛⎭⎪⎫11+2k 2,k 1+2k 2,所以OP →·PF→=2k 21+2k 22-k 21+2k 22=k 21+2k 22=k 21+4k 2+4k4,当k =0时,OP →·PF →=0,当k ≠0时,OP →·PF →=k 21+4k 2+4k4=14+1k2+4k 2≤18,当且仅当k 2=12时等号成立,且OP →·PF →>0.当直线AB 的斜率不存在时,F 与P 重合,所以OP→·PF →=0. 综上,OP →·PF →的取值范围为⎣⎢⎡⎦⎥⎤0,18.答案:⎣⎢⎡⎦⎥⎤0,1812.已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,在抛物线AOB 这段曲线上有一点P ,则△APB 的面积的最大值为________.解析:由弦长公式知|AB |=35,只需点P 到直线AB 距离最大就可保证△APB 的面积最大.设与l 平行的直线y =2x +b 与抛物线相切,解得b =12.∴d =9510,∴(S △APB )max =12×35×9510=274.答案:27413.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.解析:∵椭圆C 1:x 2m +2-y 2n =1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+nm +2.∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n .由题意可得m+2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0,得m +2>2.∴0<1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12. 而0<e 1<1,∴22<e 1<1.答案:22<e 1<114.设P 为直线l :x +y =4上任意一点,椭圆x 212+y 24=1的两个焦点为F 1,F 2,则l 与椭圆的位置关系是______,|PF 1|+|PF 2|的最小值是________.解析:把x =4-y 代入椭圆方程并整理,得y 2-2y +1=0,它有两个相等的根,∴l 与椭圆相切.如图,连接PF 1,与椭圆交于Q (由于P 在椭圆外,则Q 在P ,F 1之间), 连接QF 2,则|PF 1|+|PF 2|=|QF 1|+|PQ |+|PF 2|≥|QF 1|+|QF 2|=2a =43,当且仅当Q 在线段PF 2上,即P 在椭圆上时取等号,∴|PF 1|+|PF 2|的最小值是4 3.答案:相切 4 3 三、解答题15.已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(1)求过点O ,F ,并且与直线l :x =-2相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.解:(1)∵a 2=2,b 2=1,∴c =1,F (-1,0). ∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M (-12,t ),则圆半径r =|(-12)-(-2)|=32.由|OM |=r ,得⎝ ⎛⎭⎪⎫-122+t 2=32,解得t =± 2.∴所求圆的方程为(x +12)2+(y ±2)2=94.(2)设直线AB 的方程为y =k (x +1)(k ≠0), 代入x 22+y 2=1.整理,得(1+2k 2)x 2+4k 2x +2k 2-2=0. ∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根,如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0).则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1. ∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0),令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.∵k ≠0,∴-12<x G <0.∴点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.16.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4 2.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.解:(1)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+42,所以2a +2c =6+42,又椭圆的离心率为223,即c a =223,所以c =223a ,所以a =3,c =22,故b 2=a 2-c 2=1.椭圆M 的方程为x 29+y 2=1.(2)方法1:不妨设直线BC 的方程为y =n (x -3),(n >0). 则直线AC 的方程为y =-1n(x -3).由⎩⎪⎨⎪⎧y =n x -3,x29+y 2=1,得(19+n 2)x 2-6n 2x +9n 2-1=0.设A (x 1,y 1),B (x 2,y 2).因为3x 2=81n 2-99n 2+1,所以x 2=27n 2-39n 2+1.同理可得x 1=27-3n 29+n 2.所以|BC |=1+n 269n 2+1,|AC |=1+n 2n 6n29+n 2,S △ABC =12|BC ||AC |=2n +1nn +1n2+649.设t =n +1n≥2,则S =2t t 2+649=2t +649t≤38,当且仅当t =83时取等号.所以△ABC 面积的最大值为38.方法2:不妨设直线AB 的方程x =ky +m (m ≠3).由⎩⎪⎨⎪⎧x =ky +m ,x29+y 2=1,消去x ,得(k 2+9)y 2+2kmy +m 2-9=0. 设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=-2km k 2+9,y 1y 2=m 2-9k 2+9.①因为以AB 为直径的圆过点C (3,0),所以CA →·CB →=0. 由CA →=(x 1-3,y 1),CB →=(x 2-3,y 2), 得(x 1-3)(x 2-3)+y 1y 2=0.将x 1=ky 1+m ,x 2=ky 2+m 代入上式. 得(k 2+1)y 1y 2+k (m -3)(y 1+y 2)+(m -3)2=0. 将①代入上式,解得m =125或m =3(舍).所以m =125(此时直线AB 经过定点D (125,0),与椭圆有两个交点),所以S △ABC =12|DC ||y 1-y 2|=12×35y 1+y 22-4y 1y 2=9525k 2+9-14425k 2+92.设t =1k 2+9,0<t ≤19,则S△ABC=95-14425·t2+t.所以当t=25288∈⎝⎛⎦⎥⎤0,19时,S△ABC取得最大值38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一、选择题
1.双曲线22
134
x y -=上一点P 到左焦点的距离与到左准线的距离之比为( )
2.椭圆22214x y m +=与双曲线22
212x y m -=有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在
3.已知动点P (,)x y 24x =-,则动点P 的轨迹是( )
A. 椭圆
B. 双曲线
C. 抛物线
D. 直线
4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜
率为|PF |=( )
A ..8 C .D .16
5. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )
A .x =1
B .x =-1
C .x =2
D .x =-2
6. 已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )
A .16
B .18
C .21
D .26
二、填空题
7. 双曲线2224mx my -=的一条准线是1y =,则实数m 为________. 8.已知双曲线22
1124
x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________.
9.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条.
10.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为________.
11.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________.
三、解答题
12.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线有几条.
13.设双曲线C :2
221(0)x y a a
-=>与直线:1l x y +=相交于两个不同的点A 、B ,求双曲线C 的离心率e 的取值范围:
14.设双曲线22
22x y a b
-=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距
c ,求双曲线的离心率.
15.已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.
(1)求证:OA ⊥OB .
(2)当△OAB k 的值.
【答案与解析】
1.【答案】D
【解析】双曲线上一点到左焦点与到左准线的距离之比为离心率c e a ==3
. 2.【答案】A
【解析】验证法:当m =±1时,m 2=1,
对椭圆来说,a 2=4,b 2=1,c 2=3.
对双曲线来说,a 2=1,b 2=2,c 2=3,
故当m =±1时,它们有相同的焦点.
直接法:显然双曲线焦点在x 轴上,故4-m 2=m 2+2.
∴m 2=1,即m =±1.
3.【答案】B
242x =-⇒=,它表示动点P 到定点(10,0)和到直线
x =4的距离之比是2,其轨迹是双曲线.
4. 【答案】 B
【解析】 由抛物线的定义得,|PF |=|P A |,
又由直线AF 的斜率为P AF =60°.
△P AF 是等边三角形,∴|PF |=|AF |=
04cos60
=8. 5. 【答案】B 【解析】抛物线的焦点F (
2p ,0),所以过焦点且斜率为1的直线方程为y =x -2p ,即x =y +2
p ,将其代入y 2=2px =2p (y +2p )=2py +p 2,所以y 2-2py -p 2=0,所以122y y +=p =2,所以抛物线的方程为y 2=4x ,准线方程为x =-1,故选B.
6.【答案】D
【解析】|AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,
∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,
∴|AF 2|+|BF 2|=16+5=21,
∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.
7. \【答案】1
【解析】焦点在y 轴,m<0,由题意可知221m a c == 8.
【答案】⎡⎢⎣
⎦ 【解析】由题意知F (4,0),双曲线的两条渐近线方程为y =
x ,当过点F 的直线与渐近线平行时,
满足与右支只有一个交点,画出图形,通过图形可知该直线斜率的取值范围是⎡⎢⎣
⎦. 9.【答案】3 【解析】已知双曲线方程为22
194
y x -=,故P (3,0)为双曲线的右顶点,所以过P 点且与双曲线只有一个公共点的直线共有三条(一条切线和两条与渐近线平行的直线).
10.【答案】 x =1或y =4x -2
【解析】 当过M (1,2)的直线的斜率不存在时,直线方程为x =1,与抛物线有一个交点;当M (1,2)的直线的斜率存在时,设直线方程:y =k (x -1)+2,与抛物线方程联立得2x 2-k (x -1)-2=0,此时Δ=0,解得k =4,故直线方程为y =4x -2.故x =1或y =4x -2.
11.【答案】 2
【解析】 设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线方程为y =x -2p ,把x =y +2
p 代入y 2=2px 得,y 2-2px -p 2=0,∵|AB |=8,∴|y 1-y 2|=
,∴(y 1+y 2)2-4y 1y 2=
)2,∴(2p )2-4×(-p 2)=32,又p >0,∴p =2.
12. 【答案】当斜率不存在时,x 1+x 2=2不符合题意.
因为焦点坐标为(1,0),
设直线方程为y =k (x -1),
由方程联立得k 2x 2-(2k 2+4)x +k 2=0,
∴x 1+x 2=2224k k
+=5, ∴k 2=43
,即k
=3k =± 因而这样的直线有且仅有两条.
13.【解析】由C 与l 相交于两个不同的点,故知方程组
⎪⎩
⎪⎨⎧=+=-.1,1222
y x y a x 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.
242210.02 1.48(1)0.a a a a a a ⎧-≠⎪<
<≠⎨+->⎪⎩所以解得且
双曲线的离心率
22
11 1.021,626(
,2)(2,).a e a a a e e e +==+<<≠∴>≠+∞且且即离心率的取值范围为
14.【解析】由已知,l 的方程为a y+b x-ab =0, 原点到l 的距离为
3c ,则有2234c a b
=+, 又c 2=a 2+b 2, ∴243ab c =,两边平方,得16a 2(c 2-a 2)=3c 4.
两边同除以a 4并整理得3e 4-16e 2+16=0,∴e 2=4或243
e =. ∵ 0<a <b , 1b a >,221b a >,得22222212a b b e a a +==+>, ∴e 2
=4,故e =2.
15. 【解析】
(1)证明:如图所示,由方程联立消去x 后,整理得ky 2+y -k =0.
设A (x 1,y 1)、B (x 2,y 2),
由根与系数的关系y 1·y 2=-1.
∵A 、B 在抛物线y 2=-x 上,
∴21y =-x 1,22y =-x 2,2212
12y y x x ⋅=. ∵k OA ·k OB =-1,∴OA ⊥OB .
(2)设直线与x 轴交于N ,显然k ≠0.
∴令y =0,则x =-1,即N (-1,0).
∴S △OAB =S △OAN +S △OBN
=
12|ON ||y 1|+12|ON ||y 2| =12
|ON |·|y 1-y 2|, ∴S △OAB =12
·1·2212124y y y y +-=1
22
14k +
∵S △OAB 12 解得16
k =±。