圆锥曲线基础测试题大全
圆锥曲线基础题(附答案)
1.已知椭圆的离心率为 12,焦点是(-3,0),(3,0),则椭圆方程为______________. 2.抛物线y 2=4x 的焦点到准线的距离是__________.3.当a 为任意实数时,直线(2a +3)x +y -4a +2=0恒过定点P ,则过点P 的抛物线的标准方程是__________________.4.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________________.5.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是________.6.若直线mx -ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________.7.虚半轴长为2,离心率e =3的双曲线两焦点为F 1,F 2,过F 1作直线交双曲线左支于A 、B 两点,且AB =8,则△ABF 2的周长为________.8.过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的直线与椭圆交于A 、B 两点,右焦点为F 2 (c,0),则△ABF 2的最大面积是______.9.双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线,求双曲线C 的方程.10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程;(2)△PF 1F 2的面积.11.在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.1.x 236+y 227=1 2.23.y 2=32x 或x 2=-12y 4.x 216+y 212=1 5.336.27.16+2 28.bc9. 解 设双曲线方程为x 2a 2-y 2b 2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2. 又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.10.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以k PF1·k PF2=-1,即43+c ·43-c =-1, 解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P(3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5. 又因为a>c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知PF 1+PF 2=65,①又PF 21+PF 22=F 1F 22=100,②①2-②得2PF 1·PF 2=80,所以S △PF1F2=12PF 1·PF 2=20. 11.-2(x -p 2). 20.解 (1)设P(x ,y),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A(x 1,y 1),B(x 2,y 2), 联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0.其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,即x 1x 2+y 1y 2=0. 而y 1y 2=k 2x 1x 2+k(x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.。
高二圆锥曲线基础练习题及答案
高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
圆锥曲线基础测试题大全
〔北师大版〕高二数学【圆锥曲线】根底测试试题一、选择题1.椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,那么P 到另一焦点距离为 〔 〕A .2B .3C .5D .72. 椭圆32x 2+16y 2=1的焦距等于〔 〕。
A .4B 。
8C 。
16D 。
1233.假设椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,那么椭圆的方程为〔 〕A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,那么点P 的轨迹是 〔 〕A .双曲线B .双曲线的一支C .两条射线D .一条射线5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于〔 〕A .2B .3C .2D .36.抛物线x y 102=的焦点到准线的距离是 〔 〕A .25B .5C .215D .107. 抛物线y 2=8x 的准线方程是〔 〕。
〔A 〕x =-2 〔B 〕x =2 〔C 〕x =-4 〔D 〕y =-28.抛物线的焦点是F (0,4),那么此抛物线的标准方程是( ) 〔A 〕x 2=16y 〔B 〕x 2=8y 〔C 〕y 2=16x 〔D 〕y 2=8x 9.经过〔1,2〕点的抛物线的标准方程是〔 〕〔A 〕y 2=4x 〔B 〕x 2=21y (C ) y 2=4x 或x 2=21y (D ) y 2=4x 或x 2=4y10.假设抛物线28y x =上一点P 到其焦点的距离为9,那么点P 的坐标为 〔 〕A .(7,B .(14,C .(7,±D .(7,-±11.椭圆mx 2+y 2=1的离心率是23,那么它的长半轴的长是〔 〕 〔A 〕1 〔B 〕1或2 〔C 〕2 〔D 〕21或113. 抛物线y =-8x 2的准线方程是〔 〕。
圆锥曲线基础训练题及答案
圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
高中数学圆锥曲线基础练习题
高中数学圆锥曲线基础练习题一、填空题1. 椭圆的离心率是0,此时椭圆是一个(圆)。
圆)。
2. 双曲线的离心率小于1,此时曲线是一个(双曲线)。
双曲线)。
3. 抛物线的离心率等于1,此时曲线是一个(抛物线)。
抛物线)。
4. 椭圆的离心率大于1,此时曲线是一个(椭圆)。
椭圆)。
二、选择题1. 以下哪个不是圆的方程?- A. x^2 + y^2 = 25- B. (x-3)^2 + (y+4)^2 = 9- C. x^2 + y^2 + 4x + 6y - 12 = 0- D. x^2 + y^2 + 2x - 6y + 9 = 0- (C)C)2. 双曲线的焦点在y轴上,离心率为2,那么双曲线方程的形式是:- A. x^2/4 - y^2/9 = 1- B. x^2/9 - y^2/4 = 1- C. x^2/36 - y^2/16 = 1- D. x^2/16 - y^2/36 = 1- (B)B)3. 抛物线的焦点在原点,准线在y轴上,那么抛物线方程的形式是:- A. y^2 = 4px- B. x^2 = 4py- C. x^2 = -4py- D. y^2 = -4px- (A)A)三、解答题1. 将椭圆的方程x^2/16 + y^2/4 = 1化简为标准形式,并给出该椭圆的长轴、短轴、焦距和离心率的值。
解:将方程 x^2/16 + y^2/4 = 1 化简为标准形式,得到 (x-0)^2/4^2 + (y-0)^2/2^2 = 1。
所以,该椭圆的长轴为2a=8,即a=4;短轴为2b=4,即b=2;焦距为2c=sqrt(4^2-2^2)=sqrt(12)=2sqrt(3);离心率为c/a=sqrt(3)/4。
2. 解方程组 {x^2 - y^2 = 4, x + y = 4}。
解:将第二个方程对y进行变量替换,得到 x - (4 - x) = 4,化简得到2x = 8,即x = 4。
将x的值代入第一个方程,得到4^2 - y^2 = 4,化简得到y^2 = 12,即y = ±2sqrt(3)。
(完整word版)圆锥曲线基础测试题大全
(北师大版)高二数学《圆锥曲线》基础测试试题一、选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( )A .2B .3C .5D .72. 椭圆32x 2+16y 2=1的焦距等于( )。
A .4B 。
8C 。
16D 。
1233.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .36.抛物线x y 102=的焦点到准线的距离是 ( )A .25B .5C .215D .107. 抛物线y 2=8x 的准线方程是( )。
(A )x =-2 (B )x =2 (C )x =-4 (D )y =-28.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( )(A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=21y (D ) y 2=4x 或x 2=4y10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±11.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或113. 抛物线y =-8x 2的准线方程是( )。
(完整)圆锥曲线练习题含答案,推荐文档
x2
28.若双曲线
y2
1 的渐近线方程为 y
3 x ,则双曲线的焦点坐标是_________.
4m
2
29.设 AB 是椭圆 x2 y2 1的不垂直于对称轴的弦, M 为 AB 的中点, O 为坐标原点, a2 b2
则 kAB kOM ____________。
x2
30.椭圆
9
y2 4
1 的焦点 F1 、 F2 ,点 P 为其上的动点,当∠ F1 P
那么 k 的取值范围是( )
A.(
15 ,
15
)
B.( 0,
15
)
C.(
15 ,0 )
D.(
15 ,1)
33
3
3
3
18.抛物线
y
2x 2 上两点
A( x1 ,
y1 )
、 B(x2 ,
y2 ) 关于直线
y
x
m
对称,且
x1
x2
1 2
,则 m
等
于(
3
A.
2
)
B. 2
5
C.
2
D. 3
二. 填空题
19.若椭圆 x2 my2 1的离心率为
9 27
16 48
9 27
9.过双曲线的一个焦点
F2
作垂直于实轴的弦
PQ ,
F1 是另一焦点,若∠
PF1Q
2
,则双曲线的离心
率 e 等于( )
A. 2 1
B. 2
C. 2 1
D. 2 2
10. F1, F2
是椭圆
x2 9
y2 7
1 的两个焦点, A 为椭圆上一点,且∠ AF1F2
(完整版)圆锥曲线练习题含标准答案(最新整理)
当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9
当
0 时,
x2
y2
1,
4
25,
20 ;
4
当
0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
圆锥曲线基础单元测试题
圆锥曲线单元测试题一、选择题(每小题3分,共30分)1、已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( ) A .y =2x 2 B .y =8x 2 C .2y =8x 2-1 D .2y =8x 2+12、椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,则M 到另一个焦点F 2的距离为( )A .3B .6C .8D .以上都不对3、已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .94、椭圆x 216+y 27=1的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A ,B 两点,则△ABF 2的周长为( ) A .32B .16C .8D .45、已知椭圆x 24+y 2=1的焦点为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则△F 1MF 2的面积 为( )A 、1B 、2C 、3D 、46、与椭圆x 24+y 2=1共焦点且过点Q (2,1)的双曲线方程是( )A.x 22-y 2=1B.x 24-y 2=1C.x 23-y 23=1 D .x 2-y 22=1 7、经过点(2,4)的抛物线的标准方程为( )A .y 2=8xB .x 2=yC .y 2=8x 或x 2=yD .无法确定8、若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .39、已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14 B .35 C.34 D.4510、已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8二、填空题(每小题4分,共20分)11、已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为_______________。
圆锥曲线基础练习题
圆锥曲线基础练习题(1)一、选择题1.椭圆15322=+y x 的焦距是 ( ) .A 22 .B 24 .C 2 .D 22.抛物线y x =2的准线方程是 ( )A.014=+xB.014=+yC.012=+xD.012=+y3.椭圆5522=+ky x 的一个焦点是(0,2),那么k 等于 ( ).A 1- .B 5 .C 1 .D 5-4.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为 ( )A.2B.52C.3D.5 5.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A.2B.3C. 4D.56.双曲线122=+y mx 的虚轴长是实轴长的2倍,则m 等于 ( ).A 41- .B 4- .C 4 .D 41 7.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A.163B.83C.316D.38 8.抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1617 B.1615 C.87 D.0 二.填空9.抛物线)0(22>=p px y 上一点M 到焦点的距离为a ,则点M 到准线的距离是10.过点)2,3(-A 的抛物线的标准方程是11.在抛物线)0(22>=p px y 上,横坐标为4的点到焦点的距离为5,则p 的值是12.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是 13.已知双曲线2222-=-y x ,则渐近线方程是 准线方程是14.双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,若21PF PF ⊥则 点P 到x 轴的距离为15.方程x 224–k+ y 216 + k = 1 表示椭圆,则k 的取值范围是 . 16.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是 .17.椭圆122=+by ax 与直线x y -=1交于A 、B 两点,过原点与线段AB 中点的直线的斜率为23,则b a 的值为____________。
圆锥曲线30道基础题
一.解答题(共30小题)1.(2015•徐汇区一模)已知椭圆γ:=1的右焦点为F,左顶点为R,点A(2,1),B(﹣2,1),O为坐标原点.(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(t,0),t∈(2,5),求的取值范围;(3)过F作斜率为k的直线l交椭圆γ于C,D两点,交y轴于点E,若,,试探究λ1+λ2是否为定值,说明理由.2.(2015•洛阳一模)已知F1,F2是椭圆C+=1的左,右焦点,以线段F1F2为直径的圆与圆C关于直线x+y﹣2=0对称.(l)求圆C的方程;(2)过点P(m,0)作圆C的切线,求切线长的最小值以及相应的点P的坐标.3.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.4.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.5.(2014•北京模拟)已知椭圆C:+=1(a>b>0)的过点(0,1),且离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,求△OAB面积的最大值.6.(2013•曲靖二模)已知椭圆C:+=1(a>b>0)的焦距为4且过点(,﹣2).(1)求椭圆C方程;(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求•的取值范围.7.(2011•厦门模拟)已知椭圆E:+=1(a>b>0)的长轴长为12,右顶点为A,F1,F2分别是椭圆E的左、右焦点,且|AF1|=5|AF2|.(Ⅰ)求椭圆E的方程;(Ⅱ)圆C:(x﹣2)2+y2=4,点P是椭圆E上任意一点,线段CP交圆C于点Q,求线段PQ长度的最小值.8.(2006•天津)如图,双曲线=1(a>0,b>0)的离心率为、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且.(I)求双曲线的方程;(II)设A(m,0)和(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心.9.已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.10.已知A,B是⊙0:x2+y2=4与x轴的两个交点,C是⊙O上异于点A,B的任意一点,过点B作直线l的垂线BP,且与AC的延长线交于点P,求点P的轨迹方程.11.设F1,F2,分别是椭圆+=1的左右焦点,已知定点A(0,﹣1),B(0,3),C(3,3),以点C为焦点作过A,B两点的椭圆.(1)求另一焦点D的轨迹G的方程;(2)过点A的直线l交曲线G于P,Q两点,若=3,求直线l的方程.12.已知直线x+y﹣1=0与椭圆+=1(a>b>0)相交于A,B两点,线段AB中点M在直线l:y=x上.(1)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程;(2)过D(0,2)的直线与(1)中的椭圆相交于不同两点E、F,且E在D、F之间,设=λ,试确定实数λ的取值范围.13.已知点M到点F(1,0)和直线x=﹣1的距离相等,记点M的轨迹为C.(1)求轨迹C的方程;(2)过点F作相互垂直的两条直线l1、l2,曲线C与l1交于点P1、P2,与l2交于点Q1、Q2,试证明:.(2)设抛物线方程的焦点为F,过焦点F的直线交抛物线于AB两点,且交准线l于点M,已知=λ1,=λ2,求λ1+λ2的值.15.已知抛物线C:y2=2px(p>0)的焦点为F(2,0)(Ⅰ)求抛物线的标准方程;(Ⅱ)抛物线C在x轴上方一点A的横坐标为2,过点A作两条倾斜角互补的直线,与曲线C的另一个交点分别为B,C,求证:直线BC的斜率为定值.16.已知抛物线C:y2=2px(p>0)过点A(1,m),点A到焦点的距离为2.(1)求抛物线C的方程及m的值.(2)是否存在斜率为﹣2的直线l,使得l与C有公共点,且l与直线y=﹣2x的距离为?若存在,求出l的方程:若不存在,说明理由.17.已知抛物线C:y=mx2(m>0),焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值.18.过双曲线﹣=1的右焦点F2作实轴的垂线,交双曲线于A、B两点.(1)求线段AB的长;(2)若△AF1F2为等腰直角三角形,求双曲线的离心率(F1为左焦点).19.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.20.如图所示,椭圆过点,点F、A分别为椭圆的右焦点和右顶点且有.(1)求椭圆的方程.(2)若动点P(x,y),符合条件:,当y≠0时,求证:动点P(x,y)一定在椭圆内部.21.设椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆E于A,B两点,满足AF1=2F1B,且AB=3,△ABF2的周长为12.(1)求AF2;(2)若cos∠F1AF2=﹣,求椭圆E的方程.22.已知抛物线y2=4x,椭圆+=1,它们有共同的焦点F2,并且相交于P、Q两点,F1是椭圆的另一个焦点,试求:(1)m的值;(2)P、Q两点的坐标;(3)△PF1F2的面积.23.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l为抛物线C的切线且l∥MN,求直线l的方程.24.过抛物线C:y2=2px上的点M(4,﹣4)作倾斜角互补的两条直线MA、MB,分别交抛物线于A、B两点.(1)若|AB|=4,求直线AB的方程;(2)不经过点M的动直线l交抛物线C于P、Q两点,且以PQ为直径的圆过点M,那么直线l是否过定点?如果是,求定点的坐标;如果不是,说明理由.25.已知双曲线x2﹣=1的顶点、焦点分别为椭圆C:+=1(a>b>0)的焦点、顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.26.抛物线的顶点在原点,它的准线过椭圆C:=1(a>b>0)的一个焦点,并与椭圆的长轴垂直,已知抛物线与椭圆的一个交点为.(1)求抛物线的方程和椭圆C的方程;(2)若双曲线与椭圆C共焦点,且以y=±x为渐近线,求双曲线的方程.27.已知椭圆C1:+=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.(1)求抛物线C2的标准方程;(2)求线段AB的长度.28.P是椭圆=1上一点,F1,F2是焦点.(1)若∠F1PF2=,求△F1PF2的面积和P点坐标;(2)求|PF1||PF1|的最大值.29.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,点P是椭圆上任意一点,|PF1|•|PF2|的最大值为4,且椭圆C的离心率是双曲线﹣=1的离心率的倒数.(1)求椭圆C的标准方程;(2)若O为坐标原点,B为椭圆C的右顶点,A,M为椭圆C上任意两点,且四边形OABM为菱形,求此菱形面积.30.已知椭圆C:+=1(a>b>0)经过点P(1,),且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线l:mx+ny+n=0(m,n∈R)交椭圆C于A、B两点,求证:以AB为直径的动圆恒经过定点(0,1).参考答案与试题解析一.解答题(共30小题)1.(2015•徐汇区一模)已知椭圆γ:=1的右焦点为F,左顶点为R,点A(2,1),B(﹣2,1),O为坐标原点.(1)若P是椭圆γ上任意一点,,求m2+n2的值;(2)设Q是椭圆γ上任意一点,S(t,0),t∈(2,5),求的取值范围;(3)过F作斜率为k的直线l交椭圆γ于C,D两点,交y轴于点E,若,,试探究λ1+λ2是否为定值,说明理由.)把),得时,时,最小值为综上所述:的取值范围为,得,得,同理==2.(2015•洛阳一模)已知F1,F2是椭圆C+=1的左,右焦点,以线段F1F2为直径的圆与圆C关于直线x+y﹣2=0对称.(l)求圆C的方程;(2)过点P(m,0)作圆C的切线,求切线长的最小值以及相应的点P的坐标.=1,此时切线长取最小值3.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.:﹣,,﹣﹣t=的方程为+=1上,故有+=1代入上式,得:c=a+2+.)=4.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.,可得,解得即可.:,点CDF1=(,由数形结合知x∴的方程为+和,点,化为(.=CDF1=t=SCDF1==t=时等号成立.n=CDF1=(,,=﹣5.(2014•北京模拟)已知椭圆C:+=1(a>b>0)的过点(0,1),且离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,求△OAB面积的最大值.+椭圆的离心率等于a=,代入中,+kd=|AB|d=||=||的最大值为6.(2013•曲靖二模)已知椭圆C:+=1(a>b>0)的焦距为4且过点(,﹣2).(1)求椭圆C方程;(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求•的取值范围.,根据椭圆的定义点(,从而求得.)椭圆焦距是∴,所以的方程是;则点,=,所以7.(2011•厦门模拟)已知椭圆E:+=1(a>b>0)的长轴长为12,右顶点为A,F1,F2分别是椭圆E的左、右焦点,且|AF1|=5|AF2|.(Ⅰ)求椭圆E的方程;(Ⅱ)圆C:(x﹣2)2+y2=4,点P是椭圆E上任意一点,线段CP交圆C于点Q,求线段PQ长度的最小值.c=;,则∴=时,有最小值8.(2006•天津)如图,双曲线=1(a>0,b>0)的离心率为、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且.(I)求双曲线的方程;(II)设A(m,0)和(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心.满足,解得.,得,于是的方程为.)两点坐标满足.于是,得)两点坐标满足.9.已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.+10.已知A,B是⊙0:x2+y2=4与x轴的两个交点,C是⊙O上异于点A,B的任意一点,过点B作直线l的垂线BP,且与AC的延长线交于点P,求点P的轨迹方程.1+,,))(11.设F1,F2,分别是椭圆+=1的左右焦点,已知定点A(0,﹣1),B(0,3),C(3,3),以点C为焦点作过A,B两点的椭圆.(1)求另一焦点D的轨迹G的方程;(2)过点A的直线l交曲线G于P,Q两点,若=3,求直线l的方程.,结合=3,∴=3,∴得k=的方程:12.已知直线x+y﹣1=0与椭圆+=1(a>b>0)相交于A,B两点,线段AB中点M在直线l:y=x上.(1)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程;(2)过D(0,2)的直线与(1)中的椭圆相交于不同两点E、F,且E在D、F之间,设=λ,试确定实数λ的取值范围.=1(,x(,),联立(y=∴⇒由对称性知∴+椭圆的标准方程为=;,联立,又),λ∴=,∴⇒+2=<<,解得<13.已知点M到点F(1,0)和直线x=﹣1的距离相等,记点M的轨迹为C.(1)求轨迹C的方程;(2)过点F作相互垂直的两条直线l1、l2,曲线C与l1交于点P1、P2,与l2交于点Q1、Q2,试证明:.,以﹣代入,可得,∵+p=代入,可得∴.14.已知抛物线的顶点在原点,图象关于y轴对称,且抛物线上一点N(m,﹣2)到焦点的距离为6(1)求此抛物线的方程;(2)设抛物线方程的焦点为F,过焦点F的直线交抛物线于AB两点,且交准线l于点M,已知=λ1,=λ2,求λ1+λ2的值.,可得:,由,=1,2,,=+=015.已知抛物线C:y2=2px(p>0)的焦点为F(2,0)(Ⅰ)求抛物线的标准方程;(Ⅱ)抛物线C在x轴上方一点A的横坐标为2,过点A作两条倾斜角互补的直线,与曲线C的另一个交点分别为B,C,求证:直线BC的斜率为定值.∴16.已知抛物线C:y2=2px(p>0)过点A(1,m),点A到焦点的距离为2.(1)求抛物线C的方程及m的值.(2)是否存在斜率为﹣2的直线l,使得l与C有公共点,且l与直线y=﹣2x的距离为?若存在,求出l的方程:若不存在,说明理由.的距离为,求出1+=2的距离为∴,17.已知抛物线C:y=mx2(m>0),焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(x R,2)到焦点F的距离为3,求此时m的值.yy2+=3.18.过双曲线﹣=1的右焦点F2作实轴的垂线,交双曲线于A、B两点.(1)求线段AB的长;(2)若△AF1F2为等腰直角三角形,求双曲线的离心率(F1为左焦点).)作出双曲线﹣,得∴|AB|=e=19.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.的面积为|PF×=1620.如图所示,椭圆过点,点F、A分别为椭圆的右焦点和右顶点且有.(1)求椭圆的方程.(2)若动点P(x,y),符合条件:,当y≠0时,求证:动点P(x,y)一定在椭圆内部.,再由c满足条件∵a=b=.)符合条件得:公共点仅为21.设椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆E于A,B两点,满足AF1=2F1B,且AB=3,△ABF2的周长为12.(1)求AF2;(2)若cos∠F1AF2=﹣,求椭圆E的方程.﹣∴,c=椭圆的方程为:22.已知抛物线y2=4x,椭圆+=1,它们有共同的焦点F2,并且相交于P、Q两点,F1是椭圆的另一个焦点,试求:(1)m的值;(2)P、Q两点的坐标;(3)△PF1F2的面积.即得)解得,∴∴23.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l为抛物线C的切线且l∥MN,求直线l的方程.,代入,,3px+24.过抛物线C:y2=2px上的点M(4,﹣4)作倾斜角互补的两条直线MA、MB,分别交抛物线于A、B两点.(1)若|AB|=4,求直线AB的方程;(2)不经过点M的动直线l交抛物线C于P、Q两点,且以PQ为直径的圆过点M,那么直线l是否过定点?如果是,求定点的坐标;如果不是,说明理由.,得,由弦长公式的直线为=,恒25.已知双曲线x2﹣=1的顶点、焦点分别为椭圆C:+=1(a>b>0)的焦点、顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.∴a的方程是)则××26.抛物线的顶点在原点,它的准线过椭圆C:=1(a>b>0)的一个焦点,并与椭圆的长轴垂直,已知抛物线与椭圆的一个交点为.(1)求抛物线的方程和椭圆C的方程;(2)若双曲线与椭圆C共焦点,且以y=±x为渐近线,求双曲线的方程.∵∴,∴由于点(﹣,解得,∴则设双曲线的方程为,∴27.已知椭圆C1:+=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.(1)求抛物线C2的标准方程;(2)求线段AB的长度.:+.因此,解得)联立+,∴)联立,解得28.P是椭圆=1上一点,F1,F2是焦点.(1)若∠F1PF2=,求△F1PF2的面积和P点坐标;(2)求|PF1||PF1|的最大值.椭圆+,cost×﹣)的斜率是=的斜率是∴,﹣,,10,29.已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,点P是椭圆上任意一点,|PF1|•|PF2|的最大值为4,且椭圆C的离心率是双曲线﹣=1的离心率的倒数.(1)求椭圆C的标准方程;(2)若O为坐标原点,B为椭圆C的右顶点,A,M为椭圆C上任意两点,且四边形OABM为菱形,求此菱形面积.代入椭圆方程得)而双曲线=1的离心率为,故椭圆的离心率为=c=+y,代入椭圆方程得±面积为|OB||AM|=××=30.已知椭圆C:+=1(a>b>0)经过点P(1,),且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线l:mx+ny+n=0(m,n∈R)交椭圆C于A、B两点,求证:以AB为直径的动圆恒经过定点(0,1).,所以,),由此可知所求)点.当y+=.由a=,∴a=,故所求椭圆方程为)点.y+=﹣,又因为==﹣= =0。
圆锥曲线基础大题20道
圆锥曲线基础大题20道一、解答题1.(1)已知椭圆()22122:10x y C a b a b+=>>的焦距为x =±,求椭圆1C 的方程;(2)已知双曲线()22222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,求双曲线2C 的方程. 2.已知椭圆22149x y +=,一组平行直线的斜率是1. (1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 3.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.4.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB | 5.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.6.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.7.焦点在x 轴上的椭圆的方程为2214x y m +=,点(2,1)P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 8.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过23(2,),(2,)A B ---两点 9.如图,若12,F F 是双曲线221916x y -=的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且12·32PF PF =,试求12F PF ∆的面积. 10.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线. (1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.11.已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标和AB 长度. 12.已知双曲线22221x y a b-=的离心率为2e =(2,3)P (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离13.已知椭圆()222210x y a b a b +=>>⎛ ⎝⎭,1F ,2F 是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)点P 在椭圆上,且122PF PF -=,求12PF PF ⋅的值. 14.已知双曲线22:12x C y -=. (1)求与双曲线C有共同的渐近线,且过点((2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.15.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2.(1)求双曲线C 的标准方程;(2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为6,离心率为23. (1)求椭圆C 的方程;(2)直线y x m =+与椭圆C 交于A ,B 两点,求AB 的最大值.17.已知椭圆2222:1(0)x y a b a bΩ+=>>的焦距为4,短半轴长为2. (1)求椭圆Ω的方程;(2)若直线l 与椭圆Ω相交于A ,B 两点,点()2,1P -是线段AB 的中点,求直线l 的方程.18.已知双曲线C 的中心是原点,右焦点为F ,一条渐近线方程为0x =,直线:0l x y -+=与双曲线交于点A , B 两点.记F A , FB 的斜率分别为12,.k k (1)求双曲线C 的方程;(2)求1211k k +的值. 19.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,下顶点为A ,O 为坐标原点,O 到直线2AF 的距离为3,12AF F △为等边三角形. (1)求椭圆C 的标准方程; (2)若倾斜角为60 的直线经过椭圆C 的右焦点2F ,且与椭圆C 交于M ,N 两点(M 点在N 点的上方)求线段2MF 与2NF 的长度之比.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (2,m )为其上一点,且|MF |=4.(1)求p 与m 的值;(2)如图,过点F 作直线l 交抛物线于A 、B 两点,求直线OA 、OB 的斜率之积.参考答案1.(1)22196x y +=;(2)22145x y -= 【分析】(1)由已知可得c =2a c±=± (2)由已知可得b a =,29c =,计算即可得出结果. 【详解】 (1)焦距为c =x =±,则2a c±=±3a =, 由222a b c =+,可得:26b =,所以椭圆1C 的方程为22196x y +=; (2)由双曲线的一条渐近线方程为2y x =可知,b a =, 且与椭圆221123x y +=有公共焦点,则29c =, 又因为222a c b =-,即2223c b a a c b =⎧⎪⎪=⎨⎪=-⎪⎩,解得:2a =,b =3c =, 所以双曲线2C 的方程为22145x y -=. 【点睛】本题考查椭圆的标准方程及双曲线的标准方程,考查计算能力,属于基础题.2.(1)截距在[范围内;(2)940x y +=.【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b -,而其中必有原点即可求直线方程; 【详解】 (1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213b y y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-, ∴所在的直线方程:940x y +=;【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.3.(1)x 2+y 2-4x="0;" (2)x 2+y 2-16x=0【解析】试题分析:(1)设M 点坐标为(x ,y ),那么A 点坐标是(2x ,2y ),A 点坐标满足圆x 2+y 2-8x=0的方程,所以, (2x )2+(2y )2-16x=0,化简得M 点轨迹方程为x 2+y 2-4x=0.(2)设N 点坐标为(x ,y ),那么A 点坐标是(,22x y ), A 点坐标满足圆x 2+y 2-8x=0的方程,得到:(2x )2+(y 2)2-4x=0, N 点轨迹方程为:x 2+y 2-16x=0.考点:轨迹方程点评:中档题,本题利用“相关点法”(“代入法”),较方便的使问题得解.4.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果;(2)联立直线与抛物线方程,根据弦长公式可得结果.【详解】(1)设(,)P x y |(2)|x =--,化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x =(2)直线l 的方程为(2)y x =--,即2y x =-+, 联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=, 设11(,)A x y ,22(,)B x y ,则1212x x +=,124x x =,由弦长公式可得||AB =16==.所以|16|AB =【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.5.(1)()1,0,1x =-;(2)【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+ ,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,, ∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+ ,点O 到直线AB 的距离2d =, 12OAB S AB d ∴=⋅=【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.6.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=, ∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,b a∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==c e a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.7.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解.【详解】(1)由题意,点P 在椭圆上,代入,得2114m +=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】 本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.8.(1)22143x y +=(2)2218x y += 【分析】(1)利用已知椭圆可得焦点的坐标,结合椭圆的定义可求a ,从而可得椭圆标准方程: (2)利用待定系数法,设出方程,代入两点的坐标,解方程可求.【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±, ∵椭圆过点3(1,)2,∴24a ==,∴2,a b ==, ∴椭圆的标准方程为22143x y +=. (2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241m n m n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=. 【点睛】本题主要考查椭圆方程的求解,待定系数法和定义法是常用的求解方法,侧重考查数学运算的核心素养.9.(1)10或22(2)1216F PF S ∆= 【分析】(1)设点M 到另一个焦点的距离为m ,由双曲线定义即可求得m 的值.(2)由双曲线定义及12·32PF PF =,可证明2221212PF PF F F +=,即12F PF ∆为直角三角形,即可求得12F PF ∆的面积. 【详解】(1)12,F F 是双曲线221916x y -=的两个焦点,则3,4,5,a b c ===设点M 到另一个焦点的距离为m , 由抛物线定义可知1626m a -==, 解得10m =或22m =,即点M 到另一个焦点的距离为10或22. (2)P 是双曲线左支上的点,1226PF PF a -==,则2211222·36PF PF PF PF -+=,代入12·32PF PF =, 可得221232321006PF PF +=+⨯=,即2212122100PF PF F F +==,所以12F PF ∆为直角三角形,所以12121·1232162F PF S PF PF ∆⨯===. 【点睛】本题考查了双曲线定义及性质的的简单应用,交点三角形面积求法,属于基础题.10.(1)1n >;(2)1k ≤ 【分析】(1)因为空间向量(1,0,)a n =,(1,1,1)b =-,可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,即可求得答案;(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线, 0n k ->,解得n k >,即可求得答案. 【详解】 (1)空间向量(1,0,)a n =,(1,1,1)b =-可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,∴要使p 成立,只需1n >(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线,∴0n k ->,解得n k >,若p 成立是q 成立的充分条件,∴k 的取值范围为1k ≤.【点睛】本题主要考查了根据命题成立求参数范围和根据充分条件求参数范围,解题关键是掌握充分条件定义,考查了分析能力和计算能力,属于基础题.11.(1)221106x y +=;(2)中点坐标为53,88⎛⎫- ⎪⎝⎭,4AB =. 【分析】(1)由题意设出椭圆方程并求得c ,由椭圆定义求得a ,再由隐含条件求得b ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系及中点坐标公式求得AB 的中点坐标,再由弦长公式求弦长. 【详解】解:(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==,所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.由弦长公式4AB ===. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.12.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,13.(1)2214x y +=;(2)1-. 【分析】(1)根据离心率公式,可得c a =222c a b =-,即可求得a ,b 的值,即可求得答案;(2)根据椭圆定义,结合条件,可得12,PF PF 的值,根据余弦定理,可求得12cos F PF ∠的值,带入数量积公式,即可求得答案. 【详解】 (1)依题意有2c a =,221314a b +=,222c a b =-, 解得2a =,1b =,则椭圆的方程为2214x y +=.(2)因为点P 在椭圆上,由椭圆定义得:1224PF PF a +==所以121242PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得13PF = ,21PF =,在12PF F △中,由余弦定理222121212121cos 23PF PF F F F PF PF PF +-∠==-,221112co 1s 3113PF PF PF PF F PF ⎛⎫⋅=⋅⋅⋅-=- ⎪⎝∠=⎭.14.(1)2212x y -=;(2)12. 【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率. 【详解】(1)因为所求双曲线与双曲线C有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=, 所以1212121212()2l y y x x k x x y y -+===-+.15.(1)2213x y -=;(2)13k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 16.(1)22195x y +=;(2)maxAB =. 【分析】(1)由题意得2623a c a =⎧⎪⎨=⎪⎩,求出,a c ,从而可求出b 的值,进而可得椭圆C 的方程;(2)设()()1122,,A x y B x y ,直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系得1297m x x +=- 21294514m x x -=,再利用弦长公式可得AB==【详解】解:(1)由题意可得2623aca=⎧⎪⎨=⎪⎩,解得3,2a c==,所以2225b a c,所以椭圆C的方程为22195x y+=;(2)设()()1122,,A x yB x y222214189450195y x mx mx mx y=+⎧⎪⇒++-=⎨+=⎪⎩,由22(18)414(945)0m m∆=-⨯⨯->,得2140m-<1297mx x+=-,21294514mx x-=AB∴==≤所以当0m=时,max7AB=.17.(1)22184x y+=;(2)30x y-+=.【分析】(1)直接求出,b c,即可求解;(2)利用点差法,设()11,A x y,()22,B x y,由题意得22112222184184x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,然后,得到斜率()121212122y y x xkx x y y-+==--+,再代入中点,即可出k,进而求出直线l的方程【详解】(1)由题意可知24c =,2b = 所以24b =,24c =,2228a b c =+=所以椭圆Ω的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,由题意得22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得22221212084x x y y --+=,即()()()()12121212084x x x x y y y y +-+-+=,所以直线l 的斜率()121212122y y x x k x x y y -+==--+.因为点(2,1)P -是线段AB 的中点, 所以124x x +=-,122y y +=,所以1k =所以直线l 的方程为1(2)y x -=+,即30x y -+=. 【点睛】关键点睛:利用点差法和中点求出斜率k 是解题关键,属于基础题18.(1)2212x y -=;(2)10-. 【分析】(1)设双曲线方程,由焦点及渐近线方程运算即可得解;(2)设()()1122,,,A x y B x y ,联立方程组,结合韦达定理可得12y y +=-121y y =-,再由斜率公式即可得解. 【详解】(1)设双曲线的方程为()22221,0,0x y a b a b-=>>,由题意,223a b +=,该双曲线的渐近线方程by x a=±,又双曲线的一条渐近线方程为0x +=,所以2b a =, 所以222,1a b ==,所以双曲线C 的方程为2212x y -=;(2)设()()1122,,,A x y B x y ,由22120x y x y ⎧-=⎪⎨⎪-+=⎩,消去x化简可得210y +-=,0∆>,所以12y y +=-121y y =-,所以12121212121211112x x y y k k y y y y y y ⎛⎫--+=+=+=-+ ⎪⎝⎭121222101y y y y +-=-=-=--. 【点睛】关键点点睛:解决本题的关键是联立方程组,结合韦达定理对1211k k +变形.19.(1)22143x y +=;(2)35. 【分析】(1)由椭圆的定义结合平面几何的知识可直接求得a 、b ,即可得解; (2)联立直线方程与椭圆方程,求得点8,55M ⎛⎫ ⎪ ⎪⎝⎭,(0,N ,再由22MN MF y NF y =即可得解. 【详解】(1)因为12AF F △为等边三角形,1OA =即b =,又O 到直线2AF的距离d =2b d ==2a =, 则椭圆C 的标准方程为22143x y +=;(2)倾斜角为60°的直线经过椭圆C 的右焦点()21,0F ,则直线的方程为)1y x =-,联立)221143y x x y ⎧=-⎪⎨+=⎪⎩,解得0x y =⎧⎪⎨=⎪⎩85x y ⎧=⎪⎪⎨⎪=⎪⎩, 因为M 点在N点的上方,所以8,55M ⎛ ⎝⎭,(0,N , 所以2235M N MF y NF y ==. 20.(1)p =4,m =±4;(2)-4. 【分析】(1)利用抛物线的定义及题干条件,可求得p 的值,将M 点坐标代入,即可求得m 值; (2)当直线l 的斜率不存在时,方程为:x =2,代入抛物线方程,求得A 、B 点坐标,即可求得OA OB k k ⋅的值,当直线l 的斜率存在时,设直线为y =k (x -2),与抛物线联立,利用韦达定理,求得12y y ,12x x 的值,即可求得OA OB k k ⋅的值,综合即可得答案. 【详解】(1)抛物线C :y 2=2px (p >0)的焦点为(,0)2pF ,准线为2p x =-, 由抛物线定义知:点M (2,m )到F 的距离等于M 到准线的距离, ∴||242pMF =+=,∴p =4, 故抛物线C 的方程为y 2=8x , ∵点M (2,m )在抛物线C 上,∴m 2=16,∴m =±4,∴p =4,m =±4;(2)由(1)知:抛物线C 的方程为y 2=8x ,焦点为F (2,0),答案第17页,总17页 若直线l 的斜率不存在,则其方程为:x =2,代入y 2=8x ,可得:A (2,4),B (2,-4), 从而404042020OA OB k k ---=⨯=---⋅; 若直线l 的斜率存在,设为k (k ≠0),则其方程可表示为:y =k (x -2),由2(2)8y k x y x=-⎧⎨=⎩,消去x ,得:21(2)8y k y =-,即ky 2-8y -16k =0(k ≠0), Δ=64+64k 2>0,设A (x 1,y 1),B (x 2,y 2),则121616k y y k-==-, ∴22221212121111(()(16)4886464)()x x y y y y ===⨯-=⋅, 从而OA k ⋅1212121200164004OB y y y y k x x x x ---=⨯===---, 综上所述:直线OA 、OB 的斜率之积为-4.【点睛】处理抛物线问题,需熟练应用抛物线定义,在联立直线与抛物线方程时,消x 得到关于y 的一元二次方程为常用办法,可简化计算,提高正确率,属基础题.。
(完整版)圆锥曲线基础知识专项练习
..圆锥曲线练习一、选择题(本大题共13小题,共65.0分)1.若曲线表示椭圆,则k的取值范围是()A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<12.方程表示椭圆的必要不充分条件是()A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3B.1C.3D.64.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B. C. D.5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6.“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件7.方程+=10,化简的结果是()A.+=1B.+=1C.+=1D.+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A. B. C. D.9.若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是()A.y2=-16xB.y2=-32xC.y2=16xD.y2=32x10.抛物线y=ax2(a<0)的准线方程是()A.y =-B.y =-C.y =D.y =11.设抛物线y2=4x上一点P到直线x=-3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812.已知点P是抛物线x =y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为()A.2B.C.-1D.+113.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=()A.2B.-1C.2或-1D.1±二、填空题(本大题共2小题,共10.0分)14.在平面直角坐标系x O y中,已知△ABC顶点A(-4,0)和C(4,0),顶点B 在椭圆上,则= ______ .15.已知椭圆,焦点在y轴上,若焦距等于4,则实数k=____________.三、解答题(本大题共6小题,共72.0分)16.已知三点P (,-)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.17.已知椭圆+=1(a>b>0)的离心率为,短轴长为4.椭圆与直线y=x+2相交于A、B两点.(1)求椭圆的方程;(2)求弦长|AB|高中数学试卷第2页,共10页..18.设焦点在y轴上的双曲线渐近线方程为y=±x,且焦距为4,已知点A(1,)(1)求双曲线的标准方程;(2)已知点A(1,),过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程.19.已知抛物线的标准方程是y2=6x,(1)求它的焦点坐标和准线方程,(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB 的长度.20.已知椭圆的离心率,直线y=bx+2与圆x2+y2=2相切.(1)求椭圆的方程;(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.21.已知椭圆C:4x2+y2=1及直线L:y=x+m.(1)当直线L和椭圆C有公共点时,求实数m的取值范围;(2)当直线L被椭圆C截得的弦最长时,求直线L所在的直线方程.答案和解析【答案】1.D2.B3.A4.B5.B6.C7.C8.D9.C10.B11.A12.C13.A14.15.816.解:(1)2a =PA+PB=2,所以a =,又c=2,所以b2=a2-c2=6则以A、B为焦点且过点P的椭圆的标准方程为:+=1.17.解:(1)∵椭圆+=1(a>b>0)的离心率为,短轴长为4,∴,解得a=4,b=2,∴椭圆方程为=1.(2)联立,得5x2+16x=0,解得,,∴A(0,2),B(-,-),∴|AB|==.18.解:(1)设双曲线的标准方程为(a>0,b>0),则∵双曲线渐近线方程为y=±x,且焦距为4,∴,c=2∵c2=a2+b2∴a=1,b =∴双曲线的标准方程为;(2)设M(x1,y1),N(x2,y2),代入双曲线方程可得,两式相减,结合点A(1,)为线段MN 的中点,可得∴=∴直线L 方程为,即4x-6y-1=0.高中数学试卷第4页,共10页..19.解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴=∴焦点为F(,0),准线方程:x=-,(2)∵直线L过已知抛物线的焦点且倾斜角为45°,∴直线L的方程为y=x-,代入抛物线y2=6x化简得x2-9x+=0,设A(x1,y1),B(x2,y2),则x1+x2=9,所以|AB|=x1+x2+p=9+3=12.故所求的弦长为12.20.解:(1)因为直线l:y=bx+2与圆x2+y2=2相切,∴,∴b=1,∵椭圆的离心率,∴,∴a2=3,∴所求椭圆的方程是.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0∴△=36k2-36>0,∴k>1或k<-1,设C(x1,y1),D(x2,y2),则有,,若以CD为直径的圆过点E,则EC⊥ED,∵,,∴(x1-1)(x2-1)+y1y2=0∴(1+k2)x1x2+(2k-1)(x1+x2)+5=0∴,解得,所以存在实数使得以CD为直径的圆过定点E.21.解:(1)由方程组,消去y,整理得5x2+2mx+m2-1=0.(2分)∴△=4m2-20(m2-1)=20-16m2(4分)因为直线和椭圆有公共点的条件是△≥0,即20-16m2≥0,解之得-.(5分)(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理得,(8分)∴弦长|AB|===,-,∴当m=0时,|AB|取得最大值,此时直线L方程为y=x.(10分)【解析】1. 解:∵曲线表示椭圆,∴,解得-1<k<1,且k≠0.故选:D.曲线表示椭圆,可得,解出即可得出.本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于基础题.2. 解:方程表示椭圆的充要分条件是,即m∈(-4,-1)∪(-1,2).由题意可得,所求的m的范围包含集合(-4,-1)∪(-1,2),故选:B.由条件根据椭圆的标准方程,求得方程表示椭圆的充要条件所对应的m的范围,则由题意可得所求的m的范围包含所求得的m范围,结合所给的选项,得出结论.本题主要考查椭圆的标准方程,充分条件、必要条件,要条件的定义,属于基础题.3. 解:①椭圆+=1,中a2=2,b2=k,则c =,∴2c =2=2,解得k=1.高中数学试卷第6页,共10页..②椭圆+=1,中a2=k,b2=2,则c=,∴2c=2=2,解得k=3.综上所述,k的值是1或3.故选:A.利用椭圆的简单性质直接求解.本题考查椭圆的简单性质,考查对椭圆的标准方程中各字母的几何意义,属于简单题.4. 解:设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,b=,即有椭圆方程为+=1.故选:B.设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,再由a,b,c的关系,可得b,进而得到椭圆方程.本题考查椭圆的方程的求法,注意运用待定系数法,考查椭圆的焦点的运用,属于基础题.5. 解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.6. 解:a>0,b>0,方程ax2+by2=1不一定表示椭圆,如a=b=1;反之,若方程ax2+by2=1表示椭圆,则a>0,b>0.∴“a>0,b>0”是“方程ax2+by2=1表示椭圆”的必要分充分条件.故选:C.直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案.本题考查必要条件、充分条件及充分必要条件的判断方法,考查了椭圆的标准方程,是基础题.7. 解:由+=10,可得点(x,y)到M(0,-3)、N(0,3)的距离之和正好等于10,再结合椭圆的定义可得点(x,y)的轨迹是以M、N为焦点的椭圆,且2a=10、c=3,∴a=5,b=4,故要求的椭圆的方程为+=1,故选:C.有条件利用椭圆的定义、标准方程,以及简单性质,求得椭圆的标准方程.本题主要考查椭圆的定义、标准方程,以及简单性质的应用,属于中档题.8. 解:椭圆的左焦点为F(-,0),右焦点为(,0),∵P 为椭圆上一点,其横坐标为,∴P 到右焦点的距离为∵椭圆的长轴长为4∴P到左焦点的距离|PF|=4-=故选D.确定椭圆的焦点坐标,利用椭圆的定义,即可求得P到左焦点的距离.本题考查椭圆的标准方程与几何性质,考查椭圆的定义,属于中档题.9. 解:∵点P到点(4,0)的距离比它到直线x+5=0的距离少1,∴将直线x+5=0右移1个单位,得直线x+4=0,即x=-4,可得点P到直线x=-4的距离等于它到点(4,0)的距离.根据抛物线的定义,可得点P的轨迹是以点(4,0)为焦点,以直线x=-4为准线的抛物线.设抛物线方程为y2=2px,可得=4,得2p=16,∴抛物线的标准方程为y2=16x,即为P点的轨迹方程.故选:C根据题意,点P到直线x=-4的距离等于它到点(4,0)的距离.由抛物线的定义与标准方程,不难得到P点的轨迹方程.本题给出动点P到定直线的距离比到定点的距离大1,求点P的轨迹方程,着重考查了抛物线的定义与标准方程和动点轨迹求法等知识,属于基础题.10. 解:抛物线y=ax2(a<0)可化为,准线方程为.故选B.抛物线y=ax2(a<0)化为标准方程,即可求出抛物线的准线方程.本题考查抛物线的性质,考查学生的计算能力,抛物线方程化为标准方程是关键.11. 解:抛物线y2=4x的准线为x=-1,∵点P到直线x=-3的距离为5,∴点p到准线x=-1的距离是5-2=3,根据抛物线的定义可知,点P到该抛物线焦点的距离是3,故选A.先根据抛物线的方程求得抛物线的准线方程,根据点P到直线x=-3的距离求得点到准线的距离,进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,从而求得答案.本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距高中数学试卷第8页,共10页..离相等这一特性.12. 解:抛物线x=y2,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,2)的距离与点P到y轴的距离之和的最小值,就是P到(0,2)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,2)的距离与P到该抛物线焦点坐标的距离之和减1,可得:-1=.故选:C.先求出抛物线的焦点坐标,再由抛物线的定义转化求解即可.本小题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.13. 解:联立直线y=kx-2与抛物线y2=8x,消去y,可得k2x2-(4k+8)x+4=0,(k≠0),判别式(4k+8)2-16k2>0,解得k>-1.设A(x1,y1),B(x2,y2),则x1+x2=,由AB中点的横坐标为2,即有=4,解得k=2或-1(舍去),故选:A.联立直线y=kx-2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2.本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题.14. 解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.本题主要考查了椭圆的定义和正弦定理的应用.考查了学生对椭圆的定义的灵活运用.15. 解:将椭圆的方程转化为标准形式为,显然k-2>10-k,即k>6,,解得k=8故答案为:8.16.利用椭圆定义,求出2a,得出a,可求得椭圆的标准方程.本题考查了椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.17.(1)由椭圆的离心率为,短轴长为4,列出方程组,能求出椭圆方程.(2)联立,得5x2+16x=0,由此能求出弦长|AB|.本题考查椭圆方程的求法,考查弦长的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.(1)设出双曲线的标准方程,利用双曲线渐近线方程为y=±x,且焦距为4,求出几何量,即可求双曲线的标准方程;(2)利用点差法,求出直线的斜率,即可求直线L方程.本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.19.(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.20.(1)利用直线l:y=bx+2与圆x2+y2=2相切,求出b,利用椭圆的离心率求出a,得到椭圆方程.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0,设C(x1,y1),D(x2,y2),则利用韦达定理结合EC⊥ED,求解k ,说明存在实数使得以CD为直径的圆过定点E.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查存在性问题的处理方法,设而不求的应用,考查计算能力.21.(1)由方程组,得5x2+2mx+m2-1=0,由此利用根的判别式能求出实数m的取值范围.(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理求出弦长|AB|=,由此能求出当m=0时,|AB|取得最大值,此时直线L方程为y=x.本题考查实数的取值范围的求法,考查直线方程的求法,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.高中数学试卷第10页,共10页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线基础测试题大全Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】(北师大版)高二数学《圆锥曲线》基础测试试题一、选择题1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( )A .2B .3C .5D .72. 椭圆32x 2+16y 2=1的焦距等于( )。
A .4B 。
8C 。
16D 。
1233.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( )A .双曲线B .双曲线的一支C .两条射线D .一条射线5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .36.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215D .10 7. 抛物线y 2=8x 的准线方程是( )。
(A )x =-2 (B )x =2 (C )x =-4 (D )y =-28.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( )(A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=21y (D ) y 2=4x 或x 2=4y10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±11.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或113. 抛物线y =-8x 2的准线方程是( )。
(A )y =321(B )y =2 (C )y =41 (D )y =414. 与椭圆2x 2+5y 2=1共焦点,且经过点P (23, 1)的椭圆方程是( )。
(A )x 2+4y 2=1 (B )2x 2+8y 52=1 (C )4x 2+y 2=1 (D )4x 2+7y 2=115. 和椭圆25x 2+9y 2=1有共同焦点,且离心率为2的双曲线方程是( )。
(A )4x 2-14y 2=1 (B )4x 2-12y 2=1 (C )6x 2-14y 2=1(D )6x 2-12y 2=1二、填空题16. 椭圆9x 2+25y 2=225的长轴长为 ,短轴长为 ,离心率为 ,焦点坐标是17. 椭圆的长、短轴都在坐标轴上,经过A (0, 2)与B (21, 3)则椭圆的方程为 。
18.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
19. 顶点在原点,焦点是F (6, 0)的抛物线的方程是 。
20.抛物线x y 62=的准线方程为 . 三、解答题21、求满足下列条件的抛物线方程(1). 已知点(-2, 3)与抛物线y 2=2px (p >0) 的焦点的距离是5(2)抛物线的顶点在原点,对称轴为坐标轴,且焦点在直线x -y +2=0上22、求满足下列条件的椭圆的方程(1)过点(3,2)P ,焦点在坐标轴上,长轴长是短轴长的3倍.(2)点P ,过P 作长轴的垂线恰好过椭圆的一个焦点1、方程12422=--b y x 表示双曲线,则自然数b 的值可以是 2、椭圆221168x y +=的离心率为3、一个椭圆的半焦距为2,离心率23e =,则该椭圆的短半轴长是 。
4、已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为5、已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -=B.221124x y -=C.221106x y -=D.221610x y -=6、双曲线222-8x y =的实轴长是7、若双曲线22116y x m-=的离心率e=2,则m=__ __.8、9、双曲线221mx y +=的虚轴长是实轴长的2倍,则( )A 、14- B 、- 4 C 、4 D 、1410、双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左焦点的距离是11. 抛物线28y x =的准线方程是( )(A )4x =- (B )2x =- (C )2x = (D )4x = 12、设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是( ) (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x =13、已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则=⋅||||21PF ( )(A)2 (B)4 (C) 6 (D) 814、设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A (B )2 (C (D 15、设双曲线的做准线与两条渐近线交于,A B 两点,左焦点为在以AB 才为之直径的圆内,则该双曲线的离心率的取值范围为(A ) (B ) (C ) ,1)2(D )(1,)+∞ 16、设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标17、设21,F F 分别是椭圆1422=+y x 的左、右焦点,P 是该椭圆上的一个动点。
(1)求该椭圆的离心率;(2)求21PF PF ⋅的最大值和最小值;(3)设21,B B 分别是该椭圆上、下顶点,证明当点P 与1B 或2B 重合时,21PF F ∠的值最大。
18、直线1y kx =+与双曲线2231x y -=的左支交于点A ,与右支交于点B ;(1) 求实数k 的取值范围; (2) 若0OA OB •=,求k 的值;(3) 若以线段AB 为直径的圆经过坐标原点,求该圆的方程;19、如图,已知抛物线px y 22= )0(>p ,过它的焦点F 的直线l 与其相交于A ,B 两点,O 为坐标原点。
(1) 若抛物线过点)2,1(,求它的方程:(2) 在(1)的条件下,若直线l 的斜率为1,求OAB ∆的面积; (3) 若,1-=⋅求p 的值20、如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
求实数b 的值。
圆锥曲线基础题训练一、选择题:1.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( )A .2B .3C .5D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( )A .双曲线B .双曲线的一支C .两条射线D .一条射线 4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线5.方程11122=-++ky k x 表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k6. 双曲线14122222=--+m y m x 的焦距是( ) A .4 B .22C .8D .与m 有关7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .128.双曲线的渐近线方程是y=±2x ,那么双曲线方程是?( )A .x 2-4y 2=1??B .x 2-4y 2=1 C .4x 2-y 2=-1??D .4x 2-y 2=19.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )A .1或5B . 6C . 7D . 910.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215D .10 11.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±12.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617B .1615C .87D .013.抛物线28x y =-的准线方程是 ( )A . 321=x B . 2=y C .321=y D . 2-=y二、填空题14.若椭圆221x my +=的离心率为2,则它的长半轴长为_______________. 15.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
16.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。
17.抛物线x y 62=的准线方程为 .18.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
三、解答题19.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点有一个公共点没有公共点20.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。
21.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
22.已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23 (1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.23.已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.24.已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1)若316=AB ,求直线l 的方程. (2)(2) 求AB的最小值.25.已知抛物线顶点在原点,焦点在x 轴上,又知此抛物线上一点A (4,m )到焦点的距离为6.(1)求此抛物线的方程;(2)若此抛物线方程与直线2-=kx y 相交于不同的两点A 、B ,且AB 中点横坐标为2,求k 的值1. 求适合下列条件的椭圆的标准方程(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10 ;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点)25,23(- ; (3)长轴长是短轴长的3倍,并且椭圆经过点A (-3(4)离心率为23,且经过点(2,0)的椭圆的标准方程是 . (5)离心率为35,一条准线方程为3=x ,中心在原点的椭圆方程是 .(6)设)5,0(),5,0(C B -,ABC ∆的周长为36,则ABC ∆的顶点A 的轨迹方程是 .(9)已知方程22112x y m m+=--表示焦点在y 轴上的椭圆,则m 的取值范围是________,若该方程表示双曲线,则m 的取值范围是_______.(10)若椭圆1422=+y m x 的离心率为21,则m 为 2、有关双曲线的习题(1) 中心在原点,一个顶点是(0,6),且离心率是,则标准方程是 (2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2)的标准方程为(3) 以椭圆15822=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线方程是 (4) 已知点)0,5(),0,5(21F F -,动点P 到1F 与2F 的距离之差是6,则点P 的轨迹是 ,其轨迹方程是 .(5) 双曲线方程为1422=-x y ,则焦点坐标为 ,顶点坐标为 ,实轴长为 ,虚轴长为 ,离心率为 ,准线方程为 ,渐进线方程为3、有关抛物线的习题1.抛物线281x y -=的准线方程是 ,焦点坐标是2.若抛物线)0(22>-=p px y 上一点M 的横坐标为-9,它到焦点的距离为10,则抛物线方程是 ,点M 的坐标是3.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为_____________4.过抛物线24y x =的焦点作直线交抛物线于点()()1122,,,P x y Q x y 两点,若126x x +=,则PQ 中点M 到抛物线准线的距离为_____________5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB|=________圆锥曲线精编练习1.已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 2.椭圆1422=+y x 的离心率为________3.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则椭圆的标准方程_______4. 已知椭圆19822=++y k x 的离心率21=e ,则k 的值为______________ 5.(1)求经过点35(,)22-,且455922=+y x 与椭圆有共同焦点的椭圆方程。