Matlab线性规划指派问题

合集下载

2-使用MATLAB求解线性规划问题

2-使用MATLAB求解线性规划问题

应用Matlab 优化工具箱中的linprog 函数求解线性规划时模型要求为如下形式: ⎪⎩⎪⎨⎧≤≤=≤⋅M x x m x dx C b Ax .t .s xc min 其中:M x ,x ,m x 均为列向量,C ,A 为常数矩阵,d ,b ,c '为常数列向量。

函数调用格式如下:);xM ,xm ,d ,C ,b ,A ,c (linprog ]z ,x [= %决策变量有上下界,默认变量非负。

例1-38 用Matlab 求解下面线性规划问题1212121212max 1502102310034120..55150,0z x x x x x x s t x x x x =++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩令z1= -zMATLAB 求解程序存为liti2.mc=[-150,-210];A=[2,3;3,4;5,5];b=[100;120;150];C=[];d=[];xm=[0;0];xM=10^10*[1;1];[x,z1]=linprog(c,A,b,C,d,xm,xM)Optimization terminated.在命令窗口键入liti2.m,按回车得最优解和最优值x =0.000030.0000z1 =-6.3000e+003故最优解为 x 1=0,x 2=30; 最优值为z=-z1=6300.通常在LINGO 中建立优化模型由MODEL 语句开始,由END 语句结束。

模型中包含四部分(即四段):集合(SETS )、数据段(DATA )、初始段(INIT )、目标和约束段。

(1) 集合段: 它是以 SETS 开始,ENDSETS 结束,其作用是定义所用集合变量及元素(数组的下标),以及相应的属性(数组)。

(2) 数据段:它是以 DA TA 开始,ENDDATA 结束,其作用是对集合段中定义的属性(数组)赋值(常数)。

数据之间用逗号分开或用空格分开。

(3) 初始段:它是以INIT 开始,ENDINTI 结束,其作用是对集合段中定义的属性(变量数组)赋迭代初值。

用Matlab解法求解线性规划问题

用Matlab解法求解线性规划问题
Matlab实验报告
实验目的:用Matlab解法求解线性规划问题
实验一:
题目:求解线性规划问题:
方法一:Matlab解法
算法设计:
1、先求Z的最小值,再取相反数即为所求的最大值。
2、将第一个约束条件改为 。以便与另外两个约束条件保持不等号方向的一致。
3、根据所给的约束条件,利用x=linprog(c,a,b)求解
求值程序:
c=[-3,-1];
a=[-1,1;1,-2;3,2];
b=[2;2;14];
[x,fval]=linprog(c,a,b)
运行结果:
x =
4.0000
1.0000
fval=-13.0000
结果处理及分析:当x1=4 , x2=1时,(-Z)取最小值-13,Z取最大值13.
方法二:图像法
程序代码:
b=[180;200];
aeq=[];
beq=[];
vlb=[0;0;0];
vub=[];
[x,fval]=linprog(c,a,b,aeq,beq,vlb,vub)
maxz=-fval
运行结果:
x =
34.0000
0.0000
44.0000
fval =
-584.0000
maxz =
584.0000
x=-4:1:4;
y1=x-2;
y2=2*x+2;
y3=1/3*(14-2*x);
y4=1/3*(13-x);
plot(x,y1,x,y2,x,y3,x,y4,’:’)
经过对直线的适度调整后,得到图像为:
结果处理及分析:根据约束条件,星型图案所在的闭合三角形为可行域,易知,蓝色虚线代表的目标函数过A(1,4)时,Z取最大值13。

用matlab求解线性规划问题

用matlab求解线性规划问题

用m a t l a b求解线性规划问题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验四 用M A T L A B 求解线性规划问题一、实验目的: 了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。

二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111这里nn x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵 称为不等式约束矩阵,由系数ij c 组成的矩阵 称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。

一个向量Tn x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。

我们这里介绍利用Matlab 来求解线性规划问题的求解。

在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下:X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。

用matlab求解线性规划问题

用matlab求解线性规划问题

实验四 用MATLAB 求解线性规划问题一、实验目的:了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。

二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111 s n tn t t n n d x c x c x c d x c x c x c =+++=+++2211112121110,,,21≥n x x x 这里n n x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A 1111称为不等式约束矩阵,由系数ij c 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C 1111称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。

一个向量Tn x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。

我们这里介绍利用Matlab 来求解线性规划问题的求解。

在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一种强大的数学软件,可以用来求解各种优化问题,包括线性规划和整数规划问题。

在本文中,我将详细介绍如何使用Matlab来求解这两类问题。

首先,让我们来了解一下线性规划和整数规划问题的定义和特点。

线性规划是一种数学优化问题,其目标是在给定一组线性约束条件下,找到使目标函数取得最大(或最小)值的变量值。

线性规划问题的目标函数和约束条件均为线性函数。

整数规划是线性规划的一种扩展形式,其解必须是整数。

整数规划问题通常更难求解,因为整数变量的取值范围更有限。

接下来,我将分别介绍如何使用Matlab来求解线性规划和整数规划问题。

1. Matlab求解线性规划问题首先,我们需要定义线性规划问题的目标函数和约束条件。

假设我们要最大化一个线性目标函数,同时满足一组线性约束条件。

在Matlab中,我们可以使用线性规划求解器函数`linprog`来求解线性规划问题。

以下是使用`linprog`函数的一般语法:```matlab[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub)```其中,`f`是目标函数的系数向量,`A`和`b`是不等式约束条件的系数矩阵和常数向量,`Aeq`和`beq`是等式约束条件的系数矩阵和常数向量,`lb`和`ub`是变量的下界和上界。

下面是一个示例,展示如何使用`linprog`函数求解一个线性规划问题:f = [-1; -2]; % 目标函数的系数向量A = [1, 1; -1, 2; 3, 2]; % 不等式约束条件的系数矩阵b = [2; 2; 6]; % 不等式约束条件的常数向量[x, fval, exitflag, output] = linprog(f, A, b)```在上述示例中,我们的目标是最小化目标函数`f = -x1 - 2x2`,同时满足约束条件`x1 + x2 >= 2`,`-x1 + 2x2 >= 2`,`3x1 + 2x2 >= 6`。

线性规划中Matlab的运用

线性规划中Matlab的运用

§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。

生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。

若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134m ax x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。

由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。

而选取适当的决策变量,是我们建立有效模型的关键之一。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。

整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。

在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。

以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。

1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。

目标函数可以是最小化或者最大化某个线性表达式。

b. 定义约束条件:其次,需要定义线性规划问题的约束条件。

约束条件可以是等式或者不等式形式的线性表达式。

c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。

d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。

e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。

b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。

c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。

d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。

例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为200元。

生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。

工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。

求解如何安排生产,使得利润最大化。

1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中的两个重要分支,广泛应用于运筹学、经济学、工程学等领域。

Matlab作为一种功能强大的数值计算软件,提供了丰富的工具箱和函数,可以方便地求解线性规划和整数规划问题。

一、线性规划问题的求解线性规划问题是在一组线性约束条件下,求解线性目标函数的最优值的问题。

通常可以表示为如下形式的标准线性规划问题:Maximize (or Minimize) Z = c'xSubject to: Ax ≤ bx ≥ 0其中,c是长度为n的目标函数系数向量,x是长度为n的决策变量向量,A是m×n的系数矩阵,b是长度为m的约束条件向量。

在Matlab中,可以使用线性规划工具箱(Linear Programming Toolbox)中的函数linprog来求解线性规划问题。

linprog函数的基本语法如下:[x, fval, exitflag, output, lambda] = linprog(c, A, b, Aeq, beq, lb, ub, x0, options)其中,c是目标函数系数向量,A和b是不等式约束条件的系数矩阵和约束条件向量,Aeq和beq是等式约束条件的系数矩阵和约束条件向量,lb和ub是决策变量的下界和上界,x0是初始解向量,options是求解选项。

linprog函数的输出结果包括最优解x、最优目标函数值fval、退出标志exitflag、输出信息output和拉格朗日乘子lambda。

二、整数规划问题的求解整数规划问题是在线性规划问题的基础上,要求决策变量取整数值的问题。

通常可以表示为如下形式的标准整数规划问题:Maximize (or Minimize) Z = c'xSubjec t to: Ax ≤ bx ≥ 0x为整数在Matlab中,可以使用整数规划工具箱(Integer Programming Toolbox)中的函数intlinprog来求解整数规划问题。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或最小化来实现目标函数的优化。

整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。

在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。

下面将详细介绍如何使用Matlab来求解这些问题。

1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。

然后,我们可以使用linprog函数来求解线性规划问题。

例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。

c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。

lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。

[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。

2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。

与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。

然后,使用intlinprog函数求解整数规划问题。

例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。

f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。

用matlab求解线性规划问题

用matlab求解线性规划问题

用m a t l a b求解线性规划问题(共3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验四 用MATLAB 求解线性规划问题一、实验目的:了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。

二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211min约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111s n tn t t n n d x c x c x c d x c x c x c =+++=+++2211112121110,,,21≥n x x x这里n n x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A 1111称为不等式约束矩阵,由系数ij c 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C 1111 称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。

一个向量T n x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。

我们这里介绍利用Matlab 来求解线性规划问题的求解。

在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下:X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。

线性规划matlab

线性规划matlab

线性规划matlab线性规划(Linear Programming,简称LP)是运筹学中研究有效的优化问题求解方法的一种方法。

它是从三个方向来确定问题的求解结果,即目标函数、约束条件、决策变量。

Matlab是一种高效的数值计算和科学工程软件,非常适用于解决线性规划问题。

在Matlab中,可以使用专门的优化工具箱来解决线性规划问题。

这个工具箱提供了许多优化算法和函数,可以帮助用户快速求解线性规划问题。

使用Matlab解决线性规划问题一般分为以下几个步骤:1. 定义目标函数和约束条件。

首先需要根据具体问题确定一个目标函数,以及一些约束条件。

例如,目标函数可能是最大化或最小化某个线性函数,约束条件可能是一些线性等式或不等式。

2. 构建线性规划模型。

使用Matlab中的优化工具箱,可以使用线性规划函数来构建线性规划模型。

这个函数通常需要传入目标函数和约束条件的相关参数。

3. 求解线性规划问题。

通过调用求解函数,可以得到线性规划问题的求解结果。

这个函数通常返回一个优化器对象,该对象包含求解结果,包括最优解和最优值。

4. 分析和优化。

根据求解结果,可以进行一些分析和优化操作。

例如,可以检查问题是否有可行解,可以对解的特征进行分析,可以尝试调整参数以进一步优化求解结果。

Matlab提供了丰富的功能来支持线性规划问题的求解。

它的优点包括直观的语法和界面,强大的求解能力,以及丰富的可视化和分析工具。

同时,Matlab也有一些限制,例如对大规模问题的处理可能会有一些限制。

在使用Matlab解决线性规划问题时,需要根据具体情况进行权衡和选择。

总之,Matlab是一个很好的工具,可以方便地解决线性规划问题。

通过合理使用Matlab的优化工具箱,可以高效地求解线性规划问题,并得到最优的求解结果。

Matlab解决线性规划问题

Matlab解决线性规划问题

Matlab解决线性规划问题线性规划问题的实例与定义某机床⼚⽣产甲、⼄两种机床,每台销售后的利润分别为 4000 元与 3000 元。

⽣产甲机床需⽤ A、 B机器加⼯,加⼯时间分别为每台 2 ⼩时和 1 ⼩时;⽣产⼄机床需⽤A 、B、C三种机器加⼯,加⼯时间为每台各⼀⼩时。

若每天可⽤于加⼯的机器时数分别为 A机器 10 ⼩时、B 机器 8 ⼩时和C 机器 7 ⼩时。

问该⼚应⽣产甲、⼄机床各⼏台,才能使总利润最⼤?上述问题的数学模型:设该⼚⽣产x1台甲机床和x2⼄机床时总利润z最⼤,则 x1,x2应满⾜max z=4000x1+3000x2s.t.=2x1+x2≤10, x1+x2≤8, x2≤7,x1,x2≥0.其中:变量x1,x2称为决策变量。

max表达式称为问题的⽬标函数,下⾯的不等式是问题的约束条件,记为s.t.(即subject to)。

由于上⾯的⽬标函数及约束条件均为线性函数,故称为线性规划问题。

总之,线性规划问题是在⼀组线性约束条件的限制下,求⼀线性⽬标函数最⼤或最⼩的问题。

线性规划的Matlab标准形式及软件求解线性规划的⽬标函数可以是求最⼤值也可以是求最⼩值,约束条件的不等号可以是⼩于等于也可以是⼤于等于。

为了避免这种形式多样性带来的不便,Matc lab中规定线性规划的标准形式为min f T xs.t.=A⋅x≤b, Aeq⋅x=beq, lb≤x≤ub.其中:f,x,b,beq,lb,ub为列向量,A,Aeq为矩阵。

调⽤形式[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) %求最⼩值[x,fval]=linprog(-f,A,b,Aeq,beq,lb,ub)%求最⼤值输⼊变量f为⽬标函数中的价值系数向量(注意如果要去求最⼤值,则全部加负号求最⼩值)A为不等式约束系数矩阵b为不等式右端常数向量Aeq为等式约束系数矩阵beq为等式右端常数向量lb 为决策变量下界向量ub为决策变量上界向量在调⽤时,输⼊参数不存在时,可以将其输⼊⽤[]空矩阵表⽰输出变量x为最优解fval为最优⽬标值具体实例⽬标函数与约束条件max z=2x1+3x2−5x3s.t.=x1+x2+x3=7,2x1−5x2+x3≥10, x1+3x2+x3≤12, x1,x2,x3≥0. {{ {Matlab程序f=[2;3;-5];A=[1,1,1];b=7;A=[-2,5,-1;1,3,1];b=[-10;12];Aeq=[1,1,1];beq=7;lb=zeros(3,1);%创建⼀个3X1的零矩阵 lb=[0,0,0]也可以[x,y]=linprog(-f,A,b,Aeq,beq,lb,[]);x,y=-y运⾏结果Optimal solution found.x =6.42860.5714y =14.5714Processing math: 100%。

用MATLAB求解线性规划

用MATLAB求解线性规划
划。
模型 1 固定风险水平,优化收益
目标函数: 约束条件:
n 1
Q=MAX (ri pi )xi
i 1
qi xi ≤a
M
(1 p )x M , ii
xi≥ 0
i=0,1,…n
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的 情况下寻找相应的投资组合。
模型 2 固定盈利水平,极小化风险
从 a=0 开始,以步长△a=0.001对下列组合投资模型求解, 并绘图表示 a 与目 标函数最优值 Q 的对应关系:
max s.t.
Q = (-0.05, -0.27, -0.19, -0.185, -0.185) (x0,x1,x2,x3,x4) T
x0 + 1.01x1 + 1.02x2 +1.045x3 +1.065x4 =1
目标函数: R= min{max{ qixi}} 约束条件:
n
(r i
p )x
i
i
≥k,
i0
(1 pi )xi M , xi≥ 0
i=0,1,…n
c.投资者在权衡资产风险和预期收益两方面时,希望选择 一个令自己满意的投资组合。
因此对风险、收益赋予权重 s(0<s≤1),s 称为投资偏好 系数.
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。
4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长
符号规定:
Si

MATLAB线性规划

MATLAB线性规划

-1-第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。

生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。

若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。

而选适当的决策变量,是我们建立有效模型的关键之一。

matlab指派问题

matlab指派问题

matlab指派问题1指派问题问题是:指派n 个人做n 件事,已知第i 个人做第j 件事的费用为C ij, 各人做不同的一件事,如何安排使得总费用最少。

如果用0-1规划来求解,计算量较大。

对于这种特殊的0-1规划,有所谓的匈牙利解法,可以有效地减少计算量. 步骤如下:Step 1 (1). 将系数矩阵C={Cij}的各行减去本行中的最小元素形成矩阵Cr (2). 将系数矩阵Cr 的各列减去本列中的最小元素形成矩阵Cc Step 2 在Cc 中如果有某行(或列)上只有一个没有标记的零元素, 在这零元素上做圈标记,同时把零元素所在的列(或行)上的零元素做删除标记. 如此反复进行, 直到所有的零元素都被做上标记或划去为止. 如果在以上过程中的所有行和列中没有标记的零元素都不止一个时,可任选一个做圈标记, 同时对同行同列中的其他零元素做删除标记. Step 3 如果做上圈标记的零元素个数达到 n 个, 则每行每列有且仅有一个画圈的零元素.令矩阵中的加圈的零元素换为一,其余的元素换为零, 就是指派问题的最优解矩阵. 如不然, 转下步Step 4 (1) 对无圈的行打勾(2) 在已打勾的行中对有删除标记所在的列打勾; (3) 在已打勾的列中对有圈标记所在的行打勾; (4) 重复 (2), (3), 直到无勾可打为止.(5) 对没有打勾的行画一横线, 对打勾的列画一竖线.Step 5 这样剩下没有画线的元素中没有零元素. 求出其中的最小元素. 各行(或列) 都减去这个最小元素, 这时在已被划线的元素中的零元素变成负元素, 在它们所在的列(或行)中加上这个最小元素. 转步骤2. 例=61012961061476781296 101417971215784C ∨∨/?//?/?/=0432 405001232037710 811030Cc/?//?//→043240500 1232037710811030→04321 405010121026600811031→1000001000000010*******00若所求的不是最小而是最大, 可以讨论矩阵B=M –C, 其中M=max(max (C))*ones( size(C))若人少事多, 可以添上一些虚拟的人, 他们做各事的费用可取为零; 若人多事少, 可以添上一些虚拟的事, 这些事被各人做的费用可取为零; 若一个人可同时做几件事, 可以将这人化为相同的几个人, 费用不变.若规定某人不能做某事, 则可令这人做这事的费用为充分大的数. (在MATLAB 中可取为inf. )。

线性规划问题Matlab求解

线性规划问题Matlab求解

线性规划问题Mat lab求解(总6页) '-CAL-FENGHAI.-(YICAI)-Company One 1・CAL・本页仅作为文档封面.傳用请直接删除用MATLAB优化匸具箱解线性规划命令:inprog (c・ A・ b)命令:x=linprog (c・ A・ b・ Aeq, beq)注总:若没冇不等式:存在.则令A=[ ]. b=[].若没冇尊式约束,则令Ae Q=[ ], be Q=[ J.命令:[1] x=linprog (c・ A・ b, Aeq, beq, VLB. VUB)x=linprog (c. A・ b・ Aeq, beq, VLB. WB, XO)注直[1]若没有等式约束,则令Aeq=〔], be Q=[].⑵其中X0表示初始点4、命令:[x, f\wl]=linDrog(…)返回股优昭$及x处的目标函数值fval.例1昭编写K文件小如卜•:c=[ ];A=[ :0 0 0 0:0 0 0 0:0 0 0 0 ]:b=[S50:700:100:900]:Aeq=[I: beQ=[]:vlb=[0:0:0;0:0:0]: vub=[]:[x, fval]=linprog(c, A, b, Aeq, beq, vlb, vub)例2解:編写M文件如卜•:c=[6 3 4]:A=[0 1 0]:b二[50::Aeq=[l 1 1]:beq=[120]:vlb=[30, 0, 20]:vub=[]:M,fval:=linprog(c. A, b, Aeq,beQ,vlb,vub例3 (任务分配问题)某车何有甲、乙两台机床.叩用干加工三种工件。

假定这两台车床的对用台时数分别为SO0和900・三种匸件的数敞分别为100.600 fil 500・且已知用三种不同车床加工单位数fit不同工件所需的台时数和加工费用如卜表.问怎样分配车床的加工任务.才能既满足加工工件的要求.又使加工费用说低解设在甲车床上加工工件1、2、3的数fit分别为xl、x2、x3.在乙车床上加工工件匚2、3的数H分别为x4、x5. x6o可建立以下统性规划模型:編写M文件如卜•:f = C13 9 10 11 12 S]:A = [ 10 0 00 0 0 ]:b = :SOO; 900]:AeQ=;l 001000 10 0 100 0 1 0 0 1]:beQ=I100 600 500;:vlb = zeros(6, 1):vub=:]:[x, fval] = 1 inprog (f, A, b, Aeq, beq, vlb, vub)例4・某厂毎日S小时的产纯不低于1SOO件。

matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)

matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)

matlab学习——02整数规划(蒙特卡洛法,指派问题,混合整数规划)02整数规划蒙特卡洛法(随机取样法)编写⽂件mengte.m,⽬标函数f和约束向量gfunction[f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)^2-8*x(1)-2*x(2)-3*x(3)-x(4)-...2*x(5);g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200]; 主函数format compact;rand('state',sum(clock)); % 初始化随机数发⽣器p0=0;tic % 计时开始for i=1:10^6x=randi([0,99],1,5); % 产⽣1⾏5列的区间[0,99]上的随机整数[f,g]=mengte(x);if all(g<=0)if p0<fx0=0;p0=f; % 记录下当前较好的解endendendx0,p0toc % 计时结束指派问题clearC=[2 10 9 715 4 14 813 14 16 114 15 13 9];A = perms(1:4);%perm显⽰1,2,3,4四个数的全排列L = length(A)for i=1:La = zeros(4,4);b = A(i,:);%遍历全排列中的每⼀种c = 1:4;a(sub2ind(size(a), b, c))=1;%a矩阵指定的位置赋值为1D{i}=a;S(i)=sum(sum(a.*C));%求出费⽤和end[a,b]=find(S==min(S))D{b}S(b)%适⽤于任意n阶系数矩阵clear all;C=[2 10 9 7,15 4 14 8,13 14 16 11,4 15 13 9,];%效率矩阵Cn=size(C,1);%计算C的⾏列数nC=C(:);%计算⽬标函数系数,将矩阵C按列排成⼀个列向量即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档