八年级上学期数学考试1

合集下载

人教版八年级上册第一学期数学期末专题复习卷(一)全等三角形-优选

人教版八年级上册第一学期数学期末专题复习卷(一)全等三角形-优选

八年级数学期末专题复习卷(一)全等三角形(考试时间:90分钟满分:100分)一、选择题 (每题3分,共24分)1.不能使两个直角三角形全等的条件是( )A.一条直角边和它的对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等2. 如图,BE AC ⊥于点D ,且AD CD =,BD ED =,则54ABC ∠=︒,则E ∠等于( )A 25° B. 27° C. 30° D. 45°3. 如图,//,//,AB DE AC DF AC DF =,下列条件中不能判断ABC DEF ∆≅∆的是( ) A. AB DE = B. B E ∠=∠ C. EF BC = D. //EF BC4. 如图,在正方形ABCD 中,连接BD ,O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点'M 、'N ,则图中的全等三角形共有( ) A. 2对 B. 3对 C. 4对 D. 5对5. 如图,在长方形ABCD 中(AD AB >),E 是BC 上一点,且DE DA =,AF DE ⊥,垂足为F .在下列结论中,不一定正确的是( )A. AFD DCE ∆≅∆B. 12AF AD =C. AB AF =D. BE AD DF =- 6. 如图,将ABC ∆绕着点C 顺时针旋转50后得到'''A B C ∆.若40A ∠=︒,'110B ∠=︒,则'BCA ∠的度数是( )A. 110°B. 80°C. 40°D. 30°7. 如图,ABC ∆中,B C ∠=∠,BD CF =,BE CD =,EDF α∠=则下列结论正确的是( ) A. 2180A α+∠=︒ B. 90A α+∠=︒ C. 290A α+∠=︒ D. 180A α+∠=︒8. 如图,AB BC ⊥,BE AC ⊥,12∠=∠,AD AB =,则( ) A. 1EFD ∠=∠ B.BE EC = C.BF DF CD -= D.//FD BC二、填空题(每题2分,共20分) 9. 如图,直线l 经过等边三角形ABC 的顶点B ,在l 上取点D 、E ,使120ADB CEB ∠=∠=︒. 若2AD =cm ,5CE =cm ,则DE = cm10. 如图,已知ABC ∆中,ABC ∠、ACB ∠的角平分线交于点O ,连接AO 并延长交BC 于点D ,OH BC ⊥于点H ,若60BAC ∠=︒,5OH =cm ,则BAD ∠= ,点O 到AB 的距离为 cm. 11. 如图,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在BE 上,125∠=︒,230∠=︒则3∠= . 12. 已知ABC ∆的三边长分别为3、5、7,DEF ∆的三边长分别为3、32x -、21x -,若这两个三角形全等,则x 的值为 . 13. 如图,AC BC =,DC EC =,90ACB ECD ∠=∠=︒,且38EBD ∠=︒,则AEB ∠= .14. 如图,在ABC ∆中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,下列四个结论:①DA 平分EDF ∠;②EB FC =;③AD 上的点与B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中,正确的结论有 (填序号). 15. 如图,有块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E ,四边形AECF 的面积为 . 16. 如图,等边三角形ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为 cm.17. 如图,在24⨯的方格纸中,ABC ∆的3个顶点都在小正方形的顶点,这叫做格点三角形.作出另一个格点三角形DEF ,使DEF ABC ∆≅∆,这样的三角形共有 个. 18. 如图,ABC ∆中30A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,C 点恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B ∠= .三、解答题(共56分)19. (6分)如图,点B 、F 、C 、E 在直线l 上(点F 、C 之间的距离不能直接测量),点A 、D 在l 异侧,测得AB DE =、AC DF =、BF EC =. (1)求证: ABC DEF ∆≅∆.(2)指出图中所有平行的线段,并说明理由.20. (6分)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 、E 分别在AB 、AC 上,CE BC =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF . (1)补充完成图形.(2)若//EF CD ,求证: 90BDC ∠=︒.21. (6分)如图,已知: 90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠.求证: (1) AM 平分DAB ∠. (2) AD AB CD =+.22. (6分)如图,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点Q ,DP AQ ⊥于点P . (1)求证:AP BQ =.(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.23. (8分)如图,已知D 为等腰直角三角形ABC 内一点,15CAD CBD ∠=∠=︒,E 为AD 延长线上的一点,且CE CA =. (1)求证:DE 平分BDC ∠.(2)若点M 在DE 上,且DC DM =,求证:ME BD =.24. 24.(8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB 、BC 、AD 不动,2AB AD ==cm ,5BC =cm ,如图,量得第四根木条5CD =cm ,判断此时B ∠与D ∠是否相等,并说明理由.(2)若固定一根木条AB 不动,2AB =cm ,量得木条5CD =cm ,如果木条AD 、BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD 、BC 的长度.25. (8分)(1)如图①,以ABC ∆的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连接EG ,试判断ABC ∆与AEG ∆面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图②所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a m 2,内圈的所有三角形的面积之和是b m 2,这条小路一共占地多少平方米?26. (8分)如图,在四边形ABCD 中,8AD BC ==,AB CD =,12BD =,点E 从点D 出发,以每秒1个单位长度的速度沿DA 向点A 匀速移动,点F 从点C 出发,以每秒3个单位长度的速度沿C B C →→作匀速移动,点G 从点B 出发沿BD 向点D 移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t ts. (1)试证明://AD BC .(2)在移动过程中,小明发现有DEG ∆与BFG ∆全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G 点的移动距离.参考答案一、1. D 2. B 3. C 4. C 5. B 6. B 7. A 8. D 二、9.3 10.30︒ 5 11.55︒ 12.313. 128︒14.①②③④15.16 16.3 17.7 18.78︒三、19.略 20. (1)略(2)由旋转的性质得,DC FC =,90DCF ∠=︒ 所以90DCE ECF ∠+∠=︒ 因为90ACB ∠=︒所以90DCE BCD ∠+∠=︒ 所以ECF BCD ∠=∠因为//EF CD所以180EFC DCF ∠+∠=︒ 所以90EFC ∠=︒在BDC ∆和EFC ∆,DC FC BCD ECF BC EC =⎧⎪∠=∠⎨⎪=⎩所以()BDC EFC SAS ∆≅∆所以90BDC EFC ∠=∠=︒ 21. (1)过M 作MH AD ⊥于点H因为DM 平分ADC ∠,MC DC ⊥,MH AD ⊥ 所以CM HM = 又因为BM CM = 所以MH BM =因为MH AD ⊥,MB AB ⊥ 所以AM 平分DAB ∠AM (2)因为CDM HDM ∠=∠ 所以CMD HMD ∠=∠又因为DC MC ⊥,DH MH ⊥ 所以DC DH = 同理:AB AH =因为AD DH AH =+ 所以AD AB CD =+ 22. (1)因为正方形ABCD所以AD BA =,90BAD ∠=︒ 即90BAQ DAP ∠+∠=︒ 因为DP AQ ⊥所以90ADP DAP ∠+∠=︒ 所以BAQ ADP ∠=∠ 因为AQ BE ⊥,DP AQ ⊥ 所以90AQB DPA ∠=∠=︒ 所以AQB DPA ∆≅∆ 所以AP BQ =(2)①AQ AP PQ -= ②AQ BQ PQ -= ③DP AP PQ -= ④DP BQ PQ -=23. (1)因为ABC ∆是等腰直角三角形所以45BAC ABC ∠=∠=︒因为15CAD CBD ∠=∠=︒所以451530BAD ABD ∠=∠=︒-︒=︒ 所以BD AD =所以点D 在AB 的垂直平分线上 因为AC BC =所以点C 也在AB 的垂直平分线上 即直线CD 是AB 的垂直平分线所以45ACD BCD ∠=∠=︒ 所以451560CDE ∠=︒+︒=︒所以60BDE DBA BAD ∠=∠+∠=︒ 所以CDE BDE ∠=∠ 即DE 平分BDC ∠ ( 2 )连接MC因为DC DM =,且60MDC ∠=︒ 所以MDC ∆是等边三角形所以CM CD =,60DMC MDC ∠=∠=︒因为180ADC MDC ∠+∠=︒,180DMC EMC ∠+∠=︒ 所以EMC ADC ∠=∠ 又因为CE CA =所以DAC CEM ∠=∠在ADC ∆与EMC ∆中ADC EMC DAC MEC AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以()ADC EMC AAS ∆≅∆ 所以ME AD BD == 24. (1)相等.理由:连接AC在ACD ∆和ACB ∆中,AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩所以ACD ACB ∆≅∆ 所以B D ∠=∠(2)设AD x =,BC y =当点C 在点D 右侧时25(2)530x y x y +=+⎧⎨+++=⎩解得1310x y =⎧⎨=⎩当点C 在点D 左侧时 52(2)530y x x y =++⎧⎨+++=⎩ 解得815x y =⎧⎨=⎩此时17,5,5AC CD AD === 5817+<不合题意所以13AD =cm ,10BC =cm. 25. (1)ABC ∆与AEG ∆面积相等理由:过点C 作CM AB ⊥于点M ,过点G 作GN EA ⊥交EA 延长线于点N 则90AMC ANG ∠=∠=︒因为四边形ABDE 和四边形ACFG 都是正方形所以90BAE CAG ∠=∠=︒,AB AE =,AC AG = 因为360BAE CAG BAC EAG ∠+∠+∠+∠=︒ 所以180BAC EAG ∠+∠=︒ 因为180EAG GAN ∠+∠=︒ 所以BAC GAN ∠=∠在ACM ∆和AGN ∆中MAC NAG AMC ANG AC AG ∠=∠⎧⎪∠=∠⎨⎪=⎩所以ACM AGN ∆≅∆ 所以CM GN = 因为12ABC S AB CM ∆=g ,12AEG S AE GN ∆=g 所以ABCAEG S S ∆∆=(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.所以这条小路的面积为(2)a b +m 2.26. (1)在ABD ∆和CDB ∆中,AD BC AB CD BD DB =⎧⎪=⎨⎪=⎩所以ABD CDB ∆≅∆ 所以ADB CBD ∠=∠所以//AD BC(2)设G 点的移动距离为y ,当DEG ∆与BFG ∆全等时有EDG FBG ∠=∠ 所以DE BF =,DG BG =或DE BG =,DG BF = 当点F 由点C 到点B即803t <≤时,则有8312t t y y =-⎧⎨=-⎩解得26t y =⎧⎨=⎩或8312t y t y =⎧⎨-=-⎩ 解得22t y =-⎧⎨=-⎩(舍去)当点F 由点B 到点C即81633t <≤时,有3812t t y y=-⎧⎨=-⎩ 解得46t y =⎧⎨=⎩或3812t y t y=⎧⎨-=-⎩ 解得55t y =⎧⎨=⎩综上可知共会出现3次,移动的时间分别为2s 、4s 、5s ,移动的距离分别为6、6、5。

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C【考点】三角形内角和定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k 值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之和大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C【考点】三角形内角和定理【解析】【解答】(1)最小内角是20°,那么其他两个角的和是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角和定理和三角形的分类,关键是要知道钝角三角形、直角三角形和锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A【考点】三角形的角平分线、中线和高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角和是180°可求解.9、已知三角形的两边长分别是4和10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。

八年级上册数学卷

八年级上册数学卷

八年级上册数学卷一、选择题(每题2分,共20分)下列计算正确的是()。

A. (2)²=4B. (2)³=6C. (3)⁴=81D. (4)⁵=1024若a²+4a+4=0,则a的值为()。

A. 2B. -2C. 0D. ±2下列哪个数是平方数?()A. 3B. 4C. 5D. 6一个数的立方根是它本身,这个数是()。

A. 0B. 1C. -1D. ±1下列说法正确的是()。

A. 任何数的平方都是正数B. 任何数的立方都是正数C. 平方根等于本身的数只有0和1D. 立方根等于本身的数只有0和1若一个正方形的面积为16,则它的边长为()。

A. 2B. -2C. ±2D. 4下列关于二次函数的说法正确的是()。

A. 其图像是一条直线B. 其图像关于y轴对称C. 其图像开口方向由二次项系数决定D. 其顶点一定在原点下列哪一组数能作为直角三角形的三边长?()A. 3,4,5B. 1,1,2C. 2,3,4D. 4,4,6下列计算中,正确的是()。

A. √(-4)=2B. (-2)³=-8C. 3√8=2D. ∛(-27)=-2下列关于实数的说法错误的是()。

A. 实数包括有理数和无理数B. 无理数都是无限小数C. 无限小数都是无理数D. 实数与数轴上的点一一对应二、填空题(每题2分,共10分)9的平方根是_______。

若x²=25,则x=_______。

已知直角三角形的两条直角边分别为3和4,则斜边长为_______。

函数y=2x²的图像开口向_______,顶点坐标为_______。

若一个数的立方为-64,则这个数为_______。

三、解答题(共70分)解方程:x²-5x+6=0。

(6分)已知正方形的面积为36,求其边长。

(6分)计算:√(16)+∛(-27)+|-3|。

(6分)画一个边长为2cm的正方形,并求出其面积和周长。

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。

湖北省部分学校2024-2025学年八年级上学期数学第一次月考卷(含答案)

湖北省部分学校2024-2025学年八年级上学期数学第一次月考卷(含答案)

2024-2025学年八年级数学上学期第一次月考卷(考试时间:120分钟 满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第十一章~第十二章(三角形+全等三角形)。

5.难度系数:0.65。

第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm B .4cm ,4cm ,10cm C .3cm ,1cm ,3cmD .3cm ,4cm ,9cm2.下列是四个同学画△ABC 的高,其中正确的是( )A .B .C .D .3.如图,将三角形纸片沿折叠,点落在点处,已知,则的度数为( )A .B .C .D.以上都不对ABC DE A F 12100∠+∠=°A ∠80︒100︒50︒4.如图,已知AO =CO ,那么添加下列一个条件后,仍无法判定△ABO ≌△CDO 的是( )A .∠A =∠CB .BO =DOC .AB =CD D .∠B =∠D5.如图,在△AB C 中,,,,,BD 是的平分线,设和的面积分别为,,则的值为( )A .5:2B .2:5C .1:2D .1:56.将一副三角板按如图所示的方式摆放,,与交于点,则的度数为( )A .B .C .D .7.一个多边形的内角和比四边形的外角和多,并且这个多边形的各内角相等,则这个多边形的一个外角是( )A .B .C .D .8.如图所示,在中,已知点,,分别为边,,的中点,且面积为,则阴影部分的面积等于()90A ∠=︒2AB =5BC =1AD =ABC ∠ABD △BDC V 1S 2S 12:S S AC DE ⊥BC DF G CGF ∠15︒20︒25︒720︒30︒45︒60︒135︒ABC V D E F BC ABC V 24cmA .B .C .D .9.已知的三边长x ,y ,z,化简的结果是( )A .B .C .D .10.如图,,点为的平分线上的一个定点,点A ,B 分别为边,上的动点,且,则以下结论中:①;②为定值;③四边形的面积为定值;④四边形的周长为定值.正确的个数为( )A .4B .3C .2D .1第二部分(非选择题 共90分)二、填空题:本题共5小题,每小题3分,共15分。

八年级数学上册测试题及答案(1-6章)

八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

八年级数学上学期期中试题1及答案

八年级数学上学期期中试题1及答案

八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASA 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A.7 B.6 C.5 D.4BCB BCFBBB10.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数AB 18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。

人教版八年级上册数学期末试卷1

人教版八年级上册数学期末试卷1

人教版八年级上册数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( )A.(﹣3,﹣2) B.(﹣3,2) C.(2,﹣3) D.(3,2)3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3 D.x•x4=x54.若分式有意义,则x的取值范围是( )A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣15.已知图中的两个三角形全等,则∠α的度数是( )A.72° B.60° C.58° D.50°6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( )A.﹣3 B.11 C.﹣11 D.37.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A.7cm B.3cm C.7cm或3cm D.8cm9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①② B.②④ C.①③ D.①③④二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:2a﹣2b= .12.计算:= .13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= cm.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 .15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = .16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 .定义一种新运算,规定x⊗y=,例如:1⊗2=,若a⊗2 17.对两实数x,y⊗=1,则a的值为 .三.解答题(共62分)18解方程:.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b ﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED 于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( ) A.(﹣3,﹣2) B.(﹣3,2) C.(2,﹣3) D.(3,2)【分析】直接利用关于x轴对称点的性质分析得出答案.【解答】解:∵点A坐标为(3,﹣2),点B与点A关于x轴对称,∴点B的坐标为:(3,2).故选:D.3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3 D.x•x4=x5【分析】根据幂的乘方和积的乘方,同底数幂的除法、乘法,合并同类项法则分别求出每个式子的值,再进行判断即可.【解答】解:A、结果是8x6,故本选项错误;B、结果是x3,故本选项错误;C、结果是2x2,故本选项错误;D、结果是x5,故本选项正确;故选:D.4.若分式有意义,则x的取值范围是( )A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】接:由题意,得x﹣1≠0,解得x≠1,故选:A.5.已知图中的两个三角形全等,则∠α的度数是( )A.72° B.60° C.58° D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案. 【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( ) A.﹣3 B.11 C.﹣11 D.3【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m即可.【解答】解:(x﹣4)(x+7)=x2+7x﹣4x﹣28=x2+3x﹣28,∵关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),∴m=3,故选:D.7.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( ) A.7cm B.3cm C.7cm或3cm D.8cm【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm【分析】由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AD=BD,又由AC=5cm,BC=4cm,即可求得△DBC的周长.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选:C.10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①② B.②④ C.①③ D.①③④【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【解答】解:①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选:C.二.填空题(共7小题)11.因式分解:2a﹣2b= 2(a﹣b) .【分析】直接提取公因式2即可分解因式.【解答】解:2a﹣2b=2(a﹣b).故答案为:2(a﹣b).12.计算:= x﹣1 .【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.【解答】解:==x﹣1.故答案为:x﹣1.13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= 5 cm.【分析】先判定△ABC是等边三角形,再根据BC的长,即可得出AC的长.【解答】解:∵△ABC中,AB=AC,∴△ABC是等腰三角形,又∵∠A=60°,∴△ABC是等边三角形,∵BC=5cm,∴AC=5cm,故答案为:5.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 135° .【分析】根据多边形的内角和公式列式计算即可得解.【解答】解:这个正八边形每个内角的度数=×(8﹣2)×180°=135°.故答案为:135°.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = 15 .【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴S△ABD=AB•DE=×10×3=15,故答案为15.16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 65° .【分析】根据全等三角形的性质得到∠BAC=∠EAD,∠EDA=∠C,AD=AC,根据等腰三角形的性质、三角形内角和定理求出∠ADE=∠ADC=∠C=65°.【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,∠EDA=∠C,AD=AC,∴∠DAC=∠EAB=50°,∴∠ADE=∠ADC=∠C=65°,故答案为:65°.定义一种新运算,规定x⊗y=,例如:1⊗2=,若a⊗2 17.对两实数x,y⊗=1,则a的值为 ﹣.【分析】已知等式利用题中的新定义化简,计算求出解即可得到a的值.【解答】解:根据题中的新定义化简得:=1,去分母得:a2+4a+4=a2+2,解得:a=﹣,检验:当a=﹣时,a2+2≠0,∴分式方程的解为a=﹣.故答案为:﹣.三.解答题18解方程:.【考点】解分式方程.【专题】分式方程及应用;运算能力.【答案】x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+3)=12x,去括号得:3x+9=12x,解得:x=1,检验:当x=1时,2x(x+3)≠0,∴分式方程的解为x=1.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.【考点】线段垂直平分线的性质;作图—复杂作图;轴对称﹣最短路线问题.【专题】作图题;几何直观.【答案】(1)(2)作图见解析部分.【分析】(1)作线段CD的垂直平分线交AB于点P,点P即为所求作.(2)作点C关于AB的对称点C′,连接DC′交AB于点P′,连接CP′,点P′即为所求作. 【解答】解:(1)如图,点P即为所求作.(2)如图,点P′即为所求作.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.【考点】三角形内角和定理.【专题】三角形;几何直观.【答案】45°.【分析】利用三角形的内角和等于180°和直角三角形的两个锐角互余即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠C+∠DAC=90°,∵∠B=75°,∴∠BAD=180°﹣∠ADB﹣∠B=180°﹣90°﹣75°=15°,又∵∠C=2∠DAC,∴3∠DAC=90°,∴∠DAC=30°,∴∠BAC=45°.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?【考点】分式方程的应用.【专题】分式方程及应用;运算能力;推理能力.【答案】甲型机器人每台60万元,乙型机器人每台80万元.【分析】设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”列出分式方程,解方程即可. 【解答】解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【答案】见试题解答内容【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.【考点】有理数的混合运算;整式的混合运算.【专题】整式;运算能力;推理能力.【答案】10×12﹣4×18=120﹣72=48,证明过程见解答.【分析】根据2019年9月份的日历和题意,可以选择一组数据试一试是否符合规律,然后可以设左边的数字,然后即可表示出其他位置的数字,再对式子化简,即可证明规律成立.【解答】解:选择4,10,12,18,10×12﹣4×18=120﹣72=48,符合这个规律;证明:设左边数字是x,则上边的数字是x﹣6,下边数字是x+8,右边数字是x+2,x(x+2)﹣(x﹣6)(x+8)=x2+2x﹣x2﹣2x+48=48,故x(x+2)﹣(x﹣6)(x+8)=48这一规律成立.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b ﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.【考点】因式分解﹣运用公式法.【专题】计算题;运算能力.【答案】(1)(a+1)4;(2)n2+3n+1.【分析】(1)运用“整体思想”设a2+2a=M,代入原式运用完全平方式进行因式分解即可;(2)先将原式变形,设n2+3n=M,代入原式运用完全平方分解因式后,再约分即可.【解答】解:(1)设a2+2a=M,原式=(M+2)M+1=M2+2M+1=(M+1)2,将M还原得,原式=(a2+2a+1)2=(a+1)4;(2)设n2+3n=M,原式==,将M还原得,原式=n2+3n+1.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】阅读型;三角形.【答案】见试题解答内容【分析】(1)根据“顶补等腰三角形”的定义,得到边、角之间的关系,进而证得∠B=∠2,再利用AAS证明△ABM≌△DAN即可得证;(2)连接AC,取AC的中点P,连接PB,PD,利用△ADC≌△ABC和直角三角形斜边的中线等腰斜边的一半,证明PA=PB=PC=PD,再根据△PDC≌△PBC,证明顶角互补即可.【解答】(1)证明:∵△ABC与△ADE互为“顶补等腰三角形”,∴AB=AC=AD=AE,∠BAC+∠DAE=180°,∴∠B=∠C,又∵AM⊥BC,AN⊥ED,∴∠3=∠4=90°,∠1=∠2,DE=2DN,∴∠BAC+2∠2=180°,又∵∠BAC+2∠B=180°,∴∠B=∠2,在△ABM和△DAN中,,∴△ABM≌△DAN(AAS),∴AM=DN,∴DE=2AM;(2)存在.证明:如图2,连接AC,取AC的中点P,连接PB,PD,∵AD=AB,CD=BC,AC=AC∴△ADC≌△ABC,∴∠ABC=∠ADC=90°,∵P是AC的中点,∴PB=PA=PC=AC,PD=PA=PC=AC.∴PA=PB=PC=PD,又∵DC=BC,PB=PD,PC=PC,∴△PDC≌△PBC(SSS),∴∠DPC=∠BPC,∵∠APD+∠DPC=180°,∠APD+∠BPC=180° ∴△APD与△BPC互为“顶补等腰三角形”.。

八年级数学上学期第一次月考试卷(1)

八年级数学上学期第一次月考试卷(1)

八年级数学上学期第一次月考试卷满分:100分 考试时间:90分钟一.选择题(每题2分,共20分)1. ★ )A .B .C .D .2. 在平面直角坐标系中, P (2,﹣3)在( ★ )A .第一象限B .第二象限C .第三象限D .第四象限 3. 下列四组线段中能构成直角三角形的是( ★ )A .4,5,6B .8,12,13C .2,3,4D .14. 下列各数中是无理数的是( ★ )A . 2BC .38D .722 5. 在平面直角坐标系中,将点(1,2)向左平移2个单位长度后的点是( ★ )A .(﹣1,2)B .(3,2)C .(1,4)D .(1,0)6. 为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( ★ ) A .0.7米B .0.8米C .0.9米D .1.0米7. 下列各式中计算正确的是( ★ )A .9)9(2-=-B .525±=C 1=-D .2)2(2-=-8. 如果b 的平方根是±1,那么b2017等于( ★ )A .±1B .﹣1C .±2017D .19. 如图,等腰直角三角形ABC 中,∠BAC =900,将△ABP绕点A 逆时针旋转后与△ACP ’重合,若AP =3,则PP ’的长是( ★ )A 、3B 、23C 、32D 、4 10.如图,在Rt △ABC 中,∠ACB =90°,AB =6,以AC 和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .设△BEC 的面积为S 1,△AFC 的面积为S 2,则S 1+S 2=( ★ ) A .4 B .9 C .18 D .36 二.填空题(每题3分,共24分) 11.9的算术平方根是 ★12.点P (1,2)关于x 轴的对称点P ’的坐标是 ★ 13.在 Rt △ABC 中,斜边AB =2,则AB 2+BC 2+AC 2= ★14x 的值很多,请写出一个你喜欢的数 ★15.2的相反数是 ★16.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是★17.如图,已知圆柱底面圆直径AB =16π,高BC =12,P 为BC 中点,蚂蚁从点A 爬到点P 的最短距离是 ★ 18.例:化简1027+解: ∵752)5()2(22=+=+,102522=⨯∴()=+=+⨯+=+25255222102752+根据上述例题的方法化简625-得 ★ 选择填空的答题卡:1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 三.解答题(56分)19.(60( 3.14)3π-20.(6分)化简:21.(6分)化简:21()22.(6分)已知x =,y = 求x xy y 22-+的值.23.(7分)(7分)如图,在68⨯网格中,A 、B 、C 三点都在小正方形的顶点上.(1)(1分)线段AB 的长度是 理数(填“有”或“无”);(2)(2分)写出线段AC的长度:;(3)(4分)你认为△ABC 直角三角形(填“是”或“不是”),请根据你所学的知识解释你的判断.24.(7分)如图,在平直角坐标系中,直线l是第一、三象限的角平分线.(1)实验探究(2分):观察图形易知A(2,0)关于直线l的对称点A’坐标为(0,2).请在图中分别标明点B(5,3)和点C(-2,5)关于直线l的对称点B’和C’的位置,并写出它们的坐标:B’,C’.(2)归纳发现(2分):结合图形,观察以上三组点的坐标特征,你会发现平面内任意一点P(m,n)关于第一、三象限的角平分线l的对称点P’的坐标为.(3)知识延伸(3分):已知点D(1,-3)和点E(-1,-4),试在直线l上确定一点Q,使得QD+QE的值最小.要求在图中标明点Q的位置,此QD+QE的最小值为.25.(8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,沿O-A-B-C-O的路线运动.(1)(2分)写出点B的坐标:;(2)(2分)计算OB的长度:;(3)(4分)当线段OP的长度等于5时,求出点P的坐标.26.(10分)平面直角坐标系中,经过点A(0,6)的直线a垂直于y轴,B(8,6)是直线a上的一点.点P从点B出发,以2cm/秒的速度沿直线a向左移动,同时点Q从原点出发,以1cm/秒的速度沿x轴向右移动.(1)(4分)如图①,则经过几秒后PQ平行于y轴?(2)(6分)如图②,当△OBP成为等腰三角形时,求点P的坐标.。

八年级数学第一次月考卷(北师大版,八上第1~2章:勾股定理+实数)

八年级数学第一次月考卷(北师大版,八上第1~2章:勾股定理+实数)

2024-2025学年八年级数学上学期第一次月考卷01(考试时间:90分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版八上第一章勾股定理+第二章实数。

5.考试难度:0.7.第Ⅰ卷一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各数是无理数的是()AB.237C.5.034 D.3π2.已知一个直角三角形的两边长分别为1和2,则第三边长是()A.3B C.D31+的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.下列三角形中,一定是直角三角形的有()①有两个内角互余的三角形;②三边长分别为0.3,0.4,0.5的三角形;③三边之比为3:4:5的三角形;④三个内角的比是1:2:3的三角形.A.1个B.2个C.3个D.4个5是同类二次根式,则a的值是()A.2B.3C.4D.56.如图,以Rt ABC∆的三边为直角边分别向外作等腰直角三角形.若3AB=,则图中阴影部分的面积为()A.3B.92C.32D.357.下列几组数中,是勾股数的有()①0.6,0.8,1②7,24,25③10,24,26④13,14,15A.1组B.2组C.3组D.4组8.下列说法错误的是()A.4-是16的平方根B.16的算术平方根是2C.125的平方根是15D.255=9.如图,若圆柱的底面周长是50cm,高是120cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处,则这条丝线的最小长度是()A.170cm B.70cm C.145cm D.130cm10.已知实数a在数轴上的位置如图,则化简2|1|a a-+的结果为()A .1B .1-C .12a -D .21a -第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。

八年级数学第一次月考卷(沪科版)(解析版)【测试范围:第十一章~第十二章】

八年级数学第一次月考卷(沪科版)(解析版)【测试范围:第十一章~第十二章】

2024-2025学年八年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。

2.测试范围:第十一章~第十二章(沪科版)。

第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)函数中y=x的取值范围是( )A.x≠1B.x≥2C.x>0D.x>2【分析】根据二次根式的被开方数是非负数、分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2>0,解得:x>2,故选:D.2.(4分)如果点A(3,m+2)在B(m+1,m﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据x轴上的点的纵坐标为0列式求出m的值,然后计算即可得解.【解答】解:∵A(3,m+2)在x轴上,∴m+2=0,解得m=﹣2,∴m+1=﹣1,m﹣3=﹣5,∴B(m+1,m﹣3)所在的象限是第三象限.故选:C.3.(4分)在下列函数解析式中,①y=kx;②y=3x;③y=23x;④y=x2﹣(x﹣1)(x+2);⑤y=4﹣x,一定是一次函数的有( )A.4个B.3个C.2个D.1个【分析】一次函数中自变量的系数不能为0,且自变量次数为1,据此对各个函数分析,得出正确答案.【解答】解:①y=kx,k=0时不是一次函数;②y=3x是反比例函数;③y=23x是一次函数;④y=x2﹣(x﹣1)(x+2)=﹣x+2,是一次函数;⑤y=4﹣x是一次函数,所以是一次函数的有3个.故选:B.4.(4分)中国象棋是中华民族的文化瑰宝,如图,棋盘放在直角坐标系中,“炮”所在位置的坐标为(﹣2,1),“相”所在位置的坐标为(3,﹣1),则“帅”所在位置的坐标为( )A.(1,﹣1)B.(﹣1,﹣1)C.(1,0)D.(﹣1,1)【分析】直接利用已知点坐标进而得出原点位置,进而得出答案.【解答】解:如图所示:“帅”所在位置的坐标为:(1,﹣1).故选:A.5.(4分)如图,直线y=kx+b分别与x的负半轴和y的正半轴交于点A和点B,若OA=4,OB=3,则关于x的方程kx+b=0的解为( )A.x=﹣3B.x=﹣4C.x=3D.x=4【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:∵直线y=kx+b分别与x的负半轴和y的正半轴交于点A和点B,且OA=4,OB=3,∴A(﹣4,0),∴当x=﹣4时,y=kx+b=0,∴关于x的方程kx+b=0的解为:x=﹣4.故选:B.6.(4分)如图,在平面直角坐标系中,将三角形ABC平移至三角形A1B1C1,点P(a,b)是三角形ABC内一点,经平移后得到三角形A1B1C1内对应点P1(a+8,b﹣5),若点A1的坐标为(5,﹣1),则点A的坐标为( )A.(﹣4,3)B.(﹣1,2)C.(﹣6,2)D.(﹣3,4)【分析】先根据P点坐标的变化得出平移的方向和距离,进而可得出结论.【解答】解:∵点P(a,b)是三角形ABC内一点,经平移后得到三角形A1B1C1内对应点P1(a+8,b﹣5),∴设A(x,y),∵点A1的坐标为(5,﹣1),∴x+8=5,y﹣5=﹣1,解得x=﹣3,y=4,∴A(﹣3,4).故选:D.7.(4分)如图,一次函数y=m2x+4m(m是常数且m≠0)与一次函数y=4mx+m2的图象可能是( )A.B.C.D.【分析】求得令直线交点的横坐标,即可排除C、D,然后根据一次函数的图象和性质即可排除B.【解答】解:令m2x+4m=4mx+m2,整理得m(m﹣4)(x﹣1)=0,∵m≠0,m≠4,∴x=1,∴一次函数y=m2x+4m(m是常数且m≠0)与一次函数y=4mx+m2的图象的交点的横坐标为1,故C、D不合题意,当m>0时,一次函数y=m2x+4m的图象过一、二、三象限,一次函数y=4mx+m2的图象过一、二、三象限,当m<0时,一次函数y=m2x+4m的图象过一、三、四象限,一次函数y=4mx+m2的图象过一、二、四象限,故A符合题意,B不合题意,故选:A.8.(4分)已知P(a1,b1)、Q(a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,以下判断正确的是( )A.(a1﹣a2)(b1﹣b2)<0B.(a1﹣a2)(b1﹣b2)>0C.(a1﹣a2)(b1﹣b2)≥0D.(a1﹣a2)(b1﹣b2)≤0【分析】由k=﹣3<0,利用一次函数的性质,可得出y随x的增大而减小,结合P(a1,b1)、Q (a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,可得出(a1﹣a2)与(b1﹣b2)异号,进而可得出(a1﹣a2)(b1﹣b2)<0.【解答】解:∵k=﹣3<0,∴y随x的增大而减小,又∵P(a1,b1)、Q(a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,∴当a1>a2时,b1<b2;当a1<a2时,b1>b2,∴(a1﹣a2)与(b1﹣b2)异号,∴(a1﹣a2)(b1﹣b2)<0.故选:A.9.(4分)如图,一只小蚂蚁在平面直角坐标系中按图中路线进行“爬楼梯”运动,第1次它从原点运动到点(1,0),第2次运动到点(1,1),第3次运动到点(2,1)……按这样的运动规律,经过第2023次运动后,小蚂蚁的坐标是( )A.(1011,1010)B.(1011,1011)C.(1012,1011)D.(1012,1012)【分析】根据吗,每次小蚂蚁运动的位置所对应的坐标,发现规律即可解决问题.【解答】解:由题知,小蚂蚁第1次运动到点(1,0);第2次运动到点(1,1);第3次运动到点(2,1);第4次运动到点(2,2);第5次运动到点(3,2);第6次运动到点(3,3);…由此可见,小蚂蚁运动2n(n为正整数)次,所在位置的坐标为(n,n),且下一次运动所对应的点的坐标为(n+1,n).所以第2022次运动到点(1011,1011),则第2023次运动到点(1012.1011).故选:C.10.(4分)已知点A(﹣2,2),B(2,3),直线y=kx﹣k经过点P(1,0).当该直线与线段AB有交点时,k的取值范围是( )A.0<k≤3或―23≤k<0B.―23≤k≤3且k≠0C.k≥3或―23≤k<0D.k≤―23或k≥3【分析】利用临界法求得直线PA和PB的解析式即可得出结论.【解答】解:当k<0时,∵直线y=kx﹣k经过点P(1,0),A(﹣2,2),∴﹣2k﹣k=2,∴k=―2 3,∴k≤―2 3,当k>0时,∵直线y=kx﹣k经过点P(1,0),B(2,3),∴2k﹣k=3,∴k=3,∴k≥3,综上,当该直线与线段AB有交点时,k的取值范围是:k≤―23或k≥3.故选:D.二.填空题(共4小题,满分20分,每小题5分)11.(5分)在平面直角坐标系中,已知点P(﹣1,﹣3)和Q(3a+1,3﹣2a),且PQ∥x轴,则a的值为 .【分析】根据平行于x轴的直线上的点纵坐标都相等得到﹣3=3﹣2a,解之即可得到答案.【解答】解:∵点P(﹣1,﹣3)和Q(3a+1,3﹣2a),且PQ∥x轴,∴﹣3=3﹣2a,∴a=3,故答案为:3.12.(5分)把一次函数y=x+1的图象l1进行平移后,得到的图象l2的解析式是y=x﹣3,有下列说法:①把l1向下平移4个单位,②把l1向上平移4个单位,③把l1向左平移4个单位,④把l1向右平移4个单位.其中正确的说法是 (把你认为正确说法的序号都填上).【分析】根据一次函数图象的平移规律逐个判断即可得.【解答】解:①把l1向下平移4个单位所得的函数解析式为y=x+1﹣4,即为y=x﹣3,则此说法正确;②把l1向上平移4个单位所得的函数解析式为y=x+1+4,即为y=x+5,则此说法错误;③把l1向左平移4个单位所得的函数解析式为y=x+4+1,即为y=x+5,则此说法错误;④把l1向右平移4个单位所得的函数解析式为y=x﹣4+1,即为y=x﹣3,则此说法正确;综上,正确的说法是①④,故答案为:①④.13.(5分)在平面直角坐标系中,已知点A(a,0)和点B(0,4),且直线AB与坐标轴围成的三角形的面积等于12,则直线AB的解析式为 .【分析】根据题意可知,|a|×42=12,即可求出a的值.【解答】解:根据题意,可知直线AB与x轴交于A,与y轴交于点B,∴|a|×42=12,解得a=±6,∵点A(6,0)或(﹣6,0),设直线AB的解析式y=kx+b,0=6k+b 4=b或0=―6k+b 4=b,解得k=―23b=4或k=23b=4,∴直线AB的解析式为y=―23x+4或y=23x+4,故答案为:y=―23x+4或y=23x+4.14.(5分)如图1,在长方形ABCD中,点E是CD上一点,点P从点A出发,沿着AB,BC,CE运动,到点E停止,运动速度为2cm/s,三角形AEP的面积为y(cm2),点P的运动时间为xs,y与x之间的函数关系图象如图2(长方形:四个内角都是直角,对边相等且平行).(1)长方形的宽BC的长为 cm;(2)当点P运动到点E时,x=m,则m的值为 .【分析】(1)依据题意,根据三角形的面积随点P的运动时间变化图象,判断出AB,AB+BC,进而可以得解;(2)依据题意,根据三角形的面积随点P的运动时间变化图象,抓住当x=8 s时,△AEP的面积=12CE•BC进而进行计算可以得解.【解答】解:(1)由题意,当P从A到B三角形的面积逐渐增大,再由B到C时,三角形的面积逐渐变小,最后由C到E时面积变小速度变慢.故AB=2×6=12(cm),AB+BC=2×8=16(cm),∴BC=16﹣12=4(cm).故答案为:4.(2)由题意,当x=8 s时,△AEP的面积=12CE•BC=16(cm2),又BC=4 cm,∴CE=8 cm.∴m=AB+BC+CE2=12+4+82=12.故答案为:12.三.解答题(共9小题,满分90分)15.(8分)(1)已知点M(2x+3,x﹣2)在第二、四象限的角平分线上,求x的值;(2)已知点P(3a﹣15,2﹣a),若点P位于第四象限,它到x轴的距离是4,试求出a的值.【分析】(1)根据点M(2x+3,x﹣2)在第二、四象限的角平分线上,可得2x+3+x﹣2=0,进一步求解即可;(2)根据点P位于第四象限,它到x轴的距离是4,可得2﹣a=﹣4,进一步求解即可.【解答】解:(1)∵点M(2x+3,x﹣2)在第二、四象限的角平分线上,∴2x+3+x﹣2=0,解得x=―1 3;(2)∵点P位于第四象限,它到x轴的距离是4,∴2﹣a =﹣4,解得a =6.16.(8分)已知2y +5与3x ﹣1成正比例关系,且满足当x =2时,y =5.(1)求y 与x 之间的函数关系式;(2)点(1,12)是否在该函数的图象上?【分析】(1)设2y +5=k (3x ﹣1),将x =2、y =5代入求出k 值即可解答;(2)将x =1代入(1)中所求解析式,若求得的值为12,则点在函数图象上.【解答】解:(1)设2y +5=k (3x ﹣1),将x =2、y =5代入上式可得:15=5k ,解得:k =3,∴2y +5=3(3x ﹣1),∴y =92x ―4;(2)当x =1时,y =92x ―4=92×1―4=12,∴点(1,12)在这个函数的图象上.17.(8分)如图,在平面直角坐标系中,三角形ABC 的顶点都在网格点上,完成下列任务.(1)将三角形ABC 向左平移6个单位,得到三角形A 1B 1C 1,画出三角形A 1B 1C 1;(2)将三角形A 1B 1C 1向下平移5个单位,得到三角形A 2B 2C 2,画出三角形A 2B 2C 2;(3)三角形A 2B 2C 2的面积为 .【分析】(1)根据平移的性质画图即可.(2)根据平移的性质画图即可.(3)利用割补法求三角形的面积即可.【解答】解:(1)如图,三角形A 1B 1C 1即为所求.(2)如图,三角形A2B2C2即为所求.(3)三角形A2B2C2的面积为12×(1+3)×3―12×2×1―12×1×3=72.故答案为:7 2.18.(8分)如图是一位病人从发烧到退烧过程中的体温变化(0h﹣24h),观察图象变化过程,回答下列问题:(1)自变量是时间,因变量是 ;(2)这个病人该天最高体温是 ℃,该天最低体温是 ℃;(3)若体温超过37.5°即为发烧,则这位病人发烧时间段是 .【分析】(1)根据自变量、因变量的定义即可得出答案;(2)根据图象中的信息即可得到结论;(3)根据图象中的信息即可得到结论.【解答】解:(1)自变量是时间,因变量是体温;(2)这个病人该天最高体温是39.8℃,该天最低体温是36.1℃;(3)若体温超过37.5°即为发烧,则这位病人发烧时间段是4时~14时.故答案为:(1)体温;(2)39.8,36.1;(3)4时~14时.19.(10分)已知:一次函数y=(2a+4)x+(3﹣b),根据给定条件,确定a、b的值.(1)y随x的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y轴的交点在x轴上方.【分析】(1)根据函数y随x的增大而增大解答即可;(2)根据函数图象经过第二、三、四象限解答即可;(3)根据函数图象与y轴的交点在x轴上方解答即可.【解答】解:(1)∵y随x的增大而增大∴2a+4>0∴a>﹣2(2)∵图象经过第二、三、四象限∴2a+4<0,3﹣b<0∴a<﹣2,b>3(3)∵图象与y轴的交点在x轴上方∴3﹣b>0,2a+4≠0∴b<3,a≠﹣2.20.(10分)如图,在平面直角坐标系中,点A,B的坐标分别为(3,5),(3,0).将线段AB向下平移2个单位长度,再向左平移4个单位长度,得到线段CD,连接AC,BD;(1)直接写出坐标:点C( ),点D( ).(2)M,N分别是线段AB,CD上的动点,点M从点A出发向点B运动,速度为每秒1个单位长度,点N从点D出发向点C运动,速度为每秒0.5个单位长度,若两点同时出发,求几秒后MN∥x轴?(3)点P是直线BD上一个动点,连接PC、PA,当点P在直线BD上运动时,请直接写出∠CPA与∠PCD,∠PAB的数量关系.【分析】(1)利用平移变换的性质求解;(2)设t秒后MN∥x轴,构建方程求解;(3)分三种情形:①如图1中,当点P在直线AC的左侧时,②如图2中,当点P在直线AC的左侧或直线AC上且在直线AB的右侧时,③如图3中,当点P在直线AB的右侧时,分别求解即可.【解答】解:(1)由题意C(﹣1,3),D(﹣1,﹣2),故答案为:﹣1,3,﹣1,﹣2;(2)设t秒后MN∥x轴,∴5﹣t=0.5t﹣2,解得t=14 3,∴t=143时,MN∥x轴;(3)①如图1中,当点P在线段BD上时,∠APC=∠PCD+∠PAB.②如图2中,当点P在BD的延长线上时,∠PAB=∠PCD+∠APC.③如图3中,当点P在DB的延长线上时,∠PCD=∠PAB+∠APC.21.(12分)某校八年级学生在数学的综合与实践活动中,研究了一元一次不等式、一元一次方程和一次函数的关系这一课题.在研究过程中,他们将函数y=﹣|x+1|+2确定为研究对象,通过作图,观察图象,归纳性质等探究过程,进一步理解了一元一次不等式与函数的关系.请你根据以下探究过程,回答问题.(1)作出函数y=﹣|x+1|+2①列表:x…﹣4﹣3﹣2﹣101…y…﹣10m210…其中,表格中m的值为 ;②描点:根据表格的数据,请在直角坐标系中描出对应值为坐标的点;③连线:画出该函数的图象.(2)观察函数y=﹣|x+1|+2的图象,回答下列问题;①当x= 时,函数y=﹣|x+1|+2有最大值,最大值为 ;②方程﹣|x+1|+2=﹣1的解是x= .(3)已知直线y=15x―15,请结合图象,直接写出满足不等式15x―15≤―|x+1|+2的x的取值范围 .【分析】(1)把x =﹣2代入解析式即可求得m =1,描出表中以各对对应值为坐标的点,然后连线.(2)根据图象即可求得;(3)观察图象即可得到答案.【解答】解:(1)当x =﹣2时,y =﹣|﹣2+1|+2=1,∴m =1.函数图象如图所示.故答案为:1;(2)观察函数y =﹣|x +1|+2的图象,①当x =﹣1时,函数y =﹣|x +1|+2有最大值,最大值为2;②方程﹣|x +1|+2=﹣1的解是x =﹣4或2.故答案为:﹣1,﹣4或2;(3)画出直线y =15x ―15如图,观察图象,不等式15x ―15≤―|x +1|+2的x 的取值范围是﹣4≤x ≤1;故答案为:﹣4≤x ≤1.22.(12分)商店销售1台A 型和2台B 型电脑的利润为400元,销售2台A 型和1台B 型电脑的利润为350元,该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润y 元.(1)①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(2)实际进货时,厂家对A 型电脑出厂价下调了m (0<m ≤50)元,且限定商店最多的进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出售这100台电脑销售总利润最大的进货方案.【分析】(1)①据题意得,y =﹣50x +15000,②利用不等式求出x 的范围,又因为y =﹣50x +15000是减函数,所以x 取34,y 取最大值,(2)据题意得,y =(100+m )x +150(100﹣x ),即y =(m ﹣50)x +15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m =50时,m ﹣50=0,y =1500,y 随x 的增大而增大,分别进行求解.【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得:a +2b =4002a +b =350 ,解得a =100b =150∴y =100x +150(100﹣x ),即y =﹣50x +15000,②据题意得,100﹣x ≤2x ,解得x ≥3313,∵y =﹣50x +15000,﹣50<0,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.(2)据题意得,y =(100+m )x +150(100﹣x ),即y =(m ﹣50)x +15000,3313≤x ≤70①当0<m <50时,y 随x 的增大而减小,∴当x =34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.②m =50时,m ﹣50=0,y =15000,即商店购进A 型电脑数量满足3313≤x ≤70的整数时,均获得最大利润.23.(14分)如图,在平面直角坐标系中,一次函数y 1=―12x ―3的图象与x 轴、y 轴分别交于点A 和点C ,直线y 2=x +b (b 是常数)与x 轴交于点B 且经过点C .(1)求AB 的长;(2)若直线DE ∥y 轴且与直线AC ,BC 分别交于点D 和点E ,DE =3,求点D 的坐标;(3)若点P 是直线AC 上一点,是否存在点P 使得三角形ABP 的面积为9?若存在,求出点P 的坐标;若不存在,说明理由.【分析】(1)利用一次函数图象上点的坐标特征,可求出点A ,C 的坐标,由点C 的坐标,利用待定系数法可求出直线BC 的函数解析式,利用一次函数图象上点的坐标特征,可求出点B 的坐标,再利用数轴上两点间的距离公式,即可求出AB 的长;(2)设点D 的坐标为(m ,―12m ﹣3),则点E 的坐标为(m ,m ﹣3),由DE =3,可列出关于m 的含绝对值的一元一次方程,解之可求出m 的值,再将其代入点D 的坐标中,即可求出结论;(3)存在,设点P 的坐标为(n ,―12n ﹣3),根据三角形ABP 的面积为9,可列出关于n 的含绝对值符号的一元一次方程,解之可求出n 的值,再将其代入点P 的坐标中,即可求出结论.【解答】解:(1)当y1=0时,―12x﹣3=0,解得:x=﹣6,∴点A的坐标为(﹣6,0);当x=0时,y1=―12×0﹣3=﹣3,∴点C的坐标为(0,﹣3).将C(0,﹣3)代入y2=x+b得:﹣3=0+b,解得:b=﹣3,∴直线BC的函数解析式为y2=x﹣3.当y2=0时,x﹣3=0,解得:x=3,∴点B的坐标为(3,0),∴AB=|3﹣(﹣6)|=9;(2)设点D的坐标为(m,―12m﹣3),则点E的坐标为(m,m﹣3),∴DE=|m﹣3﹣(―12m﹣3)|=|32m|.又∵DE=3,∴|32m|=3,解得:m=±2,当m=2时,―12m﹣3=―12×2﹣3=﹣4;当m=﹣2时,―12m﹣3=―12×(﹣2)﹣3=﹣2.∴点D的坐标为(2,﹣4)或(﹣2,﹣2);(3)存在,设点P的坐标为(n,―12n﹣3),∴S△ABP =12AB•x P=12×9×|―12n﹣3|=9,解得:n=﹣10或m=﹣2,当n=﹣10时,―12n﹣3=―12×(﹣10)﹣3=2;当n=﹣2时,―12n﹣3=―12×(﹣2)﹣3=﹣2.∴点P的坐标为(﹣10,2)或(﹣2,﹣2)。

初中数学试卷八年级上册第一章 含答案1

初中数学试卷八年级上册第一章 含答案1

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C 【考点】三角形内角与定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角与定理列式进行计算求出k值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3与2的两个木棍,想要装一个木棍,用它们围成一个三角形,则他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C 【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之与大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x <5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B 【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之与大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C 【考点】三角形内角与定理【解析】【解答】(1)最小内角是20°,则其他两个角的与是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角与定理与三角形的分类,关键是要知道钝角三角形、直角三角形与锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B 【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D 【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,则这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A 【考点】三角形的角平分线、中线与高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,则这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C 【考点】三角形内角与定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角与是180°可求解.9、已知三角形的两边长分别是4与10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B 【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度八年级上学期期末质量检查
数 学 试 题
(满分:150分;考试时间:120分钟)
温馨提示:请在答题卡上相应题目的答题区域内作答,否则不得分。

一、选择题(每题4分,共24分):在答题卡上相应题目的答题区域内作答.
1.9的算术平方根是( )
A .3±
B .3
C .3-
D .3
2.下列运算正确的是( )
A .523a a a =+
B .6
32a a a =⋅ C .65332)(b a b a = D .632)(a a =
3.下列图形中不是..中心对称图形的是( )
A .
B .
C .
D .
4.如图,AOC ∆≌BOD ∆,∠C 与∠D 是对应角,AC 与BD 是对应边,AC=8㎝, AD=10㎝,OD=OC=2㎝,那么OB 的长是( )
A .8㎝
B .10㎝
C .2㎝
D .无法确定
5.矩形具有而一般平行四边形不一定具有的性质是( )
A .对角线相等
B .对角相等
C .对角线互相平分
D .对边相等
6.如图,OAB ∆绕点O 逆时针旋转 80得到OCD ∆,若∠A= 110,∠D=∙40,则∠AOD
的度数是( )
A . 30
B . 40
C . 50
D . 60
二、填空题(每题3分,共36分)在答题卡上相应题目的答题区域内作答.
7.用计算器比较大小:3
11。

(填“>”,“<”或 “=”号) 8.一个正方体木块的体积是64㎝3,则它的棱长是 ㎝。

9.若3=m x ,2=n x ,则=+n m x 。

O D
A C
B A D
C
10.若=-++32y x 0,则=xy 。

11.在菱形ABCD 中,AC=4cm ,BD=3cm ,则菱形的面积是 ㎝2。

12.一个边长为a 的正方形广场,扩建后的正方形广场的边长比原来大10米,则扩建后的广场面积增大了 米2.
13.如图,一次强风中,一棵大树在离地面3米高处折断,树的顶端落在离树杆底部4米
远处,那么这棵树折断之前的高度是 米.
C 14.如图,ABC Rt ∆中,∠B=
90,AB=3㎝,AC=5㎝,将ABC ∆折叠,使点C与点A重
合,折痕为DE ,则CE = ㎝.
15.如图,在□ABCD 中,已知AD=8㎝,AB=6㎝,DE 平分∠ADC ,交BC 边于点E ,则BE=
㎝。

E D
C B A
16.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5㎝,小正方形的边长是7㎝,则大正方形的边长是 ㎝。

17.等腰梯形ABCD 中,AD ∥BC ,∠B=
60,AD=4,BC=7,则梯形ABCD 的周长是______.
18.借助于计算器计算,可求2234+;223344+;22333444+…… 仔细观察上面几题的计算结果,试猜想2
200922009333444
⋅⋅⋅+⋅⋅⋅的结果为_________. 三、解答题(共90分)。

在答题卡上相应题目的答题区域内作答.
19.(12分)计算:① 4
1227253+- ② ab ab ab 2)24(3÷- 20.(12分)因式分解:① 33205xy y x - ② 1682+-a a
21.(8分)先化简,再求值xy y x xy xy ÷+--+]42)2)(2[(22,其中4=x ,21-
=y . 22.(8分)如图,将一块面积为30 m 2的正方形铁皮的四个角各截去一
个面积为2 m 2的小正方形,剩下的部分刚好能围成一个无盖的长方
体运输箱,求此运输箱底面的边长(精确到0.1m ).
23.(8分)如图,在每个小正方形的边长均为
方格纸中,有一个ABC ∆和一点O ,
ABC ∆与点O 均与小正方形的顶点重合。

(1)在方格纸中,将ABC ∆向下平移6得到111C B A ∆,请画111C B A ∆.
(2)在方格纸中,将ABC ∆绕点O 旋转222C B A ∆,请画222C B A ∆.
24.(8分)如图是硬纸板做成的四个全等的直
角三角形,两直角边长分别是a 、b ,斜边
长为c 和一个边长为c 的正方形,请你将它
们拼成一个能证明勾股定理的图形。

(1)画出拼成的这个图形的示意图;
(2)由些图证明勾股定理。

25.(10分)如图所示,在矩形ABCD 中,对角线AC 、BD
相交于点O ,CE//DB ,交AD 的延长线于点E ,试说明AC=CE. 26.(12分)如图是由四个小正方形拼接成的L 形图案,按下
列 要求画出图形。

(1)请你用两种方法分别在L 形图案中添画一个小正方形,
使它成为轴对称图形;
(2)请你在L 形图案中添画一个小正方形, (3)请你在L 形图案中移动一个小正方形,图形,又是轴对称图形。

27.(12分)已知:如图,在矩形ABCD 中,AD=6㎝,AB=3㎝。

在直角梯形中EFGH 中 ,EH ∥FG ,∠EFG= 45,∠G=
90,EH=6㎝,HG=3㎝。

B 、C 、F 、G 同在一条直线上。

当F 、C 两点重合时,矩形ABCD 以1㎝/秒的速度沿直线按箭头所示的方向匀速平移,x 秒后,矩形ABCD 与梯形EFGH 重合部分的面积为y ㎝。

按要求回答下列各题(不要求写出解题过程):
(1)当2=x 时,=y cm 2(如图①);
当9=x 时,=y cm 2(如图④); c a a a a A c
① ② ③
④ ⑤
(2)在下列各种情况下,分别用x 表示y :
如图①,当30≤<x 时,=y cm 2;
如图②,当63≤<x 时,=y cm 2;
如图③,当96<<x 时,=y cm 2;
如图⑤,当159<<x 时,=y
cm 2.
H G F D C B A F D(H)C(G)B G
F
C B G H E C B A H G F E
D C B A 四、附加题(共10分)在答题卡上相应题目的答题区域内作答.
友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.
1.(5分)如图,在□ABCD 中,∠A=70o ,则∠B= 度。

2.(5分)化简:=9
A。

相关文档
最新文档