最新九年级数学统计与概率教案

合集下载

初中统计概率教案

初中统计概率教案

初中统计概率教案教学目标:1. 知识与技能目标:学生能够理解统计与概率的基本概念,掌握收集、整理、分析数据的方法,能够运用概率知识解决实际问题。

2. 过程与方法目标:学生能够通过调查、实验等方式收集数据,运用统计方法对数据进行分析,提高数据处理能力。

3. 情感态度与价值观目标:学生能够认识统计与概率在生活中的重要性,培养对数据敏感的意识,增强运用数学解决实际问题的能力。

教学重点:1. 统计与概率的基本概念。

2. 收集、整理、分析数据的方法。

3. 概率知识的应用。

教学难点:1. 概率公式的理解与应用。

2. 数据处理方法的灵活运用。

教学过程:一、导入(5分钟)1. 教师通过生活中的实例,如抽奖、投篮等,引导学生思考概率的意义,激发学生的兴趣。

2. 学生分享对概率的理解,教师总结并板书概率的定义。

二、新课导入(15分钟)1. 教师讲解统计与概率的基本概念,如样本、总体、频率等。

2. 学生跟随教师一起完成一些简单的统计与概率题目,巩固概念。

三、实践操作(15分钟)1. 教师布置一个小调查任务,如调查班级同学最喜欢的季节。

2. 学生分组进行调查,收集数据。

3. 教师引导学生运用统计方法对数据进行分析,如制作条形图、饼图等。

四、概率知识的应用(15分钟)1. 教师讲解概率公式,如概率的计算、条件概率等。

2. 学生跟随教师一起完成一些概率题目,加深对公式的理解。

3. 教师引导学生运用概率知识解决实际问题,如预测比赛结果等。

五、课堂小结(5分钟)1. 教师引导学生自主总结本节课的学习内容,巩固知识点。

2. 学生分享自己的学习收获,教师给予肯定和鼓励。

六、作业布置(5分钟)1. 教师布置一些有关统计与概率的练习题,让学生课后巩固。

2. 鼓励学生在生活中观察和运用统计与概率知识,培养学生的应用能力。

教学反思:本节课通过实例导入,让学生初步了解统计与概率的概念,通过实践操作,让学生掌握收集、整理、分析数据的方法,通过概率知识的应用,让学生学会解决实际问题。

《统计与概率》教案设计

《统计与概率》教案设计

统计与概率教案设计一、教学背景统计与概率是数学的重要分支,它在科学研究、社会决策、经济管理等领域都有广泛应用。

掌握统计与概率知识,有助于学生在日常生活中进行数据分析和决策,培养学生的逻辑思维和问题解决能力。

二、教学目标1.了解统计与概率的基本概念,掌握常用的统计方法和概率计算技巧;2.掌握统计与概率的应用场景,能够运用所学知识解决实际问题;3.培养学生的观察、分析、推理和判断能力,提高学生的数学思维水平。

三、教学内容1.统计概述–了解统计的定义和作用;–学习数据的分类与整理方法;–学习常用的统计描述方法,如均值、中位数、众数等。

2.概率基础–了解概率的定义和性质;–学习用频率估计概率;–学习事件的概率计算方法。

3.随机变量–了解随机变量的概念和分类;–学习离散随机变量和连续随机变量的概率分布;–学习求随机变量的期望和方差。

4.随机事件–了解随机事件的概念和性质;–学习事件的联合概率、条件概率和独立性;–学习贝叶斯公式和全概率公式。

5.统计推断–学习抽样调查的方法和原理;–学习参数估计和假设检验的基本原理;–学习通过样本推断总体特征的方法。

6.数据分析–学习数据收集和整理的方法;–学习数据的可视化展示方法;–学习用统计方法分析数据并得出结论。

四、教学方法1.探究式教学法:通过示例和问题引导学生主动思考,培养学生的探索精神和问题解决能力。

2.合作学习法:采用小组讨论、合作解决问题等方式,培养学生的合作意识和团队合作能力。

3.演示教学法:通过课堂实例演示和操作,在生动的实践中帮助学生理解概念和方法。

五、教学资源1.教材:《统计与概率教材》2.多媒体设备:电脑、投影仪等3.实验器材:计算器、平衡杆等六、教学评价1.课堂表现:参与度、合作度、主动性等2.作业完成情况:作业的准确性、完整性和及时性3.考试成绩:对知识的掌握和应用能力的评估七、教学安排授课内容学时安排教学方法统计概述2学时探究式教学法、演示概率基础3学时探究式教学法、合作随机变量3学时探究式教学法、合作随机事件3学时探究式教学法、演示统计推断3学时探究式教学法、合作数据分析3学时探究式教学法、演示复习与总结2学时合作学习法、演示期末考试复习2学时合作学习法、演示八、教学反思本教案设计结合了统计与概率的基本概念和实际应用,采用了多种交互式教学方法,通过生动的实例和问题引导学生主动思考和合作学习,培养了学生的数学思维和问题解决能力。

统计与概率教案

统计与概率教案

统计与概率教案教案标题:统计与概率教案内容:一、教学目标:1. 让学生了解统计与概率的基本概念和应用。

2. 培养学生分析、整理和解释数据的能力。

3. 提高学生的数据收集、整理和展示能力。

4. 培养学生运用概率进行问题求解的能力。

二、教学重点和难点:1. 了解统计与概率的基本概念和应用。

2. 学会运用统计方法分析、整理和解释数据。

3. 学会运用概率计算和解决问题。

三、教学过程:1. 导入环节(10分钟)教师通过提问,引导学生回顾概率的基本概念,并与统计进行对比,明确概率与统计的关系。

2. 概念讲解(15分钟)教师向学生介绍统计的基本概念,如数据的收集和整理,数据的展示和分析,并阐述统计的应用领域。

教师还向学生解释概率的基本概念,如试验、样本空间、事件等,并以实例说明概率的应用。

3. 数据收集与整理(20分钟)教师组织学生进行一个数据收集和整理的活动,要求学生收集班级同学喜欢的水果种类,并将数据整理成表格或统计图形。

4. 数据展示与分析(15分钟)学生展示自己整理的数据,并进行相应的分析。

教师引导学生思考如何从数据中找到规律和趋势,并解释数据所反映的情况。

5. 概率计算与问题求解(25分钟)教师向学生阐述概率计算的基本方法和步骤,并提供一些实际问题给学生进行概率计算和解答。

6. 活动总结(15分钟)教师总结本节课的内容,强调数据收集与整理的重要性,以及概率在生活中的应用。

教师还提出一些拓展问题,让学生在课外进行更广泛的探究和应用。

四、教学资源:1. 教师准备收集和整理数据的活动材料。

2. 学生准备笔记本和统计工具。

五、教学评价与反思:1. 在活动中观察学生的合作和参与情况,评价他们的数据收集和整理能力。

2. 在概率计算的问题中,评价学生的解题思路和答案的正确性。

3. 结合学生的反馈和问题,反思教学过程,为下一节课的教学做准备。

统计与概率初中教案

统计与概率初中教案

统计与概率初中教案教学目标:1. 理解概率的基本概念,能够计算简单事件的概率。

2. 掌握统计数据的收集、整理和分析方法,能够运用统计方法解决实际问题。

3. 培养学生的逻辑思维能力和数据分析能力。

教学重点:1. 概率的基本计算方法。

2. 统计数据处理的方法和技巧。

教学难点:1. 概率计算的复杂事件。

2. 统计数据分析的方法和应用。

教学准备:1. 电脑、投影仪等教学设备。

2. 统计与概率的相关教材、练习题和案例。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学习过的统计知识,如数据的收集、整理和分析方法。

2. 提问:同学们认为统计在生活中的应用有哪些呢?二、新课讲解(20分钟)1. 讲解概率的基本概念,如必然事件、不可能事件和随机事件。

2. 举例说明如何计算简单事件的概率,如抛硬币、掷骰子等。

3. 引导学生通过小组讨论,探索复杂事件的概率计算方法。

三、案例分析(15分钟)1. 提供一份关于学校篮球比赛中某队胜率的统计数据,让学生计算该队赢得比赛的概率。

2. 引导学生运用统计方法分析数据,如计算平均数、中位数、众数等。

四、练习与讨论(10分钟)1. 让学生完成教材中的练习题,巩固所学的概率计算方法。

2. 鼓励学生相互讨论,分享解题心得和经验。

五、总结与反思(5分钟)1. 让学生自主总结本节课所学的内容,加深对概率和统计知识的理解。

2. 提问:同学们认为统计和概率在实际生活中有哪些应用价值呢?教学延伸:1. 邀请专业人士或专家进行讲座,介绍统计和概率在实际领域的应用案例。

2. 组织学生进行统计和概率相关的实践活动,如收集和分析生活中的数据、设计概率实验等。

教学反思:本节课通过讲解概率的基本概念和计算方法,以及运用统计方法分析实际案例,旨在培养学生的逻辑思维能力和数据分析能力。

在教学过程中,要注意引导学生积极参与讨论,鼓励他们提出问题和解决问题。

同时,结合生活实例,让学生感受统计和概率在实际中的应用价值,提高他们的学习兴趣和积极性。

初中概率统计教案

初中概率统计教案

初中概率统计教案教学目标:1. 了解概率与统计的基本概念,理解事件的发生具有不确定性。

2. 学会使用概率公式计算简单事件的概率。

3. 掌握统计学中的一些基本概念,如平均数、中位数、众数等。

4. 能够运用概率与统计知识解决实际问题。

教学重点:1. 概率公式的运用。

2. 统计学中平均数、中位数、众数的计算。

教学难点:1. 概率公式的灵活运用。

2. 实际问题中概率与统计知识的应用。

教学准备:1. 教师准备PPT,内容包括概率与统计的基本概念、概率公式、统计学中的平均数、中位数、众数等。

2. 准备一些实际问题,用于引导学生运用概率与统计知识解决。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的知识,如概率的基本概念、事件的发生具有不确定性等。

2. 提问:同学们,你们认为事件的发生是确定的吗?为什么?二、新课讲解(20分钟)1. 讲解概率公式的推导过程,并通过例题讲解如何运用概率公式计算简单事件的概率。

2. 讲解统计学中的平均数、中位数、众数的定义和计算方法,并通过例题进行讲解。

三、课堂练习(15分钟)1. 让学生独立完成PPT上的练习题,巩固所学知识。

2. 教师选取部分学生的作业进行讲解,解答学生的疑问。

四、实际问题解决(15分钟)1. 教师出示一些实际问题,如彩票中奖概率、商品抽奖活动等,引导学生运用概率与统计知识解决。

2. 学生分组讨论,提出解决方案,并选取小组代表进行汇报。

五、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,巩固概率与统计的基本概念和计算方法。

2. 提问:同学们,你们认为概率与统计在实际生活中有什么应用价值呢?六、课后作业(课后自主完成)1. 完成PPT上的课后练习题。

2. 寻找生活中的实际问题,尝试运用概率与统计知识解决,并撰写简要解答。

教学反思:本节课通过讲解概率与统计的基本概念、概率公式、统计学中的平均数、中位数、众数等,使学生掌握了概率与统计的基本知识和计算方法。

初中数学教案概率和统计

初中数学教案概率和统计

初中数学教案概率和统计教学目标:1.了解概率和统计的基本概念;2.学会计算概率和统计相关问题;3.培养学生的分析思维和判断能力。

教学准备:1.教师准备课件、教材及其他辅助教学资料;2.学生备齐教材、练习册和写作工具。

教学过程:一、导入(5分钟)在黑板上书写标题“初中数学教案概率和统计”,并且简单介绍一下今天的教学内容,激发学生的学习兴趣。

二、概率基础知识的讲解(15分钟)1.引入:通过举例子的方式引出概率的概念,比如扔硬币、抛骰子等;2.定义:讲解概率的定义,并给出相关公式;3.实例演练:通过实例演示如何计算概率。

三、事件的分类与概率计算(15分钟)1.互斥事件:讲解互斥事件的概念,并通过实例进行计算;2.独立事件:讲解独立事件的概念,并通过实例进行计算;3.互不独立事件:讲解互不独立事件的概念,并通过实例进行计算。

四、统计基础知识的讲解(15分钟)1.引入:通过举例子的方式引出统计的概念,比如调查问卷等;2.数据的收集与整理:讲解数据的收集与整理方法;3.平均数的计算:讲解平均数的概念,并通过实例进行计算。

五、数据分析与图表绘制(15分钟)1.频数与频率:讲解频数与频率的概念,并通过实例进行计算;2.数据图表:讲解柱状图、折线图和饼图的绘制方法,并通过实例进行演示。

六、综合练习与讲解(20分钟)针对概率和统计的相关问题,布置一些练习题,让学生进行思考和解答。

同时,教师可以对练习题进行讲解,解释其中的计算方法和思路。

七、巩固与拓展(10分钟)通过布置课后作业,巩固学生对概率和统计的学习内容。

此外,可以引导学生主动收集相关的实际数据,并进行统计和分析。

教学总结:在教学的最后,对本节课的重点内容进行总结回顾,并强调学生需要扎实掌握概率和统计的基础知识,并且能够灵活运用于实际问题中。

参考资料:1.教材:《初中数学课本》;2.课件:PPT制作的教学课件;3.练习册:提供给学生进行巩固练习的练习册。

初中所学的统计与概率教案

初中所学的统计与概率教案

初中所学的统计与概率教案教学目标:1. 理解统计与概率的概念和作用;2. 学会使用图表和概率计算来分析数据和解决问题;3. 培养学生的数据分析能力和逻辑思维能力。

教学重点:1. 统计与概率的基本概念;2. 图表的绘制和解读;3. 概率计算的基本方法。

教学难点:1. 概率计算的灵活应用;2. 数据分析的深度思考。

教学准备:1. 教学PPT;2. 统计与概率的相关案例和练习题。

教学过程:一、导入(5分钟)1. 引导学生思考:在日常生活中,我们经常会遇到一些不确定的事件,如何用数学的方法来描述和分析这些事件呢?2. 引入统计与概率的概念,解释它们在生活中的应用。

二、新课讲解(15分钟)1. 讲解统计的基本概念,包括平均数、中位数、众数等,并通过实例进行解释;2. 讲解概率的基本概念,包括随机事件、必然事件、不可能事件等,并通过实例进行解释;3. 介绍图表的类型和作用,如条形图、折线图、饼图等,并展示实例。

三、案例分析(15分钟)1. 提供几个实际案例,让学生运用统计与概率的知识进行分析,如彩票中奖概率、产品抽检等;2. 引导学生运用图表和概率计算来解决问题,并展示解题过程。

四、课堂练习(15分钟)1. 布置一些统计与概率的练习题,让学生独立完成;2. 分组讨论,让学生互相交流解题思路和方法。

五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结统计与概率的基本概念和应用;2. 引导学生思考如何在生活中运用统计与概率的知识来解决问题;3. 强调数据分析的重要性,培养学生的数据分析能力和逻辑思维能力。

教学延伸:1. 布置一些统计与概率的综合练习题,让学生课后巩固所学知识;2. 推荐一些相关的数学阅读材料,让学生深入了解统计与概率的原理和应用。

教学反思:本节课通过讲解统计与概率的基本概念,让学生了解它们在生活中的应用,培养学生的数据分析能力和逻辑思维能力。

在案例分析和课堂练习环节,学生能够运用所学知识来解决问题,提高他们的实际应用能力。

初三年级数学教案 统计与概率

初三年级数学教案 统计与概率

初三年级数学教案统计与概率教案:初三年级数学——统计与概率教学目标:1. 掌握统计与概率的基本概念和相关术语。

2. 理解并能运用频率和概率进行简单问题的计算。

3.能够分析和解决与统计与概率有关的实际问题。

教学准备:1. 教学课件、黑板、粉笔、学生习题册。

2. 学生尺子、计算器。

教学过程:第一节:统计的基本概念统计是通过数据的收集、整理和分析,以了解和描述事物的数量和特征的一种方法。

统计的三要素是:1. 统计调查:选择代表性的个体,用科学的方法进行数据的收集。

2. 数据的图表表示:使用直方图、折线图、饼图等图表来展示数据的分布特征。

3. 数据的分析:通过观察和分析图表,找出数据中的规律并进行总结。

第二节:频率和概率的计算频率是指某个事件发生的次数与总次数的比值,可以用来描述事件发生的可能性大小。

频率的计算公式为:频率=事件发生的次数/总次数概率是指某个事件发生的可能性,在数学上用一个介于0到1之间的数来表示。

概率的计算公式为:概率=事件发生的次数/总次数第三节:统计与概率的应用统计与概率在日常生活中有着广泛的应用,如以下几个方面:1. 搭乘公交车的人数统计:通过对一段时间内搭乘公交车的人数进行统计,可以分析公交车的客流情况,并制定合理的运营计划。

2. 足球比赛的胜负概率计算:通过分析球队历史比赛数据,可以计算出某支球队在一场比赛中获胜的概率,对于球迷和赌徒来说都具有一定的参考价值。

3. 调查学生对某个课程的满意度:通过对学生进行问卷调查,收集到的数据可以用来计算学生对某个课程的满意度,以帮助学校改进教学质量。

第四节:综合应用根据以上所学的知识,我们来进行一个综合应用的例子。

例子:某班级有40名学生,其中20名学生会打篮球,15名学生会弹吉他,10名学生既会打篮球又会弹吉他。

现在假设随机选择一个学生,请回答以下问题:1. 选出的学生会打篮球的概率是多少?解答:学生会打篮球的有20人,总共40人,所以概率为20/40=0.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章统计与概率§4.1 50年的变化(二课时)学习目标:经历数据的收集、整理,描述与分析的过程,进一步发展统计意识和数据处理能力.通过具体情境,认识一些人为的数据及其表示方式可能给人造成一些误导,提高学生对数据的认识,判断和应用能力.学习重点、难点:把握统计图的特点,尤其是折线统计图,其为对应点的连线,数值与点有关,条形统计图两个比较时,单位长度要一致等,便可掌握本节的要求.扇形统计图只能知道各部分所占的比例.学习方法:活动——交流.学习过程:一、例题分析:【例1】一文具店老板购进了一批不同价格的书包,它们的售价分别为10元、20元、30元、40元、50元;7天中各种规格书包的销售量依次为6个、17个、15个、9个、3个.这批书包售价的平均数、众数和中位数分别是多少?【例2】 2002年8月,某书店各类图书销售情况如图1.(1)8月份书店售出各类图书的众数是.(2)这个月数学书与自然科学书销售量的比是多少?(3)数学、自然科学、文化艺术、社会百科各类图书的频数大约是.【例3】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图2所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看;②从平均数和中位数相结合看;(分析谁的成绩好些)③从平均数和命中9环以上的次数相结合看;(分析谁的成绩好些)④从折线图上两人射击命中环数的走势看.(分析谁更有潜力)【例4】如图3是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,共60个.请回答下列问题:(1)本周“百姓热线”共接到热线电话多少个?(2)有关道路交通问题的电话有多少个?【例5】华山鞋厂为了了解初中学生穿鞋的鞋号情况,对永红中学初二(1)班的20名男生所穿鞋号统计如下表:那么这20名男生鞋号数据的平均数是,中位数是;在平均数、中位数和众数中,鞋厂最感兴趣的是.【例6】某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图4所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是,培训后考分的中位数所在的等级是.(2)这32名学生经过培训,考分等级“不合格”的百分比由下降到.(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有名.(4)你认为上述估计合理吗?理由是什么?【例7】为估计一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店中抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:0.6,3.7,2.2,1.5,2.8,1.7,1.2,2.1,3.2,1.0.(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子;(每年按350个营业日计算)(2)2001年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店每个饭店平均每天使用一次性筷子2.42盒,求该县1999年、2001年这两年一次性木质筷子用量平均每年增长的百分率;(2001年该县饭店数、全年营业天数均与1999年相同)(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07m3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅;(计算中需要的有关数据为:每盒筷子100双,每双筷子的质量为5克,所用木板的密度为0.5×103千克/m3)(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来.二、课内练习:1.某餐厅共有7名员工,所有员工的工资情况如下表:则餐厅所有员工工资的众数、中位数是()A.340,520 B.520,340 C.340,560 D.560,3402.小明将他的8次英语测验成绩按顺序绘成了2张统计图(图5),来观察近期自己的学习情况和成绩进步情况.(1)甲图和乙图给人造成的感觉各是什么?(2)若小明想向他的父母说明他英语成绩在努力后的提高情况,他将向父母展示哪一个统计图,为什么?三、课后练习:1.若某同学想反映统计数据中各数据的变化规律,他应选用统计图.此外,我们还学过、统计图.它们的特点分别是.2.某厂家统计了两种不同规格的汽车近两年销售量的变化情况,为了较为直观地比较两个统计量的变化速度,在绘制折线统计图时,我们应注意.3.小明连续几次数学考试成绩为3次70分、2次80分、1次90分,则他的平均成绩约为;如果他想告诉妈妈较好成绩,则他可选用数.4.2002年世界杯足球赛时,中国队首场比赛的首发阵容名单和他们的身高如下表所示:则这些运动员的身高的众数和中位数分别是、.5.图6是小瑛和小鹏零花钱中用于买书上的花费情况.你能从中判断出谁在买书上的花费多吗?若不能,你还需的数据有.6.2003年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,较快地疫情得到有效控制.图7是2003年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:注:上图中从左到右的点依次表示数据:187 176 181 163 160 138 159 148 118 85 69 75 80 55(1)5月6日新增确诊病例人数为人;(2)在5月9日至5月11日三天中,共新增确诊病例人数为人;(3)从图上可看出,5月上半月新增确诊病例总体呈趋势.7.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中2天是142辆,2天是145辆,6天156辆,5天157辆,那么这15天在该时段通过该路口的汽车平均辆数为()A.146 B.150 C.153 D.6008.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售总额,统计了这15人某月的销售量如下表:经计算,这15位营销员该月销售量的平均数是320(件),中位是210(件),众数是210件.假设销售部负责人把每位销售人员的月销售额定为320件,你认为是否合理,为什么?9.阅读下列材料:图8表示我国农村居民的小康生活水平实现程度.地处西部某贫困县,农村人口约50万,2002年农村小康生活的综合实现程度才达到68%,即没有达到小康程度的人口约为(1-68%)×50万=16万.解答下列问题:(1)假设该县计划在2002年的基础上,到2004年度,使没有达到小康程度的16万农村人口降至10.24万,那么平均每年降低的百分率是多少?(2)如果该计划实现,2004年底该县农村小康进程接近图4-1-12中哪一年的水平.(假设该县人口2年内不变)10.恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平、各种类的恩格尔系数如下表所示:则用n的不等式表示小康家庭的恩格尔系数为.11.改革开放以来,我国国民经济保持良好发展势头,国内生产总值持续较快增长,图9是1998年~2002年国内生产总值统计图.根据图中信息,解答下列问题:(1)1999年国内生产总值是;(2)已知2002年国内生产总值比2000年增加12956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率.(结果保留两个有效数字)12.据信息产业部2003年4月公布的数字显示,我国固定电话和移动电话用户近年来都有大幅度增加,移动电话用户已接近固定电话用户.根据图10所示,我国固定电话从年至年的年增加量最大;移动电话从年至年的年增加量最大.13.图11是某报纸公布的我国“五九”期间国内生产总值的统计图,那么“九五”期间我国国内生产总值平均每年比上一年增长()A.0.575万亿元B.0.46万亿元C.9.725万亿元D.7.78万亿元14.某公司的33名职工的月工资如下:(1)请你选择一个统计量(平均数、中位数或众数)来代表这个公司员工的工资水平;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?简要地说明理由.15.图12是根据某市1999年至2003年工业生产总值绘制的折线统计图.观察统计图可得:增长幅度最大的年份是年,比它的前一年增加亿元.16.小明把自己一周的支出情况,用图13所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出具体消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各顶消费数额占总消费数额的百分比D.从图中可以看接看出各顶消费数额在一周中的具体变化情况17.在某旅游景区上山的一条小路上,有一些断断续续的台阶.图14是其中的甲、乙两段台阶路的示意图.注:图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S 2甲=32,数据11,15,18,17,10,19的方差S2乙=335.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.18.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计),图15、图16是2000年该市各民族人口统计图.请你根据图15、图16提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的学生约40000人,请你估计2002年贵阳市参加中考的少数民族学生人数.§4.2 哪种方式更合算学习目标:发展合作交流的意识和能力,体会如何评判某件事情是否合理,并学会利用它对现实生活中的一些现象进行评判.学习重点:学会对某些事情做出评判,这是学习概率的目的.学习是为了应用,帮助人们解决生活中的问题,这有很好的现实应用价值.在学习中注意从实验中积累经验,寻找方法,获得体验,从而提炼出数学上的理论解释. 学习难点:理解掌握“转盘平均获益”的理论计算方法,对此也可以联想加权平均数的算法,转盘转出各种颜色的概率是可以直接得到的结论,而与对应的金额的乘积的和,与其获益,其不同概率的大小,可理解为权,金额为数据,计算平均数. 学习方法:实验——引导法. 学习过程:一、例题分析:【例1】 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图4-2-2),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得100元、50元、20元的购物券,凭购物券可以在该商场继续购物.顾客每转动一次转盘可平均获利多少元?【例2】 某商店举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是( )A .100001B .1000050C .10000100D .10000151【例3】 某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为.【例4】 有一个屋的地面是用黑、白、红三种颜色的地转镶嵌而成,其中三种地砖镶嵌的面积比是7:25:1,现在屋内顶棚上有一鸟,随意飞行,若小鸟飞落在地面上,则落在每种地砖上的概率各是多少?【例5】 某福利彩票中心发行200000张福利彩票,每张价值2元,其中特等奖1名,一等奖10名,二等奖100名,三等奖500名,小明购买了三张彩票,中奖的概率是多少?二、课堂练习:1.从一副扑克牌中,随机抽出一张牌,得到“A ”或大小王的概率是 . 2.某人连续掷硬币10次,其中正面朝上的次数为9次,则第10次正面朝上的概率为.3.三人排队抓阄,其中一个是有物之阄,另外两个是白阄,则第一个人抓到有物之阄的概率是 ,第三个人抓到有物之阄的概率是 .三、课后练习:1.300名小学生,250名初中生,200名高中生中任意选取一名联欢会节目主持人,这个主持人恰好是初中生的概率为 .2.一个人的生日是星期天的概率为 .3.掷一枚均匀的骰子两次,出现点数和为2的概率为 ,点数和为12的概率为.4.某游戏组织者设计如图4-2-3所示一可以自由转动的转盘,玩此转盘只需付5角,就可以转动一次,转盘停止后游戏者可分别获得1元、5角、0元、-5角的资金.游戏组织者平均每次可获利 元.5.小东、小伟参加智力竞赛,共有10道题目,其中选择题6道,判断题4道,小东和小伟两人依次各抽取一题,则小东抽到选择题及小东抽到了选择题后,小伟抽到判断题的概率分别是( )A .53,52B .53,94C .52,32D .94,536.从一个不透明的口袋中摸出红球数的概率为51,已知口袋中的红球是3个,则袋中共有球的个数是( )A .5个B .8个C .10个D .15个7.小明、小强做游戏,扔掷两枚均匀的硬币,若出现朝上的两个面相同时,小明赢,否则小强赢,请问游戏公平吗?为什么?8.某校高三学生甲、乙两人在4月份~5月份进行的8次模拟考试中,成绩如下:(单位:分)甲:531,529,545,561,552,528,560,541;乙:521,528,545,530,549,551,561,562.(1)求甲、乙两名学生模拟考试的平均成绩;(2)给出折线统计图,说明甲、乙两名学生谁的潜力大;(3)若预测6月份的高考本科录取分数线为540分,试估计甲、乙两人考取大学本科的概率各是多少?9.某商场为了吸引顾客规定,凡购买200元以上物品的顾客均可获奖,可以直接获得购物券10元,也可以参加摸奖.摸奖的具体方法是:从一个装有100个彩球的盒子中任取一球,摸到红球可获100元的购物券,摸到黄、蓝球,可分别获得50元,20元的购物券,而摸到白球,不能获奖.已知100个球中,5个红球,10个黄球,20个蓝球,其余均为白球.现有一名顾客可以直接获购物券10元,也可参加摸奖一次,请你帮他选择哪种方式更合算.10.一次射击比赛用靶如图4-2-4所示,比赛规定,射到阴影区域(非黑色区域),得相应扇形标出的分数,射到黑色部分可得相应扇形分数的2倍,其中阴影部分外圆半径为20cm,黑色圆环部分的内径为6cm,外径为8cm,且四个扇形面积相等.小华最后一个射击,目前得分为150分,其他选手得分如下:若小华最后随机击中得分区,请问他得第一、二、三名(包括并列)的概率各是多少?11.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图4-2-5).转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为.12.从哈尔滨开往A市的特殊列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有()种不同的票价.A.4 B.6 C.10 D.1213.小明知识竞赛获得一等奖,主持人告诉他,奖品分三个等级,但具体是什么奖品事先不能告诉他,小明只能任选其一,而奖品的名称已分别写在三张卡片的背面.小明取得奖品的方法是:任翻开其中的一张卡片,若选中该卡片标出的奖品,则其余两张卡片不再翻动.若选不中已翻开卡片标出的奖品,可任意翻开第二张卡片,此时,第一次翻出的奖品不能再选.若第二次翻出的奖品仍选不中,则只能获得第三张卡片标出的奖品.试问是否存在一种方案,使他获得最高等奖的概率最大?§4.3 游戏公平吗学习目标:体会如何评判某件事情是否“合算”,并学会对一些游戏活动的公平性作出评判. 学习重点:本节重点是不仅对一些游戏活动的公平性作出评判,还要会合理的设计得分规则,使游戏公平.在生活中我们不仅要会评判事件,还要做出决策,对事件进行合理的设计,因而有很好的实用价值,也是我们在概率学习内容中的一个重要方面.对此只要能计算出双方获胜的概率,合理设计分数即可.学习难点:本节中,游戏获胜的概率可通过列表方法求得,如何设计得分规则是本节的难点.只要计算出双方的概率,如双方获胜概率为m n 1,m n 2,则得分规则只需满足m n 1a=m n 2·b 即可,即其获胜后的得分分别为a 、b ,则游戏公平.学习方法:实验——引导法.学习过程:一、例题分析:【例1】 某一家庭有两个孩子,请问这两个孩子是一个男孩一个女孩的概率是多少?你是怎样知道的.【例2】 在掷骰子的游戏中,当两枚骰子的和为质数时,小明得1分,否则小刚得1分.你认为该游戏对谁有利?如果当两枚骰子的点数之和大于7时,小刚得1分,否则小明得1分呢?【例3】 乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B 两站之间需要安排 种不同的车票.【例4】某班53名学生右眼视力(裸视)的检查结果如下表所示:则该班学生右眼视力的中位数是.如果右眼视力在0.6以下(不含0.6)的同学都戴着眼镜,那么从中任意抽取1名学生戴着眼镜的概率为.【例5】小刚考试得了第一名,老师决定以精美的书作为奖励.现有3本书,老题告诉他,这三本书事先已给予了编号1,2,3(该编号只有老师知道),小刚可以从3本书中任挑一本;也可以把这三本书给以排序,自左向右的排列序号与书的编号一致的书,小明均可得到,但若排列号与书的编号没有一致的,则一本书也得不到.小刚当然想多得到几本书,他该如何选择呢?请你帮他出个主意.二、课内练习:1.小东和小明设计了两个掷骰子的游戏,每个游戏每次都是掷两枚骰子.游戏一:和为7或者8,则小东得1分;和是其他数字,小明得1分.游戏二:和能够被3整除,小东得3分;和不能被3整除,小明得1分.这两个游戏公平吗?说说你的理由;若不公平,你能将它们改为公平吗?2.小明和小芳用如下转盘图进行配紫色游戏,分别转动两个转盘,若配成紫色则小明得1分,否则小芳得1分,这个游戏对双方公平吗?如果你认为不公平,如何修改得分规则才能使游戏对双方公平?三、课后练习:1.从一幅扑克牌中任取一张,是梅花的概率为.2.连续掷硬币两次,其中两次结果相同的概率为,两次正面朝上的概率为.3.用图两个转盘进行“配紫色”游戏,配成紫色的概率是.4.一个人的生日是周日的概率为,两个人的生日都是星期日的概率为,两个人的生日是一周中同一天的概率为.5.将身高不同的三名同学任意排序,结果恰好是按身高由低到高排的概率为.6.某校初三(1)班有61名学生,其中男生32名,女生29名,体检时发现男生身高在1.70米以上的有23人,那么任意从这个班中抽取一名同学,是男生且身高在1.70米以上的概率为.7.小红小兰进行摸球游戏.在一个不透明的袋子里装有3个白球,3个黑球和1个红球,游戏规定两个每次可任意从口袋中摸出一个球(不再放回),谁先摸到红球谁获胜,若小红先摸球,她摸到红球的概率为;若小红摸出一球后发现是白球,则小兰继续摸球时,摸到红球的概率为.8.小明和小强进行掷骰子游戏,他们规定同时掷两枚骰子.若出现的点数之和为2的倍数时,小明得1分;若出现点数之和为3或5的倍数时,小强得1分.这个游戏对双方公平吗?如果你认为不公平,如何修改得分规则才能使该游戏对双方公平?a =8的概率是多少?9.若a=3,b=5,则b10.在一次数学竞赛中的单项选择题规定,选对者得4分,选错者扣1分,不选者不得分也不扣分,每道题都有四个备选答案.假如有一道题你不会做,你是猜一个答案写上去,还是放弃呢?请说明理由.11.小明和小刚正在玩掷骰子游戏,两人各掷一枚骰子,则两枚骰子的点数之和为奇数的概率为,两枚骰子的点数之积为奇数的概率为.12.依据闯关游戏规则,请你探索闯关游戏的奥秘:(1)用列表的方法表示所有可能的闯关情况;(2)求出闯关成功的概率.闯关游戏规则如图所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置.同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.13.某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000万张(每张彩票2元).在这些彩票中,设置了如下奖项:如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是.14.李勇的爸爸出差回来,向他讲了这样一件事情,在一个地方有一种“摸彩”活动.一个人手提一个袋子,身边立着一块牌子,边指边说:“我这口袋里有10个红球10个白球,哪位愿意来摸球做游戏,一次交10元,但不白交.请你不要看,从口袋里摸出10个球,按牌子上的结果安排:10个都是红球退还10元外再送你10元线;9个红球1个白球退还10元外再送你8元;8个红球2个白球退还10元外再送你6元;7个红球3个白球退还10元外再送你4元;6个红球4个白球退还10元不再送了;5个红球5个白球算你运气不好,不退还了;4个红球6个白球退还10元不再送了;3个红球7个白球退还10元外再送你4元;2个红球8个白球退还10元外再送你6元;1个红球9个白球退还10元外再送你8元;10个都是白球退还10元外再送你10元.共十一种可能,八种可能让你赢钱,只有一种可能输,这么便宜的事,谁来试试啊?李勇的爸爸亲眼看见有几个青年人掏钱试了试,结果都输了,且谁摸的次数越多,谁就输得越多.爸爸让李勇利用所学的概率统计知识计算一下,这是为什么?请你也计算一下,找出其中的原因.第四章回顾与思考一、填空题1、小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定。

相关文档
最新文档