博弈论
博弈论定义与主要思想
Selten and Harsanyi
泽尔腾(1965)将纳 而海萨尼则发展了刻
什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概念; 以及进一步刻画不完 全信息动态博弈的 “完备贝叶斯纳什均
画不完全信息静态博 弈的“贝叶斯纳什均 衡”(1967-1968)。 总之,他俩进一步将 纳什均衡动态化,加 入了接近实际的不完 全信息条件。他们的
著名经济学家保罗.萨缪尔森说:“要想在现代 社会做一个有文化的人,您必须对博弈论有一 个大致了解。”
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
2005年诺奖授予有以色列和美国双重国籍的罗 伯特·奥曼和美国人托马斯·谢林,以表彰他们 在博弈论领域作出的贡献。
主要思想
博弈论并不是经济学的一个分支,它只是一种 方法,这也是为什么许多人将其看成数学的一 个分支的缘故。
在对参与者行为研究这一点上,博弈论和经济 学家的研究模式是完全一样的。经济学越来越 转向人与人关系的研究,特别是人与人之间行 为的相互影响和相互作用,人与人之间利益和 冲突、竞争与合作,而这正是博弈论的研究对 象。
4、信息指的是参与人在博弈中所知道的 关于自己以及其他参与人的行动、策略 及其得益函数等知识;
5、得益是参与人在博弈结束后从博弈中 获得的效用,一般是所有参与人的策略 或行动的函数,这是每个参与人最关心 的东西;
博弈论百度百科
博弈论约翰·冯·诺依曼博弈论的概念博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。
在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。
按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。
所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。
博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。
此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。
按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。
不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。
博弈论的发展博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
博弈论
2.2.1 博弈论的定义现代经济学的最新发展有一个特别引人注目的特点,那就是博弈论在经济学中越来越受到重视。
博弈论,又称为对策论,它是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题①。
简单地说,就是研究决策主体的行为在发生直接相互作用时,他们如何进行决策,以及这种决策的均衡问题。
1944 年冯·诺依曼和摩根斯特恩(Morgenstern)合作出版了《博弈论与经济行为》(The Theory of Games and Economic Behavior),开始将博弈论引入经济学,成为现代经济博弈论研究的开端。
20 世纪50 年代纳什(John F. Nash)、塔克(Tucker)等人的研究,奠定了现代博弈论的基石。
在其后的几十年里,许多经济学家致力于博弈论的研究,1965 年泽尔腾(Reinhard Selten)将纳什均衡的概念引入了动态分析;1967-1968 年,海萨尼(John C. Harsanyi)把不完全信息分析引入博弈论的研究;1982 年克瑞普斯(David M. Kreps)和威尔逊(RobertWilson)分析了动态不完全信息条件下的博弈问题。
1994 年诺贝尔经济学奖授予了纳什、泽尔腾和海萨尼三位博弈论专家,此后在2001 年诺贝尔经济学奖同样授予了三位博弈论的专家②。
博弈论是一种关于行为主体策略相互作用的理论,它已形成了一套完整的理论体系和方法论体系。
它具有基本假设的合理性、研究对象的普遍性、研究结论的真实性、方法论的实证性等特点。
正是因为这些特点,博弈论的产生和发展引发了一场深刻的经济学革命,使得现代经济学从方法论,到概念和分析的方法体系,都发生了很大的变化。
正如克瑞普斯(Kreps)在《博弈论与经济模型》一书中指出“在过去一二十年中,经济学在方法论,以及语言、概念等等方面,经历了一场温和的革命,非合作博弈已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不①懂纳什均衡能够‘消化’近代文献的领域。
博弈论百度百科
博弈论百度百科博弈论是一门研究决策制定和决策结果的学科,它是应用数学的一个分支,通过运用数学和逻辑工具,探讨参与者在互动决策中的最佳策略选择。
在博弈论中,参与者被称为玩家,他们根据自身利益和目标来做出决策。
博弈论适用于各种不同领域的情境,包括经济学、政治学、生物学等。
一、概述博弈论的研究对象是策略性互动。
在一个博弈中,每个玩家都会依据一定的策略选择进行行动,而这个选择可能会受到其他玩家的影响。
博弈论试图理解和分析在这种互动中,参与者如何做出决策,并找到最优的解决方案。
博弈论的核心概念是博弈,一个博弈可以用一个四元组表示:(N, A, U, F),其中:- N表示参与博弈的玩家集合;- A表示每个玩家可选的行动集合;- U表示每个玩家的效用函数,用于衡量不同结果对该玩家的好坏程度;- F表示每个玩家的信息集合。
信息集合是指每个玩家在博弈过程中所了解的信息。
二、博弈论的重要概念1. 纳什均衡纳什均衡是博弈论中最重要的概念之一,指的是在一个博弈中,所有玩家选择的策略组合,使得任何玩家都没有动机单方面改变自己的策略。
纳什均衡是一个稳定状态,玩家之间不再有改变策略的动机。
2. 零和博弈与非零和博弈博弈可以分为零和博弈和非零和博弈。
零和博弈是指参与博弈的玩家的收益之和为零,即一方获利必然导致另一方的损失。
非零和博弈是指参与博弈的玩家的收益之和不为零,即可以存在多方共同受益的情况。
3. 微观博弈与宏观博弈微观博弈是指研究个体玩家之间的策略性互动,关注的是个体决策的结果。
宏观博弈是指研究整体群体之间的策略性互动,关注的是全局结果。
三、应用领域博弈论的研究在众多领域中都具有广泛的应用。
以下是博弈论在一些领域的应用举例:1. 经济学博弈论在经济学领域中有着广泛的应用。
它可以用来研究市场竞争、合作与冲突、价格形成等经济问题。
例如,博弈论可以用来分析竞争市场中的价格战和垄断市场中的价格定价策略。
2. 政治学博弈论在政治学领域中也有着重要的应用。
什么是博弈论?
什么是博弈论?博弈论是一门研究策略决策的学科,它涉及到两个或多个参与者的博弈过程。
博弈论的研究对象可以是经济、政治、社会等领域,也可以是日常生活中的人际交往。
下面,我们来详细了解一下这门学科。
一、博弈论的起源博弈论起源于20世纪40年代,当时美国数学家冯·诺依曼(John von Neumann)和经济学家奥斯卡·莫根斯特恩(Oskar Morgenstern)合著了《博弈论与经济行为》一书。
这是一本奠定博弈论基础的重要著作,它将博弈论应用于经济学领域,从而成为博弈论的奠基之作。
二、博弈论的基本概念1.参与者博弈论的参与者指的是博弈过程中参与决策的个体或组织,例如一个独立的个人、两个公司或国家之间的竞争。
2.策略策略是指参与者在博弈中所采用的行为方式或决策方法。
不同的策略可能导致不同的博弈结果,因此博弈过程中策略的选择非常重要。
3.收益收益是博弈过程中参与者所能获取的利益,包括经济利益、社会地位、权力等。
收益对参与者而言是决策的目的和结果,因此其大小和分布会影响博弈的结果。
4.博弈形式博弈形式指的是博弈参与者、策略和收益之间的关系,是博弈过程的精神核心。
博弈形式一般分为合作博弈和非合作博弈两种,而在这两种博弈形式下,又分别有多种复杂的形式。
三、博弈论的应用1.经济学领域博弈论在经济学领域的应用最为广泛。
经济学研究的主题之一是市场竞争,而博弈论可以帮助我们透彻理解市场竞争的规律。
例如,博弈论可以用来研究企业之间的价格战、垄断行为、拍卖等问题。
2.政治学领域博弈论在政治学领域的应用也非常重要。
政治学研究的主题之一是国家之间的竞争和协作,而博弈论可以帮助我们研究国际关系、外交政策等问题。
例如,博弈论可以用来研究国际贸易谈判、军备竞赛等问题。
3.人际交往领域博弈论在人际交往领域的应用也相当重要。
通过博弈论,我们可以学习如何有效地沟通和合作,避免双方的冲突和误解。
例如,博弈论可以用来研究双方的协调、合作等问题。
博弈论
博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈的分类根据不同的基准也有所不同。
一般认为,博弈主要可以分为合作博弈和非合作博弈。
它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
博弈论概述
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.
博弈论知识点总结完整版
博弈论知识点总结完整版博弈论是数学和经济学中一个重要的分支,研究决策制度下的相互作用和决策策略。
它是通过数学模型来描述和分析不同参与者的决策行为和决策结果,并找到最优的决策策略。
下面是博弈论中的一些重要知识点的总结。
1.博弈的定义和基本概念:-博弈是指参与者在一定的规则下做出决策,并根据其他参与者的决策结果来确定自己的收益或损失。
-参与者称为博弈者,他们的决策称为策略,策略的组合称为策略组合。
-博弈可以是合作博弈或非合作博弈,合作博弈强调协作,非合作博弈强调竞争。
2.标准博弈:-标准博弈是博弈论中最基础的形式,参与者之间的策略和收益都是确定的。
-标准博弈可以是零和博弈(总收益为零)或非零和博弈(总收益不为零)。
3.纳什均衡:-纳什均衡是指在博弈中,不存在一个参与者可以通过改变自己的策略来获得更高收益的情况。
-纳什均衡是博弈论中的核心概念,它描述了博弈中的稳定状态。
-一个博弈可能有一个或多个纳什均衡,也可能没有纳什均衡。
4.基本博弈:-二人零和博弈是一种特殊的博弈,其中一个参与者的利益是另一个参与者的损失。
-石头、剪刀、布是一个典型的二人零和博弈,存在一个纳什均衡策略。
-行棋游戏如国际象棋、围棋也是二人零和博弈,但策略空间较复杂。
5.博弈理论的扩展:-广义博弈是对博弈理论的扩展,考虑了更复杂的情况,如多人博弈、不完全信息博弈等。
-多人博弈是指博弈中有多个参与者,每个参与者都会影响其他参与者的决策。
-不完全信息博弈是指博弈中参与者对其他参与者的信息是不完全的。
6.博弈论在经济学中的应用:-博弈论在经济学中有广泛的应用,如市场竞争、拍卖等。
-例如,决定定价策略的厂商可以使用博弈论来确定最优的定价策略。
-拍卖是一种常见的博弈形式,在博弈过程中参与者可以选择不同的竞标策略。
7.演化博弈:-演化博弈是博弈论的一个重要分支,研究博弈在一定的演化过程中的演化规律。
-演化博弈通过数学模型来描述和分析参与者的策略演化和演化结果。
博弈论知识点总结完整版
博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。
即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。
1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。
1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。
两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。
倘若不能,则称非合作博弈(Non-cooperative game)。
合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。
目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。
博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。
把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。
博弈论简介
经济学
拍卖理论
1
• 博弈论可以用来解释不同拍卖机制下的拍 卖策略和价格形成。
寡头垄断竞争
2
• 研究寡头垄断企业如何制定竞争策略,以 实现自身利益最大化。
劳动力市场与产品市场
3
• 博弈论被用于分析劳动者和雇主在劳动力 市场上的博弈行为,以及企业在产品市场上
的竞争策略。
政治学
选举行为
01
• 研究选民、政党、候选人之间的策略互动,以及投票行
生态学
• 研究生态系统中的食物链、竞争、共生等关系,以及物种之间的博弈策略。
游戏与计算机科学
01
游戏设计
• 博弈论被用于设计具有挑战性和趣味性的游戏,如棋类游戏、策略游戏 等。
02
计算机科学
• 研究计算机在处理问题时的决策过程和算法设计,如人工智能、机器学
习等领域。
03
信息论
• 研究信息传递过程中的策略选择和最优信息传输,如密码学、信息编码
博弈论简介
contents
目录
• 博弈论的基本概念 • 博弈论的基本理论 • 博弈论的应用 • 博弈论的未来发展 • 结论
01
博弈论的基本概念
定义与特点
• 博弈论(Game Theory)是一门应用数学
1
分支,主要研究在特定情境下个体或团队如 何做出决策以及这些决策之间的相互作用。
• 博弈论的特点在于强调决策的互动性和策
3
,常用于研究长期竞争和合作关系。
合作博弈
• 合作博弈是指参与者可以通过达成协议或联盟来优化整
01
体利益的博弈。
02
• 在合作博弈中,参与者可能会放弃部分利益,以换取整
博弈论十大定律
博弈论十大定律
一、独立性定律:游戏双方所做出的决策,不应该受对方的决策而影响,整个游戏中双方的决策应该是独立的。
二、尽职尽责定律:参与博弈的双方都有义务,遵循双方同意的博弈
规则,尽其诚信使用自己的最佳策略。
三、最优决策定律:当双方都理性、冷静和谨慎地审慎提出最佳选择,他们都将获得最优化的结果。
四、对称性定律:当双方的步骤是对称的,双方的行动是一致的,两
个人的利益分配将是相同的。
五、反悔定律:一旦玩家确定了决策,就不能改变或撤回,即使有时
反悔可能会更有利可图,但从游戏的整体角度来看,任何一方反悔都
不会有好的结果。
六、贪婪定律:当双方希望尽可能获取自己最大利益时,一般会以贪
婪的态度出现,而这种贪心倾向可能会使双方结果失控。
七、纳什均衡定律:当双方改变其决策,以达到一种期望的利益时,
纳什均衡定律就体现出来了,纳什的博弈论可以帮助理解双方博弈的
结果。
八、非理性决策定律:在博弈中,双方可能由于各种复杂的原因而做
出无法被理性解释的决策,有时可能会产生一些不利的结果。
九、胜者为王定律:博弈的结果总是分出胜者,即使胜者付出的代价
是非理性或不合理的,其最终胜出者也将被视为赢家。
十、应变能力定律:参与者要有良好的应变能力,及时根据变化的情
况而灵活对对策,即使遭遇失败也不乱懈怠,以应对各种变数的出现。
《博弈论》知识点总结高中
《博弈论》知识点总结高中一、引言博弈论是数学的一个分支,探究的是在多个参与者决策的状况下,参与者之间的最优策略选择。
博弈论不仅在经济学、管理学等社会科学领域有重要应用,而且在生物学、计算机科学、战略决策等领域也有广泛应用。
在高中阶段,我们将进一步了解博弈论的相关知识,精通其基本原理和应用方法。
二、博弈论的基本观点1. 博弈形式博弈形式是博弈双方的策略选择和支付函数的描述。
通常用一个数学模型表示,包括博弈参与者、参与者可实行的策略、以及参与者之间的支付函数。
2. 纳什均衡纳什均衡是博弈论中的核心观点,指的是在一个博弈形式中,全部参与者选择的策略互相一致,没有改变策略的动机。
纳什均衡可以是单一的,也可以是多个同时存在的。
三、经典的博弈论问题1. 帕累托改进帕累托改进是对博弈形式进行改进,使得至少有一个参与者的支付得到提高,而其他参与者的支付不受损。
帕累托改进是为了创设更好的博弈结果,改进策略的选择。
2. 环保囚徒逆境环保囚徒逆境是博弈论中经典的问题之一。
逆境的情境是两名罪犯(囚徒)被抓获,警方没有足够的证据定罪,只能以较轻的罪名裁定,但若果两人都选择供出对方,那么都会得到较重的刑罚。
囚徒之间需要合作做出决策,以达到双方利益的最大化。
3. 博弈矩阵博弈矩阵是一种常见的博弈形式描述方式,用来表示参与者的策略选择和相应的支付函数。
矩阵中的每个元素表示参与者所得到的支付。
通过博弈矩阵可以便利地分析博弈中各个参与者的最优策略。
四、博弈论的应用1. 经济学博弈论在经济学中有广泛的应用,特殊是在市场竞争和战略决策中。
通过分析参与者之间的博弈干系,可以猜测市场行为和做出最优决策。
例如,博弈论可以诠释价格竞争、拍卖机制以及操纵市场策略等经济现象。
2. 生物学生物学中的适者生存和进化问题,也可以用博弈论进行建模和分析。
通过博弈论的方法,可以探究动物群体中的合作与竞争干系,以及基因在群体中的演化。
3. 计算机科学在人工智能和计算机科学领域,博弈论被广泛应用于智能决策和机器进修。
博弈论
• 4. 战略(strategy)
• 指参与人在给定信息集的情况下的行动规则, 它规定参与人在什么时候选择什么行动。 • (1)一般用si 表示第i个参与人的一个特定战 略,Si = {si}代表第i 个参与人的所有可选择 的战略集合。如果n个参与人每人选择一个战略, n维向量s=(s1,…,si,…,sn )称为一个战略组 合(strategy profile),其中si是第i个参与人 选择的战略。
•
囚徒困境引出重要结 论: 一种制度(体制)安 排,要发生效力,必须是 一种纳什均衡。否则,这 种制度安排便不能成立。 现实中囚徒困境问题: 军备竞赛、公共产品私 人提供、寡头竞争等。
领域
纳什均衡 (增产,增 产)
制度安排
寡头竞争 公共产品 私人 提供
• (2)战略与行动是两个不同的概念,战略是行动 的规则而不是行动本身。 • 例如:“人不犯我,我不犯人;人若犯我,我 必犯人”是一种战略,“犯”与“不犯”是两种 行动,战略规定了什么时候“犯”,什么时候 “不犯”。 • (3)作为一种行动规则,战略必须是完备的,它 要给出参与人在每一种可想象到的情况下的行动 选择,即使参与人并不预期这种情况会实际发生。
博 弈 论
西 北 大 学 经济管理学院
课程主体结构
一、博弈论概述 二、博弈论的基本概念 三、完全信息静态博弈 四、完全信息动态博弈
课程主体结构
五、不完全信息静态博弈
六、不完全信息动态博弈
一、博弈论概述
• 1.博弈论概念(game theory) • (1)博弈:又称为对策或游戏,是指一些人或组 织在“策略相互依存”情形下相互影响、互相作 用的状态。 • (2)博弈论:研究决策主体的行为发生直接相互 作用时的决策,以及这种决策的均衡问题,即当 一个主体的选择受到其他主体选择的影响,而且 反过来影响到其他主体选择时的决策问题和均衡 问题。
第八章 博弈论
做广告
可口可乐的决策 做广告 不做广告
百 事 可 乐 的 决 策
做 每家 亿美元的利润 可口可乐得到 亿美元利润 每家30亿美元的利润 可口可乐得到20亿美元利润 广 百事可乐得到50亿美元利润 百事可乐得到 亿美元利润 告
可口可乐得到50亿美 可口可乐得到 亿美 不 元利润 每家都得到40亿美元利润 做 百事可乐得到 亿美 每家都得到 亿美元利润 百事可乐得到20亿美 广 元利润
告
(二)动态博弈
博弈方的决策有先后顺序, 博弈方的决策有先后顺序,后行动的博弈方 在看到其他博弈方的决策选择后采取相应的、 在看到其他博弈方的决策选择后采取相应的、 有针对性的行动。 有针对性的行动。 动态博弈存在一定的不对称性, 动态博弈存在一定的不对称性,先行动者需 深思熟虑
动态博弈扩展形
B 打进 A 打击 (-2,3) 不进 (0,10) 和平相处 (5,5)
一个著名的例子:囚徒困境 一个著名的例子:
张三和李四两人偷车时被捕, 张三和李四两人偷车时被捕,警察怀疑他俩是 本市一系列偷车案的惯犯,但没有充分证据, 本市一系列偷车案的惯犯,但没有充分证据,为 防止两人串供,关在两间牢房分别审问: 防止两人串供,关在两间牢房分别审问: 如某人坦白,另一人抵赖,并把主要罪名推给对 如某人坦白,另一人抵赖, 轻判2 对方判15 15年 方,轻判2年,对方判15年 如两人均坦白,各判10年 如两人均坦白,各判10年 10 如两人拒不坦白,证据不足,罪名较轻,各判5 如两人拒不坦白,证据不足,罪名较轻,各判5年
重复博弈:
o
动态博弈是一种反复进行的博弈。 动态博弈是一种反复进行的博弈。 重复博弈是动态博弈的一种特殊情况, 重复博弈是动态博弈的一种特殊情况,在重 是动态博弈的一种特殊情况 复博弈中,同一个博弈被重复多次。 复博弈中,同一个博弈被重复多次。
博弈论(整理过名词解释和简答)
一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。
2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。
3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。
4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。
在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。
7、均衡:所有参与人的最优战略组合。
8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。
9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。
10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。
11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。
12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。
13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。
博弈论最全完整-讲解
“乘客侧前轮”看起来是一个合乎逻辑的选择。 但真正起作用的是你的朋友是否使用同样的
逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。 也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
例3:为什么教授如此苛刻?
问题是,一个好心肠的教授如何维持如 此铁石心肠的承诺?
他必须找到某种使拒绝变得强硬和可信 的方法。
拿行政程序或者学校政策来做挡箭牌 在课程开始时做出明确和严格的宣布 通过几次严打来获得“冷面杀手”的声
誉
导论
博弈均衡与一般均衡 博弈论与诺贝尔经济学奖获得者
博弈论的基本概念与类型 主要参考文献
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
按照大家是否清楚对局情况下每个 局中人的得益。
“各种对局情况下每个人的得益是 多少” 是所有局中人的共同知识 (common knowledge)。
据“共同知识”的掌握分为完全信 息与不完全信息博弈。
完美信息博弈与不完美信息博弈
(games with perfect information and games with imperfect information)
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
博弈论
1.什么是博弈论?“博弈论”译自英文“Game Theory”,直译就是“游戏理论”。
博弈论是研究行为人在矛盾和对抗性关系中的行为决策中一般性规律规律的学科。
是系统研究各种博弈问题,寻求在各博弈方具有充分或者有限理性、能力的条件下,合理的策略选择和合理选择策略时博弈的结果,并分析这些结果的经济意义、效率意义的理论和方法。
博弈:一些个人、组织,面对一定的环境条件,在一定的规律下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
包括:博弈的参加者,各博弈方的全部策略或行为集合,进行博弈的次序,博弈方的得益四方面。
纳什均衡:设存在一个策略组合Bx’和By’,且Bx’∈Bx(Bx1,Bx2,……,BxN),By’∈By(By1,By2,……,ByN) ,当x选择Bx’时,y的最优策略选择是By’,同时,当y选择By’时,x的最优选择是Bx’,因此,x和y选择了Bx’和By’时,谁都不会再改变策略。
这种局面称为Nash均衡,是Nash最早提出并证明了它的存在。
1951年Nash提出了Nash均衡的概念,并证明了Nash均衡的存在——真正奠定了博弈论作为一门学科的基础。
之前,虽然有很多人致力于研究博弈对策的规律,但总没有得出有意义的成果,直到Nash。
n人博弈纳什均衡定⏹设:G={A1,A2,A3,…….,AN;U1,U2, U3,…………,UN}⏹如果存在一个策略组合{a1*, a2*,……,aN*},其中a1*∈A1,a2*∈A2,…….,aN*∈AN,使Ui*=Ui{a1*, a2*,…,aN*} ≥Ui{a1*,…,ai-1*,aij*,ai+1*…,aN*}⏹对任意i ∈N都成立,则{a1*, a2*,……,aN*}为Nash均衡。
囚徒困境坦白B不坦白A 坦白A 不坦白两个被捕的囚徒之间的一种特殊博弈,双方的利益不仅取决于他们自己的策略选择也取决于对方的策略选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[我身边的博弈]
[我们每天所需要的食物和饮料,不是出自屠户、酿酒家或烙面师的恩惠,而是出于他们
自己的打算。
——Adam smith]
姓名:刘超佳
学号:1102424013
专业:电气工程及其自动化
2012年5月31号
人类是赌博的动物,他们总是想多赢点。
——charles lamb 博弈论是有关独立和相互依赖的决策指定的理论。
博弈论关注组织中的决策制定,其结果依赖于两个或更多的自主局中人,其中一名局中人可能是自然本身,但没有一个单独的决策制定者能完全控制结果。
象棋和桥牌等游戏很明显属于博弈论的范围,在生活中很多事情属于博弈论的范畴。
博弈无时不在,无处不在,在学习、工作等生活的每个方面我们都时刻面临着诸多选择,而在作出决定时我们总要权衡利弊希望做出最有利的选择。
高考后你面临着填报志愿的选择,毕业后你面临着就业的压力或是哪种职业的选择,工作后你又面临着同事间优胜劣汰的残酷竞争,所以在每天的生活中我们都会经历数次思想上的斗争,有时甚至是生死抉择。
如果你是莘莘学子中的一员,必定要在学业上追求优异的成绩,要与老师进行合作,而且还要在与同学相互学习、共同促进的过程中将他们视为竞争对手;如果你是位奔波于"两点一线"间的普通工作者,则在自己的工作岗位上也必定要追求良好的业绩和待遇,这就要求你不但要懂得与老板、同事和谐相处,还要时刻警惕着办公室内每天发生的勾心斗角的利益之争。
所以,你每天都在战斗,每天都在悄无声息中与自己进行着数次的思想斗争,与他人进行着利益得失上的博弈。
在生活中我们每时每刻都在进行着博弈。
早上开始是否起床?起来后我们又要吃什么饭.........这些都是我们要进行博弈的事。
就像吃饭很简单的一件事,但是你选择不同的方案,就会有不同的结果。
一种方案就是你去吃饭,你可以花很少的钱吃的刚好;另一种方案就是你花更多的钱吃得更好,更多;当然了还有一种方案就是你不去吃饭,同时就不用花钱了。
为了花钱少,同时你又可以吃饱,你就可以选择地一种方案。
但是仅仅是为了吃得更好,你就可以选择第二种方案.........这就是生活中最简单的博弈。
“博弈论”原本是数学的一个分支,但由于它较好地解决了对竞争等问题的可操作性分析,成为经济学中激荡人心的一个研究领域。
就如在我们大学生活中,或遇见很多是自己买东西,或者是自己买东西。
就拿我自己亲身经历的一件事来说。
新乡位于中原大地,温暖带大陆性气候夏季炎热。
为了让我们自己摆脱炎热的侵扰,同时方便大家,我与我们宿舍的人就想起来了一个办法——就是我们自己去卖电扇。
这样不仅可以解决自己买电扇的问题,首先解决自己的炎热问题,同时可以锻炼自己,而且可以获得一定的报酬。
这样自己就做了一次小老板,首先自己要去进货,有了货源才能做生意,比较几家不同的电扇,这也是一个小小的博弈。
我有以下几种方案:
1)我可以选择就近的卖电扇的,这样自己就不用忙着去进货,可以节约很多的时间,让自己有更多的时间去支配。
2)我可以去更远的地方,那里有更充足的货源,而且种类更多,我有更多的选择,不过又有问题了?就是哦去买哪一家的,我就其中的两种状况说明,首先我去一家相对较近的,而且相对我前面的更便宜,种类更多;第二种就是我去花一定的时间在好多家店铺里面寻找,然后比较,看那一家的电扇更便宜,种类更多,但是这要花去许多的时间,还有可能找不到更合适的。
这三种方案产生的结果不一样,我如只是为了方便就选择第一种方案,但是我的收益是最少的。
如果我选择第二种虽然我浪费了一定的时间,我获得了比第一种更多的效益。
最后就是第三种有一定的风险,但是自己可以获得最大的效益。
我和我的合伙人综合比较选择了第三种方案。
这样我们就可以获得最大效益,给自己最大的回报。
我卖电扇的时候也会遇见好几种方案:
1)我把电扇买给自己人,我选择和其他人同样的价格,这样就能获得最大的效益,卖给其他人一样的价格,只是销量会少,我还会有赚自己人而产生的愧疚感。
2)我可以不买自己人,这样既不会因为多收他们自己产生愧疚感,同时又可以使自己产生最大的收益。
3)我卖给自己人以更少的价钱,虽然自己收益少,但是能够卖出去的更多。
而卖给其他人稍微高一点的价钱,这样又不至于让自己赚的少。
综合比较我们选择了第三种方案,这样自己可以在其人那里获得更多的收益同时又能给自己人以便利,这样可以使自己获得尽量多的收益,同时又能然自己尽量多的给自己人已足以大的方便。
再举一个生活中的例子:如果你去菜场买菜,当你对某种菜的质量、口味等有疑虑时,卖菜的阿姨常会讲:“你放心,我一直在这儿卖呢!”这句朴实的话中其实包含了华丽的“博弈论”思想:我卖与你们买是一个次数无限的重复博弈,我今天骗了你,你们今后就不会再来我这儿买了,所以我不会骗你的,菜的质量、口味肯定没问题。
而你在听了阿姨的上述一句话后,常常也会打消疑虑,买菜回家。
在博弈中,人们掌握的信息经常是不完全的,这就需要在博弈进行过程(即动态博弈)中不断地收集信息、积累知识、修正判断。
人们常提到的“上有政策、下有对策”,其实是对管理者与被管理者之间的动态博弈的一种描述,面对上边的政策,下边寻求对策是正常的、必然的。
从“博弈论”的角度讲,上边的政策制定必须在考虑到下边可能会有的对策的基础上进行,否则,政策就不会是科学、合理的。
谈到博弈策略问题,可以说在我国传统文化中,包含有许多精妙的博弈策略。
许多成语及成语典故,就是对博弈策略的令人叫绝的运用和归纳。
如围魏救赵、背水一战、暗渡陈仓、釜底抽薪、狡兔三窟、先发制人、借鸡生蛋等等。
当然,博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。
在生活中充满了博弈论,我们只有获得更多的信息,了解更多的事情,联想更多可能发生的事,估计尽可能多的结果,这样才能获得更大的效益,更有利于自己。
博弈只是为了我们更大的收益.......
参考文献《决策中的博弈论》。