【2011年中考数学试题及解析】福建福州-解析版
2005--2011年福建省福州市中考数学试题及答案(7套)
新世纪教育网精选资料 版权所有 @新世纪教育网深圳市 2007 年初中毕业生学业考试数学试卷说明: 1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4 页.考试时间 90分钟,满分 100 分.2.本卷试题,考生一定在答题卡上按规定作答;凡在试卷、底稿纸上作答的,其答案一律无效.答题卡一定保持洁净,不可以折叠.3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的地点上,将条形码粘贴好.4.本卷选择题 1- 10,每题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案;非选择题11- 23,答案(含作协助线)一定用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共 10 小题,每题 3 分,共 30 分.每题给出4 个选项,此中只有一个是正确的)1. 2 的相反数是( )A.1 B. 21 D. 22C.2457302.今年参加我市初中毕业生学业考试的考生总数为人,这个数据用科学记数法表示为( )A. 0.4573 105B. 4.573 104C.4.573 104D. 4.573 1033.认真察看图 1 所示的两个物体,则它的俯视图是()正面A. B. C. D.图 14.以下图形中,不是 轴对称图形的是()..A.B. C. D.5.已知三角形的三边长分别是 3,8, x ;若 x 的值为偶数,则 x 的值有( )A. 6个 B. 5个C. 4个 D. 3个6.一件标价为 250 元的商品,若该商品按八折销售,则该商品的实质售价是()A. 180 元B. 200 元C. 240 元D. 250 元7.一数据2,1, 0 ,1, 2 的方差是()A. 1B. 2C. 3D. 48.若( a 2)2b30 , (a b)2007的是()AA. 0B. 1C. 1D. 2007D 31°a9.如 2,直a∥b,∠A的度数是()B70°b CA. 28B. 31C. 39D. 42210.在同向来角坐系中,函数y k(k0) 与 y kx k(k 0) 的象大概是()yxy yyx x x xA.B.C.D.第二部分非选择题填空(本共 5 小,每小 3 分,共 15分)11.一个口袋中有 4 个白球, 5 个球, 6 个黄球,每个球除色外都同样,匀后随机从袋中摸出一个球,个球是白球的概率是.12.分解因式:2x24x2.13.若式2x2y m与1x n y3是同,m n 的是.314.直角三角形斜是 6 ,以斜的中点心,斜上的中半径的的面是.15.老了一个算程序,入和出的数据以下表:入数据123456⋯出数据123456⋯2714233447那么,当入数据是7 ,出的数据是.解答(本共8 小,此中第16 5分,第 17 6分,第 18 6分,第 19 6分,第 20 7分,第 218 分,第 22 9 分,第 23 8 分,共 55 分)16.算:31 2 sin 452007π 032(x2) ≤ x 3 ①17.解不等式组,并把它的解集表示在数轴上:x x 1②3418.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是 AE上一点,∠ BAE ∠ MCE ,∠MBE 45 .A D(1)求证:BE ME .M(2)若AB7,求 MC的长.B CE图 319.2007 年某市国际车展时期,某企业对观光本次车展嘉会的花费者进行了随机问卷检查,共发放1000 份检盘问卷,并所有回收.①依据检盘问卷的结果,将花费者年收入的状况整理后,制成表格以下:年收入(万元) 4.867.2910被检查的花费者人数(人)2005002007030②将花费者打算购置小车的状况整理后,作出频数散布直方图的一部分(如图4).注:每组包括最小值不包括最大值,且车价取整数.请你依据以上信息,回答以下问题.(1)依据①中信息可得,被检查花费者的年收入的众数是______万元.(2)请在图 4 中补全这个频数散布直方图.(3)打算购置价钱10万元以下小车的花费者人数占被检查花费者人数的百分比是______.人数 /人36020012040车价 /万元046810 12 1416图 420.如图 5,某货船以24海里/时的速度将一批重要物质从 A 处运往正东方向的M 处,在点 A 处测得某岛 C 在北偏东 60 的方向上.该货船航行30 分钟后抵达 B 处,此时再测得该岛在北偏东 30的方向上,已知在 C 岛四周 9 海里的地区内有暗礁.若持续向正东方向航行,该货船有无触礁危险?试说明原因.北C60°30°MA B图 521.A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在 A, B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提早 3 周动工,结果两队同时达成任务,求甲、乙两工程队每周各铺设多少公里管道?22.如图 6,在平面直角坐标系中,正方形AOCB 的边长为 1,点 D 在x轴的正半轴上,且OD OB,BD交OC于点 E.(1)求∠BEC的度数.(2)求点E的坐标.(3)求过B,O,D三点的抛物线的分析式.(计算结果要求分母有理化.参照资料:把分母中的根号化去,叫分母有理化.比如:①22525555;5②11(21) 2 1;③15 ( 55 3 5 3 等21 (21)(21)33)( 5 3)2运算都是分母有理化)yB CEA O D x图 6237y x6与直线y x订交于A, B 两点..如图,在平面直角坐标系中,抛物线12142(1)求线段AB的长.(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图 8,线段AB的垂直均分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出 OM , OC , OD 的长,并考证等式1 1 12 能否建立.OC2OD 2OMyyBDMBOxOCxAA图 7图 8(4)如图 9,在 Rt △ ABC 中,∠ ACB 90 ,CD AB ,垂足为 D ,设 BC a ,ACb ,1 11AB c . CD b ,试说明: a 2 b 2h 2 .CbhaAcD B图 9深圳市 2007 年初中毕业生学业考试数学试卷参照答案第一部分 选择题(此题共10 小题,每题3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案DBAADBBCCC第二部分 非选择题填空题(此题共 5 小题,每题 3 分,共 15 分)题号11121314 154 2( x 1)257 答案15962解答题(此题共 7 小题,此中第 16题5分,第 17题6分,第 18 题6分,第 19题6分,第20题7分,第 21题 8分,第 22题 9分,第 23题 8分,共 55 分) 16.1317. 原不等式组的解集为x ≤ 118. (1) 证明略(2)∴MC=719. (1)6 (2)略(3)40 120 360 100% 52%100020.∵63 9因此货船持续向正东方向行驶无触礁危险.21.设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道( x1)公里依据题意 ,得18183 x x 1解得 x1 2 , x2 3 经查验 x1 2 , x2 3 都是原方程的根但 x23不切合题意 , 舍去∴x 1 3答 :甲工程队每周铺设管道 2 公里 , 则乙工程队每周铺设管道 3 公里.22. (1 )∴CBE114522.5 OBD OBC22∴ BEC90CBE 9022.567.5(2)点 E 的坐标是(0,2 2 )( 3)设过 B、O、D 三点的抛物线的分析式为y ax 2bx c∵B(-1 ,1),O(0,0),D(2, 0)a b c1∴ c 02a2b c0解得, a 1 2 ,b22,c0因此所求的抛物线的分析式为y (1 2 )x 2( 22)x23.( 1)∴ A( -4 , -2 ), B( 6, 3)分别过 A、 B 两点作AE x 轴, BF y 轴,垂足分别为E、 F ∴ AB=OA+OB422 2 6 232 5 5(2)设扇形的半径为x ,则弧长为 (5 52x),扇形的面积为y则 y1 (552 x )x255x 5 5 ) 2 1252 x2( x164∵ a1∴当 x55 y 最大125时,函数有最大值 164( 3)过点 A 作 AE ⊥ x 轴,垂足为点 E∵ CD 垂直均分 AB ,点 M 为垂足∴ OM1AB OA5 52 55222∵ AEOOMC , EOACOM∴△ AEO ∽△ CMO∴OEAO∴42 5 ∴ CO5 2 5 1 5 OMCO5 CO2 4 42同理可得OD 52∴1 1(4)2 ( 2)220 4OC 2OD 2 5525 514∴OM 25111 ∴2 OD 2OM 2 OC (4)等式 11 1a 2b 2h 2 建立.原因以下:∵ACB 90 , CD AB∴ 1 ab1AB hAB 2a 2b 222 ∴ ab c h∴ a 2 b 2 c 2 h 2∴ a 2 b 2( a 2 b 2 )h 2∴a 2b 2 (a 2 b 2 )h 22b 2 h 2a 2b 2 h 2a22∴1 a bh 22 b 2a∴111h2 a 2b2∴111a2 b 2h2。
2011中考数学真题解析24 解一元一次不等式(组)(含答案)
考点:解一元一次不等式;解二元一次方程组。
专题:方程思想。
分析:先解关于关于x,y的二元一次方程组 错误!未找到引用源。的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.
分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答:解: 错误!未找到引用源。 ,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:
故选B.
点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.
由①得,x<2,
由②得,x≥﹣3,
在数轴上表示为:
故选D.
点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.
18.(2010河南,4,3分)不等式组 的解集在数轴上表示正确的是( )
A. B.
C. D.
考点:在数轴上表示不等式的解集;解一元一次不等式组
解答:解: 错误!未找到引用源。
由①-③×3,解得y=1- 错误!未找到引用源。;由①×3-③,解得x= 错误!未找到引用源。;
∴由x+y<2,得1+ <2,即 错误!未找到引用源。<1,解得,a<4.[来源:Z§xx§]
故答案是:a<4.
点评:本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:
专题:探究型.
分析:先把先把两式相加求出x+y的值,再代入x+y<2中得到关于a的不等式,求出的取值范围即可.
2011福建福州中考数学
二○一一年福州市初中毕业会考、高级中等学校招生考试数 学(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2010福建福州,1,4分)6的相反数是( )A .6-B .16C .6±D .【答案】A 2. (2010福建福州,2,4分)福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为( )A .60.1810⨯米B .61.810⨯米C .51.810⨯米D .41810⨯米【答案】C3. (2010福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )【答案】A4. (2010福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y =C .3y =-D .12y x =【答案】B图1ABDC5. (2010福建福州,5,4分)下列四个角中,最有可能与70o 角互补的角是( )【答案】D6. (2010福建福州,6,4分)不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是( )【答案】D7. (2010福建福州,7,4分)一元二次方程(2)0x x -=根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 【答案】A8. (2010福建福州,8,4分)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A .0B .13C .23D . 1【答案】B9. (2010福建福州,9,4分)如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足( ) A.RB .3R r =C .2R r = D.R =【答案】CBACD1202-ADBC图210. (2010福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D . 5【答案】C二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11. (2010福建福州,11,4分)分解因式:225x -= . 【答案】(5)(5)x x -+12. (2010福建福州,12,4分)已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是 . 【答案】31013. (2010福建福州,13,4分)如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度.【答案】27014. (2010福建福州,14,4分)化简1(1)(1)1m m -++的结果是 .【答案】m15. (2010福建福州,15,4分)以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a 的取值范围是图3BCD图4A【答案】. 42a -≤≤-三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) (2010福建福州,16(1),7分)计算:0|-4|+2011【答案】解:原式414=+-1=(2) (2010福建福州,16(2),7分)化简:2(3)(2)a a a ++- 【答案】解:原式22692a a a a =+++-89a =+17. (1) (2010福建福州,17(1),8分)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =.求证AB ED =.【答案】(1)证明:∵AB BD ⊥,ED BD ⊥∴90ABC D ∠=∠= 在ABC ∆和EDC ∆中 ABC DBC DC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩O 图560A图6B CDE∴ABC ∆≌EDC ∆ ∴AB ED =(2) (2010福建福州,17(2),8分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 【答案】(2)解:设励东中学植树x 棵.依题意,得 (23)834x x +-= 解得279x =∴2322793555x -=⨯-=答:励东中学植树279棵,海石中学植树555棵.18. (2010福建福州,18,10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?【答案】(1)36; (2)60;14(3)解:依题意,得45%6027⨯=答:唐老师应安排27课时复习“数与代数”内容. 19. (2010福建福州,19,12分)图7-1 45%5%实践与综合应用统计与概率数与代数 空间与图形 40%67a44数与式函数数与代数(内容)图7-2 课时数方程(组)与不等式(组)图7-3方程(组) 与不等式(组)课时数如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围; (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+, 则y 随x 的增大而 (填“增大”或“减小”).【答案】(1)设直线AB 的函数解析式为y kx b =+ 依题意,得(10)A ,,(02)B ,∴{020k b b=+=+解得{22k b =-=∴直线AB 的函数解析式为22y x =-+ 当02y ≤≤时,自变量x 的取值范围是01x ≤≤.(2)线段BC 即为所求 增大20. (2010福建福州,20,12分)如图9,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =. 求:(1)tan C ;(2)图中两部分阴影面积的和.【答案】解:(1)连接OE∵AB 、AC 分别切O 于D 、E 两点 ∴90ADO AEO ∠=∠= 又∵90A ∠=o∴四边形ADOE 是矩形 ∵OD OE =∴四边形ADOE 是正方形 ∴OD ∥AC ,3OD AD == ∴BOD C ∠=∠∴在Rt BOD ∆中,2tan BD BOD ∠== ∴2tan 3C = (2)如图,设⊙O 与BC 交于M 、N 两点.由(1)得,四边形ADOE 是正方形∴90DOE ∠=∴90COE BOD ∠+∠=∵在Rt EOC ∆中,2tan C =,3OE = ∴92EC = ∴29113444O DOM EON DOE S S S S +===π⨯=π扇形扇形扇形B图9B∴()39944BOD COE DOM EON S S S S S ∆∆=+-+=-π阴影扇形扇形 ∴图中两部分阴影面积的和为399-π21. (2010福建福州,21,12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O∴OA OC =∴AOE ∆≌COF ∆ ∴OE OF =∴四边形AFCE 为平行四边形 又∵EF AC ⊥∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x = ∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA = ∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒 ∴5PC t =,124QA t =-ABC DEF图10-1O图10-2备用图∴5124t t =-,解得43t = ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得12a b += iii)如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b += 综上所述,a 与b 满足的数量关系式是12a b +=(0)ab ≠22. (2010福建福州,22,14分)已知,如图11,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l:y 对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.图1图2图3Q【答案】解:(1)依题意,得2230ax ax a +-=(0)a ≠解得13x =-,21x =∵B 点在A 点右侧∴A 点坐标为(30)-,,B 点坐标为(10), ∵直线l:y x当3x =-时,(3)0y -=∴点A 在直线l 上(2)∵点H 、B 关于过A 点的直线l :y =对称∴4AH AB ==过顶点H 作HC AB ⊥交AB 于C 点则122AC AB ==,HC =∴顶点(H -把(H - 代入二次函数解析式,解得a =∴二次函数解析式为2y = (3)直线AH 的解析式为y + 直线BK 的解析式为y 由y y ⎧⎪=+⎨⎪=-⎩ 解得{x y ==即K ,则4BK = ∵点H 、B 关于直线AK 对称∴HN MN +的最小值是MB ,过K 作KD x ⊥轴于D 点。
2011年福建省福州市中考数学试卷-解析版
2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、C、D、考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
2011年福州市初三质检数学试题及答案
2011年福州市初中毕业班质量检查数学试卷(完卷时间:120分钟;满分:150分)友情提示:所有答案都必须涂在答题卡相应的位置上,答在本卷上一律无效. 一、选择题(每小题4分,满分40分;请在答题卡的相应位置填涂) 1.2的倒数是A .12 B .-2 C .12- D .212.如图所示的一个三角尺中,两个锐角度数的和是A .45°B .60°C .75°D .90°3.用科学记数法表示我国九百六十万平方公里国土面积,正确的结果是A .96×144平方公里B .9.6×145平方公里C .9.6×146平方公里D .9.6×147平方公里4.如果10、10、20和m 的平均数为20,那么m 的值是A .20B .40C .60D .805.不等式2139x x --⎧⎨>⎩≥的解集在数轴上可表示为A .B .C .D .6.下面四个几何体中,左视图是四边形的几何体共有A .1个B .2个C .3个D .4个7.如图,圆心角为60°的扇形中,弦AB =6,则扇形面积为A .πB .3πC .6πD .12π8.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是A .b cosB =c B .c si nA =aC .a tan A =bD .tan bB =第2题图1234123412341234圆柱圆锥球正方体ABC 60°第7题图9.已知函数y =2x +b ,当b 取不同的数值时,可以得到许多不同的直线,这些直线必定A .交于同一个点B .有无数个交点C .互相平行D .互相垂直10.人民币一元硬币如图所示,要在这枚硬币的周围摆放几枚与它完全相同的一元硬币,使得周围的硬币都和这枚硬币外切,且相邻的硬币也外切,则这枚硬币周围最多可摆放A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币二、填空题(每题4分,满分20分.请将答案填入答题卡的相应位置) 11.请写出一个负数________________. 12.因式分解:2m -2m 2=___________________. 13.函数12y x =自变量x 的取值范围是________________________. 14.如果在一次试验中,有100种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的50种结果,那么事件A 发生的概率是_________________.15.已知二次函数y =x 2+bx +c 的对称轴为直线x =1,且图象与x 轴交于A 、B 两点,AB =2.若关于x 的一元二次方程x 2+bx +c -t =0(t 为实数),在-2<x <72的范围内有实数解,则t 的取值范围是_____.三、解答题(满分90分.请将答案填入答题卡的相应位置) 16.(每小题7分,共14分)(1) 计算:(-1)2011+(π-3.14)0-|-3|;(2) 先化简,再求值:(x +y )2-(x -y )2,其中21x =+,21y =-.17.(每小题8分,共16分)(1) 已知12A x =-,224x B x =-,22C x =+.解方程A -B =C . (2) 如图,□ABCF 中,∠BAC =90°,延长CF 到E ,使CE =BC ,过E 作BC 的垂线,交延长线于点D . 求证:AB =CD .18.(10分)梯形ABCD 中,AD ∥BC ,以A 为圆心,DA 为半径的圆经过B 、C 、D 三点,若AD =5.BC =8,求梯形ABCD 的面积.19.(12分)一个袋中有3个形状大小完全相同的小球,编号为1、2、3,先任取一个,将其编号记为m ,再从剩下的两个中任取一个,将其编号记为n .第10题图ABC DE F第17(2)题图ABCD 第18题图(2) 求关于x的方程x2+mx+n=0有两个相等实数根的概率.20.(12分)随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式.黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车来福州,那么他此行与乘飞机相比将减少二氧化碳排放量多少千克?21.(12分)已知边长为10的菱形ABCD,对角线BD=16,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1) 如图1,求证:△PBE∽△PDF;(2) 连接PC,当PE+PF+PC取最小值时,求PB的长;(3) 如图2,对角线BD、AC交于点O,以PO为半径(PO>0)的⊙P与以DF为半径的⊙D相切时,求PB的长.22.(14分)如图,已知抛物线C1的解析式为y=-x2+2x+8,图象与y轴交于D点,并且顶点A在双曲线上.(1) 求过顶点A的双曲线解析式;(2) 若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点;(3) 设(2)中的抛物线C2的对称轴PF与x轴交于F点,且与双曲线交于E 点,当D、O、E、F四点组成的四边形的面积为16.5时,先求出P点坐标,并在直线y=x上求一点M,使|MD-MP|的值最大.ADO x yABC DEPF 第21题图1OABCDEPF第21题图2ABCDO第21题备用图2ABCD O第21题备用图1。
福建省福州市2011年中考数学试卷(含解析)
2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、C、D、考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
福建省福州市中考数学真题试题(带解析)
数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.3的相反数是A .-3B .13C .3D .-13考点:相反数.专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C .4.89×104D .0.489×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单. 4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°.第3题图A B C D a 第4题图 1 2 b点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题.5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.分析:分别根据合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CD AD, ∴ AD =CDtan A =10033=100 3在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长. 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题. 专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解.解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小,设与线段AB 相交于点(x ,-x +6)时k 值最大,则k =x (-x +6)=-x 2+6x =-(x -3)2+9,第9题图AB CD 30° 45°第10题图∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________. 考点:二次根式的定义. 专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1. 故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) 考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x 的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值.解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°.∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BCCD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12. 故x =5-12. 如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AE AD=125-12=5+14. 故答案是:5-12;5+14. 点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.ABCD 第15题图ABCD E考点:整式的混合运算;实数的运算;零指数幂. 专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果; (2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换. 分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C . ∵ AE =CF ,∴ AE +EF =CF +EF , 即 AF =CE . 又∵ AB =CD , ∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部A B C D E F第17(1)题图 第17(2)题图A B C分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? 考点:条形统计图;用样本估计总体;扇形统计图. 分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果;(3) 用学生总数乘以骑自行车所占的百分比即可.解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示;(2) 采用乘公交车上学的人数最多;(3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题? 考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解; (2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解. 解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68. 解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,学生上学方式扇形统计图步行 其他乘公交车 骑自行车 上学方式步行 其他乘公交车 骑自行车 上学方式依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形. 专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长. 解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线, ∴ OC ⊥CD ,∴ ∠OCD =90°. ∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°, ∴ AD ∥OC , ∴ ∠1=∠2, ∵ OA =OC , ∴ ∠2=∠3, ∴ ∠1=∠3, 即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =ACcos ∠CAB =43cos30°=8.连接OE ,∵ ∠EAO =2∠3=60°,OA =OE , ∴ △AOE 是等边三角形,∴ AE =OA =12AB =4.解法二:如图3,连接CE ∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ADC 中,CD =23, ∴ AD =CDtan ∠DAC =23tan30°=6.∵ 四边形ABCE 是⊙O 的内接四边形, ∴ ∠B +∠AEC =180°. 又∵ ∠AEC +∠DEC =180°, ∴ ∠DEC =∠B =60°. 在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2.∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.图2图3考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质. 专题:代数几何综合题. 分析:(1) 根据题意得:CQ =2t ,PA =t ,由Rt△ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD PA =BC AC =43,则可求得QB 与PD 的值;(2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t .(2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10. ∵ PD ∥BC ,∴ △APD ∽△ACB ,∴ AD AB =AP AC ,即:AD 10=t6, ∴ AD =53t ,∴ BD =AB -AD =10-53t .∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125.当t =125时,PD =43×125=165,BD =10-53×125=6,∴ DP ≠BD ,∴ □PDBQ 不能为菱形.第21题图①第21题图②图1设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t .要使四边形PDBQ 为菱形,则PD =BD =BQ , 当PD =BD 时,即43t =10-53t ,解得:t =103.当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615.(3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0); 当t =4时,点M 2的坐标为(1,4).设直线M 1M 2的解析式为y =kx +b ,∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0),∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t ).把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t .∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2. ∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度. 解法二:如图3,设E 是AC 的中点,连接ME . 当t =4时,点Q 与点B 重合,运动停止. 设此时PQ 的中点为F ,连接EF .过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC . ∴ △PMN ∽△PDC . ∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t ,∴ CN =PC -PN =(6-t )-(3-12t )=3-12t .∴ EN =CE -CN =3-(3-12t )= 12t .∴ tan ∠MEN =MN EN=2.∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4. ∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合, ∴ 线段PQ 中点M 所经过的路径长为25单位长度.图2AC PN 图3E H点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标; (3) 综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB 沿x 轴翻折;方法二:旋转变换,将△NOB 绕原点顺时针旋转90°.特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ). 又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.第22题图① 第22题图②∵ 抛物线与直线只有一个公共点, ∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2, ∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3). 设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去),∴ 点N 的坐标为(-34,4516).方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4),∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, ∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB 2则N 2(4516,34),B 2(4,-4),∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, 图1∴ 点P 1的坐标为(4532,38).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532).综上所述,点P 的坐标是(-38,-4532)或(4532,38).点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.本模板说明1、页眉21世纪教育网 21世纪教育网 黑体 小三号字 加粗 鲜红色 居中 2、背景专注初中教育,服务一线教师 隶书 鲜红色 3、页脚21世纪教育网期待您的投稿!zkzyw@ 宋体(正文) 小五号字 右对齐 鲜红色 4、页码 -1-数字,两遍加横 居中。
福州市中考数学试卷含答案解析
福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=.14.若二次根式在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=. 故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将人数减去人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,比增加了750﹣743=7(万人);(2)由图可知增加:×100%≈0.98%,增加:×100%≈0.97%,增加:×100%≈1.2%,增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测福州市常住人口数大约为757万人.故答案为:(1)7;(2).【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H 重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
2011福建福州中考数学试题及答案(含答案)
2二○一一年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.6的相反数是 A.6-B.16C.6±2.福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为 A.60.1810⨯米B.61.810⨯米C.51.810⨯米D.41810⨯米3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是4.图1是我们学过的反比例函数图象,它的函数解析式可能是 A.2y x =B.4y x=C.3y x=-D.12y x =5.下列四个角中,最有可能与70角互补的角是6.不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是图1BACDABDC12ADBC27.一元二次方程(2)0x x -=根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 8.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是 A.0B.13C.23D.19.如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C , 若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足A.R =B.3R r =C.2R r =D.R =10.如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 A.2 B.3C.4D.5二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:225x -= .12.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中 飞来一块陨石落在地球上,则落在陆地上的概率是 .13.如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=,则A B C ∠+∠+∠= 度. 14.化简1(1)(1)1m m -++的结果是 .15.以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a图2图3BCD图4A图560三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:0|-4|+2011- (2)化简:2(3)(2)a a a ++- 17.(每小题8分,共16分)(1)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =. 求证AB ED =.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 18.(满分10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据 数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回 答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,19.(满分12分)如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x (2)将线段AB 绕点B 逆时针旋转90,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,A图6B CDE图7-145%5%实践与综合应用统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图7-2课时数方程(组)与不等式(组)图7-3方程(组) 与不等式(组)课时数则y 随x 的增大而 (填“增大”或“减小”).20.(满分12分)如图9,在ABC ∆中,90A ∠=,O 是BC 边上一点,以O别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =求:(1)tan C ;(2)图中两部分阴影面积的和.21.(满分12分) 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.22.(满分14分)已知,如图11,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y x .(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.B A BCDEF 图10-1 O 图10-2 备用图 备用图2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、考点:相反数。
2011年中考数学专题__统计与概率精品试题分类解析汇编
福建9市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1.(福建福州4分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、1C、2D、13【答案】B。
【考点】列表法或树状图法,概率。
【分析】画树状图:。
故选B。
图中可知,共有6种等可能情况,积是正数的有2种情况,故概率为21632.(福建泉州3分)下列事件为必然事件的是A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖【答案】C。
【考点】随机事件。
【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为一枚普通的正方体骰子只有1~6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误。
故选C。
3.(福建漳州3分)下列事件中,属于必然事件的是A.打开电视机,它正在播广告B.打开数学书,恰好翻到第50页C.抛掷一枚均匀的硬币,恰好正面朝上D.一天有24小时【答案】D。
【考点】必然事件。
【分析】根据必然事件的定义:一定发生的事件,即可判断:A 、是随机事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是必然事件,故选项正确。
故选D 。
4.(福建漳州3分)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位: 分),这次测试成绩的众数和中位数分别是A .79,85B .80,79C .85,80D .85,85【答案】C 。
【考点】众数,中位数。
【分析】众数是一组数据中出现次数最多的数据,数据85出现了两次最多为众数;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
2000-2011年福州市中考数学试卷(简答题题部分)
2000-2011年福州市中考数学试卷(简答题题部分)三. (每小题8分,共32分)1. 计算2. 如图,E、F为□ABCD的对角线AC上两点.且AE=CF.求证:△ABE≌△CDF3. 化简4. 已知直线与双曲线相交于点A(m, 1),求直线的解析式.三. (每小题7分,满分28分)21. 计算:22. 如图,已知:平行四边形ABCD中,E是CD边的中点,连结BE并延长与AD的延长线相交于F点。
求证:BC=DF。
23. 两个全等的三角板,可以拼出各种不同的图形。
下面各图已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成不同的轴对称图形(所画三角形可与原三角形有重叠部分)。
24. 为了了解中学生的体能情况,某校抽取了50名初三学生进行一分钟跳绳次数测试,将所得数据整理后,画出部分频率分布直方图。
如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28。
根据已知条件填空或画图:(1)第四小组频数为_____________; (2)第五小组频率为_____________;(3)在这次测试中,跳绳次数的中位数落在第___________小组中; (4)补全频率分布直方图。
三. 21. 解:原式22. 证明:四边形ABCD 是平行四边形,又23. 略24. (1)14 (2)0.16 (3)三(4)略2002年三、(每小题7分,满分28分)21.解不等式组并把它的解集在数轴上表示出来.22.如图:已知□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O ,且与BC 、AD 分别相交于点E 、F ,求证OE =OF .23.已知:图A 、图B 分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为S A 、S B (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题. (1)填空:S A ︰S B 的值是___________;(2)请在图C的网格上画出一个面积为8个平方单位的中心对称图形;图A 图B 图C24.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(x℃)10 14 18 22 26 30 32天数t 3 5 5 7 6 2 2请根据上述数据填空:(1)该组数据的中位数是_______℃;(2)该城市一年中日平均气温为26℃的约有_______天;(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有_______天.三、(每小题7分,共28分)21.解不等式(1)得:x≤2(3分)解不等式(2)得:x>-2(5分)∴原不等式组的解集是:-2<x≤2(6分)原不等式组解集在数轴上表示如下:22.证法一:∵□ABCD,(7分)∴AD∥BC OA=OC.(2分)且∠CAD=∠ACB(或∠AFO=∠CEO)又∵∠AOF=∠COE(写出满足全等的条件得4分)∴△AOF≌△COE(6分)∴OE=OF(7分)证法二:∵□ABCD∴AD∥BC OA=OC(2分)∴(6分)∴OE=OF(7分)23.①S A:S B=(3分)②画出图形具有中心对称得2分,面积为8个平方单位得2分(参考答案见第4页)24.(1)22(3分)(2)73(2分)(3)146(2分)2003年三、(第21、22 题各7分,第23题6分,第24题8分.满分28分)21.计算:。
福建省三明市2011年中考数学试卷-解析版
福建省三明市2011年中考数学试卷一、选择题(共10小题,每小题4分)1、(2011•福建)﹣6的相反数是()A、﹣6B、﹣C、D、62、(2011•福建)据《2010年三明市国民经济和社会发展统计公报》数据显示,截止2010年底,三明市民用汽车保有量约为98200辆,98200用科学记数法表示正确的是()A、9.82×103B、98.2×103C、9.82×104D、0.982×1043、(2011•福建)由5个大小相同的正方体组成的几何体如图所示,其主视图是()A、B、C、D、4、点P(﹣2,1)关于x轴对称的点的坐标是()A、(﹣2,﹣1)B、(2,﹣1)C、(2,1)D、(1,﹣2)5、(2011•福建)不等式组的解集在数轴上表示如图所示,则该不等式组可能是()A、B、C、D、6、(2011•福建)有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为()A、B、C、D、7、(2011•福建)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()A、40°B、50°C、80°D、90°8、(2011•福建)下列4个点,不在反比例函数y=﹣图象上的是()A、(2,﹣3)B、(﹣3,2)C、(3,﹣2)D、(3,2)9、(2011•福建)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为()A、1.5cmB、3cmC、6cmD、12cm10、(2011•福建)如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A、1个B、2个C、3个D、4个二、填空题(共6小题,每小题4分)11、(2011•福建)计算:﹣20110=_________.12、(2004•济南)分解因式:a2﹣4a+4=_________.13、(2011•福建)甲、乙两个参加某市组织的省“农运会”铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:\overline{x}_甲=13.5m,\overline{x}_乙=13.5m,S2甲=0.55,S2乙=0.50,则成绩较稳定的是_________(填“甲”或“乙”).14、(2011•福建)如图,▱ABCD中,对角形AC,BD相交于点O,添加一个条件,能使▱ABCD成为菱形.你添加的条件是_________(不再添加辅助线和字母)15、(2011•福建)如图,小亮在太阳光线与地面成35°角时,测得树AB在地面上的影长BC=18m,则树高AB约为_________m(结果精确到0.1m)16、(2011•福建)如图,直线l上有2个圆点A,B.我们进行如下操作:第1次操作,在A,B两圆点间插入一个圆点C,这时直线l上有(2+1)个圆点;第2次操作,在A,C和C,B间再分别插入一个圆点,这时直线l上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l上有(5+4)个圆点;…第n次操作后,这时直线l上有_________个圆点.三、解答题(共7小题,共86分)17、(2011•福建)(1)先化简,再求值:x(4﹣x)+(x+1)(x﹣1),其中x=.(2)解方程:=.18、(2011•福建)如图,AC=AD,∠BAC=∠BAD,点E在AB上.(1)你能找出_________对全等的三角形;(2)请写出一对全等三角形,并证明.19、(2011•福建)某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析,得到如下统计表:分组频数频率59.5~69.5 3 0.0569.5~79.5 12 a79.5~89.5 b 0.4089.5~100.5 21 0.35合计 c 1根据统计表提供的信息,回答下列问题:(1)a=_________,b=_________,c=_________;(2)上述学生成绩的中位数落在_________组范围内;(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的圆心角为_________度;(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有_________人.20、(2011•福建)海崃两岸林业博览会连续六届在三明市成功举办,三明市的林产品在国内外的知名度得到了进一步提升.现有一位外商计划来我市购买一批某品牌的木地板,甲、乙两经销商都经营标价为每平方米220元的该品牌木地板.经过协商,甲经销商表示可按标价的9.5折优惠;乙经销商表示不超过500平方米的部分按标价购买,超过500平方米的部分按标价的9折优惠.(1)设购买木地板x平方米,选择甲经销商时,所需费用这y1元,选择乙经销商时,所需费用这y2元,请分别写出y1,y2与x之间的函数关系式;(2)请问该外商选择哪一经销商购买更合算?21、(2011•福建)如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(2)若∠C=2∠E,求证:AB=DC;(3)在(2)的条件下,sinC=,AD=,求四边形AEBD的面积.22、(2011•福建)如图,抛物线y=ax2﹣4ax+c(a≠0)经过A(0,﹣1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)23、(2011•福建)在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.答案与评分标准一、选择题(共10小题,每小题4分)1、(2011•山西)﹣6的相反数是()A、﹣6B、﹣C、D、6考点:相反数。
2011中考数学真题解析102 网格专题(含答案)
(2012年1月最新最细)2011全国中考真题解析120考点汇编网格专题一、选择题1. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、14考点:一元二次方程的应用。
专题:网格型。
分析:可设方格纸的边长是x ,灰色三角形的面积等于方格纸的面积减去周围三个直角三角形的面积,列出方程可求解. 解答:解:方格纸的边长是x ,21x 2﹣21•x•21x ﹣21•21x•43x ﹣21•x•41x=421x 2=12.所以方格纸的面积是12, 故选B .点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三个三角形的面积得解.2. (2011湖北潜江,7,3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则弧AC 的长等于( )A .π43 B .π45 C .π23 D .π25考点:弧长的计算;勾股定理;勾股定理的逆定理;圆周角定理。
专题:网格型。
分析:求弧AC 的长,关键是求弧所对的圆心角,弧所在圆的半径,连接OC ,由图形可知OA ⊥OC ,即∠AOC =90°,由勾股定理求OA ,利用弧长公式求解. 解答:解:连接OC ,由图形可知OA ⊥OC , 即∠AOC =90°,由勾股定理,得OA =2212+=5,∴弧AC 的长=180590⨯⨯π=25π.故选D .点评:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180r n ∙∙π.3. (2011•西宁)如图,△DEF 经过怎样的平移得到△ABC ( )A 、把△DEF 向左平移4个单位,再向下平移2个单位B 、把△DEF 向右平移4个单位,再向下平移2个单位C 、把△DEF 向右平移4个单位,再向上平移2个单位D 、把△DEF 向左平移4个单位,再向上平移2个单位考点:平移的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省福州市2011年中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分)1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、C、D、考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
专题:推理填空题。
分析:根据图象知是双曲线,知是反比例函数,根据在一三象限,知k>0,即可选出答案.解答:解:根据图象可知:函数是反比例函数,且k>0,答案B的k=4>0,符合条件,故选B.点评:本题主要考查对反比例函数的图象,二次函数的图象,正比例函数的图象等知识点的理解和掌握,能熟练地掌握反比例的函数的图象是解此题的关键.5、(2011•福州)下列四个角中,最有可能与70°角互补的角是()A、B、C、D、考点:余角和补角。
专题:应用题。
分析:根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角;看下4个答案,哪个符合即可;解答:解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.点评:本题考查了角互补的性质,明确互补的两角和是180°,并能熟练求已知一个角的补角.6、(2011•福州)不等式组的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集;解一元一次不等式组。
专题:数形结合。
分析:分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.解答:解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.点评:本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.7、(2011•福州)一元二次方程x(x﹣2)=0根的情况是()A、有两个不相等的实数根B、有两个相等的实数根C、只有一个实数根D、没有实数根考点:根的判别式;解一元二次方程-因式分解法。
专题:计算题。
分析:先把原方程变形为:x2﹣2x=0,然后计算△,得到△=4>0,根据△的含义即可判断方程根的情况.解答:解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2﹣4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.8、(2011•福州)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A、0B、C、D、1考点:列表法与树状图法。
专题:数形结合。
分析:列举出所有情况,看积是正数的情况数占总情况数的多少即可.解答:解:共有6种情况,积是正数的有2种情况,故概率为,故选B.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到积是正数的情况数是解决本题的关键.9、(2011•福州)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A、B、R=3r C、R=2r D、考点:切线的性质;含30度角的直角三角形;垂径定理。
分析:首先连接OC,根据切线的性质得到OC⊥OB,再根据等腰三角形的性质可得到∠COB=60°,从而进一步求出∠B=30°,再利用直角三角形中30°角所对的边等于斜边的一半,可得到R与r的关系.解答:解:连接OC,∵C为切点,∴OC⊥AB,∵OA=OB,∴∠COB=∠AOB=60°,∴∠B=30°,∴OC=OB,∴R=2r.故选C.点评:此题主要考查了切线的性质和直角三角形的性质,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10、(2011•福州)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A、2B、3C、4D、5考点:三角形的面积。
专题:网格型。
分析:根据三角形ABC的面积为2,可知三角形的底边长为4,高为1,或者底边为2,高为2,可通过在正方形网格中画图得出结果.解答:解:C点所有的情况如图所示:故选C.点评:本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.二、填空题(共5小题,每题4分,满分20分;)11、(2008•衢州)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法。
分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.常出的错误有:x2﹣25=(x﹣5)2,x2﹣25=x(x﹣5)(x+5),x2﹣25=(x﹣5)2=(x+5)(x﹣5),要克服.12、(2011•福州)已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是.考点:几何概率。
专题:计算题。
分析:根据几何概率的求法:看陆地的面积占总面积的多少即为所求的概率. 解答:解:根据题意可得:地球表面陆地面积与海洋面积的比约为3:7, 即相当于将地球总面积分为10份,陆地占3份,所以落在陆地上的概率是.故答案为.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率. 13、(2011•福州)如图,直角梯形ABCD 中,AD ∥BC ,∠C=90°,则∠A+∠B+∠C= 270 度.考点:直角梯形;平行线的性质。
专题:计算题;几何图形问题。
分析:根据平行线的性质得到∠A+∠B=180°,由已知∠C=90°,相加即可求出答案. 解答:解:∵AD ∥BC ,∴∠A+∠B=180°, ∵∠C=90°,∴∠A+∠B+∠C=180°+90°=270°, 故答案为:270.点评:本题主要考查对直角梯形,平行线的性质等知识点的理解和掌握,能求出∠A+∠B 的度数是解此题的关键.14、(2011•福州)化简()11-11m m ⎛⎫+ ⎪+⎝⎭的结果是 m . 考点:分式的混合运算。
专题:计算题。
分析:本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案. 解答:解:()11-11m m ⎛⎫+ ⎪+⎝⎭=(m+1)﹣1=m 故答案为:m点评:本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键. 15、(2011•福州)以数轴上的原点O 为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P 为圆心,5为半径,圆心角∠CPD=60°,点P 在数轴上表示实数a ,如图.如果两个扇形的圆弧部分(和)相交,那么实数a 的取值范围是 ﹣4≤a≤﹣2 .考点:圆与圆的位置关系;实数与数轴。
专题:计算题。
分析:两扇形的圆弧相交,界于D 、A 两点重合与C 、B 两点重合之间,分别求出此时PD 的长,PC 的长,确定a的取值范围.解答:解:当A、D两点重合时,PO=PD﹣OA=5﹣3=2,此时P点坐标为a=﹣2,当B、C两点重合时,PO===4,此时P点坐标为a=﹣4,则实数a的取值范围是﹣4≤a<﹣2.故答案为:﹣4≤a≤﹣2.点评:本题考查了圆与圆的位置关系,实数与数轴的关系.关键是找出两弧相交时的两个重合端点.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16、(2011•福州)(1)计算:;(2)化简:(a+3)2+a(2﹣a).考点:整式的混合运算;实数的运算;零指数幂。
专题:计算题。
分析:(1)不为0的实数的绝对值大于0,不为0的0次幂为1,(2)完全平方与代数式分解,后合并同类项即得.解答:(1)解:原式=4+1﹣4=1(2)解:原式=a2+6a+9+2a﹣a2=8a+9点评:本题考查了整式的混合运算,(1)负数的绝对值取其正数,不为0的数的0次幂为1,.(2)完全平方分解,合并同类项,即得.17、(2011•福州)(1)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?考点:全等三角形的判定与性质;一元一次方程的应用。