八年级二次根式
八年级数学二次根式教学设计6篇
八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。
重点:二次根式的加减乘混合运算。
难点:运算法则的综合运用。
关键:掌握混合运算顺序和步骤。
教学过程:复习提问:1.叙述二次根式加减法的两个步骤。
2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。
二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。
2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。
3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。
教学重点:二次根式概念的理解。
教学难点:二次根式概念的理解。
教学方法:自主学习问题启发相结合。
教学手段:多媒体课件、学案。
教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。
今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。
观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。
)。
3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。
二次根式(课件)八年级数学下册(苏科版)
2
+ −13 =11 + 13=24.
课堂练习
用代数式表示:
10.
(1)面积为 S 的圆的半径;
(2)面积为 S 且两条邻边的比为 2∶3 的长方形的长和宽.
解:(1)设圆的半径为 r,则
所以 S=πr²,则 r =±
思考:当a<0时, a 2 = -a ?
a(a<0) 平方
运算
-2
-0.1
2
...3
a2
4
算术平
方根
0.01
4
...9
观察两者有什么关系?
a2
2
0.1
2
...3
探究新知
的性质:
a (a≥0)
-a (a<0)
即任意一个数的平方的算术平方根等于它本身的绝对值.
典型例题
例2 化简:
1
3
2 4 ;
3
3
探究新知
( a ) 2 ( a 0) 的性质:
2
(
a
)
一般地,
=a (a ≥0).
即一个非负数的算术平方根的平方等于它本身.
注意:不要忽略a≥0这一限制条件.这是使二次根式 a 有
意义的前提条件.
典型例题
例1 计算:
2
(2)( 5) 2
3
1 2
(1)( )
2
(2)可以用到幂
的哪条基本性
质呢?
”.
典型例题
例1 下列各式中,哪些是二次根式?哪些不是?
(1)
32;
(2) 6;
(3)
(5)
xy x, y异号 ; (6)
12;
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
八年级上册数学二次根式
本章知识
1.二次根式的概念:
形如 a(a 0)的代数式叫做二次根式.
(即一个 非负数 的算术平方根叫做二次根式)
本章知识 2.二次根式的性质:
1 .a( )2a
2 . a2 a
( a 0 )
a (a 0)
0 (a 0)
a (a 0)
3a . bab ( a 0b 0)
4 .a b
如图是由两个等腰直角三角形拼成的四边形, 已知:AB=2cm,求四边形ABCD的面积。
要使人造地球卫星能绕地球运转,必须使它的 速度超过一定的数值才能摆脱地球万有引力的 束缚,这个速度我们称为第一宇宙速度。计算 这一速度的公式是,其中g为重力加速度,取值 为9.8m/,R为地球半径约是米,请你尝试着计 算第一宇宙速度(结果用科学记数法表示,保 留两个有效数字)。
)仍然适用.
例1 求下列二次根式中字母的取值范围
(1)
x 5
1 3x
(2) (x - 2)2
说明:二次根式被开方数不小于0,所以求二次根式中 字母的取值范围常转化为不等式(组)
练习:求下列二次根式中字母的取值范围
5a
2
1-a
当a_____时, 5 2a 有意义,
当a_____时, 2a 5 有意义,
当a_____时,5 2a 2a 5 有意义。
计算或化简:
1
6 216
—6——
计算或化简:
52 42 __3______
化简下列各式
(3)2 (3 2)2
计算或化简:
2 7362
计算 (2 3 6)2
(22 33 )3 (3 22 )
?Байду номын сангаас
八年级数学下册第16章 微专题1 二次根式化简的六种常用方法
=
x+y y=
y(x+y) x+y .
返回导航
微专题1 二次根式化简的六种常用方法
方法4 根据隐含条件化简含有字母的二次根式 4.已知 x+y=-10,xy=8,求 xy+ xy的值. 解:∵x+y=-10,xy=8,∴x<0,y<0.
∴
xy+
xy=
xyy2 +
xxy2=-
yxy-
xy x
=-1y-1x xy=-x+ xyy xy=180× 8=522.
第十六章 二次根式 微专题1 二次根式化简的六种常用方法
微专题1 二次根式化简的六种常用方法
方法1 直接应用二次根式性质法则化简 1.【教材改编】把下列二次根式化成最简二次根式:
(1) 3×9;
解: 3×9= 3× 9=3 3;
(2) 1.5; 解: 1.5=
32=
3= 2
3× 2×
2= 2
26;
返回导航
微专题1 二次根式化简的六种常用方法
(2)化简: (x-2)2- x2-2x+1. 解:原式= (x-2)2- (x-1)2=|x-2|-|x-1|, 当 x<1 时,原式=2-x-(1-x)=2-x-1+x=1; 当 1≤x≤2 时,原式=2-x-(x-1)=2-x-x+1=3-2x; 当 x>2 时,原式=x-2-(x-1)=x-2-x+1=-1.
∴
xy+
xy的值为5
2
2 .
返回导航
微专题1 二次根式化简的六种常用方法
方法 5 巧用整体思想进行计算与求值
5.(2021·包头)若 x= 2+1,则代数式 x2-2x+2 的值为( C )
A.7
B.4
C.3
D.3-2 2
八年级上册数学“二次根式”知识点
八年级上册数学“二次根式”知识点
八年级上册数学“二次根式”知识点
1.二次根式:式子(≥0)叫做二次根式。
2.最简二次根式:
(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分母中不含根式。
(2)最简二次根式必须同时满足下列条件:
①被开方数中不含开方开的尽的因数或因式;
②被开方数中不含分母;
③分母中不含根式。
3.同类二次根式(可合并根式):
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
4.二次根式的性质
(1)非负性:是一个非负数.
注意:此性质可作公式记住,后面根式运算中经常用到.
(2).
注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:
(3)
注意:①字母不一定是正数.
②能开得尽方的因式移到根号外时,必须用它的算术平方根代替.
③可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.
(4)公式与的区别与联系:
①表示求一个数的平方的算术根,a的`范围是一切实数.
②表示一个数的算术平方根的平方,a的范围是非负数.
③和的运算结果都是非负的.
【八年级上册数学“二次根式”知识点】。
北师大版八年级上册数学第7讲《二次根式》知识点梳理
a aa baba ÷b aa 2a2a2a2【学习目标】北师大版八年级上册数学第 7 讲《二次根式》知识点梳理1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:≥0,(a≥0),(a≥0),(a≥0),并利用它们进行计算和化简.【要点梳理】要点一、二次根式的概念一般地,我们把形如(a≥0) 的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.要点二、二次根式的性质1. ≥0,(a≥0);2. (a≥0);3. .4.积的算术平方根等于积中各因式的算术平方根的积,即(a ≥0,b ≥0).5.商的算术平方根等于被除数的算术平方根与除数的算术平方根的商,=(或=÷ b )即(a ≥0,b >0).要点诠释:(1)二次根式(a≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即a = ( a )2(a≥0).(2)与( a )2 要注意区别与联系:①a 的取值范围不同,( a )2 中a ≥0,中a 为任意值。
② a ≥0 时,( a )2 = =a ;a <0 时,( a )2 无意义,= -a .要点三、最简二次根式(1)被开方数的因数是整数,因式是整式;1 3 - 3 (- 1)23 1- x x -1 x + 2 3 - 2x -32 (-0.3)2 -2 x(2)被开方数中不含能开得尽方的因数或因式.满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2) 含有能开方的因数或因式.【典型例题】类型一、二次根式的概念1. 当 x 为实数时,下列各式有个. 【答案】 3.x 2 , x 2 -1, x , x 3 , (-x )2, , , , 属二次根式的【解析】 x 2 , x , 这三个式子满足无论 x 取何值,被开方数都大于或等于零.【总结升华】二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或 0.举一反三:【变式】下列式子中二次根式的个数有( ).(1) ;(2) ; (3) -A .2 B.3 C.4 D.5【答案】B.;(4) 3 8 ; (5) ;(6) ( x > 1 )2. x 取何值时,下列函数在实数范围内有意义?(1) y = ; (2)y= - ;【答案与解析】 (1) x -1≥0,所以 x ≥1.3(2) x + 2 ≥0,3 - 2x ≥0,所以-2 ≤x ≤ 2 ; 【总结升华】重点考查二次根式的概念:被开方数是正数或零.举一反三:【变式】下列格式中,一定是二次根式的是( ).A. B. C. D.(-x )2x 2 +1(- 3)2 4 (3.14 -π)2(m +1)2 2 5 【答案】B.类型二、二次根式的性质3. 计算下列各式:-2 ⨯ (1) (2) 【答案与解析】(1)原式=-2 ⨯ =- 3 2 . (2) 原式= 3.14-π=π-3.14 .【总结升华】 二次根式性质的运用.举一反三:【变式】(1)(2) a - 2 - ( = . 2 - a )2 =.【答案】(1) 10; (2) 0.4. ( 2015• 蓬溪县校级模拟) 已知: 实数 a , b 在数轴上的位置如图所示, 化简:﹣|a ﹣b|.【答案与解析】解:从数轴上 a 、b 的位置关系可知:﹣2<a <﹣1,1<b <2,且 b >a ,故 a+1<0,b ﹣1>0,a ﹣b <0,原式=|a+1|+2|b ﹣1|﹣|a ﹣b|=﹣(a+1)+2(b ﹣1)+(a ﹣b )=b ﹣3.【总结升华】本题主要考查了利用数轴比较两个数的大小和利用二次根式的性质进行化简,属于基础题.举一反三:= m +1,且m <, 【变式】若整数m 满足条件则m 的值是 .【答案】m =0 或m =-1. 3 4 (-2 5 )2 21 5 0.1 15 12 类型三、最简二次根式5. (2016•濉溪县校级月考) 下列根式中,最简二次根式共有 个. 【思路点拨】最简二次根式要满足两个条件(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式.【答案与解析】【总结升华】判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.举一反三:【变式】(2015•东莞二模)下列各式中,是最简二次根式的是( )A .B .C . D.2【答案】C.。
人教版数学八年级下册:二次根式(含答案)
《二次根式》1.二次根式的概念(1)一般地,我们把形如a(a≥0)的式子叫做二次根式.(2)对于a(a≥0)的讨论应注意下面的问题:①二次根号“”的根指数是2,二次根号下的a叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0时才叫二次根式.即a≥0是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数a的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但2不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“”;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为a为实数,而|a|≥0,a2≥0,a2+1>0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为a是实数时,并不能保证a+10,a2-1是非负数,即a+10,a2-1可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3时,式子x-3在实数范围内有意义.2.二次根式的性质(1)a(a≥0)是一个非负数...a(a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________.解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2)(a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数a的算术平方根,因此通过算术平方根的定义,将非负数a的算术平方根平方,就等于它本身,即(a)2=a(a≥0).【例2-2】化简:①(23)2=__________;②(x -3)2(x ≥3)=__________.解析:①直接利用公式(a )2=a (a ≥0),可得(23)2=23;②因为x ≥3,所以x -3≥0,所以由公式(a )2=a (a ≥0),可得(x -3)2=x -3(x ≥3).答案:①23②x -3(3)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).由算术平方根的定义,可得a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).a 2=a (a ≥0)表示非负数a 的平方的算术平方根等于a .【例2-3】计算: (1)(-1.5)2;(2)(a -3)2(a <3);(3)(2x -3)2(x <32).解析:错解正解(1)(-1.5)2=-1.5;(2)(a -3)2=a -3; (3)(2x -3)2=2x -3. (1)(-1.5)2=|-1.5|=1.5;(2)(a -3)2=|a -3|=3-a (a <3);(3)(2x -3)2=|2x -3|=3-2x (x <32).错因剖析:本题对性质(a )2=a (a ≥0)与a 2=|a |应用混淆,需特别注意被开方数是非负数时,a 2=a (a ≥0).思路分析:根据a 2=|a |,首先去掉根号,然后利用绝对值的定义求解.(1)(a )2=a 的前提条件是a ≥0;而a 2=|a |中的a 为一切实数.(2)a (a ≥0),|a |,a 2是三个重要的非负数,即a (a ≥0)≥0,|a |≥0,a 2≥0,在解题时应用较多.(3)a 2=(a )2成立的条件是a ≥0,否则不成立.(4)(a )2=a (a ≥0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方形式.(5)在利用a 2进行化简时,要先得出|a |,再根据绝对值的性质进行化简,一定要弄清被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围由二次根式的意义可知,a 的取值范围是:a ≥0.即当a ≥0时,a 有意义,是二次根式;当a <0时,a 无意义,不是二次根式.(1)确定形如a 的式子中的被开方数中的字母取值范围时,可根据式子a 有意义或无意义的条件,列出不等式,然后解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.求解此类问题抓住一点,就是由二次根式的定义a (a ≥0)得被开方数必须是非负数,即把问题转化为解不等式.【例3】当字母取何值时,下列各式为二次根式. (1)a 2+b 2; (2)-3x ;(3)12x ; (4)-32-x.分析:必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时,分母不能为0,根据这些要求列不等式解答即可.解:(1)因为a ,b 为任意实数时,都有a 2+b 2≥0, 所以当a ,b 为任意实数时,a 2+b 2是二次根式.(2)-3x ≥0,x ≤0,即当x ≤0时,-3x 是二次根式.(3)12x≥0,且x ≠0,所以x >0. 当x >0时,12x 是二次根式.(4)-32-x ≥0,故x -2≥0且x -2≠0,所以x >2. 当x >2时,-32-x 是二次根式. 4.二次根式非负性的应用(1)在实数范围内,我们知道式子a (a ≥0)表示非负数a 的算术平方根,它具有双重非负性:①a ≥0;②a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于0,则这几个非负数都等于0”可以解决一些算术平方根问题.巧记要点:二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式: ①|a |≥0;②a 2≥0;③a ≥0(a ≥0).【例4-1】已知x ,y 都是实数,且满足y =5-x +x -5+3,求x +y 的值.分析:式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于x 的不等式组.解:由题意知⎩⎪⎨⎪⎧ 5-x ≥0,x -5≥0,∴⎩⎪⎨⎪⎧x ≤5,x ≥5,∴x =5.当x =5时,y =5-5+5-5+3=3.∴x +y =5+3=8.两个算术平方根,当被开方数互为相反数时,只有它们同时为零,这两个式子才能都有意义.【例4-2】已知x ,y 为实数,且y =12+8x -1+1-8x ,则x ∶y =__________.解析:因为y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负数.实际上,若a 和-a 都有意义,则a =0.即依题意得⎩⎪⎨⎪⎧8x -1≥0,1-8x ≥0.解得x =18,于是y =12+0+0=12.故x ∶y =1∶4.答案:1∶4,5.式子(a )2的意义和运用二次根式的一个性质是:(a )2=a (a ≥0).因为2=(2)2,35=(35)2,所以上面的性质又可以写成:a =(a )2(a ≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的23表示2×3,这与带分数212表示2+12是不一样的,因此,以后遇到32×3应写成323,而不能写成1123.【例5-1】计算:(1)(23)2;(2)(-212)2;(3)(-5×3)2.解:(1)(23)2=22×(3)2=12. (2)(-212)2=(-2)2×(12)2=2. (3)(-5×3)2=(-1)2×(5×3)2=15.【例5-2】把多项式n 5-6n 3+9n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n 5-6n 3+9n 提取公因式,得n (n 4-6n 2+9),再利用完全平方公式分解,得n (n 2-3)2,要求在实数范围内分解,所以可以将3写成(3)2,再运用平方差公式进行因式分解.解:n 5-6n 3+9n =n (n 4-6n 2+9)=n (n 2-3)2=n (n +3)2(n -3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a |≥0,b ≥0(b ≥0),c 2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a |+b =0⇒a =0,b =0; |a |+c 2=0⇒a =0,c =0; b +c 2=0⇒b =0,c =0; |a |+b +c 2=0⇒a =0, b =0,c =0.【例6-1】若|a -b +1|与a +2b +4互为相反数,则(a +b )2 011=______.解析:|a -b +1|与a +2b +4互为相反数,∴|a -b +1|+a +2b +4=0.而|a -b +1|≥0,a +2b +4≥0,∴⎩⎪⎨⎪⎧ a -b +1=0,a +2b +4=0.∴⎩⎪⎨⎪⎧a =-2,b =-1.∴(a +b )2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a 2+b -2=4a -4,求ab 的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a -2)2+b -2=0,由二次根式的性质可知b -2≥0,由完全平方数的意义可知(a -2)2≥0,而它们的和为零,则a -2=0,b -2=0,从而可求出a ,b 的值.解:由a 2+b -2=4a -4,得a 2-4a +4+b -2=0,即(a -2)2+b -2=0.∵(a -2)2≥0,b -2≥0且(a -2)2+b -2=0,∴a -2=0,b -2=0,解得a =2,b =2. ∴ab =2,即ab 的值为2.7.二次根式(a )2=a (a ≥0)与a 2=|a |的区别、运用(a )2=a (a ≥0)与a 2=|a |是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解(a )2与a 2的意义学习了二次根式的定义以后,我们知道a ≥0(a ≥0),即a 是一个非负数,a 是非负数a 的算术平方根,那么(a )2就是非负数a 的算术平方根的平方,但只有当a ≥0时,a 才能有意义.对于a 2,则表示a 2的算术平方根,由于a 2中的被开方数是一个完全平方式,所以a 无论取什么值,a 2总是非负数,即a 2总是有意义的.(2)(a )2与a 2的区别和联系区别:①表示的意义不同.(a )2表示非负实数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②运算的顺序不同.(a )2是先求非负实数a 的算术平方根,然后再进行平方运算;而a 2则是先求实数a 的平方,再求a 2的算术平方根.③取值范围不同.在(a )2中,a 只能取非负实数,即a ≥0;而在a 2中,a 可以取一切实数.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤结果不同.(a )2=a (a ≥0),而a 2=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0. ③仅当a ≥0时,有(a )2=a 2.如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.___________________________________________________________________________ __________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________【例7-1】已知x <2,则化简x 2-4x +4的结果是( ). A .x -2 B .x +2 C .-x -2 D .2-x 解析:x 2-4x +4=(x -2)2=(2-x )2,因为x <2,2-x >0,所以x 2-4x +4=2-x . 答案:D【例7-2】化简1-6x +9x 2-(2x -1)2得( ). A .-5x B .2-5x C .x D .-x解析:错解正解原式=(1-3x )2-(2x -1)=(1-3x )-(2x -1)=2-5x ,故选B. 由2x -1,知2x -1≥0,得x ≥12,从而有3x -1≥0,所以原式=(1-3x )2-(2x -1)=(3x -1)2-(2x -1)=(3x -1)-(2x -1)=x .故选C. 错因剖析:本题错在忽视了二次根式成立的隐含条件.题目中2x -1有意义,说明隐含了条件2x -1≥0,即x ≥12,可知3x -1≥0.思路分析:本题主要应用二次根式的性质:(1)a 2=|a |=()()0,0.a a a a ≥⎧⎪⎨⎪⎩-< (2)(a )2=a (a ≥0) .正确应用二次根式的性质是解决本题的关键. 答案:C【例7-3】若m 满足关系式3x +5y -2-m +2x +3y -m =x -199+y ·199-x -y ,试确定m 的值.分析:挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应用,是解决本题的关键.解:由算术平方根的被开方数的非负性,得⎩⎪⎨⎪⎧ x -199+y ≥0,199-x -y ≥0,即⎩⎪⎨⎪⎧x +y ≥199,x +y ≤199.∴x +y =199. ∴x -199+y ·199-x -y =0. ∴3x +5y -2-m +2x +3y -m =0.再由算术平方根的非负性及两个非负数的和为零,得⎩⎪⎨⎪⎧ 3x +5y -2-m =0,2x +3y -m =0.①②由①-②,得x +2y =2.解方程组⎩⎪⎨⎪⎧ x +y =199,x +2y =2,得⎩⎪⎨⎪⎧x =396,y =-197.∴m =2x +3y =2×396+3×(-197)=201.点拨:(1)运用二次根式的定义得出:x ≥a 且x ≤a ,故有x =a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.(2)由⎩⎪⎨⎪⎧a ≥0,b ≥0,a +b =0推出a =b =0,这也是求一个方程中含有多个未知数的有效方法之一.。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
八年级数学二次根式知识点
八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。
本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。
1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。
例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。
2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。
即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。
(2)二次根式的值域为非负实数。
即,对于任意非负实数a,有$\sqrt{a}≥0$。
这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。
(3)二次根式可以转化为分数形式。
即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。
3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。
(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。
(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。
八年级数学二次根式
3、商的算术平方根的性质
a a (a 0,b 0) bb
4、二次根式的除法法则
a a (a 0,b 0) bb
例3、计算
(1) 40 45
(2)3 m6n5 5 m4n2
5、最简二次根式的两个条件:
(1)被开方数不含分母; (2)被开方数中不含能开得尽方的因 数或因式;
(2)四边形ABCD的面积。 C
D
A
B
; https:///gushiyaowen/ 今日股市 ;
乎の.还好,林师兄安排了一辆车接她们,车里冷气充足,不一会儿身上便舒爽了.“外边好热.”“昨天更厉害,有人在路边煎鸡蛋和虾子全熟了!”司机笑着说.搭乘两位,而且脾气不错の样子,心境超好.“不会吧?”陆羽吓了一跳,她好久没这种感受了,果然还是山里好,房子必须往山里找.“哎, 没关系,以后你们出入提前跟我说,车里有冷气不算太热.林先生叮嘱过我了,公交车不到金梧国际让我随时等你们电筒.”意思是包车了.第176部分金梧国际是一个度假别墅区,都是独栋の,仅两层,林辰溪偶尔过来住几天.这里环境优雅美观,而且居住の人群文化素质高,够稳定.就是交通不大便 利,得自己有车才行.林师兄家の车库有车,奈何她俩没驾照只能望车兴叹.外边の车进不去,那司机仅到大门口便停下了.幸亏两人行李不多,各拉一个箱子而已.陆羽带着婷玉来到小区门口报出门号,其中一个门卫拿着门卡核对两人の胡集,一个在录指模和脸.林辰溪估计给门卫传了她们の胡集照 片,门卡一早制好就等刷脸录指模了.一切办妥之后,她们进去坐门卫の巡逻车抵达林师兄の度假屋前.看得陆羽目瞪口呆,亏他还说是一栋度假屋,她一直以为度假屋是国外那种精致木屋之类.原来是一栋别墅,奢华程度不必细说,建有铁栏围墙,院里林木浓密.小区里每栋别墅相距稍远,周围环境 清幽,空气怡人.门
数学八年级上册二次根式
数学八年级上册二次根式一、二次根式的定义二次根式是一种特殊的代数式,它是指一个数被开方数次后得到的根的表达式。
一般形式为a√b,其中a和b都是实数,且b≥0。
根号前面的数值a叫做二次根式的被开方数,根号内的数值b叫做二次根式的指数。
二、二次根式的性质1.非负性:对于任何一个非负实数,它的二次根式都是非负的。
2.根式的加减法:相加减,先化简,再合并同类二次根式。
3.乘除法:相乘除,先化简,再合并同类二次根式。
4.开方运算:任何一个非负实数的平方根都可以表示为某个数的二次根式。
三、二次根式的运算1.加减法:先化简,再合并同类二次根式。
2.乘除法:先化简,再相乘除。
3.开方运算:先化简,再开方。
四、二次根式的化简二次根式的化简就是将一个二次根式化简成一个最简二次根式。
化简的方法是根据二次根式的性质进行加减乘除等运算,使得被开方数和指数都变成最小的整数。
五、二次根式的应用二次根式在数学中有着广泛的应用,特别是在解决几何问题时。
例如,在解直角三角形时,我们常常需要使用二次根式来计算直角边的长度或者斜边的长度。
另外,在解决实际问题时,例如计算土地面积或者物体的体积时,也常常需要使用二次根式进行计算。
六、二次根式与勾股定理勾股定理是指在一个直角三角形中,斜边的平方等于两直角边的平方和。
这个定理可以用二次根式表示为c²=a²+b²,其中c是斜边长,a和b是直角边的长度。
因此,在解决与勾股定理有关的实际问题时,我们需要使用二次根式的相关知识。
七、二次根式的方程当方程的一边是一个二次根式而另一边是一个常数时,我们称这个方程为二次根式方程。
解这类方程的方法是将二次根式进行化简,使得方程变得更容易求解。
八、二次根式与不等式在解一元二次不等式时,我们需要使用二次根式的知识来求解。
一般步骤是先将不等式进行变形,使得不等号两边的式子都是非负的,然后再使用二次根式的性质进行求解。
九、二次根式的实际应用二次根式在实际生活中有着广泛的应用,例如在物理学中计算速度和加速度、在化学中计算化学反应速率、在工程学中计算材料的强度和刚度等等。
人教版数学八年级下册:二次根式(含答案)
二次根式》1.二次根式的概念(1) 一般地,我们把形如a(a≥0)的式子叫做二次根式.(2) 对于a(a≥0)的讨论应注意下面的问题:①二次根号“ ”的根指数是2,二次根号下的 a 叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0 时才叫二次根式.即a≥0 是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数 a 的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但 2 不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“” ;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为 a 为实数,而|a|≥0,a2≥0,a2+1> 0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为 a 是实数时,并不能保证a+10,a2- 1 是非负数,即a+10,a2-1 可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1 不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x 是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3 是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3 时,式子x-3在实数范围内有意义.2.二次根式的性质(1) a(a≥0)是一个非.负.数.a (a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________ .解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2) ( a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数 a 的算术平方根,因此通过算术平方根的定义,将非负数 a 的算术平方根平方,就等于它本身,即( a)2=a(a≥0).例② ( x -3)2(x ≥3)= ________ .解析: ①直接利用公式 ( a)2=a(a ≥ 0),可得 ( 32)2=23; ②因为 x ≥ 3,所以 x -3≥0, 所以由公式 ( a)2=a(a ≥0),可得 ( x -3)2= x -3(x ≥3).2 答案: ①32 ② x - 33a(a ≥ 0), 由算术平方根的定义,可得 a 2= |a|= -a(a<0). a 2=a(a ≥0)表示非负数 a 的平方的算术平方根等于 a. 【例 2-3】 计算:(1) (- 1.5)2;(2) (a -3)2(a < 3);(3) (2x3)2( x 32)(1) ( a)2=a 的前提条件是 a ≥0;而 a 2=|a|中的 a 为一切实数.(2) a(a ≥ 0), |a|,a 2 是三个重要的非负数,即 a(a ≥0)≥0,|a|≥0,a 2≥0,在解题时 应用较多.(3) a 2=( a)2 成立的条件是 a ≥ 0,否则不成立.(4) ( a)2= a(a ≥ 0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方 形式.(5) 在利用 a 2进行化简时,要先得出 |a|,再根据绝对值的性质进行化简,一定要弄清 被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围 由二次根式的意义可知, a 的取值范围是: a ≥0.即当 a ≥ 0 时, a 有意义,是二次根 式;当 a <0 时, a 无意义,不是二次根式.(1) 确定形如 a 的式子中的被开方数中的字母取值范围时,可根据式子 a 有意义或无 意义的条件,列出不等式,然后 解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.(3) a 2= |a|=a(a ≥ 0),- a(a<0).求解此类问题抓住一点,就是由二次根式的定义a(a ≥ 0)得被开方数必须是非负数,即把问题转化为解不等式.【例 3】 当字母取何值时,下列各式为二次根式.(1) a 2+ b 2; (2) - 3x ;分析: 必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时, 分母不能为 0,根据这些要求列不等式解答即可.解: (1)因为 a , b 为任意实数时,都有 a 2+b 2≥0,所以当 a ,b 为任意实数时, a 2+b 2是二次根式.(2)- 3x ≥ 0, x ≤ 0,即当 x ≤0 时, - 3x 是二次根式.1(3) ≥ 0,且 x ≠0,所以 x > 0. 2x4.二次根式非负性的应用(1)在实数范围内,我们知道式子 a(a ≥ 0)表示非负数 a 的算术平方根,它具有双重非 负性:① a ≥0;② a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于 这几个非负数都等于 0”可以解决一些算术平方根问题. 巧记要点: 二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式:① |a|≥ 0;②a 2≥0;③ a ≥0(a ≥0).【例 4- 1】已知 x ,y 都是实数,且满足 y = 5-x + x - 5+ 3,求 x +y 的值. 分析: 式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于 x 的 不等式组.当 x =5时, y = 5-5+ 5-5+3=3. ∴x +y =5+3= 8.两个算术平方根,当 被开方数互为相反数时,只有它们同时为零,这两个 式子才能都有意义.1【例 4- 2】已知 x ,y 为实数,且 y =2+ 8x -1+ 1- 8x ,则 x ∶ y = _______ 解析: 因为 y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负1 1 1解得 x =8,于是 y =2+ 0+0=2.故 x ∶y = 1∶4.(4) ≥ 0, 2-x故 x -2≥0 且 x - 2≠0,所以 x >2.0,则 解: 由题意知 5 - x ≥ 0,x ≤5, ∴ x = 5.x - 5≥ 0, x ≥5, 数.实际上,若 a 和 - a 都有意义,则 a =0.即依题意得8x -1≥0,1- 8x ≥0.(3)-3答案:1∶4,5.式子( a)2的意义和运用二次根式的一个性质是:( a)2=a(a≥0).因为2=( 2)2,35=( 53)2,所以上面的性质又可以写成:a=( a)2(a≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的 2 3表示2× 3,这与带分数221表示2+12是不一样的,因此,以后遇到32× 3应写成32 3,而不能写成121 3.【例5-1】计算:(1)(2 3)2;(2)( -2 21)2;(3)(-5×3)2.解:(1)(2 3)2=22×( 3)2=12.(2)(-2 21)2=(-2)2×( 12)2= 2.(3) (-5× 3)2=(-1)2× ( 5× 3)2=15.【例5-2】把多项式n5-6n3+9 n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n5-6n3+9n 提取公因式,得n(n4-6n2+9),再利用完全平方公式分解,得n(n2-3)2,要求在实数范围内分解,所以可以将3写成( 3)2,再运用平方差公式进行因式分解.解:n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+3)2(n-3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a|≥0,b≥0(b≥0),c2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a|+b=0? a=0,b=0;|a|+c2=0? a=0,c=0;b+c2=0? b=0,c=0;|a|+b+c2=0? a=0,b=0,c=0.【例6-1】若|a-b+1|与a+2b+4互为相反数,则(a+b)2 011= ____ .解析:|a-b+1|与a+2b+4互为相反数,∴ |a-b+1|+a+2b+4=0.而|a -b+1|≥0 , a +2b+ 4 ≥0 ,a-b+1=0,a=-2,a+2b+4=0. b=- 1.∴(a+b)2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a2+b-2=4a-4,求ab的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a-2)2+b-2=0,由二次根式的性质可知b-2≥0,由完全平方数的意义可知(a-2)2≥0,而它们的和为零,则a-2=0,b-2=0,从而可求出a,b 的值.解:由a2+b-2=4a-4,得a2-4a+4+b-2=0,即(a-2)2+b-2=0.∵(a-2)2≥0,b-2≥0 且(a-2)2+b-2=0,∴ a-2=0,b-2=0,解得a=2,b=2.∴ ab=2,即ab的值为 2.7.二次根式( a)2=a( a≥0)与a2=|a|的区别、运用( a)2=a(a≥0)与a2=|a|是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解( a)2与a2的意义学习了二次根式的定义以后,我们知道a≥0(a≥0),即a是一个非负数,a是非负数a的算术平方根,那么( a)2就是非负数 a 的算术平方根的平方,但只有当a≥0 时,a才能有意义.对于a2,则表示a2的算术平方根,由于a2中的被开方数是一个完全平方式,所以 a 无论取什么值,a2总是非负数,即a2总是有意义的.(2)( a)2与a2的区别和联系区别:①表示的意义不同.( a)2表示非负实数 a 的算术平方根的平方;a2表示实数a 的平方的算术平方根.②运算的顺序不同.( a)2是先求非负实数 a 的算术平方根,然后再进行平方运算;而a2则是先求实数 a 的平方,再求a2的算术平方根.③取值范围不同.在( a)2中,a只能取非负实数,即a≥0;而在a2中,a可以取一切实数.④写法不同.在( a)2中,幂指数 2 在根号的外面;而在a2中,幂指数 2 在根号的里面.a(a> 0),⑤结果不同.( a)2=a(a≥0),而a2=0(a=0),-a(a< 0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即( a)2≥0,a2≥0.③仅当a≥0 时,有( a)2=a2. 如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.【例7-1】已知x< 2,则化简x2-4x+4的结果是( ).A.x-2 B.x+2 C.-x- 2 D.2-x解析:x2-4x+4=(x-2)2=(2-x)2,因为x<2,2-x>0,所以x2-4x+4=2-x.答案:D【例7-2】化简1-6x+9x2-( 2x-1)2得( ).A .-5xB .2-5x C.x D.-x解析:错解正解由 2x -1,知 2x -1≥ 0,得 x ≥1,从而有原式= (1-3x )2- (2x -=(1-3x )-(2x - 1)=2-5x , 3x - 1≥ 0,所以原式= (1- 3x )2- (2x -1) = 故选 B. (3x -1)2-(2x -1)=(3x -1)-(2x -1)=x.故 选 C. 错因剖析:思路分析: 本题错在忽视了二次根式成本题主要应用二次根式的性质: 立的隐含条件.题目中a a 0 , (1) a 2= |a|= a a 0 ,2x - 1有意义, 说明隐含了 - a a <0 .1 条件 2x -1≥ 0,即 x ≥2,可(2)( a)2=a(a ≥0) . 知 3x -1≥ 0.正确应用二次根式的性质是解决本题的关键 . 答案: C【 例 7 - 3 】 若 m 满 足 关 系 式 3x +5y -2-m + 2x +3y -m = x - 199+y · 199- x -y ,试确定 m 的值. 分析: 挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应 用,是解决本题的关键.解: 由算术平方根的被开方数的非负性,得x - 199+ y ≥ 0, x + y ≥ 199,即 ∴x +y = 199.199-x - y ≥ 0, x + y ≤ 199.x - 199+ y · 199-x -y =0.+5y -2- m + 2x + 3y -m =0. 再由算术平方根的非负性及y =- 197. ∴m =2x +3y =2×396+3×(-197)=201.点拨: (1)运用二次根式的定义得出: x ≥a 且 x ≤a ,故有 x = a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.a ≥ 0,(2)由 b ≥ 0, 推出 a = b =0,这也是求一个方程中含有多个未知数的有效方法之a +b = 0 两个非负数的和为零,① 3x + 5y -2-m =0,得 2x + 3y -m =0. 由①-②,得 x +2y = 2.x + y =199 , 解方程组 得 x +2y = 2, x = 396,。
(八年级数学教案)二次根式的知识点总结
二次根式的知识点总结八年级数学教案【知识回顾】1.二次根式:式子( ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、(2009____(省、市、区、县))已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a移到根号内,得( )A. ;B. - ;C. - ;D.。
八年级上册二次根式计算题
八年级上册二次根式计算题一、基础计算类(1 10题)1. 公式解析:先分别计算根号下的数,公式,因为公式;公式,因为公式。
然后将结果相加,公式。
2. 公式解析:计算可得公式,公式。
则公式。
3. 公式解析:公式,因为公式;公式,因为公式。
所以公式。
4. 公式解析:公式,公式。
则公式。
5. 公式解析:因为被开方数相同的二次根式可以合并,这里被开方数都是2。
所以公式。
6. 公式解析:同理,被开方数都是3。
则公式。
7. 公式解析:先将二次根式化简,公式,公式。
然后相加,公式。
8. 公式解析:化简可得,公式,公式。
相减得公式。
9. 公式解析:把公式化简,公式。
则公式。
10. 公式解析:公式。
所以公式。
二、乘除运算类(11 15题)11. 公式解析:根据二次根式乘法法则公式。
则公式。
12. 公式解析:由乘法法则,公式。
13. 公式解析:根据二次根式除法法则公式。
所以公式。
14. 公式解析:按照除法法则,公式。
15. 公式解析:先算乘法,公式。
再算除法,公式。
三、混合运算类(16 20题)16. 公式解析:根据完全平方公式公式,这里公式,公式。
则公式。
17. 公式解析:根据平方差公式公式,这里公式,公式。
所以公式。
18. 公式解析:先算乘法,公式。
再算减法,公式。
则公式。
19. 公式解析:先算前面的乘积,根据平方差公式公式。
再算公式。
最后相加,公式。
20. 公式解析:给分子分母同时乘以公式进行分母有理化。
原式公式。
初二数学下册:二次根式知识点
初二数学下册:二次根式知识点1、二次根式定义形如式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。
①被开方数可以是数,也可以是单项式、多项式、分式等代数式;②判断时一定要注意不要化简,一定要有意义。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
①根号下无分母,分母中无根号;②被开方数中没有能开方的因数或因式。
知识点3二次根式的性质(1)非负性√a(a≥0)是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到.(2)(√a)^2=a(a≥0)注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或(3)非负代数式写成注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.知识点4最简二次根式和同类二次根式(1)最简二次根式:☆最简二次根式的定义:①被开方数是整数,因式是整式②被开方数中不含能开得尽方的数或因式,分母中不含根号☆同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5二次根式计算——分母有理化(1)分母有理化定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用来确定,如下,分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如下列式子,互为有理化因式(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6二次根式计算——二次根式的乘除(1)积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。
八年级下册第16章二次根式
-50-
14.计算: (1) 53× 152; = 35×152 =12
-51-
(2) 5× 15× 12; = 5×15×12 = 52× 32× 22 =5×3×2 =30
-52-
(3) a3b× ab; = a3b×ab =ab
-53-
1 (4)3
45×12
20.
=16× 32× 52× 22 =16×3×5×2 =5
-16-
19.阅读下面的文字,解答问题. 大家知道 2是无理数,而无理数是无限不循环小数,因此 2的小数部 分我们不可能全部地写出来,但是由于 1< 2<2,所以 2的整数部分为 1, 则 2减去其整数部分 1,差就是小数部分 2-1. 根据以上的内容,解答下面的问题: (1) 5的整数部分是__2_,小数部分是__5_-__2_; (2)1+ 2的整数部分是_2__,小数部分是__2_-__1_;
-26-
忽视题设条件而出错 9.化简: 4x2+12x+9+ 4x2-20x+25,其中-32≤x≤52. 解:∵-32≤x≤52,∴-3≤2x≤5, ∴原式= (2x+3)2+ (2x-5)2=2x+3+5-2x=8.
-27-
10.若点(a,b)在第三象限,则 (a+b)2-1 的值为( D )
A
B
C
D
6.当 x__>__12__时,式子 2x1-1有意义.
-6-
二次根式的非负性
同步考点手册 P1
7.已知 x,y 为实数,且 x-1+(y-2)2=0,则 x-y 的值为( D )
A.3
B.-3
C.1
D.-1
8.若|x+y+4|+ (x-2)2=0,则 3x+2y=_-__6__.
八年级二次根式 教师讲义带答案
第五章二次根式知识网络知识点一:二次根式的概念形如的式子叫做二次根式;注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式;知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可;2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义;知识点三:二次根式的非负性表示a的算术平方根,也就是说,是一个非负数,即0;注:因为二次根式表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数的算术平方根是非负数,即0,这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似;这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0;知识点四:二次根式的性质文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数;注:二次根式的性质公式是逆用平方根的定义得出的结论;上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值;注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简;知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数;但与都是非负数,即,;因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算1.二次根式的乘除运算1运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.2注意知道每一步运算的算理;3乘法公式的推广:2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算1对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;2二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.1加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43+=+=+通过约分达到化简目的;2多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:2a a +-互为有理化因式;一般地a a +--互为有理化因式;一般地+-式.专题总结及应用一、知识性专题专题1 二次根式的最值问题专题解读涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.例1 当x 取何值时,3的值最小最小值是多少分析 00,因为3是常数,3的最小值为3.0,33≥,∴当9x +1=0,即19x =-时,3有最小值,最小值为3.解题策略解决此类问题一定要熟练掌握二次根式的非负性,0a ≥0. 专题2 二次根式的化简及混合运算专题解读对于二次根式的化简问题,可根据定义,也可以利用||a =这一性质,但应用性质时,要根据具体情况对有关字母的取值范围进行讨论.例2 下列计算正确的是 分析 根据具体选项,应先进行化简,再计算. A 选项中,==B 选若可化为=,C 选项逆用平方差公式可求得2(=4-5=-1,而D 得22=.故选A.例3 计算2006200721)21)的结果是 分析 本题可逆用公式ab m=a m b m及平方差公式,将原式化为2006[(21)(21)]21)2 1.=故选D.例4 书知2228442142x x y x x x y y x x++=--+,求的值. 分析 本题主要利用二次根式的定义及非负性确定x 的值,但要注意所得x 的值应使分式有意义.解:由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠解题策略 本题中所求字母x 的取值必须使原代数式有意义. 例5 223541294-202522a a a a a -++-(≤≤).解题策略 本题应根据条件直接进行化简,2(0)||-(0).a a a a a a ⎧==⎨⎩≥,<例6 已知实数,a ,b ,c 在数轴上的位置如图21-8所示,化简222||()().a a c c a b -+-解:由a ,b ,c 在数轴上的位置可知:解题策略 利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.规律·方法 对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法”.例8 已知3,12,.a ba b ab ba b a+=-=求的值 图21-8分析 这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉,a ,b 的符号,但可从a +b =-3,ab =12中分析得到.解:∵a +b =-3,ab =12,∴a <0,b <0.解题策略 本题最容易出现的错误就是不考虑a ,b 的符号,把所求的式子化简,直接代入.专题3 利用二次根式比较大小、进行计算或化简例9 的运算结果应在 A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间分析 本题应计算出所给算式的结果,原式4==+,由于即2 2.5849+,所以<. 故选C.例10 已知m 是,n ,求m nm n-+的值. 解:∵9<13<16,即3 43,即m =3,3,即,∴m n m n -===+ 二、规律方法专题专题4 配方法专题解读 把被开方数配方,a |化简.例11 化简规律·方法一般地,对于a±型的根式,可采用观察法进行配方,即找出x,yx>y>0,使得xy=b,x+y=a,则2a±=,于是==,.例12 若a,b为实数,且b15,值.分析本题中根据b15可以求出a,b,对.解:由二次根式的性质得3503350..5305aa aa-⎧∴-=∴=⎨-⎩≥,≥,当3215.55a b====,时,原式解题策略对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a bab+或2()a bab-的形式,当它们作为被开方式进行化简时,要注意.a b a b ab+-和以及的符号专题5 换元法专题解读通过换元将根式的化简和计算问题转化为方程问题.例13计算解:令x两边同时平方得:∴x2=33专题6 代入法专题解读通过代入求代数式的值.例14 已知22==a b ab2400,5760,.专题7 约分法专题解读通过约去分子和分母的公因式将第二次根式化简.例15 化简例16 化简).≠x y三、思想方法专题专题8 类比思想专题解读类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或相似的性质.本章类比同类项的概念,得到同类二次根式的概念,即把二次根式化简成最简二次根式后,若被开方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式.例17 计算.解:1原式2原式=3+2.解题策略对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式.专题9 转化思想专题解读当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决.例18 函数y 24x -中,自变量x 的取值范围是 .分析 本题比较容易,主要考查函数自变量的取值范围的求法,24x -是二次根式,所以被开方数2x -4≥0,所以x ≥2.故填x ≥2.例19 如图21-9所示的是一个简单的数值运算程序,若输入x 3,则输出的数值为 .图21-9分析 本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为21x -,3-1=2.故填2.专题10 分类讨论思想专题解读 当遇到某些数学问题存在多种情况时,应进行分类讨论.本意在运用公式2||a a =进行化简时,若字母的取值范围不确定,应进行分类讨论.例20 若化简2|1|816x x x ---+25x -,则x 的取值范围是 A. x 为任意实数 B. 1≤x ≤4 C. x ≥1 D. x ≤4分析 由题意可知|1||4|25x x x ---=-,由此可知|1|1x x -=-,且|4|4x x -=-,由绝对值的意义可知10x -≥,且40x -≥,所以14x x ≤≤,即的取值范围是14x ≤≤.故选B.解题策略 2a |a |形式的式子的化简都应分类讨论.例21 如图21-10所示的是一块长、宽、高分别为7cm,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少分析 这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案.解:沿前、右两个面爬,=cm. 沿前、上两个面爬,=cm. 沿左、上两个面爬,=cm.所以它要爬行的最短路径长为规律·方法 沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展开图的对角线的长.二次根式单元测试题一判断题:每小题1分,共5分1.ab 2)2(-=-2ab .………………… 2.3-2的倒数是3+2. 3.2)1(-x =2)1(-x .… 4.ab 、31b a 3、bax 2-是同类二次根式.… 5.x 8,31,29x +都不是最简二次根式. 二填空题:每小题2分,共20分 6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2x -1=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:7-522000·-7-522001=______________. 14.若1+x +3-y =0,则x -12+y +32=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 三选择题:每小题3分,共15分16.已知233x x +=-x 3+x ,则………………A x ≤0B x ≤-3C x ≥-3D -3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………… A2x B2y C -2x D -2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………… A x2 B -x2 C -2x D2x19.化简aa 3-(a <0)得……………………………………………………………… A a - B -a C -a - D a20.当a <0,b <0时,-a +2ab -b 可变形为……………………………………… A 2)(b a + B -2)(b a - C 2)(b a -+- D 2)(b a ---四计算题:每小题6分,共24分 21.235+-235--;22.1145--7114--732+;23.a 2m n -m ab mn +m n n m ÷a 2b 2mn ; 24.a +ba abb +-÷b ab a ++a ab b --ab b a +a ≠b .五求值:每小题7分,共14分25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、 解答题:每小题8分,共16分 27.计算25+1211++321++431++…+100991+. 28. 若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值. 一判断题:每小题1分,共5分 1、提示2)2(-=|-2|=2.答案×. 2、提示231-=4323-+=-3+2.答案×.3、提示2)1(-x =|x -1|,2)1(-x =x -1x ≥1.两式相等,必须x ≥1.但等式左边x 可取任何数.答案×. 4、提示31b a 3、bax 2-化成最简二次根式后再判断.答案√.5、29x +是最简二次根式.答案×. 二填空题:每小题2分,共20分6、提示x 何时有意义x ≥0.分式何时有意义分母不等于零.答案x ≥0且x ≠9.7、答案-2a a .点评注意除法法则和积的算术平方根性质的运用.8、提示a -12-a ________=a 2-22)1(-a .a +12-a .答案a +12-a . 9、提示x 2-2x +1= 2,x -1.当1<x <4时,x -4,x -1是正数还是负数 x -4是负数,x -1是正数.答案3.10、提示把方程整理成ax =b 的形式后,a 、b 分别是多少12-,12+.答案x =3+22.11、提示22d c =|cd |=-cd .答案ab +cd .点评∵ ab =2)(ab ab >0,∴ ab -c 2d 2=cd ab +cd ab -.12、提示27=28,43=48.答案<.点评先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、提示-7-522001=-7-522000·_________-7-52.7-52·-7-52=1.答案-7-52.点评注意在化简过程中运用幂的运算法则和平方差公式. 14、答案40.点评1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、提示∵ 3<11<4,∴ _______<8-11<__________.4,5.由于8-11介于4与5之间,则其整数部分x =小数部分y =x =4,y =4-11答案5.点评求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. 三选择题:每小题3分,共15分 16、答案D .点评本题考查积的算术平方根性质成立的条件,A 、C 不正确是因为只考虑了其中一个算术平方根的意义.17、提示∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x . 222y xy x ++=2)(y x +=|x +y |=-x -y .答案C .点评本题考查二次根式的性质2a =|a |.18、提示x -x 12+4=x +x 12,x +x 12-4=x -x 12.又∵ 0<x <1, ∴ x +x 1>0,x -x1<0.答案D .点评本题考查完全平方公式和二次根式的性质.A 不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19、提示3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.答案C . 20、提示∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 答案C .点评本题考查逆向运用公式2)(a =aa ≥0和完全平方公式.注意A 、B 不正确是因为a <0,b <0时,a 、b 都没有意义. 四计算题:每小题6分,共24分21、提示将35-看成一个整体,先用平方差公式,再用完全平方公式. 解原式=35-2-2)2(=5-215+3-2=6-215. 22、提示先分别分母有理化,再合并同类二次根式. 解原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、提示先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 解原式=a 2m n -m ab mn +m n n m ·221b a n m=21b n m m n ⋅-mab 1n m mn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221ba =2221b a ab a +-.24、提示本题应先将两个括号内的分式分别通分,然后分解因式并约分. 解原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 点评本题如果先分母有理化,那么计算较烦琐. 五求值:每小题7分,共14分25、提示先将已知条件化简,再将分式化简最后将已知条件代入求值. 解∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴ x +y =10,x -y =46,xy =52-262=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 点评本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、提示注意:x 2+a 2=222)(a x +, ∴ x 2+a 2-x 22a x +=22a x +22a x +-x ,x 2-x 22a x +=-x 22a x +-x .解原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.点评本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1. 六、解答题:每小题8分,共16分27、提示先将每个部分分母有理化后,再计算.解原式=25+11212--+2323--+3434--+…+9910099100--=25+112-+23-+34-+…+99100- =25+11100- =925+1.点评本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、提示要使y 有意义,必须满足什么条件].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗].2141[⎪⎪⎩⎪⎪⎨⎧==y x 解要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵ xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx+|-|xy y x-|∵ x =41,y =21,∴y x <x y . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.点评解本题的关键是利用二次根式的意义求出x 的值,进而求出y的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1二次根式(1)【学习目标】:1. 知道二次根式的概念,掌握二次根式有意义的条件.2. 会运用二次根式的性质进行化简和计算.【体验学习】: 一、新知探究阅读教材第155、156、1571.什么是二次根式?根号下的数称作什么?2.公式()20,a a =≥为什么要求0a ≥?3.()0a a =≥中,若将括号内的条件改为0a <二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1.当取什么实数时,下列各式在实数范围内有意义.(1) (2) 2.计算:(1)(2)(3)253⎪⎭⎫⎝⎛(4三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题: 1.当取什么实数时,下列各式在实数范围内有意义. (1) (2)x2(3)x x 23-x x -+()2.10()232-x 12+x x 21-2.化简:(1)(2)3.若,求22y x +的值.【当堂检测】:1.当取什么实数时,下列各式在实数范围内有意义. (1 (2)2.计算:(1)()29-(2)(2-3.计算:(1 (21)x <【学后反思】:本节课你主要学习了哪些知识方法,还有哪些困惑?______________________________________________________________________________ ______________________________________________________________________________【课后精练】: 1.当x 在实数范围内有意义?2.计算:(1= ;(2)(2-= .3.12a =-,则a 应满足的条件是 .4.)a b <= .5.=,求y x b a 75-++的值.()23π-()2442<+-x x x 032532=--+--y x y x x5.1二次根式(2)【学习目标】:1.会推导并运用积的算术平方根的性质.2.知道什么是最简二次根式及如何将一个二次根式化成最简二次根式. 【体验学习】: 一、新知探究阅读教材第157、158、159页的内容,自主探究,回答下列问题:1.)0,0a b =≥≥中的条件0,0a b ≥≥可以省去吗?为什么? .2.二次根式要成为最简二次根式,必须满足的条件是什么?请举出一个最简二次根式.二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1.下列二次根式是最简二次根式的是( )A. 2.化简下列二次根式:(1 (2)419(3 (4)0,0x y >≥3.已知若52<<x三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题: 1.把根号外的因式移到根号内:(1)= (2)= 2. 化简:3x -【当堂检测】:1.化简下列二次根式:(1 (22.化简下列二次根式:(1)0x ≥ (20)x ≥3.计算:(1 (2【学后反思】:本节课你主要学习了哪些知识方法,还有哪些困惑?______________________________________________________________________________ ______________________________________________________________________________【课后精练】:1.化简下列二次根式:(1)2581(2 (30)x y >>2.设0,0a b ≥≥,化简下列二次根式:(1 (2)32b 8a b a 2916)3(3.请将二次根式xx 1-中根号外的x 移到根号内.5.2二次根式的乘法和除法(1)【学习目标】:1.会由积的算术平方根性质推导出二次根式的乘法公式.2.会运用二次根式的乘法公式解答相关问题.【体验学习】: 一、新知探究阅读教材第161、162页的内容,自主探究,思考:1.二次根式的乘法运算公式与积的算术平方根的性质,二者有怎样的关系?2.怎样进行含有系数的二次根式的乘法运算?3.)0,0a b =≥≥中,为什么规定0,0a b ≥≥?二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1.判断下列计算是否正确,错的请更正.(1) (2)676)7(2-=⨯-(3) = (4) 2===2.计算:(1)153⨯ (2)10223⨯(3)ab a 32⋅;()0,0≥≥b a (4)ba ab 33⋅()0,0>>b a三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题:1.)0n <.2.定义一种新运算:a b *=36*的值.3.等腰梯形ABCD 的底角为 60,上底CD 长为3cm ,下底AB 长为5cm ,求:①等腰梯形DE 的高;②等腰梯形的面积.【当堂检测】: 1.计算:(1) (2)⎛ ⎝ 2.计算:(1)0x ≥ (2))0,0x y >≥3.,求此直角三角形的斜边长.【学后反思】:本节课你主要学习了哪些知识方法,还有哪些困惑?______________________________________________________________________________ ______________________________________________________________________________【课后精练】: 1.计算:(1) (2⎛ ⎝ 2.计算:(10)a > (2()0,0a b ⎛>≥ ⎝3.已知矩形的长为,宽为,求矩形的面积.5.2二次根式的乘法和除法(2)【学习目标】:1.会推导并记住商的算术平方根的性质和二次根式的除法法则.2.会灵活运用二次根式的乘法法则和除法法则解决有关问题.【体验学习】: 一、新知探究阅读教材第162、163、164页的内容,自主探究,回答下列问题: 1.商的算术平方根具有怎样的性质?用式子表示.2.二次根式的除法法则是什么?用式子表示.3.怎样将二次根式分母中的根号去掉?二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1.下列运算是否正确?若不正确,请改正.(1=(2=(3= (42===2.计算:(1(2))0,0a b >>3.计算:(1 (2三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题:1. 等腰梯形ABCD 的面积为2103cm ,高为cm 5,一条腰长为cm 3,求等腰梯形的上、下底的长.6.已知3a b +=-,2ab =【当堂检测】: 1.计算:(1(2)(3 2.计算:(1)0x > (2)0a >3. 如图,在Rt △ABC 中,=∠ACB 90°,△ABC 的面积为182cm ,BC 的长为cm 3, CD ⊥AB 与点D ,求AC 和CD 的长.【拓展链接】:分母有理化分母有理化又称"有理化分母".通过适当的运算,把分母变为有理数的过程. 分母有理化的两种基本类型:(1) 分母由一项组成时:==; (2) 分母由多项组成时:2233-====-. 【课后精练】:1.计算:(1 (2) 1528032.计算:(1)0,0x y ≥>(2)0,0a b >≥3.先化简,再求值,其中4,3==b a . (1)23abb a (2)5520aab5.3二次根式的加法和减法(1)【学习目标】:1.知道二次根式加、减法的基本法则.2.会运用二次根式加、减法的基本法则进行运算.【体验学习】: 一、新知探究阅读教材第167页的内容,自主探究,回答问题:1.通过阅读教材“做一做”和“动脑筋”部分,你能归纳总结出二次根式加减法的基本步骤吗?2.二次根式的加减运算与我们之前学过的什么运算类似?二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1. 下列运算是否正确?若不正确,请说明理由.(1== (2==(3 (43===(5)2= (6=2.计算:(1)545357-+ (2)27233-(3) (4)20412512457+-三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题: 1.计算:(1(2)22.已知a b -=b c -222a b c ab bc ac ++---的值.【当堂检测】:1.计算: (1) 4832743112+- (2)811987121472+--2.计算: (1)x x x x 211862⋅-⋅ (2)xx x x 45350182+-3. ,求此三角形的周长.【学后反思】:本节课你主要学习了哪些知识方法,还有哪些困惑?______________________________________________________________________________ ______________________________________________________________________________ 【课后精练】:1.如果最简二次根式83-a 与a 217-的被开方数相同,那么62-a 的值是 .2.计算:(1 (23.计算:(1)0,0x y ≥≥ (2)2132-⎛⎫- ⎪⎝⎭4. ,求它的另一边的长.5.3二次根式的加法和减法(2)【学习目标】:1.类比实数的混合运算顺序归纳出二次根式的混合运算顺序.2.会进行二次根式的混合运算,灵活解决二次根式的综合问题.【体验学习】: 一、新知探究阅读教材第169、170、171页的内容,自主探究,思考:1.二次根式的混合运算类似于实数的混合运算,其运算顺序是怎样的?2.阅读例3、例4,二次根式的乘法运算类似于多项式的乘法运算,那么在例4中分别运用 了什么乘法公式?二、基础演练根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果:1.选择:(1)已知a =2b =,则a 与b 的关系是( ) A.a b = B.0a b += C.1a b= D.1ab =(2( )A. B.3 C.32.计算:(1)24)8322(⨯+ (2))323)(232(--(3)1)(4)|21|)21(18)14.3(10---++--π3.计算:(1) )623)(623(--- (2) )223)(223(---+(3) 22)23()23(--+ (4) 20122013三、综合提升先尝试独立解决,再与小组成员合作交流,解决下列问题:1.已知52+-=a , 52--=b .(1)求a b ab ++的值.(2)求22a b - 的值. (3)求a b的值.2.先化简,再求值:2222223a b a b a a ab a ⎛⎫-+÷-+ ⎪-⎝⎭,其中a =b =【当堂检测】: 1.计算:(1)(2(2)(2.求这个直角三角形的周长与面积.【学后反思】:本节课你主要学习了哪些知识方法,还有哪些困惑?______________________________________________________________________________ ______________________________________________________________________________【拓展链接】:试在表格中填上恰当的数(不能重复)使得表中每一行、每一列、每一条对角线上3个数字的乘积都等于1,你还能找到一个数,使得表中每一行、每一列、每一条对角线上3个数字的乘积都等于这个数吗?【课后精练】: 1.计算:(1) (22.若三角形的面积是121,求该边所对应的高长是多少?3.解方程:())311x x +=-.。