金属的其它塑性成形工艺

合集下载

金属塑性成形

金属塑性成形

02
金属塑性成形的原理
金属塑性变形的物理基础
01
金属塑性变形的基本概念
金属塑性成形是通过外力作用使金属材料发生塑性变形,从而获得所需
形状和性能的过程。
02
金属的晶体结构与塑性变形
金属的晶体结构是影响其塑性变形行为的重要因素。金属的晶体结构决
定了其塑性变形的机制和特点。
03
温度对金属塑性变形的影响
塑性成形过程中的缺陷与控制
在塑性成形过程中,由于各种因素的影响,可能会出现裂纹、折叠、夹杂等缺陷。为了获得高质量的产 品,需要了解这些缺陷的形成原因,并采取相应的措施进行控制和预防。
03
金属塑性成形的方法
自由锻成形
总结词
自由锻成形是一种金属塑性加工方法,通过锤击或压力机等 工具对金属坯料施加外力,使其发生塑性变形,从而获得所 需形状和尺寸的金属制品。
随着科技的发展,精密金属塑性成形技术逐渐兴起,如精密锻造、精密轧制、精密冲压等 ,这些技术能够制造出更高精度、更复杂形状的金属零件。
数值模拟与智能化技术
近年来,数值模拟与智能化技术在金属塑性成形领域得到了广泛应用,通过计算机模拟技 术可以对金属塑性成形过程进行模拟分析,优化工艺参数,提高产品质量和生产效率。同 时,智能化技术的应用使得金属塑性成形过程更加自动化和智能化。
详细描述
挤压成形适用于生产各种复杂形状的管材、棒材和异型材等。由于其能够实现连续生产,因此具有较 高的生产效率。但挤压成形对设备和操作技术要求较高,且对原材料的表面质量、尺寸精度和化学成 分等要求严格。
拉拔成形
总结词
拉拔成形是一种金属塑性加工方法,通 过拉拔机对金属坯料施加拉力,使其发 生塑性变形,从而获得所需形状和尺寸 的金属制品。

金属材料的成型工艺

金属材料的成型工艺

金属材料的成型工艺金属材料的成型工艺是指通过物理或化学方法将金属材料加工成所需形状的工艺过程。

成型工艺广泛应用于各个领域,如汽车、航空、船舶、建筑、制造业等。

它可以改变金属材料的形状、尺寸、性能和组织结构,使其适应不同的使用需求。

锻造是将金属材料加热至一定温度后,施加力并改变形状的工艺。

锻造可分为自由锻造、模锻和精锻。

自由锻造是直接对金属进行锻造,适用于简单形状的零部件。

模锻是使用模具对金属进行锤击或压制,适用于复杂形状和高精度要求的零部件。

精锻是在高温下对金属进行精密锻造,适用于高精度要求的零部件。

冲压是通过金属板材的拉伸、弯曲、切割和成形等工艺来制作零部件。

冲压工艺具有高效、节约材料、适用于大批量生产等优点,广泛应用于汽车制造、家电制造等领域。

铸造是通过将金属材料熔化后倒入模具中,使其凝固成型的工艺。

铸造可分为压力铸造和重力铸造。

压力铸造包括压铸、低压铸造和真空压力铸造。

压铸是将熔融金属注入压铸机模腔中,通过高压填充,并快速凝固成型。

低压铸造是将熔融金属通过压力填充式注射系统注入模具中,然后通过压力使其充满整个模腔,并凝固成型。

真空压力铸造是在真空环境中进行压铸,以提高铸件的质量和密度。

重力铸造是靠铸造机中的重力将熔融金属倒入模具中,凝固成型。

焊接是通过加热材料至熔化状态,通过外界压力和/或其他形式的能量传递,使金属材料连接起来的工艺。

常用的焊接方法包括电弧焊、气体保护焊、激光焊接等。

焊接工艺广泛应用于电子、汽车、船舶、航空航天等领域。

拉伸成型是将金属材料通过拉伸、挤压或者弯曲等方法成型的工艺。

拉伸成型可以提高材料的强度、硬度和耐磨性。

常见的拉伸成型工艺包括拉伸成型、锻造成型和爆炸成型等。

热成型是通过加热金属材料至塑性状态,然后在模具中进行变形的工艺。

热成型可以提高材料的塑性,使其更容易成形,并改变金属材料的结构和性能。

常用的热成型方法包括热压成型、热挤压、热拉伸等。

挤压成型是通过将金属材料放置在模具中,然后施加压力,使其通过模孔挤压成型的工艺。

金属材料的成型工艺

金属材料的成型工艺

金属材料的成型工艺引言金属材料的成型工艺是指通过加热、加压和变形等手段,将金属材料由初始形状转变为目标形状的工艺过程。

金属材料的成型工艺在制造业中占据着重要地位,广泛应用于汽车制造、航空航天、电子设备等领域。

本文将介绍金属材料的成型工艺的几种常见方法。

压力成形压力成形是金属材料成型工艺中最常见的一种方法。

它通过施加压力将金属材料强制塑造成所需形状。

主要的压力成形工艺包括锻造、冲压和挤压。

锻造锻造是一种将金属材料加热到一定温度后,在冷镦机或锻压机上施加压力进行塑性变形的工艺。

锻造通常分为冷锻和热锻两种方式。

与其他成型工艺相比,锻造具有精度高、力学性能好等优点。

冲压冲压是利用冲床将板材或带材冲压成所需形状的工艺。

冲压通常包括剪切、冲孔、成形等步骤。

冲压工艺具有高效率、高精度和批量生产能力等优点。

挤压挤压是将金属材料塑性变形成为具有一定截面形状的长条材料的工艺。

它可以通过挤压机将金属材料挤压出所需形状。

挤压工艺具有高生产效率和高材料利用率等优点。

热成形热成形是指在金属材料加热至高温状态下进行塑性变形的工艺。

热成形通常包括热锻、热轧和挤压等方法。

热锻热锻是一种在金属材料达到高温时施加压力进行塑性变形的工艺。

热锻通常在1200℃以上的高温下进行,可以获得更好的塑性变形性能和力学性能。

热轧热轧是将金属材料加热到较高温度后通过轧机进行连续轧制的工艺。

热轧可以改变材料的厚度、宽度或长度,并使材料达到所需的机械性能。

热挤压热挤压是一种在金属材料达到高温时将其压入模具中进行塑性变形的工艺。

热挤压通常适用于薄壁、大截面和复杂形状的金属制品的生产。

冷成形冷成形是指在室温下进行金属材料塑性变形的工艺。

冷成形通常包括冷轧、冷挤压和冷拉伸等方法。

冷轧冷轧是将金属材料在室温下通过轧机进行塑性变形的工艺。

冷轧通常用于薄板材料的生产,可以提高材料的表面质量和机械性能。

冷挤压冷挤压是一种在室温下将金属材料通过模具进行塑性变形的工艺。

金属材料八大成形工艺

金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。

金属塑性成形

金属塑性成形

第四章金属塑性成形在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。

常用的金属塑性成形方法如下:自由锻造:手工自由锻、机器自由锻锻造成形模型锻造:锤上模锻、压力机上模锻金属塑性成形冲压成形、挤压成形、拉拔成形、轧锻成形金属材料经过塑性成形后,其内部组织更加致密、均匀,承受载荷能力及耐冲击能力有所提高。

因此凡承受重载荷及冲击载荷的重要零件,如机床主轴、传动轴、齿轮、曲轴、连杆、起重机吊钩等多以锻件为毛坯。

用于塑性成形的金属必须具有良好的塑性,以便加工时易于产生永久性变形而不断裂。

钢、铜、铝等金属材料具有良好的塑性,可进行锻压加工;铸铁的塑性很差,在外力作用下易裂碎,不用于锻压。

在金属塑性成形方法中,锻造、冲压两种成形方法合称锻压,主要用于生产各种机器零件的毛坯或成品。

挤压、拉拔、轧锻三种成形方法是以生产金属材料为主,如型材、管材、线材、板料等,也用于制造某些零件,如轧锻齿轮、挤压活塞销等。

第一节锻造锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。

基本生产工艺过程如下:下料→坯料加热→锻造成形→冷却→热处理→清理→检验。

一、锻坯的加热和锻件的冷却1.加热的目的锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。

一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。

但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。

2.锻造温度范围各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。

加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。

碳钢的始锻温度一般应低于其熔点100~200︒C,合金钢的始锻温度较碳钢低。

金属塑性成形方法

金属塑性成形方法
(1)分类 1)手工锻造,生产小型锻件。 2)机器锻造,生产大、中、小型锻件。
(2)特点 1)金属坯料在水平方向可自由流动; 2)可使用多种锻压设备; 3)锻件力学性能好; 4)节约金属,减少切削加工工时; 5)锻件形状简单,精度低; 6)生产率较低,劳动强度较大。
主要用于形状简单的单件小批生产, 特别适于重型、大型锻件生产。

模膛 种类
锤锻模具由带有燕尾的上模、 下模组成。下模固定在模座上, 上模固定在锤头上,并随锤头作 上下往复锤击运动使锻坯在模膛 中成形。
镦粗
制坯模膛(体积分配)
拔长 滚挤★
弯曲 …
模锻模膛(锻件成形) 预锻→初步成形
终锻→最终成形
切断模膛(锻件与坯料切离)
设飞边槽★ 放收缩率
金属塑性成形方法
实际锻造时应根据锻件的复杂程度相应 选用单模膛锻模或多模膛锻模。 一般形状简单的锻件 采用仅有终锻模膛的单模膛锻模, 而形状复杂的锻件(如截面不均匀、轴线弯 曲、不对称等)则需采用具有制坯、预锻、 终锻等多个模膛的锻模逐步成形。
金属塑性成形方法
2.模锻
即利用模具使毛坯变形获得锻件的方法。常用 的模锻设备有蒸汽-空气模锻锤、压力机等。
(1)模锻分类: 1)锤上模锻:在锻锤上进行; 2)胎模锻:在自由锻设备上使用可移动模具; 3)压力机上模锻:
在压力机上对热态金属进行模锻。
(2)模锻特点
1)坯料整体塑性变形,三向受压; 2)锻件尺寸精确,加工余量小; 3)锻件形状可较复杂; 4)生产率较高; 5)锻模造价高,制造周期长;
金属塑性成形方法
(4)自由锻的基本工序 分类 : 1)辅助工序: 为方便基本工序的操作而预先进行局部小变形 的工序。 如倒棱、压肩等。 2)精整工序: 修整锻件最终形状和尺寸、消除表面不平和歪 斜的工序。如修整鼓形、校平、校直等。 3)基本工序: 锻造过程中直接改变坯料形状和尺寸的工序。 如镦粗、拔长、冲孔、扩孔、弯曲、锻接等。

精确高效塑性成形工艺技术

精确高效塑性成形工艺技术

精确高效塑性成形工艺技术精确高效塑性成形工艺技术塑性成形是一种常见的金属加工工艺,它通过施加外力使金属材料发生塑性变形,从而得到所需的形状和尺寸。

精确高效的塑性成形工艺技术对于提高产品质量和生产效率至关重要。

在本文中,将介绍一种精确高效的塑性成形工艺技术。

首先,为了实现精确的成形,我们需要准确地控制金属的塑性变形过程。

因此,精确度高的机械设备和控制系统是必不可少的。

现代塑性成形机床通常配备了精确的数控系统,可以通过编程实现高精度的成形过程。

此外,精确的模具设计和制造也是实现塑性成形精度的重要因素。

采用先进的CAD/CAM技术可以实现模具的精确设计和加工,从而确保成形过程的精确度。

其次,为了提高塑性成形的效率,我们需要考虑材料的流动性和塑性变形的能力。

在材料设计方面,我们可以选择具有良好流动性和塑性变形能力的材料,如Al、Cu等。

此外,采用热成形可以增加材料的塑性变形能力,并有助于减少成形过程中的残余应力。

在成形过程中,合理的成形速度和温度控制也是确保成形效率的重要因素。

通过优化成形工艺参数,可以在保证产品质量的前提下提高生产效率。

最后,为了提高工艺的可靠性和稳定性,我们需要对塑性成形过程进行全面的监控和控制。

现代塑性成形机床通常配备了各种传感器和监测系统,可以实时监测成形过程的各种参数,如温度、压力、位移等。

通过采集和分析这些数据,可以及时发现和解决成形过程中的问题,并调整相关的工艺参数,提高工艺的可靠性和稳定性。

综上所述,精确高效的塑性成形工艺技术对于提高产品质量和生产效率至关重要。

通过采用精确的机械设备和控制系统、优化材料设计和成形工艺参数、以及全面监控和控制成形过程,可以实现精确高效的塑性成形,从而满足不同行业对于高精度、高效率的需求。

金属塑性成形原理pdf

金属塑性成形原理pdf

金属塑性成形原理pdf
金属塑性成形(MPM)是一种成型工艺,它包括冷弯折形、冷拉伸、热弯形、热拉伸、冲压和挤压等,它能够将金属材料塑性变形,从而制造成各种形状和尺寸的部件或零件。

虽然它与铸造有许多相似之处,但具有明显的不同,它更多的是在金属材料弯折或拉伸的基础上进行裁剪和成型。

金属塑性成形的主要原理是材料的塑性变形,当金属或其它金属材料受力时,它会发生塑性变形,例如在冷弯折形时,金属材料会受到压力而不会断裂。

冷拉伸的原理与冷弯折形的原理基本相同,只是它使用的是拉伸力而非压力。

热弯形和热拉伸原理与冷弯折形和冷拉伸的原理大致相同,只是需要加热材料来使其塑性变形。

冲压和挤压是两种机器成型工艺,它们通过对金属材料施加压力而产生细小的型腔,从而制造出不同形状的部件或零件。

金属塑性成形的另一个重要原理是金属温度、应力和应变。

温度变化会影响材料的变形性能,应力和应变是金属材料变形的两个重要参数,它们可以帮助确定材料的力学性能,从而选择合适的成形工艺来完成成型任务。

最后,成形过程中还需要考虑工具的
使用,例如冲床、挤压机、回转机等,这些工具可以应用到金属塑性成形中,使金属材料发挥更好的塑性变形性能。

总之,金属塑性成形技术的主要原理是材料的塑性变形,应力、应变和温度等因素的影响,以及工具的使用。

这些原理可以用来帮助确定正确的成型工艺和工具,从而产生精确度相当高的金属零件。

金属塑性成形的概念

金属塑性成形的概念

金属塑性成形的概念金属塑性成形是指通过在金属材料中施加外力、应用热力或化学反应等手段,使金属材料发生塑性变形的一种金属加工工艺。

与传统的金属加工方式相比,金属塑性成形具有高效性、精确性和经济性的特点。

它广泛应用于汽车、航空航天、冶金等行业。

金属塑性成形的基本原理是利用金属材料的塑性变形特性,通过施加外力使金属材料由原有的形态发生塑性变形,从而得到所需的形状和尺寸。

金属塑性成形可以分为几种不同的形式,主要包括锤击成形、挤压成形、拉伸成形、压力成形和转轧成形等。

锤击成形是一种传统的金属塑性成形方法,它通常通过将金属材料置于锻造设备中,然后利用锤击力量使金属材料发生塑性变形。

锤击成形具有成本低、生产周期短的优点,但是需要大量的人力和物力投入。

挤压成形是指将金属材料置于挤压机中,通过挤压头施加压力使金属材料发生塑性变形。

挤压成形可以分为直接挤压和间接挤压两种形式。

直接挤压是指将金属材料直接放入挤压腔内,然后施加压力使金属材料发生压缩变形。

间接挤压是指将金属材料包裹在特殊形状的模具中,然后施加压力使金属材料逐渐挤出模具,从而达到所需的形状和尺寸。

拉伸成形是通过在金属材料表面施加拉力,使其发生塑性变形。

拉伸成形通常用于制备薄壁结构,如汽车车身、空调管道等。

拉伸成形由于受到法向拉力和剪切力的作用,易造成材料表面的应力集中和变形不均匀,因此在拉伸成形过程中需要注意控制应力分布和变形。

压力成形是一种利用液压或气压对金属材料施加压力的金属塑性成形方法。

压力成形通常具有成形精度高、产品质量好的优点,并且可以实现批量生产。

压力成形主要包括冲压成形、压铸成形和锻压成形等。

转轧成形是一种将金属材料置于转轧机中进行塑性变形的金属加工方法。

转轧成形通常用于制备薄板材料,如钢板、铝板等。

转轧成形具有高效、节省原材料和简便的优点,且可以保证成形件的尺寸精度和表面质量。

总之,金属塑性成形是一种广泛应用于金属加工领域的重要技术,通过施加力量和热力等手段,对金属材料进行塑性变形,从而得到所需的形状和尺寸。

第六章 金属塑性成形的工艺理论基础

第六章 金属塑性成形的工艺理论基础
图6-5 拉拔
8
4. 自由锻
自由锻指将金属坯料放在锻造设备的上下砥铁之间,施 加冲击力或压力,使之产生自由变形而获得所需形状的成形方 法。
坯料在锻造过程中,除与上下砥铁 或其它辅助工具接触的部分表面外, 都是自由表面,变形不受限制,锻件 的形状和尺寸靠锻工的技术来保证, 所用设备与工具通用性强。
自由锻主要用于:
1、冷变形
变形温度低于再结晶温度时,金属在变形过程中只有加工硬 化而无回复与再结晶现象,变形后的金属只具有加工硬化组 织,这种变形称为冷变形。
特点:产品表面品质好、尺寸精度高、力学性能好,一般不
需再切削加工。
生产中常用它来提高产品的性能。
21
2、热变形
变形温度高于再结晶温度时,变形产生的加工硬化被随即发 生的再结晶所抵消,变形后金属具有细而均匀的再结晶等轴 晶粒组织,而无任何加工硬化痕迹,这种变形称为热变形。
再结晶时的温度称为再结晶温度T再 = (0.35~0.4)T熔(K)
再结晶退火:为了消除加工生产中加工硬化给金属继续进行塑性 变形带来的困难,生产中以再结晶以上的温度加热已加工硬化的 金属,使其发生再结晶而再次获得良好的塑性的操作工艺。
二、金属塑性变形的类型
金属在不同温度下变形对其组织和性能的影响不同,因 此金属的塑性变形分为冷变形和热变形两种。
具有纤维组织的金属, 各个方向上的机械性 能不相同。
平行于纤维方向的机械性能比垂直于纤维方向的好。
金属的变形程度越大,纤维组织就越明显,机械性能 的方向性也就越显著。
纤维组织的化学稳定性强,其分布状况一般不能通 过热处理消除,只能通过不同方向上的锻压成形才 能改变;
为充分利用纤维组织的方向性,应遵循的原则是:

塑性成形原理知识点

塑性成形原理知识点

塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。

塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。

1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。

塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。

塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。

2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。

在塑性成形过程中,材料会发生塑性变形,使其产生应变。

应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。

3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。

材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。

材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。

4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。

常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。

不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。

5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。

工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。

在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。

塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。

因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。

金属成形方法大全

金属成形方法大全

金属成形方法大全金属成形是一种制造工艺,通过对金属材料进行加工和变形以获得所需形状和尺寸。

金属成形方法有很多种,下面将详细介绍几种常见的金属成形方法。

1.锻造:锻造是将金属材料加热至一定温度后,利用锤击或压力使之在模具内进行塑性变形的金属成形方法。

锻造可分为手锻和机械锻造两种。

手锻是在锻锤或锻压机上进行的锻造过程,适用于小批量、复杂形状和大型件。

机械锻造则使用锻压设备,适用于大批量生产。

2.挤压:挤压是将金属材料通过模具的流道进入挤压腔,受到持续压力下挤压而获得所需形状和尺寸的金属成形方法。

挤压可分为冷挤压和热挤压两种。

冷挤压适用于高强度、高耐蚀性和高热导率的金属材料,热挤压适用于高塑性材料。

3.拉伸:拉伸是将金属材料置于拉伸设备中,在一定温度和应力下使之获得所需形状和尺寸的金属成形方法。

拉伸适用于金属板材或线材的成形,可以制作出各种形状的金属零部件。

4.深冲:深冲是将金属材料置于冲压设备中,在一定应力和压力下通过冲压模具进行多次变形,获得所需形状和尺寸的金属成形方法。

深冲适用于连续成形和大批量生产,可以制作出薄壁零件。

5.折弯:折弯是将金属材料通过折弯设备使其产生变形和弯曲的金属成形方法。

折弯适用于金属板材的成形,可以制作出各种折弯形状的零部件。

6.铸造:铸造是将熔化的金属通过铸造设备倒入模具中,经冷却凝固得到所需形状和尺寸的金属成形方法。

铸造适用于生产大型、复杂形状和不易加工的金属件。

7.焊接:焊接是将金属材料进行加热至熔点,并通过填充材料或熔化金属材料相互连接的金属成形方法。

焊接可以将多个金属部件连接成一个整体,广泛应用于制造和建筑行业。

8.金属粉末冶金:金属粉末冶金是利用金属粉末经过成型、烧结和后处理等工艺制造金属件的金属成形方法。

金属粉末冶金可以制造出复杂形状和高精度的金属零部件。

总结起来,金属成形方法包括锻造、挤压、拉伸、深冲、折弯、铸造、焊接和金属粉末冶金等。

每种方法都有其独特的特点和适用范围,根据具体的需求选择相应的成形方法可以提高生产效率和产品质量。

江苏大学材料成型-塑性成形工艺基础

江苏大学材料成型-塑性成形工艺基础

3)弯曲工艺特点
①弯曲半径 r≥rmin=(0.25-1)t ;
② 毛刺应位于内侧; ③ 弯曲线应尽量与坯料 纤维方向垂直; ④ “回弹”问题 如:设计补偿角等
3. 翻边、成形 1)翻边 在带孔的平坯料上 用扩孔的方法获得 凸缘的工序。 2)成形 包括:起伏、胀形、
压印等
三、冲模的分类及结构
一、冲压设备
1. 剪床: 下料设备
1)斜刃剪
2)平刃剪
3)圆盘剪 2. 冲床: 冲压设备 1)开式冲床 2)闭式冲床
二、冲压基本工序及变形特点
(一)分离工序 使坯料的一部分相对另一部分产生分离的工序。 (冲孔、落料、修正、剪切、切边等) 1. 冲裁(落料、冲孔) 使坯料沿封闭轮廓分离的工序。 1)冲裁的变形过程 ①弹性变形阶段 ②塑性变形阶段 ③断裂、分离阶段
45: 1200℃~800℃
三、金属的变形规律
1. 体积不变定律 2. 最小阻力定律
第二章
一、自由锻设备
锻锤 空气锤 水压机 油压机
锻造成形工艺
自由锻造
65~750Kg
§2-1
蒸汽—空气锤 630Kg~5T
压力机
锻锤吨位 = 落下部分总重量 = 活塞+锤头+锤杆 压力机吨位 = 滑块运动到下始点时所产生的最大压力
1. 锻件图的绘制 1)机械加工余量 2)公差 (1/3~1/4)余量 3)敷料 2. 坯料重量和尺寸的计算 G坯 = (1+k)G锻
K — 消耗系数
G坯 = G锻+G料头+G芯料+G烧
3 . 锻造工序的选择 轴、杆类零件:镦粗、拔长 筒类零件:镦粗、冲孔、在芯轴上拔长 盘类、环类零件:镦粗(拔长及镦粗)、 冲孔(芯轴上扩孔)

二篇金属的塑性成形工艺

二篇金属的塑性成形工艺
利用此定律,调整某个方向流动阻力,改变金属在某些方向的流动量→成形合理。
<图6-10)最小阻力定律示意图
在镦粗中,此定律也称——最小周边法则
二、塑性变形前后体积不变的假设
弹性变形——考虑体积变化
塑性变形——假设体积不变<由于金属材料连续,且致密,体积变化很微小,可忽略)
此假设+最小阻力定律——成形时金属流动模型
落料——被分离的部分为成品,而周边是废料
冲孔——被分离的部分为废料,而周边是成品
如:平面垫圈:制取外形——落料
制取内孔——冲孔
1.冲裁变形过程
冲裁件质量、冲裁模结构与冲裁时板料变形过程关系密切,
其过程分三个阶段
<1)弹性变形阶段<图8-1)
冲头接触板料后,继续向下运动的初始阶段,使板料产生弹性压缩、拉伸与弯曲等变形,板料中应力迅速增大。此时,凸模下的材料略有弯曲,凹模上的材料则向上翘,间隙↑→弯曲、上翘↑SixE2yXPq5
§6-1塑性变形理论及假设
一、最小阻力定律
金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂<定量很困难)。应用最小阻力定律——定性分析<质点流动方向)p1EanqFDPw
最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。DXDiTa9E3d
[注]按变形的模膛数:单膛锻模<如齿轮坯)
多膛锻模<图7-7)
§7-3锤上模锻成形工艺设计
模锻生产的工艺规程包括:制订锻件图、计算坯料尺寸、确定模锻工步<选模膛)、选择设备及安排修整工序等。
最主要是锻件图的制定和模锻工步的确定
一、模锻锻件图的制定

第5章-其他精密塑性成形技术

第5章-其他精密塑性成形技术
钛合金、铝合金、镁合金等零件的精密成形。
§5.5 超塑性模锻
5.5.1超塑性
超塑性是指材料在一定的内部条件和外部条件下,呈现
出异常低的流变抗力、异常高的流变性能的现象。超塑性通
常分为三类,即微细晶粒超塑性、相变超塑性、和其他超塑 性。后两者由于实现技术较复杂,应用受到限制,通常所讲 的超塑性多指前者。 微细晶粒超塑性应具有三个条件:材料具有等轴稳定
§5.1 多向模锻
实例:三通管接头成形过程中金属的流动变形情况
如图5.2所示,第一阶段金属 的流动特点主要是反挤、镦粗和 径向挤压成形。棒料在封闭模腔 中,由冲头Ⅰ和冲头Ⅱ首先加压, 在反挤成孔的同时,棒料被镦粗, 直至与模壁接触。随着冲头Ⅰ、 Ⅱ的继续流动,坯料金属开始向凹模的旁通型腔流动,形成单纯的径向挤压。 当挤入旁通的金属与冲头Ⅲ接触时,冲头Ⅲ对其进行反挤压和镦粗,直至金 属充满模膛。 第二阶段金属的流动主要是形成飞边。经过第一阶段后,坯料已极少再 有变形,只有当模压力极大的情况下冲头附近金属才会有少量的流动变形, 金属的流向与冲头的1)平面精压
平面精压由于摩擦力的影响,引起不均匀的应力分布,如图5.13
所示是精压件和精压平板均产生不均匀的弹性变形,造成精压后平面 中部有凸起现象。因此为提高精压质量,需采取下列工艺措施。 采用热精压,适当进行润滑,以降低精压时 工件的平均压力分布。
尽量减少精压面积,如有中间孔的精压面,
§5.2 径向锻造
图5.7所示为部分典型径向锻造件。
5.2.4两种典型应用
(1)实心台阶轴
CA6140卧式车床主轴(图5.8),可采用墩头和径向锻
造杆部联合工艺锻制成型。毛坯为Φ115x730mm的45钢。
§5.2 径向锻造
首先在1t自由锻锤上镦出直径为Φ205mm的头部,然后夹持头部

金属材料的塑性加工与成形方法

金属材料的塑性加工与成形方法

金属材料的塑性加工与成形方法金属材料的塑性加工是指通过外力作用,改变金属材料的形状和尺寸,从而获得所需的零件和产品。

在工业生产中,金属材料的塑性加工具有重要的地位和作用。

本文将针对金属材料的塑性加工与成形方法展开讨论。

一、金属材料的塑性加工方法1. 锻造锻造是将金属材料加热到一定温度,然后施加压力使其在模具中产生塑性变形的加工方法。

锻造可以分为自由锻造和模锻造两种,可用于加工各种金属材料,广泛应用于航空航天、汽车制造等行业。

2. 拉伸拉伸是利用拉伸力使金属材料产生塑性变形,并最终延伸其长度的一种加工方法。

拉伸适用于薄板、线材等材料的加工,常用于金属制品的生产中。

3. 压缩压缩是将金属材料置于模具中,通过施加压力使其在垂直方向上发生塑性变形的一种加工方法。

压缩可用于加工各种形状的金属材料,特别适用于生产大型零件和产品。

4. 轧制轧制是将金属材料置于辊子之间进行连续压制,使其发生塑性变形的加工方法。

轧制广泛应用于金属片材、线材等薄型材料的加工,可实现尺寸精度高、表面光洁度好的要求。

5. 剪切剪切是将金属材料置于剪切机中,通过施加剪切力使其在剪切刃上发生塑性变形而分离的一种加工方法。

剪切广泛应用于金属板材、线材等材料的加工,可实现快速高效的生产。

二、金属材料的成形方法1. 冷冲压冷冲压是利用冲压设备将金属板材置于模具中,通过施加压力使其在常温下进行塑性变形和分离的成形方法。

冷冲压广泛应用于制造汽车零部件、家电产品等。

2. 热冲压热冲压是通过将金属材料加热到一定温度后进行塑性变形和分离的成形方法。

热冲压一般适用于高硬度、高强度的金属材料的加工,可获得较高精度和表面质量。

3. 旋压旋压是将金属材料置于旋压机床上,通过旋转和压制力使其在模具中进行塑性变形的成形方法。

旋压适用于加工圆柱形、锥形等形状的零件和产品。

4. 拉伸成形拉伸成形是将金属材料置于模具中,通过拉伸力使其在径向和轴向上同时发生塑性变形的成形方法。

02-5金属塑形成形

02-5金属塑形成形

应用科学学院
1—顶杆 2—毛坯 3—滚轮 4—模具 5—加工中的毛坯
四、旋压
• 旋压的工艺特点: • (1)局部连续成形,变形区很小,所需要的成形力小。旋压是一种既 省力,效果又明显的压力加工方法,可以用功率和吨位都非常小的旋 压机加工大型的工件。 • (2)工具简单、费用低,而且旋压设备的调整、控制简便灵活,具有 很大的柔性,非常适合于多品种小批量生产。 • (3)对冲压难以成形的复杂零件,如头部很尖的火箭弹药锥形罩、薄 壁收口容器,带内螺旋线的猎枪管等。 • (4)旋压件尺寸精度高,甚至可与切削加工相媲美。 • (5)旋压零件表面粗糙度容易保证。此外,经旋压成形的零件,抗疲 劳强度高,屈服点、抗拉强度、硬度都大幅度提高。 • 不足:只适用于轴对称的回转体零件;对于大量生产的零件,它不 如冲压方法高效、经济;材料经旋压后塑性指标下降,并存在残余应 力。
常进行软化、去氧化皮和特殊润滑处理。
应用科学学院
(二)挤压工艺分类
缝纫机梭心套壳(材料2Cr13)冷挤压
应用科学学院
(二)挤压工艺分类
温挤压 坯料温度高于室温,低于再结晶温度的挤压。特点:
① 坯料可不进行预先软化处理、润滑处理和中间退火等。
② 与冷挤压相比,降低了变形抗力,增加每个工序的变形程度,提高了模具的使用 寿命。
② 由于加热温度高,氧化脱碳及热胀冷缩等问题会大大降低产品的尺寸精度
和表面品质。
③ 一般用于高强(硬)度金属材料的毛坯成形,如:高碳钢、高强度结构钢、
高速钢、耐热钢等。
应用科学学院
(二)挤压工艺分类
冷挤压 变形温度低于材料再结晶温度(室温),特点:
① 三向压应力使材料的晶粒组织更加致密、充分提高金属塑性,使挤压件强度、硬

第六章金属塑性成形工艺理论基础

第六章金属塑性成形工艺理论基础
2)金属板料经冷变形强化,获得一定的几何形 状后,结构轻巧,强度和刚度较高。
3)冲压件尺寸精度高,质量稳定,互换性好, 一般不需机械加工即可作零件使用。 4)冲压生产操作简单,生产率高,便于实现机 械化和自动化。
5)可以冲压形状复杂的零件,废料少。
6)冲压模具结构复杂,精度要求高,制造费用 高,只适用于大批量生产。
坯料在锻造过程中,除与上下抵铁或其它辅 助工具接触的部分表面外,都是自由表面,变形 不受限制,锻件的形状和尺寸靠锻工的技术来保 证,所用设备与工具通用性强。
自由锻主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1) 自由锻设备
空气锤 它由电动机直接驱动,打击速度快,锤击能量小,适
用于小型锻件;65~750Kg
挤压成形是使坯料在外力作用下,使模具内的金属坯 料产生定向塑性变形,并通过模具上的孔型,而获得 具有一定形状和尺寸的零件的加工方法。
图6-3 挤压
挤压的优点:
1)可提高成形零件的尺寸精度,并减小表面粗糙 度。 2)具有较高的生产率,并可提高材料的利用率。 3)提高零件的力学性能。 4)挤压可生产形状复杂的管材、型材及零件。
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3)自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与 杆部的纤维被切断,不能连贯起来,受力时产生的切应力 顺着纤维方向,故螺钉的承载能力较弱(如图示 )。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 金属的其它塑性成形工艺
随着科学技术的不断发展,对压力加工提出了越来越高的要 求:不仅要生产出各种毛坯,而且还要直接生产出各种形状复杂 的零件;不仅能用易变形的材料进行加工,而且还要用难变形的 材料进行生产。因此,近年来在压力加工中出现了许多新工艺、 新技术。这些新工艺的特点是:
1. 尽量使锻件的形状接近于零件的形状,达到少无切屑加工 的目的,节省原材料和切削加工工作量,同时得到合理的 纤维组织,提高零件的力学性能和使用性能。 2. 减少变形率,可以在较小的锻压设备上制造出大锻件。 3. 具有更高的生产率。 4. 广泛采用电加热和少氧化、无氧化加热,提高锻件表面品 质,改善劳动条件。
⑤材料利用率可达70%,生产率比其他 锻造方法提高几倍。 ⑥可加工难于用其它塑性成形方法加工 的脆性材料,加工仅在几秒内完成,因 此对于变形温度范围窄的材料尤为有利。 ⑦变形抗力大,挤压设备需要吨位大, 模具易磨损。故为了降低抗力型材和管 材等常采用热挤压成形。
二、零件挤压的类型
1. 按照挤压时金属流动方向和凸模运动方向的关系,可分为:
第一节 零件的挤压成形
挤压是将金属坯料放在挤压筒内,用强大的压力作用于模具, 迫使坯料产生定向塑性变形并从模具中挤出,从而获得所需零件或 半成品的成形加工方法。
一、零件挤压的特点
挤压有如下特点: ① 挤压时金属坯料在三向受压状态 下变形,因此它可提高金属坯料的塑性。 ②塑性好、变形程度大,可以一次挤 压出各种形状复杂、深孔、薄壁、异型截面的零件。 ③ 零件精度高,表面粗糙度低。一般尺寸精度IT6~IT7,表面 粗糙度Ra可达3.2~0.4m。 ④ 挤压变形后零件内部的纤维组织是连续的,基本沿零件外形 分布而不被切断,从而提高了零件的力学性能。
图9-8 齿轮热轧
3) 斜轧(螺旋斜轧)
轧辊轴线与坯料轴线在空间交叉成一定角度的轧制方 法。如周期轧制如图9-9(a),钢球轧制,如图9-9(b)、 丝杠冷轧等。
(a)周期轧制
图2.47 斜轧
(b)钢球轧制
螺旋斜轧采用的轧辊带有螺旋型槽,相交成一定角度,并作 同方向旋转,坯料在轧辊间既绕自身轴线转动,有向前进,与此 同时受压变形获得所需产品。螺旋斜轧可以直接热轧出带螺旋线 的高速滚刀体、、自行车后闸壳以及冷轧丝杠等。 螺旋斜轧钢球是使棒料在轧辊间螺旋型槽里受到轧制并分离 成但个球,轧辊每转一周即可轧制出一个钢球。轧制过程是连续 的。
②三辘式模横轧机 ( 见图 9-14)。该机的特点是轧件在三轧辘间 旋转,不需导板,避免了导 板刮伤轧件;三轧辘互成 120°角, 从三个方向压缩轧件。与两辗式模横轧机相比,其应力状态得到了 改善,轧件质量好,轧制过程稳定;三辘轧制加大了极限模展角, 使轧辘直径减小。但三辘轧制工艺调整显然比两辘轧制复杂;轧件 的最小直径必须大于轧辘直径的 1/6,否则轧辘不 能接触轧件。
(a) 送料
图9-6 辊锻
(b)辊锻
它既可以作为模锻前的制坯工序,也可直接辊锻锻件。目前,成形辊 锻适用于如扳手、活动扳手等扁截面的长杆件、汽轮机叶片及连杆类零 件的生产。
辗环轧制是用来扩大环形坯料的外径和内径,从而获得各种无接缝环 状零件的轧制成形工艺,如图9-7(a)。图中辗压轮由电动机带动旋转, 利用摩擦力使坯料在辗压轮和芯辊之间受压变形。辗压轮还可由油缸推动 做上下移动,改变它与芯辊之间的距离,使坯料厚度减小、直径增大。导 向辊用以保障坯料正确运送,信号辊用来控制环坯直径。如在环坯端面安 装端面辊,则可进行径向-轴向辗环成形,如图9-7(b)。
图9-15 运动轨迹为圆的摆头结构
• 二、摆动碾压得类型
1. 按成形温度分为:冷摆碾成形(温度低于T再)、温摆碾成形(温 度等于T再)、热摆碾成形(温度高于T再)。 2. 按摆碾运动形式分:I型摆碾、II型摆碾和III型摆碾。如图9-16。 通过控制内外两层偏心套的偏心距传动摆头(锥体模),摆头的运 动轨迹可以为圆、直线、螺旋线、菊花线和多叶玫瑰线等五种,以适应 复杂零件的需要。
3.应用 1) 型材和管材的挤压(一次塑性成形)。多采用热挤压。 2) 各种零件的挤压(二次塑性成形)。多采用冷挤压。
第二节 零件的轧制成形
1.原理及生产过程 轧制是使金属坯料在回转轧辊的空 隙中,靠摩擦力的作用得以连续进入轧辊 而变形的一种加工方法。
2.方法
1) 纵轧: 它是轧辊轴线与坯料轴线在空间互相垂直的轧制方法。
(a)径向辗环
(b)径向-轴向辗环
图9-7 碾环轧制
2) 横轧
它是轧辊轴线与坯料轴线互相平行的轧制方法。横轧时工 件作旋转运动,在轧辊作用下产生连续变形。 齿轮轧制是一种少无切削加工齿轮的新工艺。直齿轮和斜 齿轮均可用热轧制造,如图所示。
在轧制前将毛坯外缘加热,然后将带齿形的轧轮 作径向进给,迫使轧轮与毛坯对辗。在对辗过程中, 坯料上一部分金属受压形成齿谷,相邻部分的金属被 轧轮齿部“反挤”而上升,形成齿顶。
④ 静液挤压: 凸模与坯料不直接接触,而是给液体施加压力 (达340MPa)。再经液体传给坯料,使金属通过凹模而成形。 由于在坯料侧面无通常挤压时的摩擦,所以变形较均匀,可提 高一次挤压的变形量。挤压力也较其它挤压工艺小10%~50%。 静液挤压可用于低塑性材料,如铍、钽、铬、钼、钨等金属 及其合金的成形,对常用材料可采用大变形量一次挤成线材和型 材。如圆柱斜齿轮和麻花钻等形状复杂的零件。
3.特点及应用
1) 特点 ① 生产率高。(轧辊生产率为锤上模锻的5~10倍) ② 质量好。(连续变形、变形均匀) ③ 节约金属材料。(比锤上模锻损耗降低6~10个百分点) ④ 劳动条件好,易于实现“两化”。 ⑤ 设备结构简单,对厂房地基条件要求低。 2) 应用 ① 型材轧制(一次塑性成形)
② 零件的轧制(二次塑性成形)
一、冷镦
冷镦是用线材在自动冷镦机上加工冷锻件的成形工
艺。
冷镦主要用来成形以轴为对称或近似轴对称的、形状 比较简单的实心及空心零件,是大量生产销钉、螺钉、螺 栓、及螺母等标准件的主要成形工艺。
冷镦有多种类型:
冷镦属于冷变形,锻件的强度及硬度高,表面品质好,生 产率高。但冷镦时坯料的每次变形量不能太大,变形的工步较 多,而且只适于锻造性好的坯料。
① 正挤压 金属的流动方向与凸模运动方向相同。 适用于制造横截面是圆形、椭圆形、扇形、矩形等的零件,也 可是等截面的不对称零件。 ② 反挤压 金属的流动方向与凸模运动方向相反。适用于制造 横截面为原形、方形、长方形、多层圆形、多格盒形的空心件。
图9-1 正挤压
图9-2 反挤压
③ 复合挤压 挤压过程中,一部分金属的流动流动方向与凸 模运动方向相同,而另一部分金属的流动方向与凸模运动 方向相反。适用于制造截面为圆形、方形、六角形、齿形、 花瓣形的双杯类、杯-杆类零件。 ④ 径向挤压 金属的流动方向与凸模运动方向成90角。 适用于可制造十字轴类零件,也可制造花键轴的齿形 部分、齿轮的齿形部分等。
第三节 摆动碾压
一、摆动碾压得原理
摆动碾压又称摆碾,是利用一个绕中心轴摆动的圆锥形模具对坯 料局部加压使其高度减小、直径增大的成形方法。图9-15为摆动碾压 的工作原理示意图。锥形凸模的轴线与机器主轴线相交成θ角,称为摆 角(θ通常取1º )。当主轴旋转时, ~3º 凸模绕主轴产生摆动,对坯料进行局部 碾压,使坯料整个截面逐步产生塑性变 形。 摆动碾压可以用较小的设备碾压出 较大的锻件;产品质量高、节约材料, 可实现净成形、净终成形加工;易于实 现自动化。 主用要于生产具有回转体的薄盘类 锻件及带法兰的半轴类锻件,如齿轮坯、 铣刀坯、汽车后半轴等。
两轧辊轴线平行,旋转方向相反,坯料作垂直于轧辊轴线方向的运 动。纵轧工件不旋转,仅作直线运动,在轧辊的作用下产生连续 性的拔长变形和一些增宽变形。 纵轧包括各种型材和板材的轧制,辊锻轧制,辗环轧制等方法。 辊锻轧制是把轧制工艺应用到锻造生产中的一种新工艺。辊锻 是使坯料通过装有扇形模块的一对相对旋转的轧辊时受亚尔变形的 成形工艺。
4)楔横轧
①楔横轧原理 利用轧件轴线与轧辊轴线平行,轧辊的辊面上镶有楔型凸棱, 并作通向旋转的平行轧辊对沿轧辊轴向送进的坯料进行轧制的成 形工艺成为楔横轧,如图所示。该工艺适用于成形高径比不小于 1的回转体轧件。
图9-10 两辊式楔横轧
图9-11 楔形凸块展开图
在楔横轧中,坯料的变形过程主要是靠两个楔型凸棱压缩坯料,使 坯料的径向尺寸减小、轴向尺寸增大。 楔横轧机适合轧制各种实心、空心台阶轴,如汽车、摩托车、电动 机上的各种台阶轴,凸轮轴等。
图9-16 摆辗的三种类型
• 三、摆动碾压的特点及应用
• 1. 坯料接触面积小,故所需成形压力小,设备吨位仅为一般冷锻设 备吨位的5%~10%。 • 2. 碾压属于冷变形,变形速度慢,且逐步进行,因此摆碾表面光滑, 表面粗糙度Ra=0.4~1.6m,尺寸精度高,误差为0.025mm。 • 3. 能碾压成形高经比很小,一般锻造方法不能成形的薄圆盘件(厚 度仅为0.2mm)。 • 4. 设备占地面积小,周期短,投资少,易于实现机械化、自动化。 • 目前,冷摆碾除用来制造铆钉外,还用来冷镦挤成形各种复杂的轴对 称件,如:伞齿轮、齿环、推力轴承圈、端面凸轮、轴套、千斤顶、 棘轮等。 • 热摆碾多用来成形尺寸较大及精度要求高的零件,如汽车半轴、法兰、 摩擦盘、火车轮、锣、拨、蝶形弹簧及铣刀片等。
一、精密模锻工艺过程:
先将原始坯料普通模锻成中间坯料→ 再对中间坯料进行严格的清理,除去氧化 皮或缺陷→最后采碳钢在 450 ℃ ~ 900℃。故精锻也称为温锻。
图9-20 精密模锻的大致工艺过程
第四节 冷镦与电镦
冷镦与电镦均属于镦锻成形工艺,一般是对棒料的 端部进行局部镦粗。 冷镦和冷挤压一起同属于冷锻范围。冷镦时金属流动 方向与凸模的运动方向垂直,冷镦的工件断面积比毛坯的 断面积有所增大。 镦挤复合时金属流动方向除了同镦粗相同外,还有一 部分金属沿凸模运动的方向一致或相反方向流动。镦挤复 合方法可以制作多台阶的带孔或不带孔的扁平类零件及多 台阶的轴类零件。
相关文档
最新文档