2011年数学建模B题交巡警服务平台的设置与调度Lingo编程实现最短距离

合集下载

交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题

交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题

交巡警服务平台的设置与调度摘要本文是在一个原有区域交警平台的基础上,分析讨论在该市警务资源有限的情况下,如何实现城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源的实际问题。

实现最优化管理的方案。

以图论最优路径理论为基础,建立图的最优化模型。

针对问题(1),将A区路口和道路抽象成图,分别以交巡警服务平台对应的点为起点求小于等于3min的路径,再将同一起点的路径的终点相连,围成一个区域,便是交巡警服务平台的管辖范围。

在此基础上综合考虑各个路口发案率的大小、区域人口密集程度,从而建立一个图中路径最优化模型。

再根据各个区域之间的所产生的空白区,即交巡警的管辖盲区。

为其添加交巡警服务平台。

实现其管理最优化的目的。

针对问题(2),结合交巡警服务平台的设置原则,充分考虑全市各区不同的状况,如:人口密度、区域面积等,并以A区的分区标准为基础,实现对全市各区的交巡警服务平台的设置。

对于P点的逃犯,建立一个以P点为中心的最优逃跑路径所组成的图,然后在算出罪犯的最佳逃跑路线,再调度相应的交巡警,实现对他的围堵。

从而实现交巡警服务平台设置和调度的最优化的方案。

关键词:图论;最优化路径; 交巡警服务平台;MATLAB;数据结构1、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

2011全国数学建模B题 交巡警服务平台的设置与调度

2011全国数学建模B题 交巡警服务平台的设置与调度

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。

(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。

如果有明显不合理,请给出解决方案。

如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。

为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。

附件1:A区和全市六区交通网络与平台设置的示意图。

附件2:全市六区交通网络与平台设置的相关数据表(共5个工作表)。

交巡警的服务平台的设置与调度摘要正在整理……一、问题重述……二、问题分析……三、模型的假设^四、符号说明^五、模型的建立与求解问题一:(1)各交巡警服务平台的管辖范围,尽量在分钟内到达事发地,实质上是求最短路径问题。

2011全国数学建模B题论文

2011全国数学建模B题论文

城市交通巡警平台的设置与调度摘要由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

本文要解决的就是某市设置交巡警服务平台设置方案,以及如何处理在确保突发事件问题。

对于第一问,根据附件中的各点的坐标和图中所给的各标志点之间的相邻关系,我们求得任意两个相邻标志点的直线距离,根据附件中的全市交通路口的路线做出了邻接矩阵,再用Floyd算法求得任意两点间的最短距离。

在此基础上,为了确定需要增加平台的具体个数和位置,采用主成分分析法。

应用迪杰斯特拉(Dijkstra)算法进行搜索得到了该区交巡警服务平台警力合理的调度方案。

对于第二问,给出了设置交巡警服务平台的可量化的原则和任务,对现有方案进行评价然后进行优化;案发地点在A区,题目没有给出逃犯的车速,这里要处理好,怎样叫实现了围堵也是需要考虑的问题。

关键字:邻接矩阵、距离矩阵、整数线性规划、主成分分析、surfer作图一.问题的重述警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源。

就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。

2011年数学建模B题

2011年数学建模B题

2011年全国大学生数学建模B题交巡警服务平台的设置与调度题目警车配置及巡逻问题的研究摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

由警车的数目m,将全区划分成m个均匀的分区,从每个分区的中心点出发,找到最近的道路节点,作为警车的初始位置,由Floyd算法算出每辆警车3分钟或2分钟行驶路程范围内的节点。

考虑区域调整的概率大小和方向不同会影响调整结果,本文利用模拟退火算法构造出迁移几率函数,用迁移方向函数决定分区的调整方向。

计算能满足D1的最小车辆数,即为该区应该配置的最小警车数目,用MATLAB计算,得到局部最优解为13辆。

在选取巡逻显著性指标时,本文考虑了两个方面的指标:一是全面性,即所有警车走过的街道节点数占总街道节点数的比例,用两者之比来评价;二是均匀性,即所有警车经过每个节点数的次数偏离平均经过次数的程度,用方差值来大小评价。

问题三:为简化问题,假设所有警车在同一时刻,大致向同一方向巡逻,运动状态分为四种:向左,向右,向上,向下,记录每个时刻,警车经过的节点和能够赶去处理事故的点,最后汇总计算得相应的评价指标。

在考虑巡逻规律隐蔽性要求时,文本将巡逻路线进行随机处理,方向是不确定的,采用算法2进行计算,得出相应巡逻显著指标,当车辆数减少到10辆或巡逻速度变大时,用算法2计算巡逻方案和对应的参数,结果见附录所示。

本文最后还考虑到4个额外因素,给出每个影响因素的解决方案。

关键词:模拟退火算法;Floyd算法;离散化一问题的重述110警车在街道上巡逻,既能够对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时也加快了接处警时间,提高了反应时效,为社会和谐提供了有力的保障。

2011年数学建模B题模型交巡警服务平台距离优化求出

2011年数学建模B题模型交巡警服务平台距离优化求出

第1巡警服务平台3分钟能到的路口:42 43 44 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80第2巡警服务平台3分钟能到的路口:40 42 43 44 66 67 68 69 70 71 72 7374 75 76 78第3巡警服务平台3分钟能到的路口:43 44 54 55 64 65 66 67 68 70 76第4巡警服务平台3分钟能到的路口:57 58 60 62 63 64 65 66第5巡警服务平台3分钟能到的路口:47 48 49 50 51 52 53 56 58 59第6巡警服务平台3分钟能到的路口:47 48 50 51 52 56 58 59第7巡警服务平台3分钟能到的路口:30 31 32 33 34 47 48第8巡警服务平台3分钟能到的路口:31 32 33 34 35 36 37 45 46 47第9巡警服务平台3分钟能到的路口:31 32 33 34 35 36 37 45 46第10巡警服务平台3分钟能到的路口:第11巡警服务平台3分钟能到的路口:25 26 27第12巡警服务平台3分钟能到的路口:25第13巡警服务平台3分钟能到的路口:21 22 23 24第14巡警服务平台3分钟能到的路口:第15巡警服务平台3分钟能到的路口:31第16巡警服务平台3分钟能到的路口:33 34 35 36 37 45 46第17巡警服务平台3分钟能到的路口:40 41 42 43 70 72第18巡警服务平台3分钟能到的路口:71 72 73 74 77 78 79 80 81 82 83 8485 87 88 89 90 91第19巡警服务平台3分钟能到的路口:64 65 66 67 68 69 70 71 73 74 75 7677 78 79 80 81 82 83第20巡警服务平台3分钟能到的路口:81 82 83 84 85 86 87 88 89 90 91第21路口按最近原则归属巡警服务平台号为13 路程为 2.708314第22路口按最近原则归属巡警服务平台号为13 路程为0.905539第23路口按最近原则归属巡警服务平台号为13 路程为0.500000第24路口按最近原则归属巡警服务平台号为13 路程为 2.385372第25路口按最近原则归属巡警服务平台号为12 路程为 1.788854第26路口按最近原则归属巡警服务平台号为11 路程为0.900000第27路口按最近原则归属巡警服务平台号为11 路程为 1.643303第28路口按最近原则归属巡警服务平台号为15 路程为 4.751842第29路口按最近原则归属巡警服务平台号为15 路程为 5.700525第30路口按最近原则归属巡警服务平台号为7 路程为0.583095第31路口按最近原则归属巡警服务平台号为9 路程为2.055716第32路口按最近原则归属巡警服务平台号为7 路程为1.140175第33路口按最近原则归属巡警服务平台号为8 路程为0.827647第34路口按最近原则归属巡警服务平台号为9 路程为0.502494第35路口按最近原则归属巡警服务平台号为9 路程为0.424264第36路口按最近原则归属巡警服务平台号为16 路程为0.608276第37路口按最近原则归属巡警服务平台号为16 路程为 1.118178第38路口按最近原则归属巡警服务平台号为16 路程为 3.405877第39路口按最近原则归属巡警服务平台号为2 路程为3.682186第40路口按最近原则归属巡警服务平台号为2 路程为1.914419第42路口按最近原则归属巡警服务平台号为17 路程为0.984886 第43路口按最近原则归属巡警服务平台号为2 路程为0.800000 第44路口按最近原则归属巡警服务平台号为2 路程为0.948683 第45路口按最近原则归属巡警服务平台号为9 路程为1.095084 第46路口按最近原则归属巡警服务平台号为8 路程为0.930054 第47路口按最近原则归属巡警服务平台号为7 路程为1.280625 第48路口按最近原则归属巡警服务平台号为7 路程为1.290202 第49路口按最近原则归属巡警服务平台号为5 路程为0.500000 第50路口按最近原则归属巡警服务平台号为5 路程为0.848528 第51路口按最近原则归属巡警服务平台号为5 路程为1.229317 第52路口按最近原则归属巡警服务平台号为5 路程为1.659433 第53路口按最近原则归属巡警服务平台号为5 路程为1.170820 第54路口按最近原则归属巡警服务平台号为3 路程为2.270886 第55路口按最近原则归属巡警服务平台号为3 路程为1.265899 第56路口按最近原则归属巡警服务平台号为5 路程为2.083697 第57路口按最近原则归属巡警服务平台号为4 路程为1.868154 第58路口按最近原则归属巡警服务平台号为5 路程为2.301889 第59路口按最近原则归属巡警服务平台号为5 路程为1.520864 第60路口按最近原则归属巡警服务平台号为4 路程为1.739244 第61路口按最近原则归属巡警服务平台号为7 路程为4.190202 第62路口按最近原则归属巡警服务平台号为4 路程为0.350000 第63路口按最近原则归属巡警服务平台号为4 路程为1.030776 第64路口按最近原则归属巡警服务平台号为4 路程为1.936315 第65路口按最近原则归属巡警服务平台号为3 路程为1.523975 第66路口按最近原则归属巡警服务平台号为3 路程为1.840203 第67路口按最近原则归属巡警服务平台号为1 路程为1.619417 第68路口按最近原则归属巡警服务平台号为1 路程为1.207107 第69路口按最近原则归属巡警服务平台号为1 路程为0.500000 第70路口按最近原则归属巡警服务平台号为2 路程为0.860233 第71路口按最近原则归属巡警服务平台号为1 路程为1.140312 第72路口按最近原则归属巡警服务平台号为2 路程为1.606226 第73路口按最近原则归属巡警服务平台号为1 路程为1.029611 第74路口按最近原则归属巡警服务平台号为1 路程为0.626498 第75路口按最近原则归属巡警服务平台号为1 路程为0.930054 第76路口按最近原则归属巡警服务平台号为1 路程为1.283607 第77路口按最近原则归属巡警服务平台号为19 路程为0.984886 第78路口按最近原则归属巡警服务平台号为1 路程为0.640312 第79路口按最近原则归属巡警服务平台号为19 路程为0.447214 第80路口按最近原则归属巡警服务平台号为18 路程为0.806226 第81路口按最近原则归属巡警服务平台号为18 路程为0.670820 第82路口按最近原则归属巡警服务平台号为18 路程为 1.079349 第83路口按最近原则归属巡警服务平台号为18 路程为0.538516 第84路口按最近原则归属巡警服务平台号为20 路程为 1.175225第86路口按最近原则归属巡警服务平台号为20 路程为0.360555 第87路口按最近原则归属巡警服务平台号为20 路程为 1.465091 第88路口按最近原则归属巡警服务平台号为20 路程为 1.294632 第89路口按最近原则归属巡警服务平台号为20 路程为0.948683 第90路口按最近原则归属巡警服务平台号为20 路程为 1.302237 第91路口按最近原则归属巡警服务平台号为20 路程为 1.598770 第92路口按最近原则归属巡警服务平台号为20 路程为 3.601269e =29.0000 15.0000 5.700528.0000 7.0000 8.570238.0000 16.0000 3.405930.0000 8.0000 3.060821.0000 13.0000 2.708323.0000 11.0000 4.675122.0000 14.0000 5.067714.0000 9.0000 8.274216.0000 3.0000 6.025624.0000 12.0000 3.591612.0000 10.0000 7.586648.0000 5.0000 2.475862.0000 4.0000 0.3500。

交巡警服务平台的设置与调度 (4)

交巡警服务平台的设置与调度 (4)

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2011年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要本文就某市交巡警服务平台的设置与调度建立了最短路覆盖模型、基于0-1动态规划的快速调配封锁模型、基于GMCLP(generialized maximal covering location problem)的平台选址优化与评价模型以及基于拓扑-贪婪算法的子网扩张等模型,利用Matlab与Lingo等数学工具确定了模型的最优解,同时给出了交巡警服务平台的设置与调度的最佳方案。

对于问题一,本文首先利用A区交通网络图中各点和边的信息得到图的邻接矩阵,并利用Floyd算法计算出每两点之间的最短路径。

然后遍历图中每个节点,分别将节点划分为离它最近的交巡警服务平台所管辖,这样就得到了各个交巡警服务平台的管辖范围。

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。

并在下面给出了封锁计划。

为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。

然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。

根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。

除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。

关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。

二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。

2、假设警察出警的地点都是平台处。

3、假设警察接到通知后同时出警,且不考虑路面交通状况。

三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。

交巡警服务平台的设置与调度B题

交巡警服务平台的设置与调度B题

全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西北大学参赛队员(打印并签名):1.张舒岱2.刘羽3.张成悟指导教师或指导教师组负责人(打印并签名):日期:2014年8月10日全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要交巡警服务平台位置的选取以及划分交巡警服务平台的管辖范围对于处理突发事件有非常大的影响。

现阶段,一般依据经验选取服务平台位置及划分管辖区域。

所以如何科学合理处理的交巡警服务平台的设置与调度问题具有十分重要的现实意义。

本文研究了交巡警服务平台的设置与调度问题。

具体讨论了在给定的区域A内,如何合理的设置交巡警服务平台的管辖区域;发生特殊事件时应如何调动服务平台警力以快速封锁区域A;应该增加多少数量交巡警服务平台以及在哪个位置增加。

本文建立最短路模型、0-1整数规划模型,利用MATLAB软件解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题。

在解决分配各平台管辖范围问题时,本文建立了最短路模型。

通过求解各个路口到交巡警平台的距离是否满足最低时间限制,解决交巡警服务平台分配管辖范围的问题。

本文在MATLAB软件上运用Dijkstra算法进行求解,给出了中心城区A的20个服务平台的管辖范围,并求得到达最近的交巡警服务平台的时间超过3分钟的6个路口。

B题交巡警服务平台参考资料

B题交巡警服务平台参考资料

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。

(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。

如果有明显不合理,请给出解决方案。

如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。

为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。

附件1:A区和全市六区交通网络与平台设置的示意图。

附件2:全市六区交通网络与平台设置的相关数据表(共5个工作表)。

送货路线设计的研究摘要:物流行业渐渐兴盛,每个送货员需要以最快的速度及时将货物送达较多的地方。

2011数学建模B题

2011数学建模B题

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。

(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。

如果有明显不合理,请给出解决方案。

如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。

为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。

附件1:A区和全市六区交通网络与平台设置的示意图。

附件2:全市六区交通网络与平台设置的相关数据表(共5个工作表)。

附图1:A区的交通网络与平台设置的示意图附图2:全市六区交通网络与平台设置的示意图说明:(1)图中实线表示市区道路;红色线表示连接两个区之间的道路;(2)实圆点“·”表示交叉路口的节点,没有实圆点的交叉线为道路立体相交;(3)星号“*”表示出入城区的路口节点;(4)圆圈“○”表示现有交巡警服务平台的设置点;(5)圆圈加星号“○*”表示在出入城区的路口处设置了交巡警服务平台;(6)附图2中的不同颜色表示不同的区。

2011数学建模B题完整解答

2011数学建模B题完整解答

关键词: 关键词:交巡警服务平台;调度模型;整数规划;Floyd 算法;Matlab
§1 问题的 问题的重述
一、背景知识 1.交巡警 交巡警是交警与巡警合一的警务模式, 是世界大多数国家普遍采用的成熟警察勤务 模式。交巡警模式比“交巡分离”模式更为合理,减少了警务矛盾与执法漏洞,提高了 执法质量。交巡警制度整合了警力资源,将刑事执法、治安管理、交通管理、服务 群众四大职能有机融合的新型防控体系,这种防控体系现如今已遍布世界各地。 2. 交巡警服务平台 交巡警平台是交巡警警种出现后,设立在交通要道和市区、街镇繁华地带,专门处 理日常警务的作业场所。这种平台使得交巡警在案件发生后,能够立刻抵达出事现场。 为了尽量照顾到某一城区所有的突发事件, 在城市的各个街道和道路节点设置多个交巡 警服务平台是必要的。交巡警服务平台,不仅是城市治安良好的象征,也是一道道亮丽 的风景线。保卫着人民的安全和国家的安定。一般来说,每个交巡警平台会配置 GPS 全 球定位系统以巡逻车、抓捕网、警戒带、路障、防弹衣等设备,可以方便地处理各种突 发情况。 在 2010 年 2 月,一支名为“交巡警”的全新警种在重庆诞生。首批执勤的 150 个 警务平台和 4000 名昼夜循环的交巡警,配备“高精尖”装备,代替过去的交警和巡警, 执行交通管理、刑事执法、治安管理三大职能[1]。在过去的一年中,重庆街面犯罪实际 下降近 40%,未发生一起死亡 10 人以上特大交通事故,主城 21 年来首次出现街头“两 抢”案件单日“零发案”,交巡警服务平台成为名副其实的打击犯罪“第一阵地”。那 么,如何合理设置交巡警服务平台、充分发挥服务平台的功能,以快速应对突发事件, 就成为有关部门面临的一个全新的课题。 二、相关数据 1.某市全市交通路口节点数据(详见题目附表 1) 2.某市全市交通路口的路线(详见题目附表 2) ; 3.某市全市交巡警平台设置方案(详见题目附表 3) ; 4.某市全市出入口位置(详见题目附表 4) ; 5.该市六城区的基本数据(详见题目附表 5) 。 三、要解决的具体问题 1.问题一: 问题一:如何合理分配中心城区 A 内各交巡警服务平台的管辖范围,使其在所 管辖的范围内出现突发事件时,能在 3 分钟内有交巡警到达事发地,其中警车的速度为 60km/h。 2.问题二: 问题二:对于重大突发事件,如何调度 A 区内 20 个平台的警力资源,快速全封 锁该区的 13 个出入口。 3.问题三: 问题三:在 A 区内增加 2 至 5 个平台,以解决服务平台的工作量不均以及部分 地方出警时间过长的实际问题。 4.问题四: 问题四:针对全市六区的情况,分析研究现有交巡警服务平台设置方案的合理 性,并对明显不合理的平台设置给出改进方案。 5.问题五: 问题五:如果地点 P 处发生重大刑事案件,在案发 3 分钟后接到报警,犯罪嫌 疑人已驾车逃跑。试设计调度全市服务平台警力资源的最佳围堵方案。

2011年全国大学生数学建模竞赛B题

2011年全国大学生数学建模竞赛B题

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.韩晓峰2.杨晓帆3.李弘倩指导教师或指导教师组负责人(打印并签名):日期:2011年9月11日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要在(1)第一问中,我们根据附表1所给各路口坐标算出A图中每条路线的长度,然后通过floyd算法找出了两点之间的最短路程,得出矩阵D,通过使用matlab圈出各服务平台到周围路口小于3min(即3km)的点,再根据就近原则,将各路口划分到这个圈中离此路口最近的交巡警平台。

对于任意到交巡警平台路程大于3min(即3km)序号为28,29,38,39,61,92的五个路口,则采用就近原则人工划入距离其最近的交巡警平台辖区,这样就在保证出警时间基本都小于3min的条件下,划分出各警务平台合理的管辖范围。

对于(1)第二问中,我们采用指派模型,用lingo软件对20个巡警服务平台对17个城市出入口进行封锁的方法进行了优化,得到初步的调度方案。

数模B题

数模B题

关键词: 关键词:图论
floyd 算法
线性规划
多目标线性规划 综合评价
1
1、问题重述
“有困难找警察” ,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管理、 交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交 通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相 同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平 台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题: ( 1) 附件 1 中的附图 1 给出了该市中心城区 A 的交通网络和现有的 20 个交巡警服 务平台的设置情况示意图,相关的数据信息见附件 2。请为各交巡警服务平台分配管辖 范围,使其在所管辖的范围内出现突发事件时,尽量能在 3 分钟内有交巡警(警车的时 速为 60km/h)到达事发地。 对于重大突发事件,需要调度全区 20 个交巡警服务平台的警力资源,对进出该区 的 13 条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,请给出 该区交巡警服务平台警力合理的调度方案。 根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟 在该区内再增加 2 至 5 个平台,请确定需要增加平台的具体个数和位置。 (2)针对全市(主城六区 A,B,C,D,E,F)的具体情况,按照设置交巡警服 务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理 性。如果有明显不合理,请给出解决方案。 如果该市地点 P(第 32 个节点)处发生了重大刑事案件,在案发 3 分钟后接到报 警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警 力资源的最佳围堵方案。

交巡警服务平台的设置与调度——2011年全国大学生数学建模比赛题

交巡警服务平台的设置与调度——2011年全国大学生数学建模比赛题

交巡警服务平台的设置与调度摘要本文是在一个原有区域交警平台的基础上,分析讨论在该市警务资源有限的情况下,如何实现城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源的实际问题。

实现最优化管理的方案。

以图论最优路径理论为基础,建立图的最优化模型。

针对问题(1),将A区路口和道路抽象成图,分别以交巡警服务平台对应的点为起点求小于等于3min的路径,再将同一起点的路径的终点相连,围成一个区域,便是交巡警服务平台的管辖范围。

在此基础上综合考虑各个路口发案率的大小、区域人口密集程度,从而建立一个图中路径最优化模型。

再根据各个区域之间的所产生的空白区,即交巡警的管辖盲区。

为其添加交巡警服务平台。

实现其管理最优化的目的。

针对问题(2),结合交巡警服务平台的设置原则,充分考虑全市各区不同的状况,如:人口密度、区域面积等,并以A区的分区标准为基础,实现对全市各区的交巡警服务平台的设置。

对于P点的逃犯,建立一个以P点为中心的最优逃跑路径所组成的图,然后在算出罪犯的最佳逃跑路线,再调度相应的交巡警,实现对他的围堵。

从而实现交巡警服务平台设置和调度的最优化的方案。

关键词:图论;最优化路径; 交巡警服务平台;MATLAB;数据结构1、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

2011数学建模B题交巡警服务平台资料

2011数学建模B题交巡警服务平台资料

摘要最短路作为图与网络技术研究中的一个经典问题一直在工程规划、地理信息系统、通信和军事运筹学等领域有着十分广泛的应用,基于对成本与效率的考虑,可以设计一可行性方案使其耗时最少。

针对本文要解决的的问题,通过图论对问题进行转化,转化为最优Hamilton 圈问题,采用Floyd算法思想、借助矩阵、MATLAB软件和编程,再通过数据的分析、筛选和计算,从而可在图上标出送货员到各个点的最短路径,得到最优解。

问题一:将1~30 号货物送到指定地点并返回,构造最优Hamilton 圈,采用矩阵翻转法来实现二边逐次修正法过程,Floyd算法,进而求出最优Hamilton 圈。

得到最终路线为:0/51→26→21→17→14→16→23→32→38→36→43→42→49→45→40→34→39→27→31→24→13→18→0/51,总长度为m54709,总时间为h.378问题二:基于问题一,在添加了时间限制的情况下,将时间限制条件加入到问题一求解的最优Hamilton 圈方法中去,得到在有时间限制的情况下的最佳线路,得到最终路线:0/51→18→13→24→31→34→40→45→42→49→43→38→32→23→16→14→17→21→36→39→27→26→0/51,总长度为m54996,总时间为.379h问题三:由于考虑到送货员一次送货所能承载的最大重量和体积,我们采用将区域分块。

对送货地点的进行相关分组,继而回归到问题一的方法中,在每组中寻求最佳送货路线,得出要完成这次送货,送货员必须分三趟进行送货以及其最终路线。

关键字:耗时最少图论最优Hamilton 圈矩阵翻转 Floyd算法一问题的重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。

现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。

2011年全国大学生数学建模竞赛B题优秀论文

2011年全国大学生数学建模竞赛B题优秀论文

i 1, 2, 20
j 1, 2, ,92
(4)
根据上述模型,我们使用 Lingo 及 MatLab 软件进行求解,工作量均衡度 σ=7.7018, 各平台管辖的路口结果见表 2: 表 2 A 区各平台管辖的路口 平台 管辖的路口 到达最远路口时间(min)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2
三、符号定义
各符号及含义见表 1。 表1 符号 v tij pj S Ge(S) N M q σ T C(t) 符号含义说明 含义 交巡警的速度 交巡警从第 i 个平台到第 j 个路口节点所需时间 第 j 个路口节点的发案率 满足时间要求的路口节点的集合 集合 S 元素的个数 表示区内到任一平台时间均超过 3min 的路口数 表示区内路口总数 平台设置合理度 工作量均衡度 封锁完所有要道的总用时 完全封锁这个逃逸范围的最少路口集合
12250300350400450500100150200250300350400450500550f交通服务平台服务范围图表示交叉路口表示服务平台表示交通服务平台的服务范围增加平台后f区各平台管辖示意图522最佳围堵的全市交巡警平台调度模型交巡警平台围堵嫌犯是动态的过程全市80个平台参与围堵当交巡警的最短围堵时间小于嫌犯的逃逸时间减去案发至报警的3min则实现成功围堵
由于一个平台的警力最多封锁一个路口, 则

j 1
13
ij
1
(5)
设第 i 个平台封锁第 j 个关键路口节点的时间为 tij,则封锁完所有要道的总用时 T 以用时最长的为准,即
T max tij ij
i
为实现快速封锁,选取总用时最短的方案。

数学建模2011B题 交巡警服务平台的设置与调度 程序

数学建模2011B题 交巡警服务平台的设置与调度 程序

问题一(1):管辖区域的分配:求解最大结合覆盖模型function dyt1.1disp(sprintf('正在载入相关数据...'));Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c93'); %载入A区路口节点的左边数据Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b144'); %载入路线节点标号数据Record_data = cell(92,1); %创建包体,用来保存92个节点,每点的最大覆盖区域count = 0;%更急路线节点标号数据创建邻接矩阵for i = 1 :92Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];Node_index = Node_index(find(Node_index <=92));n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :92[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%根据邻接矩阵数据创建图论的稀疏矩阵a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:92for j=1:92if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendfor k=1:92for i=1:92for j=1:92if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendPatrol_range=cell(20,1);for i=1:20for j=1:92if(DG(i,j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendPatrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(92,1); %定义交集Cover=[];Isolated=[]; %定义孤立点for i=1:92c=[];for j=1:20m=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点 endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendPatrol_xin=Patrol_distribution; %进行B类节点的的分配for i=1:92m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:mDistance_linshi(j)=DG(i,Patrol_cover{i}(j));endm0=min(Distance_linshi);for k=1:20if DG(i,k)==m0f=k;endendPatrol_xin{f}=[Patrol_xin{f},i];endendm=length(Isolated); %对孤立点进行分配for i=1:mfor j=1:20dist(j)=DG(Isolated(i),j);end[m0,m1]=min(dist);Patrol_xin{m1}=[Patrol_xin{m1},Isolated(i)];endsave Patrol_xin.mat;问题一(2):求解围堵13条要道的方案程序1:!求围堵的方案与最快时间sets:AA/1..20/;cross/1..13/;links(AA,cross): dis, x;Endsets!数据的定义部分;data:dis=22236.1516028.479286.81219293.4421096.2122501.7522893.219001.1619515.8112083.445880.93511850.114885.217 20463.9214129.727388.06317394.6919197.472060321120.9717228.9317743.5810311.213982.18610309.546035.068 18352.2712767.236025.56616032.1917834.9719240.5119009.3215117.2815631.928199.566093.848197.8844393.385 21997.3815008.518266.85318273.4820076.2621481.7922654.4316226.9115535.348102.9764860.9767395.869350 17628.1912969.636227.96716234.5917749.5219155.0618285.2411306.8710615.293182.9339421.1192475.8265255.075 17658.7813000.216258.55216265.1817780.1119185.6518315.8311337.4510645.883213.5189451.7042506.4115337.332 14914.9410901.224159.55914166.1915036.2716441.8115571.998570.2188015.457583.09527352.7111290.2027991.722 14092.519433.9432692.28212698.9114213.8415619.3814749.5610228.0310493.183060.825885.4343099.4678677.283 13010.718274.2021532.5411539.1713132.0514537.5913667.769775.72210724.413492.3044725.6924199.419336.668 7586.58512775.666956.679510.6937707.9189113.4568243.63514194.8615143.557911.44610149.828618.55314760.8 3791.3538337.29811395.035072.3323269.5574675.0953805.27418633.2319581.9112349.8114588.1813056.9119199.16 011950.2814543.268685.3166882.5416477.0023591.6321781.4522730.1315498.0317736.4116205.1422347.38 5977.0025973.2812714.942708.314905.53855002385.37222808.322375716524.916120.8217232.0121331.79 11950.2806741.6623264.9665067.7416473.288358.65218049.9218916.6811484.3210147.5412191.4215358.51 17029.6113298.086556.42116563.0517150.9418556.4817686.664751.8425700.5254401.4729749.5735108.57911810.1 14543.266741.662010006.6311809.413214.9415100.3111308.2612175.024742.6553405.8775449.7618616.853 21892.1114903.248161.5818168.2119970.9821376.5222549.1618657.1219523.8712091.514755.70312798.627820.525 24247.1818514.4811772.8221779.4523582.2324987.7624904.2321012.1921526.8314094.478366.94613699.266734.362 22546.5316961.4810219.8220226.4522029.2323434.7623203.5819311.5319826.1812393.827639.28111998.615033.709 26945.8 21213.11 14471.45 24478.08 26280.85 27686.39 27602.86 23010.82 22319.25 14886.89 11065.57 14179.78 6448.88;enddata!目标函数;min=@max(links(i,j):x(i,j) * dis(i,j));!需求约束;@for(cross(j):@sum(AA(i): x(i,j))=1);@for(AA(i):@sum(cross(j): x(i,j))<=1);!整数约束;@for(links(i,j):@bin(x(i,j)));程序2:fuction zudj1.2A=zeros(20,13);for i=1:20A(i,1)=DG(i,12);A(i,2)=DG(i,14);A(i,3)=DG(i,16);A(i,4)=DG(i,21);A(i,5)=DG(i,22);A(i,6)=DG(i,23);A(i,7)=DG(i,24);A(i,8)=DG(i,28);A(i,9)=DG(i,29);A(i,10)=DG(i,30);A(i,11)=DG(i,38);A(i,12)=DG(i,48);A(i,13)=DG(i,62);end问题一(3):管辖区域的确定:求解集合覆盖模型并使工作量最均衡程序1:function junheng1.2c=[];for x=1:72c(x)= fenpei(x);endc程序2:function c=fenpei(x)disp(sprintf('正在载入相关数据...'));Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c93'); %载入A区路口节点的左边数据Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b144'); %载入路线节点标号数据load B.mat;Record_data = cell(92,1); %创建包体,用来保存92个节点,每点的最大覆盖区域count = 0;%更急路线节点标号数据创建邻接矩阵for i = 1 :92Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];Node_index = Node_index(find(Node_index <=92));n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :92[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%根据邻接矩阵数据创建图论的稀疏矩阵a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:92for j=1:92if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendPatrol_range=cell(24,1);D_24=B(x,:); %B为可能的分配情况,共有48中,每次从中选取1中可能,本次选取的事第13中可能for k=1:92for i=1:92for j=1:92if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendfor i=1:24for j=1:92dist(j)=DG(D_24(i),j);endfor j=1:92if(dist(j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendsave Patrol_range;%求解交集和预分配问题load Patrol_range.mat; %载入数据Patrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(92,1); %定义交集Cover=[];Isolated=[]; %定义孤立点for i=1:92c=[];c2=[];for j=1:24m=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点 c2=[c2,D_24(j)];endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c2; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendsave Patrol_distribution.mat; %完成预分配,对于交集和孤立交点另外考虑save Patrol_cover.mat; %保存交集所对应的可能交通巡警点load Patrol_cover.mat;load Patrol_distribution.mat;load Patrol_range.mat;%初始化预分配中每个交通巡警点的发案次数Occurrence=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'e2:e93'); %A区每个交通节点的发案次数Standard_occurrence=sum(Occurrence)/24Patrol_occurrence=zeros(24,1);for i=1:24m=length(Patrol_distribution{i});a=0;if(m>=1)for j=1:ma=a+Occurrence(Patrol_distribution{i}(j));endPatrol_occurrence(i)=a;endendPatrol_xin=Patrol_distribution; %进行交集分配for i=1:92m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:mDistance_linshi(j)=DG(i,Patrol_cover{i}(j));endA=Sort_vector(Distance_linshi); %记录最小值的相对位置h=length(Distance_linshi);for j=1:hlinshi_canshu=find(D_24==Patrol_cover{i}(A(j,2)));Patrol_occurrence(linshi_canshu);Patrol_cover{i}(A(j,2));if(Patrol_occurrence(linshi_canshu)<=(Standard_occurrence+0.62)) Patrol_xin{linshi_canshu}=[Patrol_xin{linshi_canshu},i];Patrol_occurrence(linshi_canshu)=Patrol_occurrence(linshi_canshu)+Occ urrence(i);break;endif(j==h)iendendendendPatrol_occurrencec=var(Patrol_occurrence);save Patrol_xin.mat;程序3:function chulia=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];I=[28 29];J=[38 39,40];K=[48,61];L=[87 88 89 90 91 92];m=0;for i=1:2for j=1:3for k=1:2for l=1:6m=m+1;B(m,:)=[a,[I(i) J(j) K(k) L(l)]];DD(m,:)=[I(i) J(j) K(k) L(l)];endendendendsave B;程序4:function A=Sort_vector(X) %创建子函数供调用a=length(X);for i=1:a[m0,weizhi]=min(X);A(i,1)=m0;A(i,2)=weizhi;X(weizhi)=inf;End问题二(1)计算现有节点工作量,不均衡度和C类节点个数,以判断合理性:程序1:function Mcm2.1Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c583'); Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b929');Record_data = cell(582,1);count = 0;for i = 1 :582Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :582[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%创建图论的稀疏矩阵及其图论的求解a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:582for j=1:582if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendfor k=1:582for i=1:582for j=1:582if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendWeizhi_all=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',3,'b2:b81'); a=length(Weizhi_all);Patrol_range=cell(a,1);for i=1:afor j=1:582dist(j)=DG(Weizhi_all(i),j);%求图中任意两个节点之间的最短距离endfor j=1:582if(dist(j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendsave Patrol_range;load Patrol_range.mat; %载入数据Patrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(582,1); %定义交集Cover=[];Isolated=[]; %定义孤立点a=length(Weizhi_all);for i=1:582c=[];c2=[];for j=1:am=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点c2=[c2,Weizhi_all(j)];endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c2; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendsave Patrol_distribution.mat;%完成预分配,对于交集和孤立交点另外考虑save Patrol_cover.mat;%保存交集所对应的可能交通巡警点load Patrol_cover.mat;load Patrol_distribution.mat;load Patrol_range.mat;%初始化预分配中每个交通巡警点的发案次数Occurrence=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'e2:e583'); %A区每个交通节点的发案次数a=length(Weizhi_all);Standard_occurrence=sum(Occurrence)/asum(Occurrence);Patrol_occurrence=zeros(a,1);for i=1:am=length(Patrol_distribution{i});a=0;if(m>=1)for j=1:ma=a+Occurrence(Patrol_distribution{i}(j));endPatrol_occurrence(i)=a;endendPatrol_xin=Patrol_distribution; %进行交集的分配for i=1:582m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:582dist(j)=DG(i,j);endfor j=1:mDistance_linshi(j)=dist(Patrol_cover{i}(j));endA=Sort_vector(Distance_linshi); %记录最小值的相对位置h=length(Distance_linshi);for j=1:hlinshi_canshu=find(Weizhi_all==Patrol_cover{i}(A(j,2)));Patrol_occurrence(linshi_canshu);Patrol_cover{i}(A(j,2));if(Patrol_occurrence(linshi_canshu)<=(Standard_occurrence+8.5)) Patrol_xin{linshi_canshu}=[Patrol_xin{linshi_canshu},i];Patrol_occurrence(linshi_canshu)=Patrol_occurrence(linshi_canshu)+Occ urrence(i);break;endif(j==h)i;endendendend%对孤立点进行分配m=length(Isolated);for i=1:mfor j=1:20D(j)=DG(Isolated(i),j);endIsolated(i);[m0,m1]=min(D);m1;Patrol_xin{m1}=[Patrol_xin{m1},Isolated(i)];Patrol_occurrence(m1)=Patrol_occurrence(m1)+Occurrence(Isolated(i)); endPatrol_occurrence; %每个警力点的工作量length(Patrol_occurrence);var(Patrol_occurrence)[a,b]=max(Patrol_occurrence);zuidazhi=a;b;Weizhi_all(b);save Patrol_xin.mat;程序2:!建立0—1矩阵function jljz2.1AG=zeros(138,502);for i=1:138for j=1:502dist(j)=DG(lsolated(i),j);if(dist(j)<=3000)AG(i,j)=1;endendend程序3:function chulia=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];I=[28 29];J=[38 39,40];K=[48,61];L=[87 88 89 90 91 92];m=0;for i=1:2for j=1:3for k=1:2for l=1:6m=m+1;B(m,:)=[a,[I(i) J(j) K(k) L(l)]];DD(m,:)=[I(i) J(j) K(k) L(l)];endendendendsave B;程序4:function A=Sort_vector(X) %创建子函数,共调用使用a=length(X);for i=1:a[m0,weizhi]=min(X);A(i,1)=m0;A(i,2)=weizhi;X(weizhi)=inf;endlingo程序:程序5:!静态增加服务台的方案求解:sets:AA/1..138/;cross/1..502/:x;links(AA,cross): a;Endsetsdata:a = @FILE(F:\数学建模第二期培训\第一题\新建文件夹\第二问\选择表.xls); @TEXT('result1.txt') = x;enddata 27程序6:!动态的求解方案:sets:AA/1..582/;cross/1..582/:x;links(AA,cross): a;Endsetsdata:a = @FILE(F:\数学建模第二期培训\第一题\新建文件夹\第二问\data3.txt); @TEXT('result7.txt') = x;enddatamin =@sum(AA(i):@if(@sum(cross(j):a(i,j)*x(j))#eq#0,1,0));@sum(cross(j): x(j))=80;@for(cross(i):@bin(x(i)));问题二(2):求解最佳围堵方案程序1:% function weidu%找出最佳的围堵方案clear;load DG.mat;load Xunjinwz1.mat;xun_gs = length(Xunjinwz);dist=graphshortestpath(DG,32);%求图中任意个节点到案发点的最短距离for t = 6:30Anfadian=[];for j = 1 :582if(dist(j) <= t*1000 & (t - 1)*1000 <=dist(j) )Anfadian=[Anfadian,j];endendn = length(Anfadian); %罪犯可能到达点的集合A1 = zeros(n,582);for k = 1:ndist2 = graphshortestpath(DG,Anfadian(k));count = 0;for kk = 1 :xun_gs %搜素罪犯到达点集合旁边的巡逻点if(dist2(Xunjinwz(kk)) < (t-3)*1000 )A1(k,Xunjinwz(kk)) = 1;count = count + 1;endendif(count == 0)break;endend[m,n] = size(A1);if(m < n)pp = Pipei(A1);[m,n] = size(pp);if(rank(pp) == m)pipei =zeros(m,2);for i =1:m[row,coloum] = find(pp(i,:)==1);pipei(i,1) = Anfadian(i);pipei(i,2) = coloum;endbreak;endendend程序2:function pip =Pipei(A)%求最大匹配问题[m,n] = size(A);M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;endend %求初始匹配 Mif(M(i,j))break;endend %获得仅含一条边的初始匹配 Mwhile(1)for(i=1:m)x(i)=0;end %将记录X 中点的标号和标记*for(i=1:n)y(i)=0;end %将记录Y 中点的标号和标记*for(i=1:m)pd=1; %寻找X 中 M 的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;endend %将X 中 M 的所有非饱和点都给以标号0 和标记*, 程序中用 n+1 表示0 标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;endend %假如 X 中存在一个既有标号又有标记*的点, 则任取X 中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end %假如X 中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi 的标记*k=1;for(j=1:n )if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;endend %对与 xi 邻接且尚未给标号的 yj 都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;endend %将yj 在 M 中与之邻接的点xk (即xkyj ∈M), 给以标号j 和标记*if(pdd)break;endendif(pdd)k=1;j=yy(j); %yj 不是 M 的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取 M 的一个非饱和点 yj, 逆向返回if(j==n+1)break;end %找到X 中标号为0 的点时结束, 获得 M-增广路 P k=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配 M 在增广路 P 中出现的边去掉else M(P(i,1),P(i,2))=1;endend %将增广路 P 中没有在匹配 M 中出现的边加入到匹配M 中break;endendendif(pd)break;endend %假如X 中所有有标号的点都已去掉了标记*, 算法终止pip = M ; %显示最大匹配 M, 程序结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.56.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSD=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.69.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78 A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.8L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.18.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.75.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.08.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end A3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.19.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.73.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.54.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endmodel: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A1,A2,A3,A18,A17,A19,A42,A43,A44,A63,A64,A65,A66,A67,A68,A69,A70,A71,A72,A73 ,A74,A75,A76,A77,A78,A79,A80,A81/:L;roads(plot,plot)/A1,A69 A1,A74 A1,A75 A1,A78A69,A68 A69,A70 A69,A71A74,A80 A74,A71 A74,A73A75,A76 A75,A68A78,A79 A78,A77A68,A67A70,A2 A70,A43A71,A72A80,A79 A80,A18A73,A72 A73,A18A76,A64 A76,A66 A76,A77A79,A19A67,A44 A67,A66A2,A43 A2,A44A43,A72 A43,A42A18,A81A64,A63 A64,A65A66,A65A77,A19A42,A17A44,A3/:D;ENDSETSDA TA:D=5.0 6.3 9.3 6.47.1 5.4 6.416.9 6.1 4.03.54.56.7 10.04.18.6 7.65.04.5 8.18.1 19.713.2 9.2 4.54.514.8 4.28.0 9.58.1 8.16.79.1 5.83.29.89.89.5;L=0,,,,,,,,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A1): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end model: sets:plot/A2,A1,A3,A17,A41,A42,A43,A44,A64,A65,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76 ,A78/:L;roads(plot,plot)/A2,A44 A2,A43 A2,A70A44,A67 A44,A3A43,A72 A43,A70 A43,A42A70,A69A67,A68A3,A65A72,A73 A72,A71A42,A17A69,A71 A69,A68 A69,A1A68,A75A65,A64A73,A74A71,A74A17,A41A1,A75 A1,A78 A1,A74A75,A76A64,A76/:D;ENDSETSDA TA:D=9.5 8 8.614.8 11.68.1 7.6 8.15.44.115.28.1 58.56.47.1 54.55.84.06.18.59.3 6.4 6.33.513.2;L=0,,,,,,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A2): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); endA3model: sets: plot/A3,A2,A4,A38,A39,A40,A43,A44,A64,A65,A66,A67,A68,A69,A70,A75/:L; roads(plot,plot)/A3,A65 A3,A44A65,A66 A65,A64A44,A2 A44,A67A66,A67A2,A40 A2,A43 A2,A70A67,A68A40,A39A43,A70A70,A69A68,A69 A68,A75A39,A4 A39,A38/:D;ENDSETSDA TA:D=15.2 11.63.2 5.89.5 14.84.219.1 8 8.64.117.77.65.47.1 4.545.6 3;L=0,,,,,,,,,,,,,,,;ENDDATA@for(plot(i)|i#GT#@index(A3): L(i)=@MIN(roads(j,i):L(j)+D(j,i));); end。

相关文档
最新文档