高一数学对数函数一课一练3
高一对数与对数函数练习题及答案
《对数与对数函数》测试 12.21一、选择题:1.已知3+5= A,且+= 2,则A的值是( ).(A).15(B).(C).±(D).2252.已知a>0,且10= lg(10x)+lg,则x的值是( ).(A).-1(B).0(C).1(D).23.若x,x是方程lgx +(lg3+lg2)+lg3·lg2 = 0的两根,则xx的值是( ).(A).lg3·lg2(B).lg6(C).6(D).4.若log(a+1)<log2a<0,那么a的取值范围是( ).(A).(0,1)(B).(0,)(C).(,1)(D).(1,+∞)5.已知x =+,则x的值属于区间( ).(A).(-2,-1)(B).(1,2)(C).(-3,-2) (D).(2,3) 6.已知lga,lgb是方程2x-4x+1 = 0的两个根,则(lg)的值是( ).(A).4(B).3(C).2(D).17.设a,b,c∈R,且3= 4= 6,则( ).(A).=+(B).=+(C).=+(D).=+8.已知函数y = log(ax+2x+1)的值域为R,则实数a的取值范围是( ).(A).0≤a≤1(B).0<a≤1(C).a≥1(D).a>19.已知lg2≈0.3010,且a = 2×8×5的位数是M,则M为( ).(A).20(B).19(C).21(D).2210.若log[ log( logx)] = 0,则x为( ).(A).(B).(C).(D).11.若0<a<1,函数y = log[1-()]在定义域上是( ).(A).增函数且y>0(B).增函数且y<0(C).减函数且y>0(D).减函数且y<012.已知不等式log(1-)>0的解集是(-∞,-2),则a的取值范围是( ).(A).0<a<(B).<a<1(C).0<a<1(D).a>1二、填空题13.若lg2 = a,lg3 = b,则lg=_____________.14.已知a = log0.8,b = log0.9,c = 1.1,则a,b,c的大小关系是_______________.15.log(3+2) = ____________.16.设函数= 2(x≤0)的反函数为y =,则函数y =的定义域为________.三、解答题17.已知lgx = a,lgy = b,lgz = c,且有a+b+c = 0,求x·y·x的值.18.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga +lgb,试确定p和q应满足的关系.19.设a,b为正数,且a-2ab-9b= 0,求lg(a+ab-6b)-lg(a+4ab+15b)的值.20.已知log[ log( logx)] = log[ log( logy)] = log[ log( logz)] = 0,试比较x、y、z的大小.21.已知a>1,= log(a-a).⑴ 求的定义域、值域;⑵判断函数的单调性,并证明;⑶解不等式:>.22.已知= log[a+2(ab)-b+1],其中a>0,b>0,求使<0的x的取值范围.参考答案:一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D).提示:1.∵3+5= A,∴a = logA,b = logA,∴+= log3+log5 = log15 = 2,∴A =,故选(B).2.10= lg(10x)+lg= lg(10x·) = lg10 = 1,所以 x = 0,故选(B).3.由lg x+lg x=-(lg3+lg2),即lg xx= lg,所以xx=,故选(D).4.∵当a≠1时,a+1>2a,所以0<a<1,又log2a<0,∴2a >1,即a>,综合得<a<1,所以选(C).5.x = log+log= log(×) = log= log10,∵9<10<27,∴ 2<log10<3,故选(D).6.由已知lga+lgb = 2,lga·lgb =,又(lg)= (lga-lgb)= (lga +lgb)-4lga·lgb = 2,故选(C).7.设3= 4= 6= k,则a = logk,b= logk,c = logk,从而= log6 = log3+log4 =+,故=+,所以选(B).8.由函数y = log(ax+2x+1)的值域为R,则函数u(x) = ax+2x+1应取遍所有正实数,当a = 0时,u(x) = 2x+1在x>-时能取遍所有正实数;当a≠0时,必有0<a≤1.所以0≤a≤1,故选(A).9.∵lga = lg(2×8×5) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a = 10,即a有20位,也就是M= 20,故选(A).10.由于log( logx) = 1,则logx = 3,所以x = 8,因此 x=8===,故选(D).11.根据u(x) = ()为减函数,而()>0,即1-()<1,所以y = log[1-()]在定义域上是减函数且y>0,故选(C).12.由-∞<x<-2知,1->1,所以a>1,故选(D).二、填空题13.a+b14.b<a<c.15.-2.16.<x≤1提示:13.lg=lg(2×3) =( lg2+3lg3) =a+b.14.0<a = log0.8<log0.7 = 1,b = log0.9<0,c = 1.1>1.1= 1,故b<a<c.15.∵3+2= (+1),而(-1)(+1) = 1,即+1= (-1),∴log(3+2) =log(-1)=-2.16.= logx (0<x≤1=,y =的定义域为0<2x-1≤1,即<x≤1为所求函数的定义域.二、解答题17.由lgx = a,lgy = b,lgz = c,得x = 10,y = 10,z = 10,所以x·y·x=10=10= 10=.18.由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.19.由a-2ab-9b= 0,得()-2()-9 = 0,令= x>0,∴x-2x-9 = 0,解得x =1+,(舍去负根),且x= 2x+9,∴lg(a+ab-6b)-lg(a+4ab+15b) = lg= lg= lg = lg= lg= lg= lg=-.20.由log[ log( logx)] = 0得,log( logx)= 1,logx =,即x = 2;由log[ log( logy)] = 0得,log( logy) = 1,logy =,即y =3;由log[ log( logz)] = 0得,log( logz) = 1,logz =,即z = 5.∵y =3= 3= 9,∴x = 2= 2= 8,∴y>x,又∵x = 2= 2= 32,z = 5= 5= 25,∴x>z.故y>x>z.21.为使函数有意义,需满足a-a>0,即a<a,当注意到a >1时,所求函数的定义域为(-∞,1),又log(a-a)<loga = 1,故所求函数的值域为(-∞,1).⑵设x<x<1,则a-a>a-a,所以-= log(a-a)-log(a-a)>0,即>.所以函数为减函数.⑶易求得的反函数为= log(a-a) (x<1),由>,得log(a-a)>log(a-a),∴a<a,即x-2<x,解此不等式,得-1<x<2,再注意到函数的定义域时,故原不等式的解为-1<x<1.22.要使<0,因为对数函数y = logx是减函数,须使a+2(ab)-b+1>1,即a+2(ab)-b>0,即a+2(ab)+b>2b,∴(a+b)>2b,又a>0,b>0,∴a+b>b,即a>(-1)b,∴()>-1.当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).综上所述,使<0的x的取值范围是:当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).。
北师大版高中数学必修一课后训练3.5对数函数.docx
课后训练基础巩固 1.函数12log (43)y x =-的定义域为( ).A .3,4⎛⎫-∞ ⎪⎝⎭ B .(-∞,1] C .3,14⎛⎤ ⎥⎝⎦ D .3,14⎛⎫ ⎪⎝⎭2.设f (x )=e ,1,1,1,x x f x x ⎧≤⎨(-)>⎩则f (ln 3)=( ).A .3eB .ln 3-1C .eD .3e3.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 的值为( ).A .24 B .22 C .14 D .124.若log a (a 2+1)<log a (2a )<0,那么a 的取值范围是( ). A .(0,1) B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .(1,+∞) 5.函数y =ln(2x +1)12x ⎛⎫>- ⎪⎝⎭的反函数是( ).A .y =12e x -1(x ∈R ) B .y =e 2x -1(x ∈R )C .y =12(e x-1)(x ∈R ) D .y =2e x-1(x ∈R )6.将y =2x 的图像________,再作关于直线y =x 对称的图像,可得函数y =log 2(x +1)的图像( ).A .先向左平移1个单位B .先向右平移1个单位C .先向上平移1个单位D .先向下平移1个单位7.如图,与函数y =2x,y =5x,12y x =,y =log 0.5x ,y =log 0.3x 相对应的图像依次为( ).A .(1)(2)(3)(5)(4)B .(3)(2)(1)(5)(4)C .(2)(1)(3)(5)(4)D .(2)(1)(3)(4)(5)8.设13log 2a =,121log 3b =,0.312c ⎛⎫= ⎪⎝⎭,则( ).A .a <b <cB .a <c <bC .b <c <aD .b <a <c9.方程log 2(x +4)=3x 的实根的个数为( ). A .0 B .1 C .2 D .3 能力提升 10.已知f (x )=(31)4,1,log ,1aa x a x x x -+<⎧⎨≥⎩是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .10,3⎛⎫ ⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .1,17⎡⎫⎪⎢⎣⎭11.函数f (x )=1+log a (x +1)(a >0,a ≠1)的图像过定点P ,则定点P 的坐标是________. 12.若y =log a (ax +2)(a >0,且a ≠1)在区间[-1,+∞)上是增函数,则a 的取值范围是________.13.函数213log (3)y x x =-的单调递减区间是________.14.函数221()log 213f x x x ⎛⎫=-+- ⎪⎝⎭的最大值是________. 15.设x >1,y >1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.16.已知函数f (x )=log a (1+x ),g (x )=log a (1-x )(其中a >0且a ≠1),设h (x )=f (x )-g (x ). (1)求函数h (x )的定义域,判断h (x )的奇偶性,并说明理由; (2)若f (3)=2,求使h (x )<0成立的x 的集合;(3)若x ∈10,2⎡⎤⎢⎥⎣⎦时,函数h (x )的值域是[0,1],求实数a 的取值范围.17.判断函数f (x )=2lg(1)x x +-的奇偶性和单调性,并加以证明.参考答案1.C 点拨:1log2(4x -3)≥0⇔1log 2(4x -3)≥12431,log 1430.x x -≤⎧⇔⎨->⎩∴34<x ≤1. 2.A 点拨:∵ln 3>ln e =1, ∴f (ln 3)=f (ln 3-1). 又∵ln 3-1=ln 3-ln e =3ln e <ln e =1, ∴f (ln 3-1)=eln 3-1=3lne3ee=. 3.A 点拨:∵函数f (x )=log a x (0<a <1)在[a,2a ]上是减函数, ∴f (x )max =f (a )=log a a =1,f (x )min =f (2a )=log a 2a . 由题意,得1=3log a 2a ,即log a 2a =13.∴log a 2+1=13,log a 2=23-, ∴212log 3a =-.∴log 2a =32-,故323211224222a -====. 4.C 点拨:若log a (a 2+1)<log a (2a )<0,则201,12,21,a a a a <<⎧⎪+>⎨⎪>⎩解得12<a <1.5.C 点拨:由y =ln(2x +1)得2x +1=e y ,∴x =12(e y -1).∴函数y =ln(2x +1)12x ⎛⎫>- ⎪⎝⎭的反函数是y =12(e x -1)(x ∈R ).6.D 点拨:与函数y =log 2(x +1)的图像关于直线y =x 对称的是其反函数y =2x -1的图像,为了得到它,只需将y =2x 的图像向下平移1个单位.7.C 点拨:(1)(2)分别为y =5x 和y =2x 的图像;(3)为12y x =的图像;(4)(5)分别为y =log 0.3x 和y =log 0.5x 的图像.8.B 点拨:∵1133log 2log 10<=,∴a <0; ∵112211log log 132>=,∴b >1; ∵0.311122⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,∴0<c <1,故a <c <b .选B. 9.C 点拨:在同一坐标系中作出函数y =log 2(x +4)与y =3x 的图像如图所示,可观察出两个函数的图像共有两个不同的交点.故选C.10.C 点拨:∵f (x )=log a x (x ≥1)是减函数,∴0<a <1且f (1)=0. ∴f (x )=(3a -1)x +4a (x <1)为减函数,∴3a -1<0, ∴13a <. 又∵f (x )=(31)4,1,log ,1a a x a x x x -+<⎧⎨≥⎩是(-∞,+∞)上的减函数,∴(3a -1)×1+4a ≥0,∴17a ≥. 综上可知,a 的取值范围是11,73⎡⎫⎪⎢⎣⎭.11.(0,1) 点拨:令x +1=1,得x =0,则f (0)=1+log a 1=1,即f (x )的图像过定点P (0,1). 12.(1,2) 点拨:由题意得a >1,且a ×(-1)+2>0,故1<a <2. 13.(3,+∞) 点拨:由x 2-3x >0,得x (x -3)>0,∴x <0或x >3. ∴函数y =213log (3)x x -的定义域为(-∞,0)∪(3,+∞).又g (x )=x 2-3x =23924x ⎛⎫-- ⎪⎝⎭,开口向上,对称轴方程为32x =,∴函数y =213log (3)x x -的单调递减区间是(3,+∞).14.1 点拨:∵213x -+2x -1=13-(x -3)2+2≤2,y =log 2x 在(0,+∞)上是增函数,∴f (x )=221log 213x x ⎛⎫-+- ⎪⎝⎭的最大值为log 22=1.15.解:令t =log x y ,∵x >1,y >1, ∴t >0.由2log x y -2log y x +3=0,得2230t t-+=, ∴2t 2+3t -2=0,即(2t -1)(t +2)=0. ∵t >0,∴12t =,即1log 2x y =, ∴12y x =,∴T =x 2-4y 2=x 2-4x =(x -2)2-4. ∵x >1,∴当x =2时,T min =-4. 16.解:(1)定义域为(-1,1). 又∵h (-x )=11log log ()11aa x xh x x x-+=-=-+-, ∴h (x )为奇函数.(2)f (3)=2⇒a =2,则h (x )<0⇔log 2(1+x )<log 2(1-x ),于是1+x <1-x ⇒x <0,又-1<x <1,∴x ∈(-1,0).(3)∵h (x )=12log log 111aa x x x +⎛⎫=-- ⎪--⎝⎭, 令φ(x )=211x ---,可知φ(x )=211x ---在10,2⎡⎤⎢⎥⎣⎦上单调递增,因此,当a >1时,h (x )在10,2⎡⎤⎢⎥⎣⎦上单调递增,又由h (0)=0,112h ⎛⎫= ⎪⎝⎭得a =3.当0<a <1时,h (x )在10,2⎡⎤⎢⎥⎣⎦上单调递减,h (0)=1,a 无解.综上a =3.17.解:(1)函数f (x )的定义域为R , ∵f (x )=2lg(1)x x +-,∴f (-x )=22lg[()1()]lg(1)x x x x -+--=++.∴f (-x )+f (x )=2222lg(1)lg(1)lg[(1)(1)]x x x x x x x x ++++-=++⋅+-=lg(x 2+1-x 2)=lg 1=0,即f (-x )=-f (x ).∴函数f (x )=2lg(1)x x +-是奇函数.(2)任取x 1,x 2∈R ,且x 1<x 2,设u (x )=21x x +-, 则u (x 1)-u (x 2)=221122(1)(1)x x x x +--+- =221212(11)()x x x x +-+-- =2212122212()(11)x x x x x x ---+++=12122212()111x x x x x x ⎛⎫+⎪-⋅- ⎪+++⎝⎭=221122122212(1)(1)()11x x x x x x x x -++-+-⋅+++,∵x 1<x 2,∴x 1-x 2<0.又∵211x +>|x 1|≥x 1,221x +>|x 2|≥x 2,即21110x x -+<,22210x x -+<,∴u (x 1)-u (x 2)>0,即u (x 1)>u (x 2).∴()221u x x x =+-在R 上是减函数.又∵y =lg x 在R 上是增函数,∴函数f (x )=2lg(1)x x +-在R 上是减函数.。
高一 对数与对数函数知识点+例题+练习 含答案
1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。
高中数学北师大版必修第一册一课一练:4.3.1 对数函数的概念与图像
第四章对数运算与对数函数§3 对数函数课时1 对数函数的概念与图像知识点1对数函数的概念1.☉%#4#52##0%☉(2020·吉安一中月考)下列函数中是对数函数的是()。
A.y=lo g14x B.y=lo g14(x+1)C.y=2lo g14x D.y=lo g14x+1答案:A解析:形如y=log a x(a>0且a≠1)的函数才是对数函数,只有A是对数函数,故选A。
2.☉%524@¥#5¥%☉(2020·安庆一中检测)对数函数的图像过点M(16,4),则此对数函数的解析式为()。
A.y=log4xB.y=lo g14xC.y=lo g12x D.y=log2x答案:D解析:设对数函数的解析式为y=log a x(a>0且a≠1),由于对数函数的图像过点M(16,4),所以 4=log a16,得a=2。
所以对数函数的解析式为y=log2x。
故选D。
3.☉%3@57*5#¥%☉(2020·白城一中月考)函数y=log(a-2)(5-a)中,实数a的取值范围是。
答案:(2,3)∪(3,5)解析:由对数函数的定义可知{a-2>0,a-2≠1,5-a>0,即{a>2,a≠3,a<5。
因此2<a<5且a≠3。
知识点2反函数4.☉%7*1**2@8%☉(2020·九江一中月考)函数y=log3x的定义域为(0,+∞),则其反函数的值域是()。
A.(0,+∞)B.RC.(-∞,0)D.(0,1) 答案:A解析:反函数的值域为原函数的定义域(0,+∞)。
故选A 。
5.☉%¥9*#6#70%☉(2020·石门一中月考)设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a = 。
答案:-2解析:因为函数f (x )=log 2x 的反函数为y =2x,即g (x )=2x。
高中数学人教A版必修第一册一课一练:4.4对数函数
新20版练B1数学人教A 版4.4对数函数第四章 指数函数与对数函数4.4 对数函数第1课时 对数函数的概念及图像与性质考点1 对数函数的概念1.(2019·河北唐山一中高一期中)与函数y =10lg (x -1)相等的函数是( )。
A.y =(√x -1)2B.y =|x -1|C.y =x -1D.y =x 2-1x+1答案:A解析: y =10lg (x -1)=x -1(x >1),而y =(√x -1)2=x -1(x >1),故选A 。
2.(2019·湖北公安一中单元检测)设集合A ={x |y =lg x },B ={y |y =lg x },则下列关系中正确的是( )。
A.A ∪B =AB.A ∩B =⌀C.A =BD.A ⊆B答案:D解析: 由题意知集合A ={x |x >0},B ={y |y ∈R },所以A ⊆B 。
3.(2019·福建南安一中高一第二阶段考试)设函数f (x )={x 2+1,x ≤1,lgx ,x >1,则f (f (10))的值为( )。
A.lg 101B.1C.2D.0 答案:C解析: f (f (10))=f (lg 10)=f (1)=12+1=2。
4.(2019·东风汽车一中月考)下列函数是对数函数的是( )。
A.y =log a (2x ) B.y =lg 10x C.y =log a (x 2+x ) D.y =ln x 答案:D解析: 由对数函数的定义,知D 正确。
5.(2019·厦门调考)已知f (x )为对数函数,f (12)=-2,则f (√43)= 。
答案:43解析: 设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a2=12,即a =√2,∴f (x )=lo g √2x ,∴f (√43)=lo g √2√43=log 2(√43)2=log 2 243=43。
高一对数与对数函数练习题及答案
《对数与对数函数》测试 12.21一、选择题:1.已知3a +5b = A ,且a 1+b1= 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+lga1,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值是( ).(A).lg3·lg2 (B).lg6 (C).6 (D).61 4.若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(21,1) (D).(1,+∞) 5. 已知x =31log 121+31log 151,则x 的值属于区间( ).(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lgba )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ).(A).c 1=a 1+b 1 (B).c 2=a 2+b 1(C).c 1=a 2+b 2 (D).c 2=a 1+b28.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ).(A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ). (A).20 (B).19 (C).21 (D).2210.若log 7[ log 3( log 2x)] = 0,则x21-为( ).(A).321 (B).331 (C).21(D).4211.若0<a <1,函数y = log a [1-(21)x]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <0 12.已知不等式log a (1-21+x )>0的解集是(-∞,-2),则a 的取值范围是( ).(A).0<a <21 (B).21<a <1 (C).0<a <1 (D).a >1 二、填空题13.若lg2 = a ,lg3 = b ,则lg 54=_____________.14.已知a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是_______________.15.log12-(3+22) = ____________.16.设函数)(x f = 2x (x ≤0)的反函数为y =)(1x f -,则函数y =)12(1--x f的定义域为________.三、解答题17.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求x cb 11+·yac 11+·xba 11+的值.18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系.19.设a ,b 为正数,且a 2-2ab -9b 2= 0, 求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值.20.已知log 2[ log 21( log 2x)] = log 3[ log 31( log 3y)] =log 5[ log 51( log 5z)] = 0,试比较x 、y 、z 的大小.21.已知a >1,)(x f = log a (a -a x ). ⑴ 求)(x f 的定义域、值域;⑵判断函数)(x f 的单调性 ,并证明; ⑶解不等式:)2(21--x f >)(x f .22.已知)(x f = log 21[a x 2+2(ab)x -b x 2+1],其中a >0,b >0,求使)(x f <0的x 的取值范围.参考答案:一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D). 提示:1.∵3a +5b = A ,∴a = log 3A ,b = log 5A ,∴a 1+b1= log A 3+log A 5 = log A 15 = 2, ∴A =15,故选(B). 2.10x = lg(10x)+lga 1= lg(10x ·a1) = lg10 = 1,所以 x = 0,故选(B).3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg61,所以x 1x 2=61,故选(D).4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >21,综合得21<a <1,所以选(C). 5.x = log 3121+log 3151= log 31(21×51) = log 31101= log 310,∵9<10<27,∴ 2<log 310<3,故选(D).6.由已知lga +lgb = 2,lga ·lgb =21,又(lg ba)2= (lga -lgb)2= (lga +lgb)2-4lga ·lgb = 2,故选(C).7.设3a = 4b = 6c = k ,则a = log 3k ,b= log 4k ,c = log 6k ,从而c 1= log k 6 = log k 3+21log k 4 =a 1+b 21,故c 2=a 2+b 1,所以选(B).8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,则函数u(x) = ax 2+2x+1应取遍所有正实数,当a = 0时,u(x) = 2x +1在x >-21时能取遍所有正实数;当a ≠0时,必有⎩⎨⎧≥-=∆.44,0a >a ⇒0<a ≤1.所以0≤a ≤1,故选(A).9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a = 1003.19,即a 有20位,也就是M = 20,故选(A).10.由于log 3( log 2x) = 1,则log 2x = 3,所以x = 8,因此 x21-=821-=81=221=42,故选(D). 11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(21)x <1,所以y = log a [1-(21)x]在定义域上是减函数且y >0,故选(C). 12.由-∞<x <-2知,1-21+x >1,所以a >1,故选(D). 二、填空题13.21a +23b 14.b <a <c . 15.-2. 16.21<x ≤1 提示: 13.lg 54=21lg(2×33) =21( lg2+3lg3) =21a +23b . 14.0<a = log 7.00.8<log 7.00.7 = 1,b = log 1.10.9<0,c = 1.19.0>1.10= 1,故b <a <c .15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-, ∴log 12-(3+22) =log12-(2-1)2-=-2.16.)(1x f-= log 2x (0<x ≤1=,y =)12(1--x f的定义域为0<2x -1≤1,即21<x ≤1为所求函数的定义域.二、解答题17.由lgx = a ,lgy = b ,lgz = c ,得x = 10a ,y = 10b ,z = 10c ,所以x cb 11+·y ac 11+·x ba 11+=10)()()(ca cb b a bc a c a b +++++=10111---=103-=10001. 18.由已知得,⎩⎨⎧=-=+.,q ab p b a又lg(a +b) = lga +lgb ,即a +b = ab , 再注意到a >0,b >0,可得-p = q >0, 所以p 和q 满足的关系式为p +q = 0且q >0. 19.由a 2-2ab -9b 2= 0,得(b a )2-2(ba)-9 = 0, 令ba= x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9,∴lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2) = lg 22221546bab a b ab a ++-+= lg 154622++-+x x x x = lg 154)92(6)92(+++-++x x x x= lg)4(6)1(3++x x = lg )4(21++x x = lg )4101(21101++++= lg 1010=-21.20.由log 2[ log 21( log 2x)] = 0得,log 21( log 2x)= 1,log 2x =21,即x = 221;由log 3[ log 31( log 3y)] = 0得,log 31( log 3y) = 1,log 3y =31,即y =331;由log 5[ log 51( log 5z)] = 0得,log 51( log 5z) = 1,log 5z =51,即z =551.∵y =331= 362= 961,∴x = 221= 263= 861,∴y >x , 又∵x = 221= 2105= 32101,z = 551= 5102= 25101,∴x >z . 故y >x >z .21.为使函数有意义,需满足a -a x >0,即a x <a ,当注意到a >1时,所求函数的定义域为(-∞,1),又log a (a -a x )<log a a = 1,故所求函数的值域为(-∞,1). ⑵设x 1<x 2<1,则a -a 1x >a -a2x ,所以)x (1f -)x (2f = log a (a -a1x )-log a (a -a2x )>0,即)x (1f >)x (2f .所以函数)(x f 为减函数. ⑶易求得)(x f 的反函数为)(1x f -= log a (a -a x) (x <1),由)2(21--x f >)(x f ,得log a (a -a)2(2-x )>log a (a -a x ),∴a)2(2-x <a x ,即x 2-2<x ,解此不等式,得-1<x <2,再注意到函数)(x f 的定义域时,故原不等式的解为-1<x <1. 22.要使)(x f <0,因为对数函数y = log 21x 是减函数,须使a x 2+2(ab)x-b x 2+1>1,即a x 2+2(ab)x -b x 2>0,即a x 2+2(ab)x +b x 2>2b x 2,∴(a x +b x )2>2b x 2, 又a >0,b >0,∴a x +b x >2b x ,即a x >(2-1)b x ,∴(ba )x>2-1. 当a >b >0时,x >log ba (2-1);当a =b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).综上所述,使)(x f <0的x 的取值范围是: 当a >b >0时,x >log ba (2-1);当a = b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).。
高中数学 第四章 指数函数与对数函数 4.4 对数函数一课一练(含解析)新人教A版必修第一册-新人教
第四章指数函数与对数函数4.4对数函数第1课时对数函数的概念及图像与性质 考点1对数函数的概念1.(2019·某某某某一中高一期中)与函数y =10lg(x -1)相等的函数是()。
A.y =(√x -1)2B.y =|x -1|C.y =x -1D.y =x 2-1x+1 答案:A 解析:y =10lg(x -1)=x -1(x >1),而y =(√x -12=x -1(x >1),故选A 。
2.(2019·某某公安一中单元检测)设集合A ={x |y =lg x },B ={y |y =lg x },则下列关系中正确的是()。
A.A ∪B =AB.A ∩B =⌀C.A =BD.A ⊆B 答案:D解析:由题意知集合A ={x |x >0},B ={y |y ∈R},所以A ⊆B 。
3.(2019·某某南安一中高一第二阶段考试)设函数f (x )={x 2+1,x ≤1,lgx ,x >1,则f (f (10))的值为()。
A.lg101B.1 C.2D.0 答案:C解析:f (f (10))=f (lg10)=f (1)=12+1=2。
4.(2019·东风汽车一中月考)下列函数是对数函数的是()。
A.y =log a (2x )B.y =lg10xC.y =log a (x 2+x )D.y =ln x 答案:D解析:由对数函数的定义,知D 正确。
5.(2019·某某调考)已知f (x )为对数函数,f (12)=-2,则f (√43)=。
答案:43解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =√2,∴f (x )=lo g √2x ,∴f (√43)=log √2√43=log 2(√43)2=log 2243=43。
6.(2019·某某中原油田一中月考)已知函数f (x )=log 3x ,则f (√3)=。
2024_2025学年新教材高中数学第四章对数运算和对数函数单元整合一课一练含解析北师大版必修第一册
第四章对数运算与对数函数单元整合1.☉%¥¥¥291#1%☉(2024·安阳一中高一段考)已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x,x >1},则A ∩B =( )。
A.{y |0<y <12} B.{y |0<y <1} C.{y |12<y <1} D.⌀答案:A 解析:由题意,依据对数函数的性质,可得集合A ={y |y =log 2x ,x >1}={y |y >0},依据指数函数的性质,可得集合B ={y |y =(12)x,x >1}={y |0<y <12}, 所以A ∩B ={y |0<y <12}。
故选A 。
2.☉%5*678##@%☉(2024·宜宾高三诊断)若函数f (x )=2a x +m-n (a >0且a ≠1)的图像恒过点(-1,4),则m +n 等于( )。
A.3 B.1 C.-1 D.-2 答案:C解析:由题意,函数f (x )=2a x +m -n (a >0且a ≠1)的图像恒过点(-1,4),∴m -1=0且2·a m -1-n =4,解得m =1,n =-2,∴m +n =-1。
故选C 。
3.☉%**91¥3#5%☉(2024·成都七中高一期中)函数f (x )=√x (x -1)-ln x 的定义域为( )。
A.{x |x >0} B.{x |x ≥1}C.{x |x ≥1或x <0}D.{x |0<x ≤1} 答案:B解析:∵f (x )有意义,∴{x (x -1)≥0,x >0,解得x ≥1,∴f (x )的定义域为{x |x ≥1}。
故选B 。
4.☉%#9@¥8¥46%☉(2024·成都七中高一期中)已知幂函数f (x )=x a(a 是常数),则( )。
高中数学 第四章 指数函数与对数函数 4.3 对数一课一练(含解析)新人教A版必修第一册-新人教A版
第四章指数函数与对数函数4.3对数第1课时对数的概念和运算性质 考点1对数的概念1.(2019·某某枝江一中月考)有下列说法: ①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫作常用对数; ④以e 为底的对数叫作自然对数。
其中正确的个数为()。
A.1B.2C.3D.4 答案:C解析:①③④正确,②不正确,只有a >0且a ≠1时,a x=N 才能化为对数式。
2.(2019·某某某某高一检测)下列指数式与对数式互化不正确的一组是()。
A.e 0=1与ln1=0 B.log 39=2与912=3 C.8-13=12与log 812=-13 D.log 77=1与71=7 答案:B解析:log 39=2化为指数式为32=9,故选B 。
3.(2019·某某四中月考)在b =log a-2(5-a )中,实数a 的取值X 围是()。
A.(-∞,2)∪(5,+∞)B.(2,5) C.(2,3)∪(3,5)D.(3,4) 答案:C解析:由对数的定义知{5-a >0,a -2>0,a -2≠1,解得2<a <3或3<a <5。
4.(2019·某某一中高一期中)若log a √b 7=c (a >0,且a ≠1,b >0),则有()。
A.b =a 7cB.b 7=a cC.b =7a cD.b =c 7a答案:A解析:∵log a √b 7=c ,∴a c =√b 7,∴(a c )7=(√b 7)7,∴a 7c=b 。
5.(2019·某某某某一中模块测试)已知a 23=49(a >0),则lo g 23a =()。
A.2B.3C.12D.13答案:B解析:由a 23=49,得a =(49)32=(23)3, ∴lo g 23a =lo g 23(23)3=3。
6.(2019·某某二中单元测试)若a >0,且a ≠1,c >0,则将a b=c 化为对数式为()。
高中数学《对数与对数函数》同步练习3新人教A版必修1
对数一、选择题.1.指数式b c =a (b >0,b ≠1)所对应的对数式是A .log c a =b B .log c b =a C .log a b =c D .log b a =c2.已知ab >0,下面四个等式中,正确命题的个数为①lg (ab )=lg a +lg b②lg b a =lg a -lg b ③b a b a lg )lg(212④lg (ab )=10log 1ab A .0 B .1 C.2 D .3 3.已知x =2+1,则lo g 4(x 3-x -6)等于A .23B .45 C .0 D .214.已知m >0是10x =lg (10m )+lgm 1,则x 的值为A .2B .1C .0D .-1 5.若log a b ·log 3a =5,则b 等于A .a 3 B .a 5 C .35 D .53二、填空题.6.对数式log a -2(5-a )=b 中,实数a 的取值范围是__________.7.(log 43+log 83)(log 32+log 92)-log 42132=__________.8.满足等式lg (x -1)+lg (x -2)=lg2的x 集合为三、解答题.9.求log 2.56.25+lg 1001+ln e +3log 122的值.10.利用“lg x 1=lg x 2的充要条件x 1=x 2>0”,求满足等式2lg (3x -2)=lg x +lg (3x +2)的实数x 的值.11.已知f (x )=x 2+(2+lg a )x +lg b ,f (-1)=-2且f (x )≥2x 恒成立,求a 、b 的值.对数函数一、选择题.1.图中曲线是对数函数y =log a x 的图象,已知a 取101,53,54,3四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为A .101,53,34,3B .53,101,34,3C .101,53,3,34D .53,101,3,342.函数y =)12(log 21x 的定义域为A .(21,+∞)B .[1,+∞)C .(21,1]D .(-∞,1]3.函数y =lg (x12-1)的图象关于A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称4.已知031log 31log b a ,则a 、b 的关系是A .1<b <aB .1<a <bC .0<a <b <1 D.0<b <a <1 5.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为A .2B .2C .π-2D .2或2二、填空题.6. f (x )=)12(log 12xa 在(-21,0)上恒有f (x )>0,则a 的取值范围_______.7. log a 32<1,则a 的取值范围是_____.8.函数f (x )=|lg x |,则f (41),f (31),f (2)的大小关系是__________.9.函数f (x )=x 2-2ax +a +2,若f (x )在[1,+∞)上为增函数,则a 的取值范围是__________,若f (x )在[0,a ]上取得最大值3,最小值2,则a =__________.三、解答题.10. m >1,试比较(lg m )0.9与(lg m )0.8的大小.11.已知f (x )=(3-2x -x 2)21,求y =f (lg x )的定义域、值域、单调区间.12.已知函数f (x )=log a (a -a x )且a >1,(1)求函数的定义域和值域;(2)讨论f (x )在其定义域上的单调性.对数参考答案一、1.D 2.B 3.B 4.C 5.C二、6.(2,3)∪(3,5)7.258.{3}三、9.21310.x =211.解:由f (-1)=-2得:1-(2+lg a )+lg b =-2即lg b =lg a -1 ①101a b 由f (x )≥2x 恒成立,即x 2+(lg a )x +lg b ≥0 ∴lg 2a -4lg b ≤0,把①代入得,lg 2a -4lg a +4≤0,(lg a -2)2≤0∴lg a =2,∴a =100,b =10对数函数参考答案一、1.A 2.C 3.C 4.D 5.D二、6.-2<a <-1或1<a <27.a >1或0<a <328.f (41)>f (31)>f (2)9.(-∞,1] 1三、10.解:当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.11.定义域[3101,10],值域[0,2],增区间[3101,101],减区间[101,10]12.(1)定义域为(-∞,1),值域为(-∞,1)(2)解:设1>x 2>x 1∵a >1,∴12x x a a ,于是a -2x a <a -1x a 则log a (a -a 2x a )<log a (a -1x a )即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数。
对数与对数函数练习题及答案.doc
1、 A 、 B 、5a — 2 C 、3Q —(1 + Q )2D 、 3ci — /2、 2购肱-喝N,则导的值为( A, 3、 ]_4已知尤2 + >2 =],尤〉0, y 〉0 ,且 log 。
(] + 尤)=m, log 。
B 、4C 、1D 、4 或 1=〃,则log :等于(A、4、r 1/ C 、 —[m + n2V如果方程lg 2x + (lg5 + lg7)lgx + lg5 1g7=0的两根是a,f3,则a”D 、-(m-n 2VA 、 Ig5 1g7B 、lg35 C 、35 D 、 1 35 5、 A、B、C、12V2 D、 13^36、 函数y = lg A 、 x 轴对称B 、y 轴对称 C、原点对称D、 直线y = x 对称7、 A、|,ljU(l,+c o) B 、 C 、D、 1—,+co8、 A、 B 、[8,+oo) C、 D、 [3,+00)A 、m>n>\B 、n>m>\对数与对数函数同步练习一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只 有一项是符合题目要求的)已知3" =2,那么log 38-21og 36用。
表示是( )已知 log 7[log 3(log 2 X )] = 0 ,那么 X 2 等于函数y = log (2x —i )丁3尤- 2的定义域是(函数y = log,(x 2-6x + 17)的值域是(29、若log m 9<log…9<0,那么皿〃满足的条件是(I。
、log — < 1 >则。
的取值范围是( 嶷3A、[o,i]u(l,+°°)B、II、下列函数中,在(0,2)±为增函数的是A、y = log, (x +1)B 、2c、y - log—D^ y = log2 V-r2-ly = log ] (x2—4x + 5)12、已知g(x) = log」x+l| (a〉0且a? 1)在(一1,0)上有巴⑴〉。
高中数学人教A版必修第一册一课一练:4.3对数
新20版练B1数学人教A 版4.3对数第四章 指数函数与对数函数4.3 对数第1课时 对数的概念和运算性质考点1 对数的概念1.(2019·湖北枝江一中月考)有下列说法: ①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫作常用对数; ④以e 为底的对数叫作自然对数。
其中正确的个数为( )。
A.1B.2C.3D.4 答案:C解析: ①③④正确,②不正确,只有a >0且a ≠1时,a x =N 才能化为对数式。
2.(2019·辽宁盘锦高一检测)下列指数式与对数式互化不正确的一组是( )。
A.e 0=1与ln 1=0 B.log 39=2与912 =3 C.8-13=12与log 812=-13D.log 77=1与71=7 答案:B解析: log 39=2化为指数式为32=9,故选B 。
3.(2019·成都四中月考)在b =log a -2(5-a )中,实数a 的取值范围是( )。
A.(-∞,2)∪(5,+∞) B.(2,5) C.(2,3)∪(3,5) D.(3,4) 答案:C解析: 由对数的定义知{5-a >0,a -2>0,a -2≠1,解得2<a <3或3<a <5。
4.(2019·兰州一中高一期中)若log a √b 7=c (a >0,且a ≠1,b >0),则有( )。
A.b =a 7c B.b 7=a c C.b =7a c D.b =c 7a 答案:A解析: ∵log a √b 7=c ,∵a c =√b 7,∵(a c )7=(√b 7)7,∵a 7c =b 。
5.(2019·云南大理一中模块测试)已知a 23=49(a >0),则lo g 23a =( )。
A.2B.3C.12D.13 答案:B解析: 由a 23=49,得a =(49)32=(23)3,∵lo g 23a =lo g 23(23)3=3。
新教材高中数学4.3对数函数4.3.1对数函数的概念与图像一课一练(含解析)北师大版必修一
第四章对数运算与对数函数§3对数函数课时1对数函数的概念与图像知识点1 对数函数的概念1.☉%#4#52##0%☉(2020·吉安一中月考)下列函数中是对数函数的是( )。
A.y =lo g 14x B.y =lo g 14(x +1)C.y =2lo g 14x D.y =lo g 14x +1答案:A解析:形如y =log a x (a >0且a ≠1)的函数才是对数函数,只有A 是对数函数,故选A 。
2.☉%524@¥#5¥%☉(2020·安庆一中检测)对数函数的图像过点M (16,4),则此对数函数的解析式为( )。
A.y =log 4x B.y =lo g 14xC.y =lo g 12x D.y =log 2x答案:D解析:设对数函数的解析式为y =log a x (a >0且a ≠1),由于对数函数的图像过点M (16,4),所以4=log a 16,得a =2。
所以对数函数的解析式为y =log 2x 。
故选D 。
3.☉%3@57*5#¥%☉(2020·白城一中月考)函数y =log (a -2)(5-a )中,实数a 的取值范围是 。
答案:(2,3)∪(3,5)解析:由对数函数的定义可知{a -2>0,a -2≠1,5-a >0,即{a >2,a ≠3,a <5。
因此2<a <5且a ≠3。
知识点2 反函数4.☉%7*1**2@8%☉(2020·九江一中月考)函数y =log 3x 的定义域为(0,+∞),则其反函数的值域是( )。
A.(0,+∞) B.R C.(-∞,0) D.(0,1) 答案:A解析:反函数的值域为原函数的定义域(0,+∞)。
故选A 。
5.☉%¥9*#6#70%☉(2020·石门一中月考)设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a = 。
对数函数性质及练习(有答案)
对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________.(1)y =log (a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较(3)底数a对对数函数的图象的影响①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a ,43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( )A 43,35,110B ,43,110,35C .43,35,110 D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110.答案:A点技巧 根据图象判断对数函数的底数大小的方法 (1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. (2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域; ②互为反函数的两个函数的图象关于直线y =x 对称. (3)求已知函数的反函数,一般步骤如下: ①由y =f (x )解出x ,即用y 表示出x ; ②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12x C .12log x D .2x -2解析:因为函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x , 又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x . 答案:A 【例3-2】函数f (x )=3x(0<x ≤2)的反函数的定义域为( )A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞) 解析:∵ 0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f(x)的反函数的定义域为(1,9].答案:B【例3-3】若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点( ) A.(5,1) B.(1,5) C.(1,1) D.(5,5)解析:由于原函数与反函数的图象关于直线y=x对称,而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图象必经过点(5,1).答案:A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y=log a x(a>0,且a≠1)中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f(m)=n或图象过点(m,n)等等.通常利用待定系数法求解,设出对数函数的解析式f(x)=log a x(a>0,且a≠1),利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m=n,这时先把对数式log a m=n化为指数式的形式a n=m,把m化为以n为指数的指数幂形式m=k n(k>0,且k≠1),则解得a=k>0.还可以直接写出1na m=,再利用指数幂的运算性质化简1nm.例如:解方程log a4=-2,则a-2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a=±.又a>0,所以12a=.当然,也可以直接写出124a-=,再利用指数幂的运算性质,得11212214(2)22a---====.【例4-1】已知f(e x)=x,则f(5)=( )A.e5B.5e C.ln 5 D.log5e解析:(方法一)令t=e x,则x=ln t,所以f(t)=ln t,即f(x)=ln x.所以f(5)=ln 5.(方法二)令e x=5,则x=ln 5,所以f(5)=ln 5.答案:C【例4-2】已知对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,试求f(3)的值.分析:设出函数f(x)的解析式,利用待定系数法即可求出.解:设f(x)=log a x(a>0,且a≠1),∵对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,∴11log299af⎛⎫==⎪⎝⎭.∴a2=19.∴a=11222111933⎡⎤⎛⎫⎛⎫==⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f(x)=13log x.∴f(3)=111331log 3log3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f(x)的反函数的图象过点(2,9),且f(b)=12,试求b的值.解:设f(x)=log a x(a>0,且a≠1),则它的反函数为y=a x(a>0,且a≠1),由条件知a2=9=32,从而a=3.于是f(x)=log3x,则f(b)=log3b=12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则: ①分式中分母不等于零;②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集. 【例5】求下列函数的定义域.(1)y =log 5(1-x );(2)y =log (2x -1)(5x -4);(3)y=.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解. 解:(1)要使函数有意义,则1-x >0,解得x <1, 所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y=的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下: ①分解成y =log a u ,u =f (x )这两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4. 又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a>0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2. 答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象. 解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况: (1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小. 要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba<b,∴0<log bba<1.由log b a-log bba=2logbab,∵a2>b>1,∴2ab>1.∴2logbab>0,即log b a>log bba.∴log a b>log b a>log b ba>log aab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a>0,且a≠1时,有①log a f(x)=log a g(x)⇔f(x)=g(x)(f(x)>0,g(x)>0);②当a>1时,log a f(x)>log a g(x)⇔f(x)>g(x)(f(x)>0,g(x)>0);③当0<a<1时,log a f(x)>log a g(x)⇔f(x)<g(x)(f(x)>0,g(x)>0).(2)常见的对数不等式有三种类型:①形如log a f(x)>log a g(x)的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a f(x)>b的不等式,应将b化为以a为对数的对数式的形式,再借助函数y=log a x的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集. ④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33xx x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a . ∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝⎛⎭⎫-∞,32.设u =3-2x ,x ∈⎝⎛⎭⎫-∞,32,∵u =3-2x 在⎝⎛⎭⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )在⎝⎛⎭⎫-∞,32上是减函数.∴函数y =log 2(3-2x )的单调减区间是⎝⎛⎭⎫-∞,32.【例10-1】求函数y =log a (a -a x)的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x)在(-∞,1)上递减. (2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x)在(1,+∞)上递减. 综上所述,函数y =log a (a -a x)在其定义域上递减.析规律 判断函数y =log a f (x )的单调性的方法 函数y =log a f (x )可看成是y =log a u 与u=f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围. 解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2au ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩ ∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )=log )a x +log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1ax x +-(a >0,且a ≠1). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11x x+->0,得-1<x <1,故函数f (x )的定义域为(-1,1). (2)∵f (-x )=1log 1a x x -+=1log 1a x x+--=-f (x ), 又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数. (3)当a >1时,由1log 1a x x +->0=log a 1,得11x x+->1,解得0<x <1; 当0<a <1时,由1log 1ax x +->0=log a 1,得0<11x x +-<1,解得-1<x <0. 故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y(单位:km/s)关于燃料重量x(单位:吨)的函数关系式为y=k ln(m+x)-k)+4ln 2(k≠0),其中m是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m吨时,火箭的最大速度是4 km/s.(1)求y=f(x);(2)已知长征二号F型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8 km/s,求装载的燃料重量(e=2.7,精确到0.1).解:(1)由题意得当x=1)m时,y=4,则4=k ln[m+-1)m]-k)+4ln 2,解得k=8.所以y=8ln(m+x)-)+4ln 2,即y=8ln m x m+.(2)由于m+x=479.8,则m=479.8-x,令479.888ln479.8x=-,解得x≈302.1.故火箭装载的燃料重量约为302.1吨.。
对数函数练习题(有答案)
对数函数(一)练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <1 4.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f(x)=log12()x3-ax 上单调递减,则实数a 的取值范围是 ( ) A .[9,12]B .[4,12]C .[4,27]D .[9,27] 9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x-x 的图象.(2)函数,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为.13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a2-3)x 的图象在x 轴的上方,则a 的取值范围为________. 15.已知 0<a <1,0<b <1,且a logb(x -3)<1,则 x 的取值范围为. 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小. 18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C2.B3.A4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4) 16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b. 18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2). 19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lge lg0.8907当x =720时,h =1000lge lg0.8907ln 720760=1000lge lg0.8907·ln0.9473=1000lge lg0.8907·lg0.9473lge≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2x ∈(3,4)的值域.∵g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2=log 2∈∴a ∈.。
高一数学对数函数练习(含答案)-学习文档
高一数学对数函数练习(含答案)高一数学对数函数练习高一数学对数函数1.(2019年高考天津卷)设a=log54,b=(log53)2,c=log45,则()A.aC.a解析:选D.a=log541,log532.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+)上()A.递增无最大值B.递减无最小值C.递增有最大值D.递减有最小值解析:选A.设y=logau,u=|x-1|.x(0,1)时,u=|x-1|为减函数,a1.x(1,+)时,u=x-1为增函数,无最大值.f(x)=loga(x-1)为增函数,无最大值.3.已知函数f(x)=ax+logax(a0且a1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为()A.12B.14C.2D.4解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.4.函数y=log13(-x2+4x+12)的单调递减区间是________. 解析:y=log13u,u=-x2+4x+12.令u=-x2+4x+120,得-2x(-2,2]时,u=-x2+4x+12为增函数,y=log13(-x2+4x+12)为减函数.答案:(-2,2]1.若loga21,则实数a的取值范围是()A.(1,2)B.(0,1)(2,+)C.(0,1)(1,2)D.(0,12)解析:选B.当a1时,loga22.若loga2A.0C.a1D.b1解析:选B.∵loga23.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是()A.[22,2]B.[-1,1]C.[12,2]D.(-,22][2,+)解析:选A.函数f(x)=2log12x在(0,+)上为减函数,则-12log12x1,可得-12log12x12,X k b 1 . c o m解得222.4.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为()A.14B.12C.2D.4解析:选B.当a1时,a+loga2+1=a,loga2=-1,a=12,与a 当0loga2=-1,a=12.5.函数f(x)=loga[(a-1)x+1]在定义域上()A.是增函数B.是减函数C.先增后减D.先减后增解析:选A.当a1时,y=logat为增函数,t=(a-1)x+1为增函数,f(x)=loga[(a-1)x+1]为增函数;当0f(x)=loga[(a-1)x+1]为增函数.6.(2009年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则()A.acB.abC.cbD.ca解析:选B.∵1∵0又c-b=12lg e-(lg e)2=12lg e(1-2lg e)=12lg elg10e20,cb,故选B.7.已知0解析:∵0又∵0答案:38.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.解析:由图象关于原点对称可知函数为奇函数,所以f(-x)+f(x)=0,即log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,所以1-x2a2-x2=1a=1(负根舍去).答案:19.函数y=logax在[2,+)上恒有|y|1,则a取值范围是________.解析:若a1,x[2,+),|y|=logaxloga2,即loga21,1 答案:1210.已知f(x)=6-ax-4ax1logax x1是R上的增函数,求a的取值范围.解:f(x)是R上的增函数,则当x1时,y=logax是增函数,a1.又当x1时,函数y=(6-a)x-4a是增函数.6-a0,a6.又(6-a)1-4aloga1,得a65.656.综上所述,656.11.解下列不等式.(1)log2(2x+3)log2(5x-6);(2)logx121.解:(1)原不等式等价于2x+305x-602x+35x-6,解得65所以原不等式的解集为(65,3).(2)∵logx12log212log2x1+1log2x0log2x+1log2x-12-1原不等式的解集为(12,1).12.函数f(x)=log12(3x2-ax+5)在[-1,+)上是减函数,求实数a的取值范围.解:令t=3x2-ax+5,则y=log12t在[-1,+)上单调递减,故t=3x2-ax+5在[-1,+)单调递增,且t0(即当x=-1时t0). 因为t=3x2-ax+5的对称轴为x=a6,所以a6-18+aa-8-8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数3
一、选择题
1、已知221,0,0x y x y +=>>,且1
log (1),log ,log 1y a a
a x m n x
+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1
2
m n -
2、函数2lg 11y x ⎛⎫
=-
⎪+⎝⎭
的图像关于 ( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称
3、函数(21)log x y -=的定义域是 ( ) A 、()2,11,3⎛⎫+∞
⎪⎝⎭ B 、()1,11,2⎛⎫
+∞ ⎪⎝⎭
C 、2,3⎛⎫+∞
⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭
4、函数212
log (617)y x x =-+的值域是 ( )
A 、R
B 、[)8,+∞
C 、(),3-∞-
D 、[)3,+∞ 5、2
log 13
a
<,则a 的取值范围是 ( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭ B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫
+∞ ⎪ ⎪⎝⎭⎝⎭
6、下列函数中,在()0,2上为增函数的是 ( )
A 、12
log (1)y x =+ B 、2
log y =C 、21log y x = D 、2
log (45)y x x =-+
7、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1
()x f x a +=是( )
A 、在(),0-∞上是增加的
B 、在(),0-∞上是减少的
C 、在(),1-∞-上是增加的
D 、在(),0-∞上是减少的
二、填空题:
8、函数(-1)log (3-)x y x =的定义域是
9、函数)
()lg
f x x =是 (奇、偶)函数。
10、已知函数f(x)=log 0.5 (-x 2+4x+5),则f(3)与f (4)的大小关系为 。
11、函数y=log 2
1(x 2-5x+17)的值域为 。
12、若函数y=lg[x 2+(k+2)x+4
5
]的定义域为R ,则k 的取值范围是 。
三、解答题
13、已知函数1010()1010x x
x x
f x ---=+,判断()f x 的奇偶性和单调性。
14、已知函数2
2
2(3)lg 6
x f x x -=-,
(1)求()f x 的定义域; (2)判断()f x 的奇偶性。
15、已知函数232
8()log 1
mx x n
f x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。
参考答案
选择题
1、D ;
2、C ;
3、A ;
4、C ;
5、A ;
6、D ;
7、C 填空题
8、{}
132x x x <<≠且
9、奇,)(),()1lg(11lg )1lg()(222x f x f x x x
x x x x f R x ∴-=-+-=-+=++=-∈且 为奇
函数。
10、f(3)<f(4) 11、(-3,-∞)
12、-2525-<<-k Ks5u 三、解答题
13、解:(1)221010101
(),1010101x x x x
x
x f x x R ----==∈++,221010101
()(),1010101
x x x x x x f x f x x R -----==-=-∈++
∴()f x 是奇函数
(2)2122101
(),.,(,)101
x x
f x x R x x -=∈∈-∞+∞+设,且12x x <, 则12121
21222221222221011012(1010)()()0101101(101)(101)
x x x x x x x x f x f x ----=-=<++++,12
22(10 10)x x < ∴()f x 为增函数。
14、解:(1)∵()()222
2233(3)lg lg 633
x x f x x x -+-==---,∴3()lg 3x f x x +=-,又由062
2>-x x 得233x ->, ∴ ()f x 的定义域为()3,+∞。
(2)∵()f x 的定义域不关于原点对称,∴()f x 为非奇非偶函数。
15、解:由2
328()log 1
mx x n f x x ++=+,得22831y
mx x n x ++=+,即()23830y y m x x n --+-=
Ks5u
∵,644(3)(3)0y y x R m n ∈∴∆=---≥,即23()3160 y y m n mn -++- ≤
由02y ≤≤,得139y
≤≤,由根与系数的关系得19
1619m n mn +=+⎧⎨-=⎩
,解得5m n ==。