(理数)广州市2013届高三年级调研测试
最新广东省广州市届高三年级调研测试理科数学试题详细解析
广东省广州市2013届高三年级调研测试理科数学试题详细解析广东省广州市2013届高三年级调研测试理科数学试题详细解析一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知«Skip Record If...»为虚数单位,则复数«Skip Record If...»对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合«Skip Record If...»,集合«Skip Record If...»,则«Skip Record If...»A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»3.已知函数«Skip Record If...», 则«Skip Record If...»的值是A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»4.设向量«Skip Record If...»«Skip Record If...»,«Skip RecordIf...»«Skip Record If...»,则“«Skip Record If...»”是“«Skip Record If...»//«Skip Record If...»”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数«Skip Record If...»的图象向右平移«Skip Record If...»单位后与函数«Skip Record If...»的图象重合,则«Skip Record If...»的解析式是A .«Skip Record If...»«Skip Record If...»B .«Skip Record If...»«Skip Record If...»C .«Skip Record If...»«Skip Record If...»D .«Skip Record If...»«Skip Record If...»6.已知四棱锥«Skip Record If...»的三视图如图1所示,则四棱锥«Skip Record If...»的四个侧面中面积最大的是A .«Skip Record If...»B .«Skip Record If...»C .«Skip Record If...» D .7.在区间«Skip Record If...»和«Skip Record If...»分别取一个数,记为«Skip Record If...»,则方程«Skip Record If...»表示焦点在«Skip Record If...»轴上且离心率小于«Skip Record If...»的椭圆的概率为A .«Skip Record If...»B .«Skip Record If...»C .«Skip Record If...»D .«Skip Record If...»8.在R 上定义运算).1(:y x y x -=⊗⊗若对任意«Skip Record If...»,不等式«Skip Record If...»都成立,则实数«Skip Record If...»的取值范围是 A .«Skip Record If...» B .«Skip Record If...» C .«Skip Record If...»D .«Skip Record If...»二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)俯视图侧视图正视图433图19. 已知等差数列«Skip Record If...»的前«Skip Record If...»项和为«Skip Record If...»,若«Skip Record If...»,则«Skip Record If...»的值为 . 10.若«Skip Record If...»的展开式的常数项为84,则«Skip Record If...»的值为 .11.若直线«Skip Record If...»是曲线«Skip Record If...»的切线, 则实数«Skip Record If...»的值为 . 12.圆«Skip Record If...»上到直线«Skip Record If...»的距离为«Skip Record If...»的点的个数是 _ . 13.图2是一个算法的流程图,则输出«Skip Record If...»的值是 . (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,已知«Skip Record If...»是⊙«Skip Record If...»的一条弦,点«Skip Record If...»为«Skip Record If...»上一点,«Skip Record If...»,«Skip Record If...»交⊙«Skip Record If...»于«Skip Record If...»,若«Skip Record If...»,«Skip Record If...», 则«Skip Record If...»的长是15.(坐标系与参数方程选讲选做题)图3P CBAO已知圆«Skip Record If...»的参数方程为«Skip Record If...»«Skip Record If...»为参数), 以原点为极点,«Skip Record If...»轴的正半轴为极轴建立极坐标系,直线«Skip Record If...»的极坐标方程为«Skip Record If...», 则直线«Skip Record If...»截圆«Skip Record If...»所得的弦长是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知«Skip Record If...»的内角«Skip Record If...»的对边分别是«Skip Record If...»,且«Skip Record If...».(1) 求«Skip Record If...»的值;(2) 求«Skip Record If...»的值.17.(本小题满分12分)某市«Skip Record If...»四所中学报名参加某高校今年自主招生的学生人数如下表所示:所中学的学生当中随机抽取50名参加问卷调查.(1)问«Skip Record If...»四所中学各抽取多少名学生?(2)从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的«Skip Record If...»名学生中,从来自«Skip Record If...»两所中学的学生当中随机抽取两名学生,用«Skip Record If...»表示抽得«Skip Record If...»中学的学生人数,求«Skip Record If...»的分布列.18. (本小题满分14分)如图4,已知四棱锥«Skip Record If...»,底面«Skip Record If...»是正方形,«Skip Record If...»面«Skip Record If...»,点«Skip Record If...»是«Skip Record If...»的中点,点«Skip Record If...»是«Skip Record If...»的中点,连接«Skip Record If...»,«Skip Record If...»«Skip Record If...».(1) 求证:«Skip Record If...»面«Skip Record If...»;(2)若«Skip Record If...»,«Skip Record If...»,求二面角«Skip Record If...»的余弦值.19.(本小题满分14分)如图5, 已知抛物线«Skip Record If...»,直线物线«Skip Record If...»交于图4M NBCDAP«Skip Record If...»,«Skip Record If...»,«Skip Record If...»与«Skip Record If...»交于点«Skip Record If...».(1)求点«Skip Record If...»的轨迹方程;(2)求四边形«Skip Record If...»的面积的最小值.图520.(本小题满分14分)在数«Skip Record If...»和«Skip Record If...»之间插入«Skip Record If...»个实数,使得这«Skip Record If...»个数构成递增的等比数列,将这«Skip Record If...»个数的乘积记为«Skip Record If...»,令«Skip Record If...»,«Skip Record If...»N«Skip Record If...».(1)求数列«Skip Record If...»的前«Skip Record If...»项和«Skip Record If...»;(2)求«Skip Record If...».21.(本小题满分14分)若函数«Skip Record If...»对任意的实数«Skip Record If...»,«Skip Record If...»,均有«Skip Record If...»,则称函数«Skip Record If...»是区间«Skip Record If...»上的“平缓函数”.222N(1) 判断«Skip Record If...»和«Skip Record If...»是不是实数集R上的“平缓函数”,并说明理由;(2) 若数列«Skip Record If...»对所有的正整数«Skip Record If...»都有«Skip Record If...»,设«Skip Record If...»,求证:«Skip Record If...».【参考答案】1.A【解析】«Skip Record If...»,其对应的点为«Skip Record If...»,位于第一象限.2.D【解析】«Skip Record If...»,«Skip Record If...»,«Skip Record If...».3.B【解析】«Skip Record If...»,«Skip Record If...»4.A【解析】当«Skip Record If...»时,有«Skip Record If...»,解得«Skip Record If...»;所以«Skip Record If...»,但«Skip RecordIf...»,故“«Skip Record If...»”是“«Skip RecordIf...»”的充分不必要条件5.B【解析】逆推法,将«Skip Record If...»的图象向左平移«Skip Record If...»个单位即得«Skip Record If...»的图象,即«Skip Record If...»6.C【解析】三棱锥如图所示,«Skip Record If...»,«Skip RecordIf...»,«Skip Record If...»,«Skip Record If...»7.B【解析】方程«Skip Record If...»表示焦点在«Skip Record If...»轴且离心率小于«Skip Record If...»的椭圆时,有«Skip Record If...»,即«Skip Record If...»,化简得«Skip Record If...»,又«Skip Record If...»,«Skip Record If...»,画出满足不等式组的平面区域,如图阴影部分所示,求得阴影部分的面积为«Skip Record If...»,故«Skip Record If...»8.C【解析】由题意得«Skip Record If...»,故不等式«Skip Record If...»化为«Skip Record If...»,化简得«Skip Record If...»,故原题等价于«Skip Record If...»在«Skip Record If...»上恒成立,由二次函数«Skip Record If...»图象,其对称轴为«Skip Record If...»,讨论得«Skip Record If...»或«Skip Record If...»,解得«Skip RecordIf...»或«Skip Record If...»,综上可得«Skip Record If...»二、填空题9.«Skip Record If...»【解析】方法一、(基本量法)由«Skip Record If...»得«Skip Record If...»,即«Skip Record If...»,化简得«Skip Record If...»,故«Skip Record If...»方法二、等差数列中由«Skip Record If...»可将«Skip Record If...»化为«Skip Record If...»,即«Skip Record If...»,故«Skip Record If...»10.«Skip Record If...»【解析】«Skip Record If...»,令«Skip Record If...»,得其常数项为«Skip Record If...»,即«Skip Record If...»,解得«Skip Record If...»11.«Skip Record If...»【解析】设切点为«Skip Record If...»,由«Skip Record If...»得«Skip Record If...»,故切线方程为«Skip Record If...»,整理得«Skip Record If...»,与«Skip Record If...»比较得«Skip Record If...»,解得«Skip Record If...»,故«Skip Record If...»12.«Skip Record If...»【解析】圆方程«Skip Record If...»化为标准式为«Skip Record If...»,其圆心坐标«Skip Record If...»,半径«Skip Record If...»,由点到直线的距离公式得圆心到直线«Skip Record If...»的距离«Skip Record If...»,由图所示,圆上到直线«Skip Record If...»的距离为«Skip Record If...»的点有4个.13.«Skip Record If...»【解析】由题意«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,…P OCB AD«Skip Record If...», «Skip Record If...», «Skip Record If...», «Skip Record If...»;以上共«Skip Record If...»行,输出 «Skip Record If...»14.«Skip Record If...»如图,因为«Skip Record If...» , 所以«Skip Record If...»是弦«Skip Record If...»中点,由相交弦定理知«Skip Record If...»,即«Skip Record If...»,故«Skip Record If...».15.«Skip Record If...»圆«Skip Record If...»的参数方程化为平面直角坐标方程为«Skip Record If...»,直线«Skip Record If...»的极坐标方程化为平面直角坐标方程为«Skip Record If...»,如图所示,圆心到直线的距离«Skip Record If...»,故圆«Skip Record If...»截直线«Skip Record If...»所得的弦长为«Skip Record If...»三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)【解析】本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力.(1)解:∵«Skip Record If...»,依据正弦定理得:«Skip Record If...»,即«Skip Record If...»,解得«Skip Record If...»«Skip Record If...».(2)解:∵«Skip Record If...»,∴«Skip Record If...».∴«Skip Record If...»,∴«Skip Record If...»,«Skip Record If...».∵«Skip Record If...»,∴«Skip Record If...».∴«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...». 17.(本小题满分12分)【解析】本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想.(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为«Skip Record If...».∴应从«Skip Record If...»四所中学抽取的学生人数分别为«Skip Record If...».(2)解:设“从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件«Skip Record If...»,从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生的取法共有C «Skip Record If...»«Skip Record If...»种,这两名学生来自同一所中学的取法共有C «Skip Record If...»C «Skip Record If...»C «Skip Record If...»C «Skip Record If...»«Skip Record If...».∴«Skip Record If...»«Skip Record If...».答:从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为«Skip Record If...».(3) 解:由(1)知,在参加问卷调查的«Skip Record If...»名学生中,来自«Skip Record If...»两所中学的学生人数分别为«Skip Record If...».依题意得,«Skip Record If...»的可能取值为«Skip Record If...»,EMNDCBAP«Skip Record If...»«Skip Record If...»«Skip Record If...»,«Skip Record If...»«Skip Record If...»«Skip Record If...»,«SkipRecord If...»«Skip Record If...»«Skip Record If...».∴«Skip Record If...»的分布列为:18.(本小题满分14分)【解析】本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法. (1)证法1:取«Skip Record If...»的中点«Skip Record If...»,连接«Skip Record If...»,∵点«Skip Record If...»是«Skip Record If...»的中点, ∴«Skip Record If...».∵点«Skip Record If...»是«Skip Record If...»的中点,底面«SkipRecord If...»是正方形, ∴«Skip Record If...».∴«Skip Record If...».∴四边形«Skip Record If...»是平行四边形. ∴«Skip Record If...».EMND CB AP∵«Skip Record If...»平面«Skip Record If...»,«Skip RecordIf...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».证法2:连接«Skip Record If...»并延长交«Skip Record If...»的延长线于点«Skip Record If...»,连接«Skip Record If...»,∵点«Skip Record If...»是«Skip Record If...»的中点,∴«Skip Record If...»,∴点«Skip Record If...»是«Skip Record If...»的中点.∵点«Skip Record If...»是«Skip Record If...»的中点,∴«Skip Record If...».∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».证法3:取«Skip Record If...»的中点«Skip Record If...»,连接«SkipRecord If...»,∵点«Skip Record If...»是«Skip Record If...»的中点,点«SkipRecord If...»是«Skip Record If...»的中点,∴«Skip Record If...»,«Skip Record If...».∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».FEMNDCBAP ∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».∵«Skip Record If...»,«Skip Record If...»平面«Skip RecordIf...»,«Skip Record If...»平面«Skip Record If...»,∴平面«Skip Record If...»面«Skip Record If...». ∵«Skip Record If...»平面«Skip Record If...», ∴«Skip Record If...»面«Skip Record If...».(2)解法1:∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...». ∵«Skip Record If...»面«Skip Record If...», ∴«Skip Record If...».过«Skip Record If...»作«Skip Record If...»,垂足为«Skip Record If...»,连接«Skip Record If...»,∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,«Skip Record If...»面«Skip Record If...», ∴«Skip Record If...»面«Skip Record If...». ∵«Skip Record If...»面«Skip Record If...», ∴«Skip Record If...».∴«Skip Record If...»是二面角«Skip Record If...»的平面角.在«Skip Record If...»«Skip Record If...»中,«Skip Record If...»,«Skip Record If...»,得«Skip Record If...», 在«Skip Record If...»«Skip Record If...»中,«Skip RecordIf...»,得«Skip Record If...», «Skip Record If...».在Rt △«Skip Record If...»中,«Skip Record If...», «Skip Record If...».∴二面角«Skip Record If...»的余弦值为«Skip Record If...».解法2:∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».在«Skip Record If...»中,«Skip Record If...»,«Skip Record If...»,得«Skip Record If...»,以点«Skip Record If...»为原点,«Skip Record If...»所在直线为«Skip Record If...»轴,«Skip Record If...»所在直线为«Skip Record If...»轴,«Skip Record If...»所在直线为«Skip Record If...»轴,建立空间直角坐标系«Skip Record If...», 则«Skip Record If...».∴«Skip Record If...»,«Skip Record If...».设平面«Skip Record If...»的法向量为«Skip Record If...»,由«Skip Record If...», «Skip Record If...»,得«Skip Record If...»令«Skip Record If...»,得.If...»∴是平面«Skip Record If...»是平面«Skip Record If...»的一个法向量,又«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip«Skip Record If...».Record If...»∴二面角«Skip Record If...»的余弦值为.«Skip Record If...»19. (本小题满分14分)【解析】本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识.解法一:,(1)解:设«Skip Record If...»∵«Skip Record If...»,∴«Skip Record If...»是线段«Skip Record If...»的中点.,①∴«Skip Record If...». ②«Skip Record If...»∵«Skip Record If...»,∴«Skip Record If...»..∴«Skip Record If...»依题意知,«Skip Record If...»∴«Skip Record If...». ③把②、③代入①得:«Skip Record If...»,即«Skip Record If...».∴点«Skip Record If...»的轨迹方程为«Skip Record If...».(2)解:依题意得四边形«Skip Record If...»是矩形, ∴四边形«Skip Record If...»的面积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».∵«Skip Record If...»,当且仅当«Skip Record If...»时,等号成立,∴«Skip Record If...».∴四边形«Skip Record If...»的面积的最小值为«Skip Record If...».解法二:(1)解:依题意,知直线«Skip Record If...»的斜率存在,设直线«Skip Record If...»的斜率为«Skip Record If...»,由于«Skip Record If...»,则直线«Skip Record If...»的斜率为«Skip RecordIf...». 故直线«Skip Record If...»的方程为«Skip Record If...»,直线«Skip Record If...»的方程为«Skip Record If...». 由«Skip Record If...»消去«Skip Record If...»,得«Skip Record If...».解得«Skip Record If...»或«Skip Record If...».∴点«Skip Record If...»的坐标为«Skip Record If...».同理得点«Skip Record If...»的坐标为«Skip Record If...».∵«Skip Record If...»,∴«Skip Record If...»是线段«Skip Record If...»的中点.设点«Skip Record If...»的坐标为«Skip Record If...», 则«Skip RecordIf...»,消去«Skip Record If...»,得«Skip Record If...».∴点«Skip Record If...»的轨迹方程为«Skip Record If...».(2)解:依题意得四边形«Skip Record If...»是矩形,∴四边形«Skip Record If...»的面积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».当且仅当«Skip Record If...»,即«Skip Record If...»时,等号成立.∴四边形«Skip Record If...»的面积的最小值为«Skip Record If...». 20. (本小题满分14分)【解析】本小题主要考查等比数列的通项公式、数列的前«Skip Record If...»项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力.(1)解法1:设«Skip Record If...»构成等比数列,其中«Skip Record If...»,依题意,«Skip Record If...», ①«Skip Record If...», ②由于«Skip Record If...»,①«Skip Record If...»②得«Skip Record If...».«Skip Record If...»∵«Skip Record If...»,∴«Skip Record If...».,∵«Skip Record If...»是首项为«Skip Record If...»,公比为«Skip ∴数列«Skip Record If...»Record If...»的等比数列..∴«Skip Record If...»«Skip Record If...»解法2: 设«Skip Record If...»构成等比数列,其中«Skip Record If...»,公比为«Skip Record If...»,,即«Skip Record If...». 依题意,得则«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».«Skip Record If...»«Skip Record If...»,∵«Skip Record If...»是首项为«Skip Record If...»,公比为«Skip ∴数列«Skip Record If...»Record If...»的等比数列..∴«Skip Record If...»«Skip Record If...»(3)解: 由(1)得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»21.(本小题满分14分)【解析】本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识.(1)解:«Skip Record If...»是R上的“平缓函数”,但«Skip RecordIf...»不是区间R的“平缓函数”;设«Skip Record If...»,则«Skip Record If...»,则«Skip Record If...»是实数集R上的增函数,不妨设«Skip Record If...»,则«Skip Record If...»,即«Skip Record If...»,则«Skip Record If...». ①又«Skip Record If...»也是R上的增函数,则«Skip Record If...»,即«Skip Record If...»,②由①、②得«Skip Record If...».,对«Skip Record If...»都成立.因此,«Skip Record If...»当«Skip Record If...»时,同理有成立«Skip Record If...»又当«Skip Record If...»时,不等式,«Skip Record If...»故对任意的实数«Skip Record If...»,«Skip Record If...»R,均有«Skip.Record If...»因此«Skip Record If...»是R上的“平缓函数”.由于«Skip Record If...»,取«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»因此,«Skip Record If...»不是区间R的“平缓函数”. (2)证明:由(1)得:«Skip Record If...»是R上的“平缓函数”,则«Skip Record If...»,所以«Skip Record If...»,而«Skip Record If...»,∴«Skip Record If...».∵«Skip Record If...»,∴«Skip Record If...».∴«Skip Record If...»«Skip Record If...»«Skip Record If...».。
广州市2013届高三年级调研测试 文数
广州市2013届高三年级调研测试数学(文科)2013.1本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(i为虚数单位)的模等于A.B.C.D.2.已知集合,集合,则A.B.C.D.3.已知函数, 则的值是A.B.C.D.4.已知等差数列的前n项和为,若,则的值为A.B.C.D.5.已知e为自然对数的底数,函数e的单调递增区间是A .B.C.D.6.设是两条不同的直线,是三个不同的平面,下列命题正确的是A.B.C.D.7.如图1,程序结束输出的值是A.B.C.D.8.已知函数,R,则是A.最小正周期为的奇函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的偶函数9.在区间和分别取一个数,记为,则方程表示焦点在轴上且离心率小于的椭圆的概率为A.B.C.D.10.在R上定义运算若对任意,不等式都成立,则实数的取值范围是A.B.C.D.二.填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.已知是奇函数,,, 则的值是 .12.已知向量,都是单位向量,且,则的值为 .13.设,定义为的导数,即,N,若的内角满足,则的值是 .(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)如图2,已知是⊙的一条弦,点为上一点,,交⊙于,若,,则的长是 .15.(坐标系与参数方程选讲选做题)已知圆的参数方程为为参数), 以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为, 则直线截圆所得的弦长是 .三.解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数.(1)求函数的单调递增区间;(2)若,求的值.17.(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图3,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求和的值;(2)计算甲班7位学生成绩的方差;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差,其中.18.(本小题满分14分)已知四棱锥的正视图是一个底边长为、腰长为的等腰三角形,图4、图5 分别是四棱锥的侧视图和俯视图.(1)求证:;(2)求四棱锥的侧面的面积.19.(本小题满分14分)已知数列的前项和为,数列是公比为的等比数列,是和的等比中项.(1)求数列的通项公式;(2)求数列的前项和.20.(本小题满分14分) 已知是二次函数,不等式的解集是,且在点处的切线与直线平行.(1)求的解析式;(2)是否存在N,使得方程在区间内有两个不等的实数根?若存在,求出的值;若不存在,说明理由.21.(本小题满分14分)已知椭圆的右焦点与抛物线的焦点重合,椭圆与抛物线在第一象限的交点为,.(1)求椭圆的方程;(2) 若过点的直线与椭圆相交于、两点,求使成立的动点的轨迹方程;(3) 若点满足条件(2),点是圆上的动点,求的最大值.广州市2013届高三年级调研测试数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2013-1-103.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.题号12345678910答案A D B C A D C C B C二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.12.13.14.15.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质、同角三角函数的基本关系、二倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力)(1)解:…………… 1分. …………… 3分由…………… 4分解得Z. …………… 5分∴的单调递增区间是Z. ………… 6分(2)解:由(1)可知,∴,得. …………… 8分∴…………… 9分…………… 10分…………… 11分. …………… 12分17.(本小题满分12分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:∵甲班学生的平均分是85,∴. …………… 1分∴. …………… 2分 ∵乙班学生成绩的中位数是83,∴. …………… 3分(2)解:甲班7位学生成绩的方差为. …… 5分(3)解:甲班成绩在90分以上的学生有两名,分别记为,…………… 6分乙班成绩在90分以上的学生有三名,分别记为. …………… 7分从这五名学生任意抽取两名学生共有10种情况:. …………… 9分其中甲班至少有一名学生共有7种情况:. ……………11分记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、三视图、几何体的侧面积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:依题意,可知点在平面上的正射影是线段的中点,连接,则平面. …………… 2分∵平面,∴. …………… 3分 ∵,平面,平面,∴平面. …………… 5分∵平面,∴. …………… 6分(2)解:依题意,在等腰三角形中,,,在R t△中,,…………… 7分过作,垂足为,连接,∵平面,平面,∴. …………… 8分∵平面,平面,,∴平面. …………… 9分∵平面,∴. …………… 10分依题意得. …………… 11分在R t△中,, …………… 12分∴△的面积为.∴四棱锥的侧面的面积为. …………… 14分19.(本小题满分14分)(本小题主要考查数列、数列求和等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)(1)解:∵是公比为的等比数列,∴. …………… 1分∴.从而,. …………… 3分∵是和的等比中项∴,解得或. …………… 4分当时,,不是等比数列,…………… 5分∴.∴. …………… 6分当时,. …………… 7分∵符合,∴. …………… 8分(2)解:∵,∴. ① …………… 9分.② …………… 10分①②得…………… 11分…………… 12分. …………… 13分∴. …………… 14分20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、方程的根等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1)解法1:∵是二次函数,不等式的解集是,∴可设,. …………… 1分. …………… 2分∵函数在点处的切线与直线平行,∴. …………… 3分 ∴,解得. …………… 4分∴. …………… 5分解法2:设,∵不等式的解集是,∴方程.∴. ① …………… 2分∵.又函数在点处的切线与直线平行,∴.∴. ② …………… 3分由①②,解得,. …………… 4分∴. …………… 5分(2)解:由(1)知,方程等价于方程.6分设,则. …………… 7分 当时,,函数在上单调递减; ……… 8分当时,,函数在上单调递增. … 9分∵, …………… 12分∴方程在区间,内分别有唯一实数根,在区间内没有实数根. (13)分∴存在唯一的自然数,使得方程在区间内有且只有两个不等的实数根.…………… 14分21.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、直线、椭圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解法1:抛物线的焦点的坐标为,准线为,设点的坐标为,依据抛物线的定义,由,得, 解得.1分∵ 点在抛物线上,且在第一象限,∴,解得. ∴点的坐标为. …………… 2分 ∵点在椭圆上, ∴. …………… 3分又,且, …………… 4分解得.∴椭圆的方程为. …………… 5分解法2: 抛物线的焦点的坐标为,设点的坐标为,.∵,∴. ① …………… 1分∵点在抛物线上,∴. ② 解①②得,.∴点的坐标为. …………… 2分在椭圆上, ∴. …………… 3分又,且, …………… 4分解得.∴椭圆的方程为. …………… 5分(2)解法1:设点、、,则..∵,∴. ① …………… 6分∵、在椭圆上, ∴上面两式相减得.②把①式代入②式得.当时,得. ③ …………… 7分设,则的坐标为.∵、、、四点共线,∴, 即. ④ …………… 8分把④式代入③式,得,化简得. …………… 9分 当时,可得点,经检验,点在曲线上.∴动点的轨迹方程为. …………… 10分解法2:当直线的斜率存在时,设直线的方程为,由消去,得.设点、、,则,.…6分∵.∴.∵,∴.∴, ①. ② …………… 7分①②得, ③ …………… 8分把③代入②化简得. (*) …………… 9分当直线的斜率不存在时,设直线的方程为,依题意, 可得点的坐标为,经检验,点在曲线上.∴动点的轨迹方程为. …………… 10分(3)解: 由(2)知点的坐标满足,即,由,得,解得. …………… 11分∵圆的圆心为,半径,∴. …………… 12分∴当时,, …………… 13分 此时,. …………… 14分。
2013广州调研理综试题及答案
试卷类型:A广州市2013届高三年级调研测试理科综合2013.01 本试卷共14页,共36小题,满分300分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
5. 本卷用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5一、单项选择题:本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,只有一个选项符合题目要求。
多选、错选均不得分。
1.下列有关细胞中化合物的叙述,正确的是A.核酸、酶、果糖、脂肪都含有C、H、O、N四种元素B.ATP中的“T”代表胸腺嘧啶C.磷脂参与构成的细胞器有线粒体、核糖体等D.DNA分子的特异性主要取决于碱基的特定排列顺序2.下列关于细胞生命历程的叙述,正确的是A.人体细胞的衰老就是人体的衰老B.细胞分化导致遗传物质发生改变C.脑细胞因缺氧而死亡的现象属于细胞坏死D.癌变细胞的呼吸速率降低、核体积增大3.下图示“比较过氧化氢在不同条件下的分解实验”。
有关分析合理的是A.本实验的因变量是不同的催化剂B.本实验的无关变量有温度和酶的用量等C.1号与3号,1号与4号可分别构成对照实验D.分析1号、2号试管的实验结果可知加热能降低反应的活化能4.下列叙述,不.正确的是A.动物细胞融合说明细胞膜具有流动性B.种群基因型频率的改变不一定会引起基因频率的改变C.PCR技术是利用DNA双链复制的原理扩增DNAD.隔离是新物种形成的必要条件和标志5.右下图是3个圆所构成的关系图,其中甲为大圆,乙和丙分别为大圆之内的小圆。
2013届广州市高三年级调研测试数学(理科)试题及参考答案详解
俯视图侧视图正视图图1广州市2013届高三年级调研测试数 学(理 科) 2013.1本试卷共4页,21小题, 满分150分.考试用时120分钟.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,则复数i 23(-i )对应的点位于A .第一象限B . 第二象限C .第三象限D .第四象限 2.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 3.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 A .9 B .19 C .9- D .19- 4.设向量=a ()21x ,-,=b ()14x ,+,则“3x =”是“a //b ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.函数)(x f y =的图象向右平移6π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是 A .()f x =)32cos(π-x B .()f x =)62cos(π-xC .()f x =)62cos(π+xD .()f x =)32cos(π+x6.已知四棱锥P ABCD -的三视图如图1所示,则四棱锥P ABCD -的四个侧面中面积最大的是A .3 B.C .6 D .8 7.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x ya b+=表示焦点在x 轴上且离心率小于2的椭圆的概率为图3A .12 B .1532C .1732D .3132 8.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是A .17,⎡⎤-⎣⎦B .(3,⎤-∞⎦C .(7,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为 .10.若291()ax x-的展开式的常数项为84,则a 的值为 . 11.若直线2y x m =+是曲线ln y x x =的切线, 则实数m 的值为 .12.圆2224150x y x y +++-=上到直线20x y -=的点的个数是 _ . 13.图2是一个算法的流程图,则输出S 的值是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .图2图4M NBCDAP三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知ABC V 的内角A B C ,,的对边分别是a b c ,,,且123a b B ,,π===.(1) 求A sin 的值;(2) 求2C cos 的值.17.(本小题满分12分)某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四 所中学的学生当中随机抽取50名参加问卷调查. (1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.18. (本小题满分14分)如图4,已知四棱锥P ABCD -,底面ABCD 是正方形,PA ^面ABCD , 点M 是CD 的中点,点N 是PB 的中点,连接AM ,AN MN ,. (1) 求证:MN //面PAD ;(2)若5MN =,3AD =,求二面角N AM B --的余弦值.19.(本小题满分14分)如图5, 已知抛物线2P y x :=,直线AB 与抛物线交于A B ,两点,OA OB ^,OA OB OC uu r uu u r uuu r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;(2) 求四边形AOBC 的面积的最小值.20.(本小题满分14分)在数1和2之间插入n 个实数,使得这2n +的乘积记为n A ,令2n n a A log =,n ∈N *.(1)求数列{}n A 的前n 项和n S ;(2)求2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅.21.(本小题满分14分)若函数()f x 对任意的实数1x ,2x D ∈,均有2121()()f x f x x x -≤-,则称函数()f x 是区间D 上的“平缓函数”. (苏元高考吧: )(1) 判断()sin g x x =和2()h x x x =-是不是实数集R 上的“平缓函数”,并说明理由; (2) 若数列{}n x 对所有的正整数n 都有 121(21)n n x x n +-≤+,设sin n n y x =, 求证: 1114n y y +-<.222N 2013届广州市高三年级调研测试数学(理科)试题参考答案及评分标准一、选择题1. A分析:2i(23i)=2i3i2i 332i--=+=+,其对应的点为(3,2),位于第一象限2. D分析:{0,1,2,3,4}A=,{|2,}{0,2,4,6,8}B x x n n A∴==∈=,{0,2,4}A B∴=3. B分析:22211log log2244f-⎛⎫===-⎪⎝⎭,()2112349f f f-⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭4. A分析:当//a b时,有24(1)(1)0x x?-+=,解得3x=±;所以3//x a b=⇒,但//3a b x=¿,故“3x=”是“//a b”的充分不必要条件5. B分析:逆推法,将sin2y x=的图象向左平移6π个单位即得()y f x=的图象,即()sin2()sin(2)cos[(2)]cos(2)cos(2)632366f x x x x x xππππππ=+=+=-+=-+=-6. C分析:三棱锥如图所示,3PM=,142PDCS∆=⨯=,12332PBC PADS S∆∆==⨯⨯=,14362PABS∆=⨯⨯=7. B分析:方程22221x yab+=表示焦点在x轴且离心率小于222a bcea a⎧>⎪⎨==<⎪⎩,即22224a ba b⎧>⎨<⎩,化简得2a ba b>⎧⎨<⎩,又[1,5]a∈,[2,4]b∈,画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为154,故152432S P ==⨯阴影8. C分析:由题意得()()(1)x a xx a x -?--,故不等式()2x a x a -?…化为()(1)2x a x a --+…,化简得2(1)220x a x a -+++…,故原题等价于2(1)220x a x a -+++…在(2,)+∞上恒成立,由二次函数2()(1)22f x x a x a =-+++图象,其对称轴为12a x +=,讨论得 122(2)0a f +⎧⎪⎨⎪⎩…… 或 1221()02a a f +⎧>⎪⎪⎨+⎪⎪⎩…,解得3a … 或 37a <…, 综上可得7a … 二、填空题 9.28分析:方法一、(基本量法)由34512a a a ++=得11123412a d a d a d +++++=,即13912a d += ,化简得134a d +=,故7117677(3)73282S a d a d ´=+=+=? 方法二、等差数列中由173542a a a a a +=+=可将34512a a a ++=化为173()122a a +=, 即178a a +=,故1777()282a a S +== 10.1分析:299183991C ()(1)C rr rr r rr ax a x x---骣琪-=-琪桫,令6r =,得其常数项为6369(1)C 84a -=, 即38484a =,解得1a =11.e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x xx x''==+=+得0ln 1k x =+,503(1592009)503(59132013)=-+++++++++50315032013=-++故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-,与2y x m =+比较得00ln 12x x m +=⎧⎨-=⎩,解得0e x =,故e m =-12. 4分析:圆方程2224150x yx y +++-=化为标准式22(1)(2)20x y +++=,其圆心坐标(1,2)--,半径r =,由点到直线的距离公式得圆心到直线2x y -的距离5d ==,由右图 所示,圆上到直线20x y -=4个. 13.3018 分析:由题意11cos112a π=⨯+=,222cos112a π=⨯+=-,333cos 112a π=⨯+=,444cos 152a π=⨯+=,555cos 112a π=⨯+=,666cos152a π=⨯+=-,777cos 112a π=⨯+=,888cos 192a π=⨯+=, …20091a =, 20102009a =-, 20111a =,20122013a =;以上共503行, 输出的122012S a a a =+++3018=分析:如图,因为PC OP ⊥ ,所以P 是弦CD 中点,由相交弦定理知2PA PB PC =,即28PC =,故PC =15.分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d == 故圆C 截直线l 所得的弦长为=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1A sin =,解得A sin =. …………… 3分 (2)解:∵a b<,∴02A B π<<<. …………… 4分∴4A cos ==. …………… 5分 ∴228A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=,∴23C Aπ=-. …………… 8分∴4223C Acos cosπ⎛⎫=-⎪⎝⎭…………… 9分442233A Acos cos sin sinππ=+…………… 10分152828=-⨯-⨯=-. …………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为501 1002=.∴应从,,,A B C D四所中学抽取的学生人数分别为15,20,10,5. …………… 4分(2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C250=1225种,… 5分这两名学生来自同一所中学的取法共有C215+C220+C210+C25=350. …………… 6分∴()350 1225P M==27.答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为27. …………… 7分(3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2,…………… 8分E MNDCBAPMNDCBAP()0P ξ==210225C C 960=, ()1P ξ==111510225C C C =12,()2P ξ==215225C C 720=. …………… 11分 ∴ξ的分布列为:…… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点, ∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形,∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD , ∴MN //面PAD . …………… 4分证法2:连接BM 并延长交AD 的延长线于点E ,连接PE , ∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分FEMNDCBAP∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN PE //. …………… 3分 ∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3: 取AB 的中点E ,连接NE ME ,, ∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分 ∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分 ∵MENE E =,NE ⊂平面MEN ,ME ⊂平面MEN , ∴平面MEN //面PAD . …………… 3分∵MN ⊂平面MEN ,∴MN //面PAD . …………… 4分 (2)解法1:∵NE PA //,PA ^面ABCD ,∴NE ^面ABCD . …………… 5分 ∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF , ∵NEEF E =,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分 ∴NFE ∠是二面角N AM B --的平面角. …………… 9分在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 10分在Rt △MEA 中,32AE =,得2AM ==,AE ME EF AM ==g . …………… 11分在Rt △NEF 中,5NF ==, …………… 12分cos 89EF NFENF ?=. …………… 13分∴二面角N AM B --的余弦值为89. …………… 14分 解法2:∵NE PA //,PA ^面ABCD , ∴NE ^面ABCD .在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 5分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴, 建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M E N ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()004EN ,,=,3302AM ,,⎛⎫= ⎪⎝⎭,3042AN ,,⎛⎫= ⎪⎝⎭. …………… 8分设平面AMN 的法向量为n ()x y z ,,=,由n 0AM ⋅=,n 0AN ⋅=,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩ 令1x =,得2y =-,34z =. ∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=是平面AMB 的一个法向量, …………… 12分cos ,n EN ==n EN nEN89. …………… 13分 ∴二面角N AM B --的余弦值为89. …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=,∴M 是线段AB 的中点. …………… 2分 ∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=. …………… 5分依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形,∴四边形AOBC 的面积为S OA OB ==⋅…………… 9分===…………… 11分∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, …………… 12分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分 解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=. 解得0x =或21x k=. …………… 2分 ∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分同理得点B 的坐标为()2k k ,-. …………… 4分 ∵OA OB OC +=,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k kx k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112yx =-. …………… 7分 ∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB==⋅ ……………9分=…………… 10分≥…………… 11分 2=. …………… 12分 当且仅当221kk=,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅, ① …………… 1分2121n n n A b b b b ++=⋅⋅⋅⋅, ② …………… 2分由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅=, …………… 3分①⨯②得()()()()212211221n n n n n A b b b b b b b b ++++=⋅⋅⋅⋅22n +=.…………… 4分∵0n A >, ∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 解法2: 设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,公比为q ,则121n n b b q++=,即12n q+=. …………… 1分 依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅()()()211111n b b q b q b q +=⋅⋅⋅⋅ …………… 2分()()212311n n b q++++++=⋅ …………… 3分()()122n n q ++= …………… 4分222n +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分 ∵()()()11111n nn n n n tan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, ……………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ……………11分 ∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅2334tan tan tan tan tan =⋅+⋅++()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()221n n tan tan tan +--. …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”; 设()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数, 不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分 又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分 由①、②得 212121()sin sin x x x x x x --<-<-.因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分当12x x >时,同理有2121sin sin x x x x -<-成立 又当12x x =时,不等式2121sin sin 0x x x x -=-=, 故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. …………… 5分 由于121212()()()(1)h x h x x x x x -=-+- …………… 6分 取13x =,22x =,则1212()()4h x h x x x -=>-, …………… 7分 因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分 (2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分 而121(21)n n x x n +-≤+, ∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++-,……… 11分∴1111221n n n n n y y y y y y y y ++---≤-+-++-. …………… 12分∴11111111[()()(1)]4112n y y n n n n+-≤-+-++-+-11141n ⎛⎫=- ⎪+⎝⎭…………… 13分14<. …………… 14分。
广东省广州市2013届高三调研测试数学文试题
试卷类型:A广州市2013届高三年级调研测试数 学(文 科) 2013.1一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+i (i 为虚数单位)的模等于AB .1 CD .122.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{3.已知函数()2030xx x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19 C .9- D .19- 4.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为A .56B .42C .28D .145.已知e 为自然对数的底数,函数y x =e x的单调递增区间是A . )1,⎡-+∞⎣B .(1,⎤-∞-⎦C .)1,⎡+∞⎣D .(1,⎤-∞⎦ 6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是.αα//,//,//n m n m 则若 .βαγβγα//,,则若⊥⊥ .n m n m //,//,//则若αα .n m n m ⊥⊥则若,//,αα 7.如图1,程序结束输出s 的值是A .30B .55C .91D .140 8.已知函数()()212fx x x cos cos =-⋅,x ∈R ,则()f x 是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 9.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y a b+=表示焦点在x的椭圆的概率为图2A .12 B .1532C .1732D .3132 10.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是A. 17,⎡⎤-⎣⎦B. (3,⎤-∞⎦ C. (7,⎤-∞⎦D. ()17,,⎤⎡-∞-+∞⎦⎣二.填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知()fx 是奇函数, ()()4g x f x =+, ()12g =, 则()1f -的值是 .12.已知向量a ,b 都是单位向量,且 a b 12=,则2-a b 的值为 . 13.设x x f c o s )(1=,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若AB C ∆的内角A 满足1220130f A f A f A ()()()+++= ,则sin A 的值是 . (二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图2,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是 . 15.(坐标系与参数方程选讲选做题) 已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭. (1)求函数)(x f y =的单调递增区间;ks5u(2)若43f ()πα-=,求)42(πα+f 的值.17.(本小题满分12分)侧视D CAP 图5图4图3625x 0611y 11988967乙甲某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图3,其中甲班学生的平均分是85,乙班学生成绩的中位数是83. (1)求x 和y 的值;(2)计算甲班7位学生成绩的方差2s ;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++=.18.(本小题满分14分)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .20.(本小题满分14分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数 根?若存在,求出t 的值;若不存在,说明理由.21.(本小题满分14分)已知椭圆()22122:10x y C a b a b+=>>的右焦点与抛物线22:4C y x =的焦点F 重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,53PF =. (1)求椭圆1C 的方程;ks5u (2)若过点()1,0A -的直线与椭圆1C 相交于M 、N 两点,求使FM FN FR +=成立的动点R 的轨迹方程; (3) 若点R 满足条件(2),点T 是圆()2211x y -+=上的动点,求RT 的最大值.广州市2013届高三年级调研测试 数学(文科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:11.2 12. 13. 1 14. 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.解:2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭x x cos sin =+ … 1分22x x sin cos ⎛⎫=+ ⎪ ⎪⎝⎭4x sin π⎛⎫=+ ⎪⎝⎭.… 3分由22242k x k ,πππππ-+≤+≤+ …………… 4分解得32244k x k k ,ππππ-+≤≤+∈Z . …………… 5分 ∴)(x f y =的单调递增区间是32244k k k [,],ππππ-++∈Z . ………… 6分 (1)解:由(1)可知)4sin(2 )(π+=x x f ,∴43f ()sin παα-==,得13sin α=. … 8分∴)42(πα+f =22sin πα⎛⎫+ ⎪⎝⎭2cos α=()212sin α=-9=. 17.(1)解:∵甲班学生的平均分是85, ∴92968080857978857x +++++++=.∴5x =. ∵乙班学生成绩的中位数是83, ∴3y =.…… 3分 (2)解:甲班7位学生成绩的方差为2s ()()()22222221675007117⎡⎤=-+-+-++++⎢⎥⎣⎦40=. …… 5分 (3)解:甲班成绩在90分以上的学生有两名,分别记为,A B , …………… 6分 乙班成绩在90分以上的学生有三名,分别记为,,C D E . …………… 7分 从这五名学生任意抽取两名学生共有10种情况:()()(),,,,,,A B A C A DFE DCBAP()()()()()()(),,,,,,,,,,,,,A E B C B D B E C D C E D E . …………… 9分 其中甲班至少有一名学生共有7种情况:()()(),,,,,,A B A C A D()()()(),,,,,,,A E B C B D B E . ……………11分 记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M ,则()710P M =. 答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为710. 18.(1)证明:依题意,可知点P 在平面ABCD 上的正射影是线段CD 的中点E ,连接PE , 则PE ⊥平面ABCD . ∵AD ⊂平面ABCD , ∴AD PE ⊥. ∵AD CD ⊥,CD PE E CD ,=⊂ 平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . ∵PC ⊂平面PCD , ∴AD PC ⊥. …… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED中,PE ==过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分∵EF ⊂平面PEF ,PE ⊂平面PEF ,EF PE E = ,∴AB ⊥平面PEF .∵PF ⊂平面PEF ,∴AB PF ⊥. 依题意得2EF AD ==. 在R t △PEF 中,3PF ==,∴△PAB 的面积为162S AB PF == . ∴四棱锥P ABCD -的侧面PAB 的面积为6. ………… 14分19.(1)解:∵}1{+n S 是公比为2的等比数列,∴11112)1(2)1(1--⋅+=⋅+=+n n n a S S .∴12)1(11-⋅+=-n n a S . 从而11122+=-=a S S a ,221233+=-=a S S a . ∵2a 是1a 和3a 的等比中项∴)22()1(1121+⋅=+a a a ,解得=1a 1或11-=a . 当11-=a 时,11+S 0=,}1{+n S 不是等比数列,∴=1a 1. ∴12-=n n S .… 6分当2n ≥时,112--=-=n n n n S S a . ∵11=a 符合12-=n n a ,∴12-=n n a . 8分(2)解:∵12n n na n -= ,∴1211122322n n T n -=⨯+⨯+⨯++ . ① …………… 9分 21231222322n n T n =⨯+⨯+⨯++ .② …………… 10分①-②得2112222n nn T n --=++++- 12212nn n -=-- =()121nn -- . ∴()121nn T n =-+ . ………… 14分20.(1)∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5f x ax x =-,0a >. ∴25f x ax a /()=-.∵函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-. ∴256a a -=-,解得2a =.∴()()225210fx x x x x =-=-. …………… 5分(2)解:由(1)知,方程()370f x x+=等价于方程32210370x x -+=. 设()h x=3221037x x -+,则()()26202310h x x x x x /=-=-.当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫ ⎪⎝⎭上单调递减; ……… 8分当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分 ∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分 ∴方程()0h x=在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根. ∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根.……… 14分21. (1)抛物线22:4C y x =的焦点F 的坐标为()1,0,准线为1x =-, 设点P 的坐标为()00,x y ,依据抛物线的定义,由53PF =,得01x +53=, 解得023x =.∵ 点P 在抛物线2C 上,且在第一象限, ∴ 2002443y x ==⨯,解得03y =.∴点P 的坐标为23⎛ ⎝⎭. ∵点P 在椭圆22122:1x y C a b +=上, ∴2248193a b +=.又1c =,且22221a b c b =+=+, 解得224,3a b ==. ∴椭圆1C 的方程为22143x y +=.(2)设点M()11,x y 、()22,N x y 、(),R x y , 则∴()12122,FM FN x x y y +=+-+.∵ FM FN FR += ,∴121221,x x x y y y +-=-+=. ① … 6分∵M 、N 在椭圆1C 上, ∴222211221, 1.4343x y x y +=+= 上面两式相减得()()()()12121212043x x x x y y y y +-+-+=.②把①式代入②式得()()()12121043x x x y y y +--+=.当12x x ≠时,得()1212314x y y x x y+-=--. ③ 设FR 的中点为Q ,则Q 的坐标为1,22x y +⎛⎫⎪⎝⎭. ∵M 、N 、Q 、A 四点共线, ∴MNAQ k k =, 即121221312yy y y x x x x -==+-++. ④ …………… 8分 把④式代入③式,得()3134x y x y+=-+,化简得()2243430y x x +++=.当12x x =时,可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分(3)解: 由(2)知点R ()x y ,的坐标满足()2243430y x x +++=,即()224343y x x =-++, 由20y ≥,得()23430x x -++≥,解得31x -≤≤-.∵圆()2211x y -+=的圆心为()10F ,,半径1r =,∴RF ==12=. ∴当3x =-时,4RFmax=,此时,415RTmax=+=. … 14分。
广东省广州市2013届高三1月调研测试数学(文)试题及答案
试卷类型:A广州市2013届高三年级调研测试数 学(文 科) 2013.1本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+i (i 为虚数单位)的模等于AB .1 C.2D .122.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 3.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 A .9 B .19 C .9- D .19- 4.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为A .56B .42C .28D .145.已知e 为自然对数的底数,函数y x =e x的单调递增区间是A . )1,⎡-+∞⎣B .(1,⎤-∞-⎦C .)1,⎡+∞⎣D .(1,⎤-∞⎦ 6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是A .αα//,//,//n m n m 则若B .βαγβγα//,,则若⊥⊥图2C .n m n m //,//,//则若ααD .n m n m ⊥⊥则若,//,αα7.如图1,程序结束输出s 的值是A .30B .55C .91D .1408.已知函数()()212fx x x cos cos =-⋅,x ∈R ,则()f x 是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 9.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y a b+=表示焦点在x椭圆的概率为 A .12 B .1532C .1732D .3132 10.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是 A. 17,⎡⎤-⎣⎦ B. (3,⎤-∞⎦ C. (7,⎤-∞⎦D. ()17,,⎤⎡-∞-+∞⎦⎣二.填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知()fx 是奇函数, ()()4g x f x =+, ()12g =, 则()1f -的值是 .12.已知向量a ,b 都是单位向量,且a b 12=,则2-a b 的值为 . 13.设x x f cos )(1=,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图2,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,侧视DCBAP图5图4图3625x 0611y 11988967乙甲则PC 的长是 .15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭. (1)求函数)(x f y =的单调递增区间;(2)若4f ()πα-=,求)42(πα+f 的值.17.(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图3,其中甲班学生的平均分是85,乙班学生成绩的中位数是83. (1)求x 和y 的值;(2)计算甲班7位学生成绩的方差2s ;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差()()()2222121ns x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦, 其中12nx x x x n+++=.18.(本小题满分14分)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .20.(本小题满分14分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数根?若存在,求出t 的值;若不存在,说明理由.21.(本小题满分14分)已知椭圆()22122:10x y C a b a b+=>>的右焦点与抛物线22:4C y x =的焦点F 重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,53PF =. (1)求椭圆1C 的方程;(2) 若过点()1,0A -的直线与椭圆1C 相交于M 、N 两点,求使FM FN FR +=成立的动点R 的轨迹方程;(3) 若点R 满足条件(2),点T 是圆()2211x y -+=上的动点,求RT 的最大值.广州市2013届高三年级调研测试 数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2013-1-103.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.2 12.13. 1 14. 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质、同角三角函数的基本关系、二倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解:2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭x x cos sin =+ …………… 1分22x x sin cos ⎛⎫=+ ⎪ ⎪⎝⎭4x sin π⎛⎫=+ ⎪⎝⎭. …………… 3分由22242k x k ,πππππ-+≤+≤+ …………… 4分解得32244k x k k ,ππππ-+≤≤+∈Z . …………… 5分 ∴)(x f y =的单调递增区间是32244k k k [,],ππππ-++∈Z . ………… 6分 (2)解:由(1)可知)4sin(2 )(π+=x x f ,∴43f ()sin παα-==,得13sin α=. …………… 8分∴)42(πα+f =22sin πα⎛⎫+ ⎪⎝⎭ …………… 9分2cos α= …………… 10分()212sin α=- …………… 11分9=. …………… 12分 17.(本小题满分12分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:∵甲班学生的平均分是85,∴92968080857978857x +++++++=. …………… 1分∴5x =. …………… 2分∵乙班学生成绩的中位数是83,∴3y =. …………… 3分 (2)解:甲班7位学生成绩的方差为2s ()()()22222221675007117⎡⎤=-+-+-++++⎢⎥⎣⎦40=. …… 5分 (3)解:甲班成绩在90分以上的学生有两名,分别记为,A B , …………… 6分 乙班成绩在90分以上的学生有三名,分别记为,,C D E . …………… 7分 从这五名学生任意抽取两名学生共有10种情况:()()(),,,,,,A B A C A D ()()()()()()(),,,,,,,,,,,,,A E B C B D B E C D C E D E . …………… 9分 其中甲班至少有一名学生共有7种情况:()()(),,,,,,A B A C A DFE D CBAP()()()(),,,,,,,A E B C B D B E . ……………11分 记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M ,则()710P M =. 答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为710. ……………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、三视图、几何体的侧面积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:依题意,可知点P 在平面ABCD 上的正射影是线段CD 的中点E ,连接PE , 则PE ⊥平面ABCD . …………… 2分 ∵AD ⊂平面ABCD ,∴AD PE ⊥. …………… 3分∵AD CD ⊥,CDPE E CD ,=⊂平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . …………… 5分∵PC ⊂平面PCD ,∴AD PC ⊥. …………… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED中,PE ==,…………… 7分过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分∵EF ⊂平面PEF ,PE ⊂平面PEF ,EFPE E =, ∴AB ⊥平面PEF . …………… 9分∵PF ⊂平面PEF ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △PEF 中,3PF ==, …………… 12分∴△PAB 的面积为162S AB PF ==. ∴四棱锥P ABCD -的侧面PAB 的面积为6. …………… 14分 19.(本小题满分14分)(本小题主要考查数列、数列求和等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵}1{+n S 是公比为2的等比数列,∴11112)1(2)1(1--⋅+=⋅+=+n n n a S S . …………… 1分∴12)1(11-⋅+=-n n a S .从而11122+=-=a S S a ,221233+=-=a S S a . …………… 3分 ∵2a 是1a 和3a 的等比中项∴)22()1(1121+⋅=+a a a ,解得=1a 1或11-=a . …………… 4分 当11-=a 时,11+S 0=,}1{+n S 不是等比数列, …………… 5分 ∴=1a 1.∴12-=n n S . …………… 6分 当2n ≥时,112--=-=n n n n S S a . …………… 7分 ∵11=a 符合12-=n n a ,∴12-=n n a . …………… 8分 (2)解:∵12n n na n -=, ∴1211122322n n T n -=⨯+⨯+⨯++. ① …………… 9分21231222322n n T n =⨯+⨯+⨯++.② …………… 10分①-②得2112222n n n T n --=++++- …………… 11分12212nn n -=-- …………… 12分 =()121nn --. …………… 13分∴()121nn T n =-+. …………… 14分20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、方程的根等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解法1:∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5fx ax x =-,0a >. …………… 1分∴25f x ax a /()=-. …………… 2分∵函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-. …………… 3分∴256a a -=-,解得2a =. …………… 4分 ∴()()225210fx x x x x =-=-. …………… 5分解法2:设()2fx ax bx c =++, ∵不等式()0fx <的解集是()05,,∴方程20ax bx c ++=的两根为05,.∴02550c a b ,=+=. ① …………… 2分 ∵2f x ax b /()=+. 又函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-.∴26a b +=-. ② …………… 3分由①②,解得2a =,10b =-. …………… 4分 ∴()2210fx x x =-. …………… 5分(2)解:由(1)知,方程()370fx x+=等价于方程32210370x x -+=.…………… 6分设()h x=3221037x x -+,则()()26202310hx x x x x /=-=-. …………… 7分当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫ ⎪⎝⎭上单调递减; ……… 8分当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分 ∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分∴方程()0h x=在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根. …………… 13分∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根. …………… 14分21.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、直线、椭圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1)解法1:抛物线22:4C y x =的焦点F 的坐标为()1,0,准线为1x =-, 设点P 的坐标为()00,x y ,依据抛物线的定义,由53PF =,得01x +53=, 解得023x =. …………… 1分∵ 点P 在抛物线2C 上,且在第一象限,∴ 2002443y x ==⨯,解得0y =.∴点P 的坐标为23⎛ ⎝⎭. …………… 2分∵点P 在椭圆22122:1x y C a b+=上, ∴2248193a b +=. …………… 3分又1c =,且22221a b c b =+=+, …………… 4分 解得224,3a b ==.∴椭圆1C 的方程为22143x y +=. …………… 5分 解法2: 抛物线22:4C y x =的焦点F 的坐标为()1,0,设点P 的坐标为()00x y ,,0000x y ,>>. ∵53PF =,∴()22002519x y -+=. ① …………… 1分 ∵点P 在抛物线22:4C y x =上,∴2004y x =. ②解①②得023x =,0y =. ∴点P的坐标为23⎛ ⎝⎭. …………… 2分∵点P 在椭圆22122:1x y C a b+=上, ∴2248193a b +=. …………… 3分 又1c =,且22221a b c b =+=+, …………… 4分解得224,3a b ==. ∴椭圆1C 的方程为22143x y +=. …………… 5分 (2)解法1:设点M ()11,x y 、()22,N x y 、(),R x y ,则()()()11221,,1,,1,FM x y FN x y FR x y =-=-=-.∴()12122,FM FN x x y y +=+-+.∵ FM FN FR +=,∴121221,x x x y y y +-=-+=. ① …………… 6分∵M 、N 在椭圆1C 上, ∴222211221, 1.4343x y x y +=+= 上面两式相减得()()()()12121212043x x x x y y y y +-+-+=.②把①式代入②式得()()()12121043x x x y y y +--+=. 当12x x ≠时,得()1212314x y y x x y+-=--. ③ …………… 7分设FR 的中点为Q ,则Q 的坐标为1,22x y +⎛⎫⎪⎝⎭. ∵M 、N 、Q 、A 四点共线, ∴MN AQ k k =, 即12122312y y y y x x x -==-++. ④ …………… 8分 把④式代入③式,得()3134x y x y+=-+, 化简得()2243430y x x +++=. …………… 9分 当12x x =时,可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分 解法2:当直线MN 的斜率存在时,设直线MN 的方程为()1y k x =+, 由()221143y k x x y ,,⎧=+⎪⎨+=⎪⎩消去y ,得()22223484120k x k x k +++-=. 设点M ()11,x y 、()22,N x y 、(),R x y ,则2122834k x x k +=-+, ()()()1212122611234k y y k x k x k x x k+=+++=++=+.…6分 ∵()()()11221,,1,,1,FM x y FN x y FR x y =-=-=-.∴()12122,FM FN x x y y +=+-+.∵ FM FN FR +=,∴121221,x x x y y y +-=-+=. ∴21228134k x x x k +=+=-+, ①2634k y k =+. ② …………… 7分 ①÷②得()314x k y +=-, ③ …………… 8分把③代入②化简得()2243430y x x +++=. (*) …………… 9分 当直线MN 的斜率不存在时,设直线MN 的方程为1x =-,依题意, 可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分 (3)解: 由(2)知点R ()x y ,的坐标满足()2243430y x x +++=, 即()224343y x x =-++, 由20y ≥,得()23430x x -++≥,解得31x -≤≤-. …………… 11分 ∵圆()2211x y -+=的圆心为()10F ,,半径1r =,∴RF ==12=. …………… 12分 ∴当3x =-时,4RFmax =, …………… 13分 此时,415RTmax =+=. …………… 14分。
广州市2013届高三年级调研测试答案
广州市2013届高三年级调研测试理科综合参考答案一、单项选择题:本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,二、双项选择题:本题包括9小题,每小题6分,共54分。
每小题给出的四个选项中,有两个选项符合题目要求。
全选对得6分,只选1个且正确得3分,错选、不选得0分。
三、非选择题:本题包括11小题,共182分。
26.(16分,每空2分)(1)(2)植物Ⅰ主要在夜间吸收CO2,植物Ⅱ主要在白天吸收CO2Ⅰ自然选择(进化)(3)光照强度(光照)、温度、无机盐(矿质元素)(任答二项)(4)糖类中的化学能转化为ATP中的化学能和热能[H]和ATP ①②27.(16分,除说明外,每空2分)(1)Ⅰ(1分)(2)AaX b Y 6 (3)aaX B X B3/16(4)用aaX b Y个体对其测交(5)基因b突变成基因B(答基因突变1分)(6)构建含抗虫基因的基因表达载体(1分),将其导入紫花植株的体细胞中(1分),再利用植物组织培养出含抗虫基因的紫花品种(1分)(或答抗虫基因的检测与鉴定)。
28.(16分,每空2分)(1)胰岛素葡萄糖载体胰岛素(的浓度)、胰岛素受体(的数目)(2)胰高血糖素(肾上腺素)(3)Ⅰ型自身免疫Ⅱ型(4)核糖体、内质网、高尔基体29.(16分,每空2分)(1)C(2)丙产生(少量)甲醛(3)A 肝脏具有解除甲醛毒害的功能(4)②等量肝脏培养液 染色体的形态和数目 ③B 30.(16分)(1)2 ; 2.5 (每空3分) (2)②和③ ; ①和② (每空2分)(3)0.010或1.0 ×10-2 (3分,0.01得2分) (4)如右图(3分。
标注1分,正确做图2分)31.(16分)(1)放热 (2分)CH 4(g)+H 2O(g)=CO(g)+3H 2 (g) ΔH=+161.1kJ•mol -1 (4分)(化学方程式书写占2分,未配平不给分,未标注状态得1分;反应热计算占2分,漏“+”且数值正确,得1分) (2)①K =c(H 2O)/[c(CO 2) • c 2(NH 3)] (3分) ;100 L 2•mol -2 (3分,未写单位不扣分) ; ②AB (4分。
2013年广州市高三化学调研测试题与答案(201301定稿)
2013年广州市高三化学调研测试化学试题7.设n A是阿伏加德罗常数的数值。
下列说法正确的是(阿伏加德罗常数) A.1L 0.1mol·L-1的FeCl3溶液中,Fe3+的数目为0.1n A(水解)B.1mol NH3中含有N-H键的数目为3n AC.7.8g Na2O2中含有的阳离子数目为0.1n A( 0.2n A)D.标准状况下,22.4L水中分子个数为n A (状态)8.下列说法不正确...的是(元素化合物的性质)A.漂白粉长时间露置空气中会结块变质(氯元素钙元素)B.把NaHSO4溶液加入NaAlO2中生成白色沉淀然后沉淀又溶解(C.装强碱溶液的试剂瓶需要用橡胶塞,长时间后会在瓶口有白色固体生成D.蘸有浓硫酸的玻璃棒接近浓氨水瓶口有白烟产生9.下列离子方程式正确的是A.氢氧化镁与稀盐酸反应:H+ + OH-=H2OB.AlCl3溶液中加入少量氨水:Al3++3OH-=Al(OH)3↓C.铜溶于稀硝酸:3Cu+8H++2NO3-=3Cu2++2NO↑+4H2OD.次氯酸钙溶液中通入过量CO2:Ca2++2ClO-+H2O+CO2=CaCO3↓+2HClO10.短周期元素X、Y、Z、W在元素周期表中的相对位置如图所示。
其中Y所处的周期序数与族序数相等。
下列说法正确的是Array A.原子半径:Y<Z<WB.气态氢化物的稳定性:X>ZC.最高价氧化物对应水化物的酸性:Z>WD.W的最高价氧化物与水反应形成的化合物是离子化合物11.常温下,用0.1000 mol·L-1NaOH溶液滴定20.00mL0.1000 mol·L-1CH3COOH溶液。
当滴入NaOH溶液为20.00 mL时溶液显碱性,溶液中各离子浓度关系正确的是A.c(Na+)>c(CH3COO-)>c(H+)>c(OH-)B.c(Na+)>c(OH-)>c(CH3COO-)>c(H+)C.c(Na+) + c(H+)=c(CH3COO-) + c(OH-)D.c(Na+) + c(OH-)=c(CH3COO-) + c(H+)12.下列实验能达到目的的是A.用CCl4萃取碘水中的碘B.将足量盐酸加入混有少量CaCO3杂质的Na2SO4中可除去杂质C.将混有少量HCl的Cl2通入NaOH溶液中除去HClD.将Fe(OH)3固体加入沸水中制备Fe(OH)3胶体22.某小组为研究电化学原理,设计如图装置,下列叙述正确的是A .若a 和b 为石墨,通电后a 电极上发生的反应为2Cl -- 2e -=Cl 2↑B .若a 和b 为石墨,通电后b 电极上发生氧化反应C .若a 为铜,b 为铁,通电后a 电极质量增加D .若a 为铜,b 为铁,通电后Cu 2+向铁电极移动 23.下列实验装置图正确的是A .装置①可用于做HCl 喷泉实验B .装置②可用于吸收HCl 气体,并防倒吸C .装置③可用于实验室制备少量NH 3D .装置④b 口进气可收集CO 2等气体30.(16分)某小组利用H 2C 2O 4溶液和酸性KMnO 4溶液反应来探究“条件对化学反应速率的影响”。
2013广州一模(理数)【含答案--全WORD--精心排版】
广州市2013届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:如果事件A ,B 相互独立,那么)()()(B P A P B A P ∙=∙.线性回归方程a x b yˆˆˆ+=中系数计算公式x b y axy y x xb ni ini i i-=---=∑∑==ˆ,)())((ˆ121,其中y x ,表示样本均值。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}4,2{=B ,则( )A.B A U ⋃=B.B A C U U ⋃=)(C.)(B C A U U ⋃=D.)()(B C A C U U U ⋃=2. 已知bi ia+=-11,其中,a b 是实数,i 是虚数单位,则a bi +=( ) A.12i + B.2i + C.2i - D.12i -3. 已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≤-≥+.01,1,12y y x y x ,则y x z 2-=的最大值为( )A.-3 B .0 C.1 D.34. 直线03==y x 截圆4)2(22=+-y x 所得劣弧所对的圆心角是( ) A.6π B.3π C.2π D.32π 5. 某空间几何体的三视图及尺寸如图1,则该几何体的体积是( ) A.2 B.1 C.32D.31 6. 函数)cos )(sin cos (sin x x x x y -+=是( ) A.奇函数且在]2,0[π上单调递增 B.奇函数且在],2[ππ上单调递增C.偶函数且在]2,0[π上单调递增 D.偶函数且在],2[ππ上单调递增 7. 已知e 是自然对数的底数,函数2)(-+=x e x f x 的零点为a ,函数2ln )(-+=x x x g 的零点为b ,则下列 不等式中成立的是( )A.)()1()(b f f a f <<B.)1()()(f b f a f <<C.)()()1(b f a f f <<D.)()1()(a f f b f << 8. 如图,一条河的两岸平行,河宽度600d =m ,一艘客船从码头A 出发匀速驶往河对岸码头B.已知km AB 1=, 水流速度为2km/h ,若客船行驶完航程所用最短时间为6分钟,则客船在静水中的速度大小为( )A.8km/hB.h km /26C.h km /342D.10km/h 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)9. 不等式x x ≤-1的解集是_________.10.⎰=1._______cos xdx11.根据上表可得回归方程a x yˆ23.1ˆ+=,据此模型估计,该型号机器使用所限为10年维修费用约______万元 (结果保留两位小数).12. 已知1,0≠>a a ,函数⎩⎨⎧>+-≤=1,1,)(x a x x a x f x ,若函数)(x f 在区间[0,2]上的最大值比最小值大25,则a 的值为________.13. 已知经过同一点的)3*,(≥∈n N n n 个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成)(n f个部分,则.________)(______,)3(n f f = (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,定点)23,2(πA ,点B 在直线0sin 3cos =+θρθρ上运动,当线段AB 最短时,点B 的极坐标为______.15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 与⊙O交于点D ,若BC=3,516=AD ,则AB 的长为______. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函)4sin()(πω+=x A x f (其中0,0,>>∈ωA R x )最大值为2,最小正周期为8.(1)求函数)(x f 的解析式;(2)若函数)(x f 图象上的两点P ,Q 的横坐标依次为2,4,O 坐标原点,求POQ ∆的面积.17.(本小题满分12分)甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,21乙,丙做对的概率分别为(),m n m n >,且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率; (2)求,m n 的值; (3)求ξ的数学期望.18.(本小题满分14分)如图4,在三棱柱ABC-A 1B 1C 1中,ABC ∆是边长为2的等边三角形,⊥1AA 平面ABC ,D ,E 分别是CC 1,AB 的中点. (1)求证:CE//平面A 1BD ;(2)若H 为A 1B 上的动点,当CH 为平面A 1AB 所成最大角的正切值为215时,求平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,且n na a a a ++++ 32132*)(2)1(N n n S n n ∈+-=. (1)求数列}{n a 的通项公式;(2)若,,p q r 是三个互不相等的正整数,且,,p q r 成等差数列,试判断1,1,1---r q p a a a 是否成等比数列?并说明理由.20.(本小题满分14分)已知椭圆C 1的中心在坐标原点,两个焦点分别为)0,2(),0,2(21F F -,点A (2,3)在椭圆C 1上,过点A 的直线L 与抛物线y x C 4:22=交于B ,C 两点,抛物线C 2在点B ,C 处的切线分别为21,l l ,且1l 与2l 交于点P. (1)求椭圆C 1的方程;(2)是否存在满足||2121AF AF PF PF +=+的点P ?若存在,指出这样的点P 有几个(不必求出点P 的坐标);若不存在,说明理由.21.(本小题满分14分)已知二次函数1)(2+++=m ax x x f ,关于x 的不等式21)12()(m x m x f -+-<的解集为)1,(+m m ,其中m 为非零常数.设1)()(-=x x f x g . (1)求a 的值;(2))(R k k ∈如何取值时,函数()()()ln 1x g x k x ϕ=--存在极值点,并求出极值点; (3)若1m =,且0x >,求证:*)(22)1()]1([N n x g x g n n n ∈-≥+-+广州市2013届普通高中毕业班综合测试(一)数学(理科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭10.1sin 11.12.38 12.12或27 13.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >,∴2A =.……………1分 ∵()f x 的最小正周期为8,∴28Tπω==,得4πω=.……2分,∴()2sin()44f xx ππ=+.……3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭…………4分(4)2sin 2sin 44f πππ⎛⎫=+=-=⎪⎝⎭…………5分,∴(4,P Q .∴OP PQ OQ ===分∴222222cos 23OPOQ PQPOQ OP OQ+-+-∠===.…10分 ∴POQ sin ∠==……………11分 ∴△POQ 的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭…4分,(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭…5分∴(4,P Q . ∴(2,2),(4,OP OQ ==. …………8分∴cos cos ,36OP OQ POQ OP OQ OP OQ⋅∠=<>=== ……………10分∴POQ sin ∠==3……………11分∴△POQ 的面积为11223S OP OQ POQ sin =∠=⨯⨯⨯=分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭,……4分,(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭…5分∴(4,P Q .∴直线OP 的方程为y x =,即0x -=.……………7分∴点Q 到直线OP 的距离为d ==分,∵OP =,………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯=分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知,()()()12P A P B m P C n ,,===. ……………1分 (1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=.…………3分 (2)由题意知()()()()1101124P P ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====,…………5分,整理得112mn =,712m n +=. 由m n >,解得13m =,14n =. ……………7分(3)由题意知()()()()1a PP ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, …9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分 ∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312. …………12分 18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法)解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA ,∴C 为AF 的中点.……2分 ∵E 为AB 的中点,∴CE ∥BF .………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE .……5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB . ………6分∴EHC ∠为CH 与平面1A AB 所成的角.………7分,∵CE =Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH ∠===∴EH =.………9分∵CE ∥BF ,CE ⊥平面1A AB ,∴BF ⊥平面1A AB .………10分 ∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B .………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分在Rt △EHB中,BH ==cos 1ABA∠BH EB ==分 ∴平面1A BD 与平面ABC所成二面角(锐角)的余弦值为5. ……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF . ∵E 为AB 的中点,∴EF ∥1AA ,且112EF AA =. ………1分 ∵CD ∥1AA ,且CD 12=1AA ,∴EF ∥CD ,EF =CD . ……2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF .………3分∵DF ⊂平面1A BD ,CE ⊄平面1A BD ,∴CE ∥平面1A BD .……4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE .……5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB .………6分∴EHC ∠为CH 与平面1A AB 所成的角.……7分∵CE =Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大.…………8分 ∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===2.∴5EH =.………9分,在Rt △EHB中,5BH ==. ∵Rt △EHB ~Rt △1A AB ,∴1EH BHAA AB =,即1552AA =.∴14AA =.………10分以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴,建立空间直角坐标系A xyz -.则()000A ,,,1A ()004,,,B)10,,D ()02,,2.∴1AA =()004,,,1A B=)14,-,1A D =()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n B A 1⋅,n 01=⋅D A,得40220y z y z .ìï+-=ïíï-=ïî,令1y =,则1z x ==,∴平面A BD 1的一个法向量为n=)11,. ……12分,∵1AA ⊥平面ABC ,∴1AA =()004,,是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA n AA 5. …………13分 ∴平面1ABD 与平面ABC . ……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+,∴当1n =时,有 11(11)2,a S =-+ 解得 12a =.…1分由12323(1)2n n a a a na n S n ++++=-+ ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++ ② ……………2分② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+;………4分∴122(2)n n S S ++=+,………5分,∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列. ∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-.……6分 当2n ≥时, 11(22)(22)2n n n n n n a S S +-=-=---=,…………7分 又12a =也满足上式,∴2n n a =. ………8分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++, 得12n n a S +=+. ④………4分,当2n ≥时,12n n a S -=+, ⑤………5分⑤-④得:12n n a a +=.………6分,由12224a a S +=+,得24a =,∴212a a =.………7分 ∴数列{}n a 是以12a =为首项,2为公比的等比数列,∴2n n a =. …………8分(2)解:∵p q r ,,成等差数列,∴2p r q +=.………9分,假设111p q r a a a ,,---成等比数列, 则()()()2111p r q a a a --=-,………10分,即()()()2212121p r q --=-,化简得:2222p r q+=⨯.(*)………11分,∵p r ≠,∴2222p r q +>=⨯,这与(*)式矛盾,故假设不成立.…13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b +=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得:2216,12.a b ⎧=⎪⎨=⎪⎩……2分 ∴ 椭圆1C 的方程为2211612x y +=.…………3分 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =,……1分,∵2c =,∴22212b a c =-=.………2分 ∴ 椭圆1C 的方程为2211612x y +=.…………3分 (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=,)413,2(211x x --=, ∵C B A ,,三点共线, ∴BC BA //.………4分,∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① ………5分,由24x y =,即214y x ,=得y '=12x . ………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ………8分 设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=.………9分代入②得 2141x x y =,…………10分,则212x x x +=,214x x y =代入 ① 得 1244=-y x , 即点P 的轨迹方程为3-=x y .………11分,若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上, 而点P 又在直线3-=x y 上,…12分,∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点.…13分,∴满足条件1212PF PF AF AF +=+ 的点P 有两个. …14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24x y =,即214y x ,=得y '=12x .………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.……5分 ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ①………6分 同理, 20202y x x y -=. ② …………7分,综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ………8分,∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002,………9分,∵点)3,2(A 在直线L 上,∴300-=x y .………10分∴点P 的轨迹方程为3-=x y .………11分,若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,…12分,∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点.…13分,∴满足条件1212PF PF AF AF +=+ 的点P 有两个.…14分 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =,∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-.…8分 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-.………10分 ∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上.………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*)…………12分由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+.∴2a =-.……………2分(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 方程()2210x k x k m -++-+=(*)的判别式()()222414Δkk m k m =+--+=+.…4分①当0m >时,0Δ>,方程(*)两实根为1212k x ,+-=<2212k x ,++=>…5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x .………6分 ②当0m <时,由0Δ>,得k <-k >若k <-11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增.∴函数()x ϕ没有极值点. ……7分若k >11x ,=>21x ,=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .…9分 (其中122k x +-=, 222k x ++=)解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 若函数()()xg x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ………4分,令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*),则()()2224140Δkk m k m =+--+=+>,(**)……5分方程(*)的两个实根为122k x +-=222k x ++=设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x .………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩,又由(**)解得k >k <-故k >分,则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .…9分 (其中1x =, 2x =(2) 证法1:∵1m =, ∴()g x=()111x x -+-. ∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭ 112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n n n n n C x C x C x ----=+++.……10分,令T 122412n n n n n n n C x C x C x ----=+++,则T 122412n nn nn n n n C xC x C x -----=+++122412n nn n n n n C x C x C x ----=+++.∵x 0>,∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++…11分≥121n nn n C C C -⋅+⋅++⋅…12分()1212n n n nC C C -=+++()012102n n nn n n n n n n C C C C C C C -=+++++--()222n =-…13分∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;………10分 ② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+分122k +=-.……………13分 也就是说,当1n k =+时,不等式也成立. 由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
广东省广州市2013届高考模拟物理检测部分(高考模拟, 物理,广东广州)
试卷类型:A广州市2013届高三年级调研测试理科综合2013.0113.两球在水平面上相向运动,发生正碰后都变为静止。
可以肯定的是,碰前两球的A .质量相等B .动能相等C .动量大小相等D .速度大小相等14.质量为m A 和m B 的小球与劲度系数均为k 的轻弹簧L 1和L 2连接如图,静止时,两弹簧伸长量分别为x 1和x 2,则 A .只要m A =m B ,有x 1=x 2 B .只要m A >m B ,有x 1<x 2 C .只要m A <m B ,有x 1<x 2D .只要不超出弹性限度,始终有x 1>x 215.如图,将一正电荷从电场线上的a 点移到b 点,电势V 10=a ϕ、V 5=b ϕ。
下列判断正确的是A .该电场是匀强电场B .电场线方向由a 指向bC .a 点场强大于b 点场强D .正电荷的电势能增加16.如图所示,与轻绳相连的物体A 和B 跨过定滑轮,质量m A <m B ,A 由静止释放,不计绳与滑轮间的摩擦,则A 向上运动过程中,轻绳拉力 A .T =m A g B .T >m A g C .T =m B g D .T >m B g二、双项选择题:本题包括9小题,每小题6分,共54分。
每小题给出的四个选项中,有两个选项符合题目要求。
全选对得6分,只选1个且正确得3分,错选、不选得0分。
17.甲、乙两物体在同一直线上运动的v —t 图象如图所示,在t 1时刻A .甲一定在乙前面B .甲的速度比乙的小C .甲、乙的加速度相同D .甲、乙的运动方向相同B118.如图,O 是地球球心,下列说法正确的是A .同步卫星轨道只能与轨道a 共面B .同步卫星轨道只能与轨道d 共面C .卫星可能的轨道为c 、dD .卫星可能的轨道为a 、b19.如图所示的电路,电源内阻不可忽略,闭合开关S 后A .电流表○A 的示数减小B .电流表○A 的示数增大C .电压表○V 的示数减小D .电压表○V 的示数增大 20.如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点的A .角速度之比ωA ∶ωB =1∶1 B .角速度之比ωA ∶ωB =1∶2C .线速度之比v A ∶v B =2∶1D .线速度之比v A ∶v B =1∶221.如图所示的电路,闭合开关S 后,当滑动变阻器的滑片由a 向b 滑动时,平行板电容器的A BA.板间电场强度增大B.电量不变C.板间电压不变D.电容增大34.(18分)(1)用图(a)所示的实验装置验证牛顿第二定律。
最新广州市届高三年级调研测试-数学(理科)答案详解
广州市2013届高三年级调研测试-数学(理科)答案详解D 2522233CBAPNM 广州市2013届高三年级调研测试 数学(理科)试题解析 2013-1-9一、选择题 1. A分析:«Skip Record If...»,其对应的点为«Skip Record If...»,位于第一象限 2. D分析:«Skip Record If...»,«Skip Record If...»,«Skip Record If...» 3. B 分析:«Skip Record If...»,«Skip Record If...»4. A分析:当«Skip Record If...»时,有«Skip Record If...»,解得«Skip Record If...»;所以«Skip Record If...»,但«Skip Record If...»,故“«Skip Record If...»”是“«Skip R ecord If...»”的充分不必要条件 5. B分析:逆推法,将«Skip Record If...»的图象向左平移«Skip Record If...»个单位即得«Skip RecordIf...»的图象,即«Skip Record If...»6. C分析:三棱锥如图所示,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»7. B分析:方程«Skip Record If...»表示焦点在«Skip Record If...»轴且离心率小于«Skip Record If...»的椭圆时,有«Skip Record If...»,即«Skip Record If...»,化简得«Skip Record If...»,又«Skip Record If...»,«Skip Record If...»,画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为«Skip Record If...»,故«Skip Record If...»8. C分析:由题意得«Skip Record If...»,故不等式«Skip Record If...»化为«Skip Record If...», 化简得«Skip Record If...»,故原题等价于«Skip Record If...»在«Skip Record If...»上恒成立,由二次函数«Skip Record If...»图象,其对称轴为«Skip Record If...»,讨论得«Skip Record If...» 或«Skip Record If...»,解得«Skip Record If...» 或 «Skip RecordIf...»,综上可得«Skip Record If...» 二、填空题9.«Skip Record If...» 分析:方法一、(基本量法)由«Skip Record If...»得«Skip Record If...»,即«Skip RecordIf...», 化简得«Skip Record If...»,故«Skip Record If...»方法二、等差数列中由«Skip Record If...»可将«Skip Record If...»化为«Skip Record If...»,即«Skip Record If...»,故«Skip Record If...»10.«Skip Record If...» 分析:«Skip Record If...»,令«Skip Record If...»,得其常数项为«Skip Record If...»,即«Skip Record If...»,解得«Skip Record If...»11.«Skip Record If...»分析:设切点为«Skip Record If...»,由«Skip Record If...»得«Skip Record If...»,故切线方程为«Skip Record If...»,整理得«Skip Record If...»,503(1592009)503(59132013)=-+++++++++50315032013=-++与«Skip Record If...»比较得«Skip Record If...»,解得«Skip Record If...»,故«SkipRecord If...»12. «Skip Record If...»分析:圆方程«Skip Record If...»化为标准式为If...»,其圆心坐标«Skip Record If...»,半径«Skip Record If...»到直线«Skip Record If...»的距离«Skip RecordIf...»,由右图 所示,圆上到直线«Skip Record If...»的距离为13.«Skip Record If...» 分析:由题意«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,…«Skip Record If...», «Skip Record If...»,«Skip RecordIf...», «Skip Record If...»;以上共503行,输出的«Skip Record If...»«Skip Record If...» 14.«Skip Record If...»分析:如图,因为«Skip Record If...» ,所以«Skip Record «Skip Record If...»中点,由相交弦定理知«Skip Record If...»,即«Skip Record If...»,故«Skip Record If...» 15. «Skip Record If...»分析:圆«Skip Record If...»的参数方程化为平面直角坐标方程为«Skip Record If...»,直线«Skip Record If...»的极坐标方程化为平面直角坐标方程为«Skip Record If...»,如右图所示,圆心到直线的距离«Skip Record If...»,故圆«Skip Record If...»截直线«Skip Record If...»所得的弦长为«Skip Record If...»三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵«Skip Record If...»,依据正弦定理得:«Skip Record If...», …………… 1分即«Skip Record If...»,解得«Skip Record If...»«Skip RecordIf...». …………… 3分(2)解:∵«Skip Record If...»,∴«Skip Record If...». …………… 4分∴«Skip Record If...». …………… 5分∴«Skip Record If...», …………… 6分«Skip Record If...». …………… 7分∵«Skip Record If...»,∴«Skip Record If...». (8)分∴«Skip Record If...»…………… 9分«Skip Record If...»…………… 10分精品好文档,推荐学习交流«Skip Record If...»«Skip Record If...». (12)分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为«Skip Record If...».∴应从«Skip Record If...»四所中学抽取的学生人数分别为«Skip RecordIf...». …………… 4分(2)解:设“从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件«Skip Record If...»,从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生的取法共有C«Skip Record If...»«Skip Record If...»种,… 5分这两名学生来自同一所中学的取法共有C«Skip Record If...»C«Skip RecordIf...»C«Skip Record If...»C«Skip Record If...»«Skip Record If...». …………… 6分∴«Skip Record If...»«Skip Record If...».答:从参加问卷调查的«Skip Record If...»名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为«Skip RecordIf...». …………… 7分(3) 解:由(1)知,在参加问卷调查的«Skip Record If...»名学生中,来自«Skip Record If...»两所中学的学生人数分别E M ND C BAP 为«Skip Record If...».依题意得,«Skip Record If...»的可能取值为«Skip Record If...», …………… 8分«Skip Record If...»«Skip Record If...»«Skip Record If...»,«Skip RecordIf...»«Skip Record If...»«Skip Record If...»,«Skip Record If...»«Skip RecordIf...»«Skip Record If...».…………… 11分 ∴«Skip Record If...»的分布列为:…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法)(1)证法1:取«Skip Record If...»的中点«Skip Record If...»,连接«Skip RecordIf...»,∵点«Skip Record If...»是«Skip Record If...»的中点, ∴«Skip Record If...». …………… 1分∵点«Skip Record If...»是«Skip Record If...»的中点,底面«Skip RecordIf...»是正方形,∴«Skip Record If...». …………… 2分MNDCBA P∴«Skip Record If...».∴四边形«Skip Record If...»是平行四边形.∴«Skip Record If...». …………… 3分∵«Skip Record If...»平面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...». …………… 4分证法2:连接«Skip Record If...»并延长交«Skip Record If...»的延长线于点«Skip Record If...»,连接«Skip Record If...»,∵点«Skip Record If...»是«Skip Record If...»的中点,∴«Skip Record If...», …………… 1分∴点«Skip Record If...»是«Skip Record If...»的中点. …………… 2分∵点«Skip Record If...»是«Skip Record If...»的中点,∴«Skip Record If...». …………… 3分∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip RecordIf...». …………… 4分 证法3: 取«Skip Record If...»的中点«Skip Record If...»,连接«Skip RecordIf...»,∵点«Skip Record If...»是«Skip Record If...»的中点,点«Skip Record If...»是«Skip Record If...»的中点,∴«Skip Record If...»,«Skip Record If...».FEMNDCBAP ∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip RecordIf...». …………… 1分∵«Skip Record If...»面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip RecordIf...». …………… 2分∵«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,«Skip Record If...»平面«Skip Record If...»,∴平面«Skip Record If...»面«Skip Record If...». …………… 3分 ∵«Skip Record If...»平面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...». …………… 4分 (2)解法1:∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...», ∴«Skip Record If...»面«Skip Record If...». …………… 5分 ∵«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...». …………… 6分过«Skip Record If...»作«Skip Record If...»,垂足为«Skip Record If...»,连接«Skip Record If...»,∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...»面«Skip RecordIf...». …………… 7分∵«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...». ……………8分∴«Skip Record If...»是二面角«Skip Record If...»的平面角. …………… 9分在Rt△«Skip Record If...»中,«Skip Record If...»,«Skip Record If...»,得«Skip Record If...»,…………… 10分在Rt△«Skip Record If...»中,«Skip Record If...»,得«Skip Record If...»,«Skip Record If...». …………… 11分在Rt△«Skip Record If...»中,«Skip Record If...»,…………… 12分«Skip Record If...». …………… 13分∴二面角«Skip Record If...»的余弦值为«Skip RecordIf...». …………… 14分解法2:∵«Skip Record If...»,«Skip Record If...»面«Skip Record If...»,∴«Skip Record If...»面«Skip Record If...».在Rt△«Skip Record If...»中,«Skip Record If...»,«Skip Record If...»,得«Skip Record If...»,…………… 5分以点«Skip Record If...»为原点,«Skip Record If...»所在直线为«Skip RecordIf...»轴,«Skip Record If...»所在直线为«Skip Record If...»轴,«Skip Record If...»所在直线为«Skip Record If...»轴,建立空间直角坐标系«Skip RecordIf...», …………… 6分则«Skip Record If...». ∴«Skip Record If...»,3302AM ,,⎛⎫= ⎪⎝⎭,«Skip Record If...». …………… 8分 设平面«Skip Record If...»的法向量为«Skip Record If...»«Skip RecordIf...»,由«Skip Record If...»«Skip Record If...»,«Skip Record If...»«Skip RecordIf...»,得«Skip Record If...»令«Skip Record If...»,得.∴«Skip Record If...»的一个法向量. …………… 11分又«Skip Record If...»是平面«Skip Record If...»的一个法向量, …………… 12分«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip RecordIf...». …………… 13分∴二面角«Skip Record If...»的余弦值为«Skip RecordIf...». …………… 14分19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)解法一:(1)解:设«Skip Record If...»,∵«Skip Record If...», ∴«SkipRecordIf...»是线段«SkipRecordIf...»的中点. …………… 2分 ∴«Skip Record If...»,① …………… 3分«Skip Record If...». ② …………… 4分∵«Skip Record If...», ∴«Skip Record If...».∴«Skip Record If...». …………… 5分依题意知«Skip Record If...»,∴«Skip Record If...». ③ …………… 6分把②、③代入①得:«Skip Record If...»,即«Skip Record If...». …………… 7分∴点«SkipRecordIf...»的轨迹方程为«SkipRecordIf...». …………… 8分(2)解:依题意得四边形«Skip Record If...»是矩形, ∴四边形«Skip Record If...»的面积为«Skip Record If...»«Skip Record If...»«Skip Record If...» …………… 9分«Skip Record If...» «Skip Record If...» «Skip Record If...». …………… 11分∵«Skip Record If...»,当且仅当«Skip Record If...»时,等号成立, …………… 12分∴«Skip Record If...». …………… 13分∴四边形«Skip Record If...»的面积的最小值为«Skip RecordIf...». …………… 14分解法二:(1)解:依题意,知直线«Skip Record If...»的斜率存在,设直线«Skip Record If...»的斜率为«Skip Record If...»,由于«Skip Record If...»,则直线«Skip Record If...»的斜率为«Skip Record . …………… 1分If...»故直线«Skip Record If...»的方程为«Skip Record If...»,直线«Skip Record If...»的方程为.«Skip Record If...»消去«Skip Record If...»,得«Skip Record If...».由«Skip Record If...»解得«Skip Record If...»或«Skip Record . …………… 2分If...»∴点«Skip Record If...»的坐标为«Skip Record . …………… 3分If...»同理得点«Skip Record If...»的坐标为«Skip Record. …………… 4分If...»∵«Skip Record If...»,∴«Skip Record If...»是线段«Skip Record If...»的中点. …………… 5分,设点«Skip Record If...»的坐标为«Skip Record If...»则…………… 6分«Skip Record If...»消去«Skip Record If...»,得«Skip Record. …………… 7分If...»∴点«Skip Record If...»的轨迹方程为«Skip Record . …………… 8分If...»(2)解:依题意得四边形«Skip Record If...»是矩形,∴四边形«Skip Record If...»的面积为…………… 9分«Skip Record If...»«Skip Record If...»…………… 10分«Skip Record If...»…………… 11分«Skip Record If...»«Skip Record If...». (12)分,即«Skip Record If...»时,等号成当且仅当«Skip Record If...»立. …………… 13分∴四边形«Skip Record If...»的面积的最小值为«Skip Record If...». ……………14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前«Skip Record If...»项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力)(1)解法1:设«Skip Record If...»构成等比数列,其中«Skip Record If...», 依题意,«Skip Record If...», ①…………… 1分, ②…………… 2分«Skip Record If...»由于«Skip Record If...», …………… 3分①«Skip Record If...»②得«Skip Record If...».…………… 4分«Skip Record If...»∵«Skip Record If...»,∴«Skip Record If...». ……………5分, …………… 6分∵«Skip Record If...»∴数列是首项为«Skip Record If...»,公比为«Skip Record «Skip Record If...»If...»的等比数列. …………… 7分. …………… 8分∴«Skip Record If...»«Skip Record If...»解法2: 设«Skip Record If...»构成等比数列,其中«Skip Record If...»,公比为«Skip Record If...»,则,即«Skip Record«Skip Record If...»If...». …………… 1分依题意,得«Skip Record If...»…………… 2分«Skip Record If...»…………… 3分«Skip Record If...»«Skip Record If...»……………4分«Skip RecordIf...». …………… 5分, …………… 6分∵«Skip Record If...»是首项为«Skip Record If...»,公比为«Skip Record ∴数列«Skip Record If...»If...»的等比数列. …………… 7分. …………… 8分∴«Skip Record If...»«Skip Record If...»(2)解: 由(1)得«Skip Record If...»«Skip Record If...», …………… 9分∵«Skip Record If...», ……………10分∴«Skip Record If...»,«Skip Record If...»N«Skip Record If...». (11)分∴«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip RecordIf...». …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:«Skip Record If...»是R上的“平缓函数”,但«Skip Record If...»不是区间R的“平缓函数”;设«Skip Record If...»,则«Skip Record If...»,则«Skip Record If...»是实数集R上的增函数,不妨设«Skip Record If...»,则«Skip Record If...»,即«Skip Record If...»,则«Skip Record If...». ①…………… 1分又«Skip Record If...»也是R上的增函数,则«Skip Record If...»,即«Skip Record If...»,②…………… 2分由①、②得«Skip Record If...».因此,«Skip Record If...»,对«Skip Record If...»都成立. …………… 3分当«Skip Record If...»时,同理有«Skip Record If...»成立又当«Skip Record If...»时,不等式«Skip Record If...»,故对任意的实数«Skip Record If...»,«Skip Record If...»R,均有«Skip Record If...».因此«Skip Record If...»是R上的“平缓函数”. (5)分由于«Skip Record If...»…………… 6分取«Skip Record If...»,«Skip Record If...»,则«Skip RecordIf...»,…………… 7分因此,«Skip Record If...»不是区间R的“平缓函数”. …………… 8分(2)证明:由(1)得:«Skip Record If...»是R上的“平缓函数”,则«Skip Record If...»,所以«Skip Record If...». …………… 9分而«Skip Record If...»,∴«Skip Record If...». …………… 10分∵«Skip Record If...»,……… 11分∴«Skip Record If...». …………… 12分∴«Skip Record If...»«Skip Record If...»…………… 13分«Skip RecordIf...». …………… 14分。
广州市2013届高三年级第一次调研测试(文)
广州市2013届高三年级调研测试(文)一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1+i (i 为虚数单位)的模等于AB .1 CD .122.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 3.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 A .9 B .19 C .9- D .19- 4.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为A .56B .42C .28D .145.已知e 为自然对数的底数,函数y x =e x的单调递增区间是A . )1,⎡-+∞⎣B .(1,⎤-∞-⎦C .)1,⎡+∞⎣D .(1,⎤-∞⎦ 6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是A .αα//,//,//n m n m 则若B .βαγβγα//,,则若⊥⊥C .n m n m //,//,//则若ααD .n m n m ⊥⊥则若,//,αα7.如图1,程序结束输出s 的值是A .30B .55C .91D .140 8.已知函数()()212fx x x cos cos =-⋅,x ∈R ,则()f x 是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数图29.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,,则方程22221x y a b+=表示焦点在x椭圆的概率为 A .12 B .1532C .1732D .3132 10.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是 A. 17,⎡⎤-⎣⎦ B. (3,⎤-∞⎦C. (7,⎤-∞⎦D. ()17,,⎤⎡-∞-+∞⎦⎣二.填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知()fx 是奇函数, ()()4g x f x =+, ()12g =, 则()1f -的值是 .12.已知向量a ,b 都是单位向量,且 a b 12=,则2-a b 的值为 . 13.设x x f cos )(1=,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++= ,则sin A 的值是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图2,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是 .15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .侧视D CBAP 图5图4图3625x 0611y 11988967乙甲三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭. (1)求函数)(x f y =的单调递增区间;(2)若43f ()πα-=)42(πα+f 的值.17.(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图3,其中甲班学生的平均分是85,乙班学生成绩的中位数是83. (1)求x 和y 的值;(2)计算甲班7位学生成绩的方差2s ;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦, 其中12nx x x x n+++=.18.(本小题满分14分)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .20.(本小题满分14分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数根?若存在,求出t 的值;若不存在,说明理由.21.(本小题满分14分)已知椭圆()22122:10x y C a b a b+=>>的右焦点与抛物线22:4C y x =的焦点F 重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,53PF =. (1)求椭圆1C 的方程;(2) 若过点()1,0A -的直线与椭圆1C 相交于M 、N 两点,求使FM FN FR +=成立的动点R 的轨迹方程;(3) 若点R 满足条件(2),点T 是圆()2211x y -+=上的动点,求RT 的最大值.广州市2013届高三第一次调研测试参考答案一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.2 12.13. 1 14. 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质、同角三角函数的基本关系、二倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解:2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭x x cos sin =+ …………… 1分22x x sin cos ⎛⎫=+ ⎪ ⎪⎝⎭4x sin π⎛⎫=+ ⎪⎝⎭. …………… 3分由22242k x k ,πππππ-+≤+≤+ …………… 4分解得32244k x k k ,ππππ-+≤≤+∈Z . …………… 5分 ∴)(x f y =的单调递增区间是32244k k k [,],ππππ-++∈Z . ………… 6分 (2)解:由(1)可知)4sin(2 )(π+=x x f ,∴43f ()sin παα-==,得13sin α=. …………… 8分∴)42(πα+f =22sin πα⎛⎫+ ⎪⎝⎭ …………… 9分2cosα=…………… 10分()212sinα=-…………… 11分9=. …………… 12分17.(本小题满分12分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:∵甲班学生的平均分是85,∴92968080857978857x+++++++=. …………… 1分∴5x=. …………… 2分∵乙班学生成绩的中位数是83,∴3y=. …………… 3分(2)解:甲班7位学生成绩的方差为2s()()()22222221675007117⎡⎤=-+-+-++++⎢⎥⎣⎦40=. …… 5分(3)解:甲班成绩在90分以上的学生有两名,分别记为,A B,…………… 6分乙班成绩在90分以上的学生有三名,分别记为,,C D E. …………… 7分从这五名学生任意抽取两名学生共有10种情况:()()(),,,,,,A B A C A D()()()()()()(),,,,,,,,,,,,,A EBC BD BE C D C E D E. …………… 9分其中甲班至少有一名学生共有7种情况:()()(),,,,,,A B A C A D()()()(),,,,,,,A EBC BD B E. ……………11分记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则()710P M=.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为710.……………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、三视图、几何体的侧面积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD. …………… 2分FE D CBAP∵AD ⊂平面ABCD ,∴AD PE ⊥. …………… 3分 ∵AD CD ⊥,CD PE E CD ,=⊂ 平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . …………… 5分 ∵PC ⊂平面PCD ,∴AD PC ⊥. …………… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED中,PE ==,…………… 7分过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分∵EF ⊂平面PEF ,PE ⊂平面PEF ,EF PE E = ,∴AB ⊥平面PEF . …………… 9分 ∵PF ⊂平面PEF ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △PEF 中,3PF ==, …………… 12分∴△PAB 的面积为162S AB PF == . ∴四棱锥P ABCD -的侧面PAB 的面积为6. …………… 14分 19.(本小题满分14分)(本小题主要考查数列、数列求和等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵}1{+n S 是公比为2的等比数列,∴11112)1(2)1(1--⋅+=⋅+=+n n n a S S . …………… 1分 ∴12)1(11-⋅+=-n n a S .从而11122+=-=a S S a ,221233+=-=a S S a . …………… 3分 ∵2a 是1a 和3a 的等比中项∴)22()1(1121+⋅=+a a a ,解得=1a 1或11-=a . …………… 4分 当11-=a 时,11+S 0=,}1{+n S 不是等比数列, …………… 5分 ∴=1a 1.∴12-=n n S . …………… 6分当2n ≥时,112--=-=n n n n S S a . …………… 7分 ∵11=a 符合12-=n n a ,∴12-=n n a . …………… 8分 (2)解:∵12n n na n -= ,∴1211122322n n T n -=⨯+⨯+⨯++ . ① …………… 9分 21231222322n n T n =⨯+⨯+⨯++ .② …………… 10分①-②得2112222n n n T n --=++++- …………… 11分12212nn n -=-- …………… 12分 =()121nn -- . …………… 13分∴()121nn T n =-+ . …………… 14分20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、方程的根等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解法1:∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5fx ax x =-,0a >. …………… 1分∴25f x ax a /()=-. …………… 2分 ∵函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-. …………… 3分∴256a a -=-,解得2a =. …………… 4分 ∴()()225210fx x x x x =-=-. …………… 5分解法2:设()2fx ax bx c =++, ∵不等式()0fx <的解集是()05,,∴方程20ax bx c ++=的两根为05,.∴02550c a b ,=+=. ① …………… 2分 ∵2f x ax b /()=+. 又函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-.∴26a b +=-. ② …………… 3分由①②,解得2a =,10b =-. …………… 4分 ∴()2210fx x x =-. …………… 5分(2)解:由(1)知,方程()370fx x+=等价于方程32210370x x -+=.…………… 6分设()h x=3221037x x -+,则()()26202310hx x x x x /=-=-. …………… 7分当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫ ⎪⎝⎭上单调递减; ……… 8分 当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分 ∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分 ∴方程()0h x=在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根. …………… 13分∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根. …………… 14分21.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、直线、椭圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1)解法1:抛物线22:4C y x =的焦点F 的坐标为()1,0,准线为1x =-,设点P 的坐标为()00,x y ,依据抛物线的定义,由53PF =,得01x +53=, 解得023x =.…………… 1分∵ 点P 在抛物线2C 上,且在第一象限,∴ 2002443y x ==⨯,解得0y =.∴点P 的坐标为23⎛⎝⎭. …………… 2分 ∵点P 在椭圆22122:1x y C a b+=上, ∴2248193a b +=. …………… 3分又1c =,且22221a b c b =+=+, …………… 4分 解得224,3a b ==.∴椭圆1C 的方程为22143x y +=. …………… 5分 解法2: 抛物线22:4C y x =的焦点F 的坐标为()1,0,设点P 的坐标为()00x y ,,0000x y ,>>. ∵53PF =, ∴()22002519x y -+=. ① …………… 1分 ∵点P 在抛物线22:4C y x =上,∴2004y x =. ②解①②得023x =,0y =.∴点P 的坐标为23⎛ ⎝⎭. …………… 2分∵点P 在椭圆22122:1x y C a b+=上, ∴2248193a b +=. …………… 3分又1c =,且22221a b c b =+=+, …………… 4分解得224,3a b ==. ∴椭圆1C 的方程为22143x y +=. …………… 5分 (2)解法1:设点M ()11,x y 、()22,N x y 、(),R x y ,则()()()11221,,1,,1,FM x y FN x y FR x y =-=-=- .∴()12122,FM FN x x y y +=+-+ .∵ FM FN FR += ,∴121221,x x x y y y +-=-+=. ① …………… 6分∵M 、N 在椭圆1C 上, ∴222211221, 1.4343x y x y +=+= 上面两式相减得()()()()12121212043x x x x y y y y +-+-+=.②把①式代入②式得()()()12121043x x x y y y +--+=. 当12x x ≠时,得()1212314x y y x x y+-=--. ③ …………… 7分 设FR 的中点为Q ,则Q 的坐标为1,22x y +⎛⎫⎪⎝⎭. ∵M 、N 、Q 、A 四点共线, ∴MN AQ k k =, 即121221312y y y y x x x x -==+-++. ④ …………… 8分 把④式代入③式,得()3134x y x y+=-+, 化简得()2243430y x x +++=. …………… 9分 当12x x =时,可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分 解法2:当直线MN 的斜率存在时,设直线MN 的方程为()1y k x =+, 由()221143y k x x y ,,⎧=+⎪⎨+=⎪⎩消去y ,得()22223484120k x k x k +++-=. 设点M ()11,x y 、()22,N x y 、(),R x y ,则2122834k x x k+=-+, ()()()1212122611234k y y k x k x k x x k +=+++=++=+.…6分 ∵()()()11221,,1,,1,FM x y FN x y FR x y =-=-=- .∴()12122,FM FN x x y y +=+-+ .∵ FM FN FR += ,∴121221,x x x y y y +-=-+=. ∴21228134k x x x k+=+=-+, ① 2634k y k=+. ② …………… 7分 ①÷②得()314x k y +=-, ③ …………… 8分把③代入②化简得()2243430y x x +++=. (*) …………… 9分 当直线MN 的斜率不存在时,设直线MN 的方程为1x =-,依题意, 可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分(3)解: 由(2)知点R ()x y ,的坐标满足()2243430y x x +++=, 即()224343y x x =-++, 由20y ≥,得()23430x x -++≥,解得31x -≤≤-. …………… 11分 ∵圆()2211x y -+=的圆心为()10F ,,半径1r =,∴RF ==12=. …………… 12分 ∴当3x =-时,4RFmax =, …………… 13分 此时,415RTmax =+=. …………… 14分。
(整理)广州市届高三年级调研测试-数学(理科)答案详解
D 2522233CBAPNM 广州市2013届高三年级调研测试 数学(理科)试题解析 2013-1-9一、选择题 1. A分析:2i(23i)=2i 3i 2i 332i --=+=+,其对应的点为(3,2),位于第一象限 2. D分析:{0,1,2,3,4}A =Q ,{|2,}{0,2,4,6,8}B x x n n A ∴==∈=,{0,2,4}A B ∴=I 3. B 分析:22211log log 2244f -⎛⎫===- ⎪⎝⎭,()2112349f f f -⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭4. A分析:当//a b r r时,有24(1)(1)0x x ?-+=,解得3x =±;所以3//x a b =⇒r r ,但//3a b x =r r ¿,故“3x =”是“//a b r r”的充分不必要条件5. B分析:逆推法,将sin 2y x =的图象向左平移6π个单位即得()y f x =的图象, 即()sin 2()sin(2)cos[(2)]cos(2)cos(2)632366f x x x x x x ππππππ=+=+=-+=-+=- 6. C分析:三棱锥如图所示,3PM =,145252PDC S ∆=⨯⨯= , 12332PBC PAD S S ∆∆==⨯⨯=,14362PAB S ∆=⨯⨯= 7. B分析:方程22221x y a b +=表示焦点在x 轴且离心率小于3的椭圆时,有222232a b c a b e a a ⎧>⎪⎨-==<⎪⎩, 即22224a b a b⎧>⎨<⎩,化简得2a ba b >⎧⎨<⎩,又[1,5]a ∈,[2,4]b ∈, 画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为154,故152432S P ==⨯阴影8. C分析:由题意得()()(1)x a xx a x -?--,故不等式()2x a x a -?…化为()(1)2x a x a --+…,化简得2(1)220x a x a -+++…,故原题等价于2(1)220x a x a -+++…在(2,)+∞上恒成立,由二次函数2()(1)22f x x a x a =-+++图象,其对称轴为12a x +=,讨论得 122(2)0a f +⎧⎪⎨⎪⎩…… 或 1221()02a a f +⎧>⎪⎪⎨+⎪⎪⎩…,解得3a … 或 37a <…, 综上可得7a … 二、填空题 9.28分析:方法一、(基本量法)由34512a a a ++=得11123412a d a d a d +++++=,即13912a d += ,化简得134a d +=,故7117677(3)73282S a d a d ´=+=+=? 方法二、等差数列中由173542a a a a a +=+=可将34512a a a ++=化为173()122a a +=,即178a a +=,故1777()282a a S +== 10.1分析:299183991C ()(1)C rrr r r rr ax a x xg ---骣琪-=-琪桫,令6r =,得其常数项为6369(1)C 84a -=, 即38484a =,解得1a =11.e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x x x x''==+=+g 得0ln 1k x =+,故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-,503(1592009)503(59132013)=-+++++++++L L 50315032013=-++与2y x m =+比较得00ln 12x x m +=⎧⎨-=⎩,解得0e x =,故e m =-12. 4分析:圆方程2224150x y x y +++-=化为标准式为22(1)(2)20x y+++=,其圆心坐标(1,2)--,半径r =,由点到直线的距离公式得圆心到直线20x y -=的距离d ==,由右图 所示,圆上到直线20x y -=413.3018 分析:由题意11cos112a π=⨯+=,222cos112a π=⨯+=-,333cos 112a π=⨯+=,444cos 152a π=⨯+=,555cos 112a π=⨯+=,666cos 152a π=⨯+=-,777cos 112a π=⨯+=,888cos 192a π=⨯+=,…20091a =, 20102009a =-, 20111a =, 20122013a =;以上共503行,输出的122012S a a a =+++L3018=14.分析:如图,因为PC OP ⊥ ,所以P 是弦CD 中点,由相交弦定理知2PA PB PC =g , 即28PC =,故PC =分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==故圆C 截直线l 所得的弦长为=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1A sin =,解得A sin =4. …………… 3分 (2)解:∵a b <, ∴02A B π<<<. …………… 4分∴A cos ==…………… 5分∴228A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=, ∴23C A π=-. …………… 8分∴4223C A cos cos π⎛⎫=-⎪⎝⎭…………… 9分 442233A A coscos sin sin ππ=+ …………… 10分1528=-⨯-⨯516+=-. …………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为5011002=. ∴应从,,,A B C D 四所中学抽取的学生人数分别为15,20,10,5. …………… 4分 (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C 250=1225种,… 5分 这两名学生来自同一所中学的取法共有C 215+C 220+C 210+C 25=350. …………… 6分∴()3501225P M ==27. 答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学 的概率为27. …………… 7分 (3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, …………… 8分EMNDCBAPP()0P ξ==210225C C 960=, ()1P ξ==111510225C C C =12,()2P ξ==215225C C 720=. …………… 11分 ∴ξ的分布列为:…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点,∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形,∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD ,NP ∴MN //面PAD . …………… 4分 证法2:连接BM 并延长交AD 的延长线于点E ,连接PE , ∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分 ∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN PE //. …………… 3分 ∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3:取AB 的中点E ,连接NE ME ,,∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分 ∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分 ∵ME NE E =I ,NE ⊂平面MEN ,ME ⊂平面MEN , ∴平面MEN //面PAD . …………… 3分∵MN ⊂平面MEN ,∴MN //面PAD . …………… 4分 (2)解法1:∵NE PA //,PA ^面ABCD , ∴NE ^面ABCD . …………… 5分 ∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF ,∵NE EF E =I ,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分 ∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分 ∴NFE ∠是二面角N AM B --的平面角. …………… 9分在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 10分在Rt △MEA 中,32AE =,得AM ==5AE ME EF AM ==g . …………… 11分在Rt △NEF 中,NF ==, …………… 12分cos 89EF NFENF ?=. …………… 13分 ∴二面角N AM B --的余弦值为89. …………… 14分 解法2:∵NE PA //,PA ^面ABCD , ∴NE ^面ABCD .在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 5分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴, 建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M E N ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴()004EN ,,=u u u r ,3302AM ,,⎛⎫= ⎪⎝⎭u u u u r ,3042AN ,,⎛⎫= ⎪⎝⎭u u u r . …………… 8分设平面AMN 的法向量为n ()x y z ,,=,由n 0AM ⋅=u u u u r ,n 0AN ⋅=u u u r,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩ 令1x =,得2y =-,34z =.∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=u u u r是平面AMB 的一个法向量, …………… 12分cos ,u u u u r n EN ==u u u u rg u u u u r n ENn EN. …………… 13分∴二面角N AM B --. …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,,∵OA OB OC +=u u u r u u u r u u u r,∴M 是线段AB 的中点. …………… 2分∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=u u u r u u u r.∴2212120y y y y +=. …………… 5分依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB =u u u r u u u r=⋅…………… 9分== =…………… 11分 ∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, …………… 12分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k =. …………… 2分 ∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分同理得点B 的坐标为()2k k ,-. …………… 4分∵OA OB OC +=u u u r u u u r u u u r,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112yx =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB =u u u r u u u r =⋅…………… 9分=…………… 10分≥…………… 11分 2=. …………… 12分 当且仅当221kk =,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设1232n b b b b ,,,,+L 构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅L , ① …………… 1分 2121n n n A b b b b ++=⋅⋅⋅⋅L , ② …………… 2分 由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅=L , …………… 3分①⨯②得()()()()212211221n n n n n A b b b b b b b b ++++=⋅⋅⋅⋅L 22n +=.…………… 4分∵0n A >,∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =的等比数列. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 解法2: 设1232n b b b b ,,,,+L 构成等比数列,其中1212n b b ,+==,公比为q ,则121n n b b q ++=,即12n q +=. …………… 1分 依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅L()()()211111n b b q b q b q +=⋅⋅⋅⋅L …………… 2分()()212311n n b q++++++=⋅L …………… 3分()()122n n q++= …………… 4分222n +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =的等比数列. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分∵()()()11111n nn n n n tan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, ……………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ……………11分∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅L 2334tan tan tan tan tan =⋅+⋅++L ()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L =()221n n tan tan tan +--. …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)(2) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”;设()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数, 不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分由①、②得 212121()sin sin x x x x x x --<-<-.因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分 当12x x >时,同理有2121sin sin x x x x -<-成立又当12x x =时,不等式2121sin sin 0x x x x -=-=, 故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. …………… 5分 由于121212()()()(1)h x h x x x x x -=-+- …………… 6分 取13x =,22x =,则1212()()4h x h x x x -=>-, …………… 7分 因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分 (2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分 而121(21)n n x x n +-≤+,∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++-L ,……… 11分 ∴1111221n n n n n y y y y y y y y ++---≤-+-++-L . …………… 12分 ∴11111111[()()(1)]4112n y y n n n n +-≤-+-++-+-L 11141n ⎛⎫=- ⎪+⎝⎭ …………… 13分14<. …………… 14分。
广州市2013届高三年级调研测试优秀作文及点评
广州市2013届高三年级调研测试优秀作文及点评阅读下面的材料,根据要求作文。
(60分)人生在世,往往会经历种种的痛。
有人说,痛了,就直接说出来,这是本能。
又有人说,痛而不言,体现了人性的坚强。
还有人说,痛而善言,这是一种人生智慧。
上面的材料引发了你怎样的思考?请结合自己的体验与感悟,写一篇文章。
要求:①自选角度,自拟标题,自定文体。
②不少于800字。
③不得套作,不得抄袭。
痛了,就说王韵儿华南师大附中高三(10)班二十世纪70年代,昆仑军区的首长“一号”为磨炼战士意志,决定在严冬把部队开到海拔四五千米的高原“无人区”拉练。
动员令一下,战士们热血沸腾,纷纷咬破手指用鲜血写“请愿书”。
拉练中,恶劣的高原环境让部队死伤无数。
然而伤兵区里听不到一声“痛”的叫喊。
战士们紧咬牙关,浑身打战地忍着、忍着,整个部队笼罩在一片狂热的自我献身的骄傲感中……这是毕淑敏小说《昆仑殇》里的情节。
当时读它时我的心情复杂而沉重。
作家自己就曾是昆仑山上的一个兵,她在这部作品里表达了对昆仑山、昆仑军人、昆仑魂的赞颂与敬意,但我却分明读到其中难言的痛楚和深沉的反思。
在极端恶劣的“无人区”负重、负伤行军,痛吗?一定很痛。
战士们能感受到痛,或许他们也曾呻吟。
但是“一号”首长传令:凡是疼痛得受不了的,都可以哼哼,共产党员共青团员也可以哼哼,各级指挥官,要到呻吟最重的帐篷里表示慰问。
这之后,“所有的声音都噎住了。
痛苦中的士兵记起了自己的尊严,整个营地进入了死一样的假寐之中”。
不愿当“怂包软蛋”的士兵们不再言痛,他们在自我牺牲的幸福感中,“痛并快乐着”。
这让我想起自己的一次手术经历。
手术小,麻药都不怎么打,因而也就痛得厉害。
我想哭,但妈妈说“不哭才是勇敢的孩子!小伤痛都忍不了,怎么面对大风浪”。
于是我故作镇定、一声不吭。
医生赞道:“这孩子厉害,好多大人都疼得哇哇叫呢!”我满腹苦水,却坚定、自豪地把自己的舌头咬得更紧了。
是什么让我们不能坦言自己的“痛”?我们的文化里似乎有一种传统:对苦难的崇拜。
广东省广州市2013届高三调研测试数学文试题(Word版含答案)
试卷类型:A广州市2013届高三年级调研测试数 学(文 科) 2013.1本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1+i (i 为虚数单位)的模等于AB .1 C.2D .122.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{3.已知函数()2030xx x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19C .9-D .19-4.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为A .56B .42C .28D .14 5.已知e 为自然对数的底数,函数y x =e x 的单调递增区间是A . )1,⎡-+∞⎣B .(1,⎤-∞-⎦C .)1,⎡+∞⎣D .(1,⎤-∞⎦ 6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是A .αα//,//,//n m n m 则若B .βαγβγα//,,则若⊥⊥C .n m n m //,//,//则若ααD .n m n m ⊥⊥则若,//,αα7.如图1,程序结束输出s 的值是A .30B .55C .91D .1408.已知函数()()212fx x x cos cos =-⋅,x ∈R ,则()f x 是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数9.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y ab+=表示焦点在x 轴上且离心率小于2的椭圆的概率为 A .12B .1532C .1732D .313210.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是 A. 17,⎡⎤-⎣⎦ B. (3,⎤-∞⎦ C. (7,⎤-∞⎦D. ()17,,⎤⎡-∞-+∞⎦⎣二.填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知()fx 是奇函数,()()4gx fx =+, ()12g =, 则()1f -的值是 .12.已知向量a ,b 都是单位向量,且 a b 12=,则2-a b 的值为 .13.设x x f cos )(1=,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++= ,则s i n A 的值是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图2,已知A B 是⊙O 的一条弦,点P 为A B 上一点, P C O P ⊥,P C 交⊙O 于C ,若4A P =,2PB =,P图3625x 0611y 11988967乙甲则P C 的长是 .15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭. (1)求函数)(x f y =的单调递增区间;(2)若43f ()πα-=,求)42(πα+f 的值.17.(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图3,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x 和y 的值;(2)计算甲班7位学生成绩的方差2s ;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率. 参考公式:方差()()()2222121n s x x xxx xn ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦, 其中12nx x x x n+++=.18.(本小题满分14分)已知四棱锥P A B C D -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P A B C D -的侧视图和俯视图. (1)求证:A D P C ⊥;(2)求四棱锥P A B C D -的侧面P A B 的面积.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .20.(本小题满分14分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数根?若存在,求出t 的值;若不存在,说明理由.21.(本小题满分14分) 已知椭圆()22122:10x y C a b ab+=>>的右焦点与抛物线22:4C y x =的焦点F 重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,53P F =.(1)求椭圆1C 的方程;(2) 若过点()1,0A -的直线与椭圆1C 相交于M 、N 两点,求使FM FN FR +=成立的动点R 的轨迹方程;(3) 若点R 满足条件(2),点T 是圆()2211x y -+=上的动点,求RT 的最大值.广州市2013届高三年级调研测试 数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.2 12.13. 1 14. 15.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质、同角三角函数的基本关系、二倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解:2f x x x ()sin sin π⎛⎫=-+⎪⎝⎭x x cos sin =+ …………… 1分22x x sin cos ⎛⎫=+ ⎪ ⎪⎝⎭4x sin π⎛⎫=+ ⎪⎝⎭. …………… 3分由22242k x k ,πππππ-+≤+≤+ …………… 4分解得32244k x k k ,ππππ-+≤≤+∈Z . …………… 5分∴)(x f y =的单调递增区间是32244k k k [,],ππππ-++∈Z . ………… 6分(2)解:由(1)可知)4sin(2 )(π+=x x f ,∴43f ()sin παα-==,得13sin α=. …………… 8分∴)42(πα+f =22sin πα⎛⎫+ ⎪⎝⎭ …………… 9分2cos α= …………… 10分()212sin α=-…………… 11分9=. …………… 12分17.(本小题满分12分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:∵甲班学生的平均分是85, ∴92968080857978857x +++++++=. …………… 1分∴5x =. …………… 2分 ∵乙班学生成绩的中位数是83,∴3y =. …………… 3分 (2)解:甲班7位学生成绩的方差为2s ()()()2222222167507117⎡⎤=-+-+-++++⎢⎥⎣⎦40=. …… 5分(3)解:甲班成绩在90分以上的学生有两名,分别记为,A B , …………… 6分 乙班成绩在90分以上的学生有三名,分别记为,,C D E . …………… 7分 从这五名学生任意抽取两名学生共有10种情况:()()(),,,,,,A B A C A D ()()()()()()(),,,,,,,,,,,,,A E B C B D B E C D C E D E . …………… 9分 其中甲班至少有一名学生共有7种情况:()()(),,,,,,A B A C A D()()()(),,,,,,,A E B C B D B E. ……………11分FE D CBAP记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M ,则()710P M=.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为710.……………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、三视图、几何体的侧面积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:依题意,可知点P 在平面A B C D 上的正射影是线段C D 的中点E ,连接P E , 则PE ⊥平面A B C D . …………… 2分 ∵A D ⊂平面A B C D ,∴AD PE ⊥. …………… 3分 ∵A D C D ⊥,CD PE E CD ,=⊂ 平面PC D ,PE ⊂平面PC D , ∴AD ⊥平面PC D . …………… 5分 ∵P C ⊂平面PC D ,∴A D P C ⊥. …………… 6分 (2)解:依题意,在等腰三角形PC D 中,3P C P D ==,2D E EC ==, 在R t △PED中,PE ==,…………… 7分过E 作EF AB ⊥,垂足为F ,连接P F ,∵PE ⊥平面A B C D ,A B ⊂平面A B C D ,∴A B P E ⊥. …………… 8分 ∵EF ⊂平面P E F ,PE ⊂平面P E F ,EF PE E = , ∴AB⊥平面P E F . …………… 9分∵PF ⊂平面P E F ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △P E F 中,3PF ==, …………… 12分∴△P A B 的面积为162S AB PF == .∴四棱锥P A B C D -的侧面P A B 的面积为6. …………… 14分19.(本小题满分14分)(本小题主要考查数列、数列求和等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵}1{+n S 是公比为2的等比数列,∴11112)1(2)1(1--⋅+=⋅+=+n n n a S S . …………… 1分 ∴12)1(11-⋅+=-n n a S .从而11122+=-=a S S a ,221233+=-=a S S a . …………… 3分 ∵2a 是1a 和3a 的等比中项∴)22()1(1121+⋅=+a a a ,解得=1a 1或11-=a . …………… 4分 当11-=a 时,11+S 0=,}1{+n S 不是等比数列, …………… 5分 ∴=1a 1.∴12-=n n S . …………… 6分 当2n ≥时,112--=-=n n n n S S a . …………… 7分 ∵11=a 符合12-=n n a ,∴12-=n n a . …………… 8分 (2)解:∵12n n na n -= ,∴1211122322n n T n -=⨯+⨯+⨯++ . ① …………… 9分21231222322nn T n =⨯+⨯+⨯++ .② …………… 10分①-②得2112222n nn T n --=++++- …………… 11分12212nnn -=-- …………… 12分=()121n n -- . …………… 13分 ∴()121nn T n =-+ . …………… 14分20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、方程的根等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解法1:∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5fx ax x =-,0a >. …………… 1分∴25f x ax a /()=-. …………… 2分∵函数()fx 在点()()11f ,处的切线与直线610xy ++=平行,∴()16f/=-. …………… 3分∴256a a -=-,解得2a =. …………… 4分 ∴()()225210fx x x xx =-=-. …………… 5分解法2:设()2fx axbx c =++,∵不等式()0f x <的解集是()05,,∴方程20axbx c ++=的两根为05,.∴02550c a b ,=+=. ① …………… 2分 ∵2f x ax b /()=+. 又函数()f x 在点()()11f ,处的切线与直线610xy ++=平行,∴()16f/=-.∴26a b +=-. ② …………… 3分由①②,解得2a =,10b =-. …………… 4分 ∴()2210fx xx =-. …………… 5分(2)解:由(1)知,方程()370fx x+=等价于方程32210370x x-+=.…………… 6分设()h x =3221037xx-+,则()()26202310h x x x x x /=-=-. …………… 7分当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫⎪⎝⎭上单调递减; ……… 8分 当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分 ∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分 ∴方程()0h x =在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫ ⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根. …………… 13分∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根. …………… 14分21.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、直线、椭圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1)解法1:抛物线22:4C y x =的焦点F 的坐标为()1,0,准线为1x =-, 设点P 的坐标为()00,x y ,依据抛物线的定义,由53P F =,得01x +53=, 解得023x =.…………… 1分∵ 点P 在抛物线2C 上,且在第一象限,∴ 2002443y x ==⨯,解得03y =∴点P 的坐标为2,33⎛⎪⎝⎭. …………… 2分 ∵点P 在椭圆22122:1x y C ab+=上, ∴2248193ab+=. …………… 3分又1c =,且22221a b c b =+=+, …………… 4分解得224,3a b ==.∴椭圆1C 的方程为22143xy+=. …………… 5分解法2: 抛物线22:4C y x =的焦点F 的坐标为()1,0,设点P 的坐标为()00x y ,,0000x y ,>>. ∵53P F =,∴()22002519x y -+=. ① …………… 1分∵点P 在抛物线22:4C y x =上,∴2004y x =. ②解①②得023x =,03y =.∴点P的坐标为2,33⎛ ⎪⎝⎭. …………… 2分 ∵点P 在椭圆22122:1x y C ab+=上, ∴2248193ab+=. …………… 3分又1c =,且22221a b c b =+=+, …………… 4分 解得224,3a b ==.∴椭圆1C 的方程为22143xy+=. …………… 5分(2)解法1:设点M()11,x y 、()22,N x y 、(),R x y ,则()()()11221,,1,,1,FM x y FN x y FR x y =-=-=-. ∴()12122,FM FN x x y y +=+-+.∵ FM FN FR += ,∴121221,x x x y y y +-=-+=. ① …………… 6分∵M 、N 在椭圆1C 上, ∴222211221,1.4343x y x y +=+=上面两式相减得()()()()12121212043x x x x y y y y +-+-+=.②把①式代入②式得()()()12121043x x x y y y +--+=.当12x x ≠时,得()1212314x y y x x y+-=--. ③ …………… 7分设F R 的中点为Q ,则Q 的坐标为1,22x y+⎛⎫⎪⎝⎭. ∵M 、N 、Q 、A 四点共线,∴M N A Q k k =, 即121221312yy y y x x x x -==+-++. ④ …………… 8分把④式代入③式,得()3134x yx y+=-+,化简得()2243430y x x +++=. …………… 9分 当12x x =时,可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分解法2:当直线M N 的斜率存在时,设直线M N 的方程为()1y k x =+,由()221143y k x x y,,⎧=+⎪⎨+=⎪⎩消去y ,得()22223484120k xk x k+++-=.设点M()11,x y 、()22,N x y 、(),R x y ,则2122834kx x k+=-+,()()()1212122611234k y y k x k x k x x k+=+++=++=+.…6分∵()()()11221,,1,,1,FM x y FN x y FR x y =-=-=-. ∴()12122,FM FN x x y y +=+-+.∵ FM FN FR += ,∴121221,x x x y y y +-=-+=.∴21228134kx x x k+=+=-+, ①2634k y k=+. ② …………… 7分①÷②得()314x k y+=-, ③ …………… 8分把③代入②化简得()2243430y x x +++=. (*) …………… 9分 当直线M N 的斜率不存在时,设直线M N 的方程为1x =-, 依题意, 可得点R 的坐标为()3,0-,经检验,点()3,0R -在曲线()2243430y x x +++=上.∴动点R 的轨迹方程为()2243430y x x +++=. …………… 10分(3)解: 由(2)知点R()x y ,的坐标满足()2243430yx x +++=,即()224343y x x =-++,由20y ≥,得()23430x x -++≥,解得31x -≤≤-. …………… 11分 ∵圆()2211x y -+=的圆心为()10F ,,半径1r =,∴RF ==12=…………… 12分∴当3x =-时,4RF max=, …………… 13分此时,415RT max=+=. …………… 14分。
分类坐标系与参数方程
分类汇编20:坐标系与参数方程一、选择题 二、填空题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点,则M 、N 的最小距离是______【答案】1 [来源:]2 .(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为____[来源:]【答案】3 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(0,ρ> 02)θπ≤≤,直线2l 的参数方程为{1222x ty t =-=+(为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是____________【答案】解析:sin sin cos cos sin 1444y x πππρθρθρθ⎛⎫-=⇒-=⇒-= ⎪⎝⎭{12322x tx y y t =-⇒+==+,由3112x y x y x y +==⎧⎧⇒⎨⎨-==⎩⎩(1,2)A ⇒4 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))在极坐标系中,圆3cos ρθ=上的点到直线co s()13πρθ-=的距离的最大值是______.【答案】745 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为________________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭(或1cos sin =+θρθρ)6 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )(坐标系与参数方程选做题)在极坐标系中,极点到曲线22)4cos(=+θπρ的距离是_____________[来源:]【答案】7 .(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )(坐标系与参数方程选做题)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为________.【答案】cos 3ρθ=.8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)(坐标系与参数方程选做题) 在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为__________.【答案】349 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)(坐标系与参数方程选做题)在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____【答案】解析:4π⎛⎫⎪⎝⎭两式相除得tan 12sin44ππθθρ=⇒=⇒==,交点的极坐标为4π⎛⎫⎪⎝⎭10.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==ty t x 882(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________.[来源: 数理化网]【答案】211.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的极坐标方程是6sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系,直线l的参数方程是1(2x t y ⎧=-⎪⎨=⎪⎩为参数),则直线l 与曲线C 相交所得的弦的弦长为________. 【答案】412.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)(坐标系与参数方程选做题)曲线1C :1co s sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______【答案】1;13.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为__________.[来源:]【答案】sin ρθ=【解析】点(2,)3π的直角坐标为,∴过点平行于x 轴的直线方程为y =即极坐标方程为sin ρθ=14.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知圆M:x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为______.[来源:]【答案】215.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)(坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22co s ρρθ+-3=0的弦长为____ 【答案】 416.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___【答案】222- [来源:]17.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,圆ρ=2上的点到直线sin()6πρθ+=3的距离的最小值是____【答案】118.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数),则曲线C 上的点到直线3x -4y +4=0的距离的最大值为______________[来源:数理化网]【答案】3;19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C :ρ=和曲线2C :cos()4πρθ+=,则1C 上到2C 的距离等于的点的个数为__________.【答案】3;将方程ρ=与cos()4πρθ+=化为直角坐标方程得222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为,2C 为直线,因圆心到直线20x y --=,故满足条件的点的个数3n =.20.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)(坐标系与参数方程)在极坐标中,圆ρ =4cos θ 的圆心C 到直线 ρ sin (θ +π4)=2 2 的距离为 _*****_.【答案】答案: 2解:在直角坐标系中,圆:x 2+y 2=4x ,圆心C (2,0),直线:x +y =4,所以,所求为2.21.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(坐标系与参数方程选做题) 已知直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩ (θ为参数), 则圆心C到直线l的距离为__________.【答案】22.(广东省广州市2013届高三调研测试数学(理)试题)(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y c o s ,s i n ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C所得的弦长是________.【答案】分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==,故圆C 截直线l 所得的弦长为=[来源:]23.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B 在直线cos sin 0ρθθ+=上运动,当线段A B 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫⎪⎝⎭ 答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ).24.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在直角坐标系x oy 中,曲线C 的参数方程是⎩⎨⎧=+=θθsin 2cos 22y x (θπθ],2,0[∈为参数),若以O 为极点,x轴正半轴为极轴,则曲线C 的极坐标方程是________.【答案】4cos ρθ= [来源:]25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫-⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为______.【答案】3;26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)直角坐标系xO y 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线12co s :sin x C y θθ=+⎧⎪⎨=⎪⎩(θ为参数)和曲线2:1C ρ=上,则||A B 的最大值为__________.【答案】527.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(坐标系与参数方程)在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(cos sin )1ρθθ-=-的交点的极坐标为_________.【答案】(1,)2π28.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:s()4πρθ=-的圆心C,且与直线OC 垂直,则直线l 的极坐标方程为_________.【答案】把s()4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或co s()4πρθ-=29.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(坐标系与参数方程选做题)若直线的极坐标方程为cos()4πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________.【答案】【解析】直线的直角坐标方程为60x y +-=,曲线C 的方程为221x y +=,为圆;d 的最大值为圆心到直线的距离加半径,即为max 11d =30.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为______.【答案】31.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(坐标系与参数方程选做题)在极坐标系) , (θρ(πθ20<≤)中,直线4πθ=被圆θρsin 2=截得的弦的长是__________.【答案】2.。
2013年广东省广州市普通高中毕业班综合测试理科数学试题广州一测及参考答案
广州市2013届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题 卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域 内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔 和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:如果事件A,B 相互独立,那么)()()(B P A P B A P ∙=∙.线性回归方程a x b yˆˆˆ+=中系数计算公式x b y axy y x xb ni ini i i-=---=∑∑==ˆ,)())((ˆ121, 其中y x ,表示样本均值。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}4,2{=B ,则A.B A U ⋃=B.B A C U U ⋃=)(C.)(B C A U U ⋃=D.)()(B C A C U U U ⋃= 2.已知bi ia+=-11,其中a,b 是实数,i 是虚数单位,则a+bi= A.1+2i B.2+i C.2-i D.1-2i3.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≤-≥+.01,1,12y y x y x ,则y x z 2-=的最大值为A.-3 B .0 C.1 D.3 4.直线03==y x 截圆4)2(22=+-y x 所得劣弧所对的圆心角是 A.6π B.3π C.2πD.32π5.某空间几何体的三视图及尺寸如图1,则该几何体的体积是A.2B.1C.32D.31 6.函数)cos )(sin cos (sin x x x x y -+=是A.奇函数且在]2,0[π上单调递增B.奇函数且在],2[ππ上单调递增C.偶函数且在]2,0[π上单调递增D.偶函数且在],2[ππ上单调递增7.已知e 是自然对数的底数,函数2)(-+=x e x f x 的零点为a,函数2ln )(-+=x x x g 的零点为b,则下列不等式中成立的是A.)()1()(b f f a f <<B.)1()()(f b f a f <<C.)()()1(b f a f f <<D.)()1()(a f f b f <<8.如图2,一条河的两岸平行,河的宽度d=600m,一艘客船从码头A 出发匀速驶往 河对岸的码头B.已知km AB 1=,水流速度为2km/h,若客船行驶完航程所用最短时 间为6分钟,则客船在静水中的速度大小为A.8km/hB.h km /26C.h km /342D.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.不等式x x ≤-1的解集是_________.10.⎰=1._______cos xdx11.根据上表可得回归方程a x yˆ23.1ˆ+=,据此模型估计,该型号机器使用所限为10年维修费用约______万元(结果保留两位小数).12.已知1,0≠>a a ,函数⎩⎨⎧>+-≤=1,1,)(x a x x a x f x ,若函数)(x f 在区间[0,2]上的最大值比最小值大25,则a 的值为________. 13.已知经过同一点的)3*,(≥∈n N n n 个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成)(n f 个部分,则.________)(______,)3(n f f = (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,定点)23,2(πA ,点B 在直线0sin 3cos =+θρθρ上 运动,当线段AB 最短时,点B 的极坐标为______.15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 与⊙O交于点D,若BC=3,516=AD ,则AB 的长为______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函)4sin()(πω+=x A x f (其中0,0,>>∈ωA R x )的最大值为2,最小正周期为8.(1)求函数)(x f 的解析式;(2)若函数)(x f 图象上的两点P,Q 的横坐标依次为2,4,O 坐标原点,求POQ ∆的 面积.17.(本小题满分12分)甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,21乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率; (2)求m,n 的值; (3)求ξ的数学期望.18.(本小题满分14分)如图4,在三棱柱ABC-A 1B 1C 1中,ABC ∆是边长为2的等边三角形,⊥1AA 平面ABC,D,E 分别是CC 1,AB 的中点.(1)求证:CE//平面A 1BD ;(2)若H 为A 1B 上的动点,当CH 为平面A 1AB 所成最大角的正切值为215时,求平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为S n ,且n na a a a ++++ 32132*)(2)1(N n n S n n ∈+-=.(1)求数列}{n a 的通项公式;(2)若p,q,r 是三个互不相等的正整数,且p,q,r 成等差数列,试判断1,1,1---r q p a a a 是否成等比数列?并说明理由.20.(本小题满分14分)已知椭圆C 1的中心在坐标原点,两个焦点分别为)0,2(),0,2(21F F -,点A(2,3)在椭圆C 1上,过点A 的直线L 与抛物线y x C 4:22=交于B,C 两点,抛物线C 2在点B,C 处的切线分别为21,l l ,且1l 与2l 交于点P.(1)求椭圆C 1的方程;(2)是否存在满足||2121AF AF PF PF +=+的点P ?若存在,指出这样的点P 有几个(不必求出点P 的坐标);若不存在,说明理由.21.(本小题满分14分)已知二次函数1)(2+++=m ax x x f ,关于x 的不等式21)12()(m x m x f -+-<的解集为)1,(+m m ,其中m 为非零常数.设1)()(-=x x f x g . (1)求a 的值;(2))(R k k ∈如何取值时,函数)1ln()()(--=x k x g x φ存在极值点,并求出极值点; (3)若m=1,且x>0,求证:*)(22)1()]1([N n x g x g nnn∈-≥+-+参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭10.1sin 11.12.38 12.12或27 13.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ …………5分∴(4,P Q .∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===…10分 ∴POQ sin ∠==……………11分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴(2,2),(4,OP OQ ==.……………8分 ∴cos cos ,6OP OQ POQOP OQ OP OQ⋅∠=<>===.……………10分 ∴POQ sin ∠== (11)分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴直线OP 的方程为y x =,即0x -=. ……………7分∴点Q 到直线OP 的距离为d ==……………9分∵OP =……………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知, ()()()12P A P B m P C n ,,===. ……………1分 (1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144Pξ-==-=.…………3分 (2)由题意知()()()()1101124PP ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分 整理得 112mn =,712m n +=.由mn >,解得13m =,14n =. ……………7分 (3)由题意知()()()()1a PP ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, …9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分 ∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312. …………12分H FABCA 1C 1B 1DE18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA ,∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB . ……………6分 ∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH ∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分 ∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===.∴EH =. ……………9分 ∵CE ∥BF ,CE ⊥平面1A AB ,z yxH ABCA 1C 1B 1DE F∴BF ⊥平面1A AB . ……………10分 ∵AB ⊂平面1A AB ,1A B ⊂平面1A AB , ∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在R t △EHB 中,BH ==cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC 所成二面角(锐角)的余弦值为5. ……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF . ∵E 为AB 的中点, ∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA ,∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB . ……………6分 ∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH ∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分 ∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===.∴EH =. ……………9分 在R t △EHB 中,BH ==∵R t △EHB ~R t △1A AB , ∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴,建立空间直角坐标系A xyz -. 则()000A ,,,1A ()004,,,B )10,,D ()02,,2.∴1AA =()004,,,1A B=)14,-,1A D =()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n A 1⋅,n 01=⋅A ,得40220y z y z .ìï+-=ïíï-=ïî 令1y =,则1z x ==,∴平面A BD 1的一个法向量为n=)11,. ……………12分∵1AA ⊥平面ABC , ∴1AA =()004,,是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA n AA 5. ……………13分 ∴平面1A BD 与平面ABC 所成二面角(锐角) ……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+, ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++, ② ……………2分② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列. ∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分 当2n ≥时, 11(22)(22)2n n n n n n a S S +-=-=---=, ……………7分 又12a =也满足上式,∴2n n a =. ……………8分 法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分 ∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2n n a =. …………8分 (2)解:∵p q r ,,成等差数列,∴2p r q +=. …………9分假设111p q r a a a ,,---成等比数列, 则()()()2111p r q a a a --=-, …………10分即()()()2212121prq--=-,化简得:2222p r q +=⨯. (*) ……………11分 ∵p r ≠,∴2222p r q +>=⨯,这与(*)式矛盾,故假设不成立.…13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得:2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分 ∴ 椭圆1C 的方程为2211612x y +=. ……………3分 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分 ∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分 (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=,∵C B A ,,三点共线,∴BC BA //. ……………4分 ∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ………8分 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x +=. ……………9分 代入②得 2141x x y =, ……………10分 则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P , 由24x y =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ……………5分 ∵21141x y =, ∴112y x x y -= . ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分 同理, 20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ………8分 ∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ……………9分 ∵点)3,2(A 在直线L 上, ∴300-=x y . ……………10分 ∴点P 的轨迹方程为3-=x y . ……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,…12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ……………5分由24x y =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-. 同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-. ……………10分 ∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为1212k x ,+-=<2212k x ,++=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分 ②当0m <时,由0Δ>,得k <-k >若k <-则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>, ∴函数()x ϕ在()1,+∞上单调递增.∴函数()x ϕ没有极值点. ……………7分若k >,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x .…9分(其中122k x +-=, 222k x ++=解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 若函数()()xg x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ……………4分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δkk m k m =+--+=+>,(**) ……………5分方程(*)的两个实根为1x =2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k > ……………7分 则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x .…9分 (其中122k x +-=, 222k x ++=(2)证法1:∵1m =, ∴()g x=()111x x -+-. ∴()()1111nnnn n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n nn n n C xC x C x ----=+++. ……………10分 令T 122412n n n n n n n C xC x C x ----=+++,则T 122412n nn n n n n n C x C x C x -----=+++ 122412nnn n n n n C x C x C x ----=+++.∵x 0>,∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++…11分≥121n nn n C C C -⋅+⋅++⋅…12分()1212n n n n C C C -=+++ ()012102n n nn n n n n n n C C C C C C C -=+++++--()222n=-. ……………13分 ∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111k k k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+ ……………12分 122k +=-. ……………13分也就是说,当1n k =+时,不等式也成立. 由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市2013届高三年级调研测试数 学(理 科)本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,则复数i 23(-i )对应的点位于A .第一象限B . 第二象限C .第三象限D .第四象限2.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B AA .}0{B .}4,0{C .}4,2{D .}4,2,0{3.已知函数()2030xx x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19C .9-D .19-4.设向量=a ()21x ,-,=b ()14x ,+,则“3x =”是“a //b ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.函数)(x f y =的图象向右平移6π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是 A .()fx =)32cos(π-x B .()fx =)62cos(π-xC .()fx =)62cos(π+x D .()fx =)32cos(π+x6.已知四棱锥P ABCD -的三视图如图1所示, 则四棱锥P ABCD -的四个侧面中面积最大的是 A .3 B .C .6 D .87.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,,则方程22221x y ab+=表示焦点在x 的椭圆的概率为A .12B .1532C .1732D .31328.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是 A .17,⎡⎤-⎣⎦ B .(3,⎤-∞⎦C .(7,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为 .10.若291()ax x-的展开式的常数项为84,则a 的值为 .11.若直线2y x m =+是曲线ln y x x =的切线, 则实数m 的值为 . 12.圆2224150x y x y +++-=上到直 线20x y -=的点的个数是 _ . 13.图2是一个算法的流程图,则输出S 的值是 . (二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,已知AB 是⊙O 的一条弦,点P 为AB 上一点,P C B图2222俯视图侧视图正视图433图1PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC 的长是 15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知ABC V 的内角A B C ,,的对边分别是a b c ,,,且123a b B ,,π===.(1) 求A sin 的值;(2) 求2C cos 的值. 17.(本小题满分12分)某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四 所中学的学生当中随机抽取50名参加问卷调查. (1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.18. (本小题满分14分)如图4,已知四棱锥P ABCD -,底面ABCD 是正方形,PA ^面ABCD , 点M 是CD 的中点,点N 是PB 的中点,连接AM ,AN MN ,. (1) 求证:MN //面PAD ;(2)若5MN =,3AD =,求二面角N AM B --的余弦值.图4M NBCDAP19.(本小题满分14分)如图5, 已知抛物线2P y x :=,直线AB 与抛物线OA OB ^,OA OB OC uu r uu u r uu u r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;(2) 求四边形AOBC 的面积的最小值.20.(本小题满分14分)在数1和2之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数 的乘积记为n A ,令2n n a A log =,n ∈N (1)求数列{}n A 的前n 项和n S ;(2)求2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅ .21.(本小题满分14分)若函数()f x 对任意的实数1x ,2x D ∈,均有2121()()f x f x x x -≤-,则称函数()f x 是区间D 上的“平缓函数”(1) 判断()sin g x x =和2()h x x x =-是不是实数集R 上的“平缓函数”,并说明理由; (2) 若数列{}n x 对所有的正整数n 都有 121(21)n n x x n +-≤+,设sin n n y x =,求证: 1114n y y +-<.参考答案一、选择题 1. A分析:i i i i i i 233232)32(2+=+=-=-,其对应的点为(3,2),位于第一象限 2. D分析:}4,2,0{},8,6,4,2,0{},2{},4,3,2,1,0{=⋂∴=∈==∴=B A A n n x x B A 3. B分析:913)2())41((,22log41log)41(2222==-=-===--f f f f4. A分析:当b a //时,有,解得3±=x ;所以b a x //3⇒=,但,故“x=3”是“b a //”的充分不必要条件 5. B分析:逆推法,将x y 2sin =的图象向左平移6π个单位即得)(x f y =的图象,即)62cos()62cos()]32(2cos[)32sin()6(2sin )(ππππππ-=+-=+-=+=+=x x x x x x f6. C分析:三棱锥如图所示,PM=3,525421=⨯⨯=∆PDC S , 63421=⨯⨯=∆PAB S ,33221=⨯⨯==∆∆PAD PBC S S ,7. B分析:方程12222=+by ax 表示焦点在x 轴且离心率小于23的椭圆时,有⎪⎩⎪⎨⎧<-==>232222a b a a c e b a ,即⎪⎩⎪⎨⎧<>22224ba b a ,化简得⎩⎨⎧<>b a b a 2,又]4,2[],5,1[∈∈b a ,画出满足不等式组的平面区域,如右图阴影部分所示, 求得阴影部分的面积为415,故321542=⨯=阴影S P8.C分析:由题意得,故不等式化为2)1)((+≤--a x a x ,化简得022)1(2≥+++-a x a x ,故原题等价于022)1(2≥+++-a x a x 在),2(+∞上恒成立,由二次函数22)1()(2+++-=a x a x x f 图象,其对称轴为21+=a x ,讨论得⎪⎩⎪⎨⎧≥≤+02(221)f a 或⎪⎪⎩⎪⎪⎨⎧≥+>+0)21(221a a f ,解得3≤a 或73≤<a , 综上可得7≤a二、填空题 9.28分析:方法一、(基本量法)由12543=++a a a 得12432111=+++++d a d a d a ,即 12921=+d a ,化简得431=+d a ,故方法二、等差数列中由453712a a a a a =+=+可将12543=++a a a 化为12)(2371=+a a ,即871=+a a ,故282)(7717=+=a a S10.1分析:,令r=6,得其常数项为84)1(6936=-C a ,即84843=a ,解得a=111.-e分析:设切点为)ln ,(000x x x ,由1ln 1ln )'ln ('+=⋅+==x xx x x x y 得1ln 0+=x k ,故切线方程为))(1(ln ln 0000x x x x x y -+==,整理得00)1(l n x x x y -+=,与m x y +=2比较得⎩⎨⎧=-=+m x x 0021ln ,解得e x =0,故e m -=12. 4分析:圆方程0154222=-+++y x y x 化为标准式为20)2()1(22=+++y x ,其圆心坐标)2,1(--,半径52=r ,由点到直线的距离公式得圆心到直线02=-y x 的距离553)2(1)2(2122=-+---=d ,由右图所示,圆上到直线02=-y x 的距离为5的点有4个. 13.3018分析:由题意)20131395(503)2009951(503+++++++++-= 20135031503++-= ,1123cos3,1122cos2,112cos 1321=+⨯=-=+⨯==+⨯=πππa a a ,5126cos6,1125cos 5,5124cos 4654-=+⨯=-=+⨯==+⨯=πππa a a,2009,1,9128cos8,1127cos72010200987-===+⨯==+⨯=a a a a ππ2013,120122011==a a ;以上共503行,输出的3018201221=+++=a a a S14.22分析:如图,因为OP PC ⊥ ,所以P 是弦CD 中点,由相交弦定理知2PC PB PA =⋅,即82=PC ,故22=PC15.2分析:圆C 的参数方程化为平面直角坐标方程为1)2(22=-+y x ,直线l 的极坐标方程化为平面直角坐标方程为1=+y x ,如右图所示,圆心到直线的距离222120=-+=d ,故圆C 截直线l 所得的弦长为21222=-d三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵3,2,1π===B b a ,依据正弦定理得:Bb Aa sin sin =, …………… 1分即232sin 1=A,解得43sin =A . …………… 3分(2)解:∵a<b , ∴20π<<<B A . …………… 4分∴413sin1cos 2=-=A A . …………… 5分∴839cos sin 22sin ==A A A , …………… 6分85s i n 212c o s 2=-=A A . …………… 7分∵π=++C B A ,∴A C -=32π. …………… 8分 ∴)234cos(2cos A C -=π …………… 9分 A A 2sin 34sin2cos 34cosππ+= …………… 10分839238521⨯-⨯-=161335+-=. …………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为2110050=.∴应从A ,B ,C ,D 四所中学抽取的学生人数分别为 15,20,10,5. … 4分 (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有1225250=C 种,… 5分 这两名学生来自同一所中学的取法共有35025210220215=+++C C C C . ……… 6分 ∴721225350)(==M P .答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为72. …………… 7分(3) 解:由(1)知,在参加问卷调查的50名学生中,来自A ,C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, …………… 8分.207)2(,21)1(,609)0(225215225110115225210=========C C P C C C P C C P ξξξ…………… 11分∴ξ的分布列为:…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE ,EN , ∵点N 是PB 的中点, ∴AB EN AB EN 21,//=. …………… 1分∵点M 是CD 的中点,底面ABCD 是正方形, ∴AB DM AB DM 21,//=. …………… 2分∴DM EN DM EN =,//. ∴四边形EDMN 是平行四边形.∴MN//DE . …………… 3分 ∵⊂DE 平面PAD ,⊄MN 平面PAD , ∴MN//面PAD . …………… 4分 证法2:连接BM 并延长交AD 的延长线于点E ,连接PE , ∵点M 是CD 的中点, ∴AB DM AB DM 21,//=, …………… 1分∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN//PE . …………… 3分 ∵⊂PE 面PAD ,⊄MN 平面PAD ,∴MN//面PAD . …………… 4分 证法3: 取AB 的中点E ,连接NE ,ME , ∵点M 是CD 的中点,点N 是PB 的中点, ∴ME//AD ,NE//PA.∵⊂AD 面PAD ,⊄ME 平面PAD ,∴ME//面PAD . …………… 1分 ∵⊂PA 面PAD ,⊄NE 平面PAD ,∴NE//面PAD . …………… 2分 ∵E NE ME =⋂,⊂NE 平面MEN ,⊂ME 平面MEN , ∴平面//MEN 面PAD . …………… 3分∵⊂MN 平面MEN ,∴MN//面PAD . …………… 4分 (2)解法1:∵PA NE //,⊥PA 面ABCD ,∴⊥NE 面ABCD . …………… 5分 ∵⊂AM 面ABCD ,∴AM NE ⊥. …………… 6分 过E 作AM EF ⊥,垂足为F ,连接NF ,∵E EF NE =⋂,⊂NE 面NEF ,⊂EF 面NEF ,∴⊥AM 面NEF . …………… 7分 ∵⊂NF 面NEF ,∴NF AM ⊥. …………… 8分 ∴NFE ∠是二面角N-AM-B 的平面角. …………… 9分 在Rt △NEM 中,MN=5,ME=AD=3,得422=-=MEMNNE ,…………… 10分在Rt △MEA 中,23=AE ,得25322=+=AEMEAM ,553=⋅=AMME AE EF . …………… 11分在Rt △NEF 中,544522=+=EFNENF , …………… 12分89893cos ==∠NFEF NFE . …………… 13分∴二面角N-AM-B 的余弦值为89893. …………… 14分解法2:∵PA NE //,⊥PA 面ABCD , ∴⊥NE 面ABCD .在Rt △NEM 中,MN=5,ME=AD=3,得422=-=MEMNNE ,…………… 5分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴, 建立空间直角坐标系xyz A -, …………… 6分 则)4,23,0(),0,23,0(),0,23,3(),0,0,0(N E M A .∴)4,23,0(),4,0,0(==AN EN . …………… 8分设平面AMN 的法向量为)z ,,(y x n =, 由0,0=⋅=⋅AN n AM n ,得⎪⎪⎩⎪⎪⎨⎧=+=+.0423,0233z y y x 令1=x ,得2-=y ,43=z .∴)43,2,1(-=n 是平面AMN 的一个法向量. …………… 11分又)4,0,0(=EN 是平面AMB 的一个法向量, …………… 12分89893cos ==n . …………… 13分∴二面角N-AM-B 的余弦值为89893. …………… 14分19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)解法一:(1)解:设),(),,(),,(222121y y B y y A y x M ,∵OC OB OA =+,∴M 是线段AB 的中点. …………… 2分 ∴22)(2212212221y y y y y y x -+=+=,① …………… 3分221y y y +=. ② …………… 4分∵OB OA ⊥,0=⋅∴OB OA .∴0212221=+y y y y . …………… 5分依题意知021≠y y ,∴121-=y y . ③ …………… 6分把②、③代入①得:2242+=y x ,即)1(212-=x y . …………… 7分∴点M 的轨迹方程为)1(212-=x y . …………… 8分(2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为2222221221)()(y y y y S +⋅+== …………… 9分2212221))(1)(1(y y y y ++= 122212221+++=y y y y22212y y ++=. …………… 11分∵22212221=≥+y y y y ,当且仅当21y y =时,等号成立, …………… 12分∴222=+≥S . …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分 解法二:(1)解:依题意,知直线OA ,OB 的斜率存在,设直线OA 的斜率为k, 由于OB OA ⊥,则直线OB 的斜率为k1-. …………… 1分故直线OA 的方程为kx y =,直线OB 的方程为x k y 1-=.由⎩⎨⎧==.,2x y kx y 消去y ,得022=-x x k .解得x=0或21kx =. …………… 2分∴点A 的坐标为)1,1(2kk. …………… 3分同理得点B 的坐标为),(2k k -. …………… 4分 ∵OC OB OA =+,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为(x,y),则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=21,2122k k y k k x …………… 6分消去k,得)1(212-=x y . …………… 7分∴点M 的轨迹方程为)1(212-=x y . …………… 8分(2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为222222)()()1()1(k k k k S -+⋅+== …………… 9分2212kk ++= …………… 10分22122kk ⋅+≥ …………… 11分=2. …………… 12分 当且仅当221kk =,即12=k 时,等号成立. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设2321,,,+n b b b b 构成等比数列,其中2,121==+n b b ,依题意,2121++⋅⋅⋅⋅=n n n b b b b A , ① …………… 1分 1212b b b b A n n n ⋅⋅⋅⋅=++ , ② …………… 2分 由于21231221=⋅==⋅=⋅=⋅+++b b b b b b b b n n n n , …………… 3分①×②得21221122122)()()()(+++++=⋅⋅⋅⋅=n n n n n n b b b b b b b b A .…………… 4分∵0>n A ,∴222+=n n A . …………… 5分∵22222231==+++n n nn A A , …………… 6分∴数列}{n A 是首项为221=A ,公比为2的等比数列. …………… 7分 ∴]1)2)[(224(21])2(1[22-+=--=nnn S . …………… 8分解法2: 设2321,,,,+n b b b b 构成等比数列,其中2,121==+n b b ,公比为q,则112++=n n q b b ,即21=+n q . …………… 1分依题意,得2121++⋅⋅⋅⋅=n n n b b b b A)()()(112111+⋅⋅⋅=n q b q b q b b …………… 2分 )1(32121)(++++++⋅=n n q b …………… 3分2)2)(1(++=n n q…………… 4分222+=n . …………… 5分∵22222231==+++n n nn A A , …………… 6分∴数列}{n A 是首项为221=A ,公比为2的等比数列. …………… 7分 ∴]1)2)[(224(21])2(1[22-+=--=nnn S . …………… 8分(2)解: 由(1)得22222loglog 22+=+==n n A a n n , …………… 9分 ∵nn n n n n tan )1tan(1tan )1tan(])1tan[(1tan ⋅++-+=-+=, ……………10分∴*,11tan tan )1tan()1tan(tan N n nn n n ∈--+=+⋅. ……………11分∴2226442tan tan tan tan tan tan +⋅++⋅+⋅=n n n a a a a a a T )2t a n ()1t a n (4t a n 3t a n 3t a n 2t a n +⋅+++⋅+⋅=n n)11tan )1tan()2tan(()11tan 3tan 4tan ()11tan 2tan 3tan (-+-+++--+--=n nn n --+=1tan 2tan )2tan(. …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1) 解:x x g sin )(=是R 上的“平缓函数”,但x x x h -=2)(不是区间R 的“平缓函数”; 设x x x sin )(-=ϕ,则0cos 1)('≥-=x x ϕ,则x x x sin )(-=ϕ是实数集R 上的增函数, 不妨设21x x <,则)()(21x x ϕϕ<,即2211sin sin x x x x -<-,则1212sin sin x x x x -<-. ① …………… 1分 又x x y sin +=也是R 上的增函数,则2211sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分 由①、②得121212sin sin )(x x x x x x -<-<--.因此,1212sin sin x x x x -<-,对21x x <都成立. …………… 3分 当21x x >时,同理有1212sin sin x x x x -<-成立 又当21x x =时,不等式0sin sin 1212=-=-x x x x , 故对任意的实数1x ,R x ∈2,均有1212sin sin x x x x -≤-.因此x x g sin )(= 是R 上的“平缓函数”. …………… 5分 由于1)(()()(212121-+-=-x x x x x h x h …………… 6分 取2,321==x x ,则21214)()(x x x h x h ->=-, …………… 7分 因此,x x x h -=2)(不是区间R 的“平缓函数”. …………… 8分 (2)证明:由(1)得:x x g sin )(=是R 上的“平缓函数”,则n n n n x x x x -≤-++11sin sin , 所以n n n n x x y y -≤-++11 . …………… 9分 而21)12(1+≤-+n x x n n ,∴)111(41441)12(1221+-=+<+≤-+n n nn n y y n n . …………… 10分 ∵)()()()(12211111y y y y y y y y y y n n n n n n n -++-+-+-=----++ ,……… 11分 ∴1221111y y y y y y y y n n n n n -++-+-≤---++ . …………… 12分 ∴)]211()111()111[(4111-++--++-≤-+ nn n n y y n)111(41+-=n …………… 13分41<. …………… 14分。