Extended Differential Energy Watermarking (XDEW) algorithm for low bit-rate video watermark
流体力学英语词汇翻译(2)
流体力学英语词汇翻译(2)流体力学英语词汇翻译(2)流体力学英语词汇翻译(2)动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管stanton tube文丘里管venturi tubeu形管u-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管pitot- static tube激光多普勒测速计laser doppler anemometer, laser doppler velocimeter热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律fick law巴塞特力basset force埃克特数eckert number格拉斯霍夫数grashof number努塞特数nusselt number普朗特数prandtl number雷诺比拟reynolds analogy施密特数schmidt number斯坦顿数stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程burgers equation对流扩散方程convection diffusion equationkdu方程kdv equation修正微分方程modified differential equation拉克斯等价定理lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析hirt stability analysis相容条件consistency conditioncfl条件courant- friedrichs- lewy condition ,cfl condition 狄里克雷边界条件dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, flic method通量校正传输法flux-corrected transport method 通量矢量分解法flux vector splitting method伽辽金法galerkin method积分方法integral method标记网格法marker and cell method, mac method 特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, pic method 质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, adi scheme反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式crank-nicolson scheme杜福特-弗兰克尔格式dufort-frankel scheme指数格式exponential scheme戈本诺夫格式godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式lax-wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving difference scheme穆曼-科尔格式murman-cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme tvd scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates[自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method广义连续统力学generalized continuum mechanics 简单物质simple material纯力学物质purely mechanical material微分型物质material of differential type积分型物质material of integral type混合物组份constituents of a mixture非协调理论incompatibility theory微极理论micropolar theory决定性原理principle of determinism等存在原理principle of equipresence局部作用原理principle of objectivity客观性原理principle of objectivity电磁连续统理论theory of electromagnetic continuum 内时理论endochronic theory非局部理论nonlocal theory混合物理论theory of mixtures里夫林-矣里克森张量rivlin-ericksen tensor声张量acoustic tensor半向同性张量hemitropic tensor各向同性张量isotropic tensor应变张量strain tensor伸缩张量stretch tensor连续旋错continuous dislination连续位错continuous dislocation动量矩平衡angular momentum balance余本构关系complementary constitutive relations共旋导数co-rotational derivative, jaumann derivative非完整分量anholonomic component 爬升效应climbing effect协调条件compatibility condition错综度complexity当时构形current configuration能量平衡energy balance变形梯度deformation gradient有限弹性finite elasticity熵增entropy production标架无差异性frame indifference弹性势elastic potential熵不等式entropy inequality极分解polar decomposition低弹性hypoelasticity参考构形reference configuration响应泛函response functional动量平衡momentum balance奇异面singular surface贮能函数stored-energy function内部约束internal constraint物理分量physical components本原元primitive element普适变形universal deformation速度梯度velocity gradient测粘流动viscometric flow当地导数local derivative岩石力学rock mechanics原始岩体应力virgin rock stress构造应力tectonic stress三轴压缩试验three-axial compression test 三轴拉伸试验three-axial tensile test三轴试验triaxial test岩层静态应力lithostatic stress吕荣lugeon地压强geostatic pressure水力劈裂hydraulic fracture咬合[作用] interlocking内禀抗剪强度intrinsic shear strength循环抗剪强度cyclic shear strength残余抗剪强度residual shear strength土力学soil mechanics孔隙比void ratio内磨擦角angle of internal friction休止角angle of repose孔隙率porosity围压ambient pressure渗透系数coefficient of permeability [抗]剪切角angle of shear resistance 渗流力seepage force表观粘聚力apparent cohesion粘聚力cohesion稠度consistency固结consolidation主固结primary consolidation次固结secondary consolidation固结仪consolidometer浮升力uplift扩容dilatancy有效应力effective stress絮凝[作用] flocculation主动土压力active earth pressure被动土压力passive earth pressure 土动力学soil dynamics应力解除stress relief次时间效应secondary time effect贯入阻力penetration resistance 沙土液化liquefaction of sand 泥流mud flow多相流multiphase flow马格努斯效应magnus effect韦伯数weber number环状流annular flow泡状流bubble flow层状流stratified flow平衡流equilibrium flow二组份流two-component flow 冻结流frozen flow均质流homogeneous flow二相流two-phase flow气-液流gas-liquid flow气-固流gas-solid flow液-气流liquid-gas flow液-固流liquid-solid flow液体-蒸气流liquid-vapor flow 浓相dense phase稀相dilute phase连续相continuous phase离散相dispersed phase悬浮suspension气力输运pneumatic transport气泡形成bubble formation体密度bulk density壅塞choking微滴droplet挟带entrainment流型flow pattern流[态]化fluidization界面interface跃动速度saltation velocity非牛顿流体力学non-newtonian fluid mechanics 非牛顿流体non-newtonian fluid幂律流体power law fluid拟塑性流体pseudoplastic fluid触稠流体rheopectic fluid触变流体thixotropic fluid粘弹性流体viscoelastic fluid流变测量学rheometry震凝性rheopexy体[积]粘性bulk viscosity魏森贝格效应weissenberg effect流变仪rheometer稀薄气体动力学rarefied gas dynamics物理化学流体力学physico-chemical hydrodynamics 空气热化学aerothermochemistry绝对压强absolute pressure绝对反应速率absolute reaction rate绝对温度absolute temperature吸收系数absorption coefficient活化分子activated molecule活化能activation energy绝热压缩adiabatic compression绝热膨胀adiabatic expansion绝热火焰温度adiabatic flame temperature电弧风洞arc tunnel原子热atomic heat雾化atomization自燃auto-ignition自动氧化auto-oxidation可用能量available energy缓冲作用buffer action松密度bulk density燃烧率burning rate燃烧速度burning velocity接触面contact surface烧蚀ablation流体力学英语词汇翻译(2) 相关内容:。
美国天气预报业务-章国材主任
美国天气预报业务(章国材)一、美国气象局2003年执行情况和下一步现代化计划1.美国气象局(NWS)2003年执行情况美国气象局在制定新世纪战略规划时,提出了一系列预报准确率的指标(见表1),作为衡量执行情况的标准。
表1 NWS执行情况衡量标准从2003年执行情况看,NWS绝大多数项目都超过了预定目标,由于评分标准不一样,难于与我国预报准确率作比较。
另外,NWS经常进行用户调查,作为衡量执行情况的定性评估标准,表2是用户服务和调查结果。
表2 用户服务和调查结果(用户满意指数)从表2可以看出,美国联邦政府机构满意度的评价(除紧急事件管理外)比其它机构低,Mint-collectors、紧急事件管理、.ctr对美国气象局气象服务评价较高,平均用户满意指数为74。
2. 美国NWS下一步现代化计划NWS的战略计划上层必须服从国家海洋大气局(NOAA)的战略计划,底层必须以满足用户需求为前提。
它包括服务实施计划和科学技术注入计划两部分。
2.1 服务实施计划服务实施计划包括航空、气候、空气质量、水资源、火险天气、海洋、数字服务、观测等方面的内容。
①航空服务2003年秋天已经释放第一版基于AWIPS(高级天气人机交互预报系统)的航空服务准备系统,正在开发区域图形业务预报产品;对流预报产品的改进计划在2004年开始实施。
另外,2004年下半年还要举行关于短期对流天气预报的第二次远程航空培训班。
②空气质量预报2004年9月发布美国东北部24小时臭氧预报,空气质量预报指南每天发布两次,5年内要开发覆盖全国包括特殊物质和其它污染物预报产品,还要对差的空气质量对生命和财产的风险进行评估。
③气候气候将改变NWS事业的道路。
通过管理观测系统保证气候记录的完整性,包括将来要建立的各种复合观测系统,应当使它们的偏差最小。
要通过区域中心、天气预报台、发展合作者,开发新的产品和服务,建立全国气候服务结构。
④水资源要发挥当前国家海洋大气局水资源评价的杠杆作用,发展和布臵一套充分的水资源信息,为淡水、河口湾淡水转变区、海湾区,整合和加强国家海洋大气局的合作、研究、资料和业务。
测井曲线对应英文
测井资料常用英文代码表微梯度ML1 Microlog 1微电位ML2 Microlog 2声波时差AC Acousticlog密度DEN Density中子孔隙度CNL Compensated Dual-Spacing Neutron Log 井径CAL Caliper钻头大小BS Bit Size自然伽马GR Gamma Ray-Natural Radioactivity自然电位SP Spontaneous Potential深感应电阻率ILD Deep Investigation Induction Log中感应电阻率ILM Midium Investigation Induction Log八侧向电阻率LL8 Laterolog 8微球形聚焦电阻率MSFL Micro-Sphericlly Focused Log感应电导率COND Conductivity深侧向电阻率LLD Laterolog Deep浅侧向电阻率LLS Laterolog Shallow4米梯度电阻率RT Resistivity 4地层真电阻率RT True Formation Resistivity2.5米梯度电阻率R2.5 Resistivity 2.5中子伽马NEU Neutron中子伽马NGR Neutron Gamma Ray泥质含量SH Shale孔隙度POR Porosity渗透率PERM Permeability含水饱和度SW Water Saturation含油饱和度SO Oil Saturation of束缚水饱和度SWI Initial Water Saturation残余油饱和度SOR Residual Oil Saturation斯仑贝谢(Schlumberger)常用英文缩写数控测井系统CSU Cyber Service Units 或Computerized Logging Units 声波时差DT Delta T密度RHOB Rho Bulk中子孔隙度NPHI Neutron Phi感应电导率CILD IL-Deep Conductivity井径CALS Caliper Size自然伽马能谱NGS Natural Gamma Ray Spectrolog铀URAN Uranium钍THOR Thorium钾POTA Potassium高分辨率地层倾角仪HDT High Resolution Dipmeter Tool地层学高分辨率地层倾角仪SHDT Stratigraphy High Resolution Dipmeter Tool 地层压力RFT Repeat Formation Tester波形WF Wave Form微电阻率成像FMI Fullbore Formation Micro Imager Tool阵列感应成像AIT Array Induction Imager Tool方位侧向成像ARI Azimuthal Resistivity Imager Tool偶极声波成像DSI Dipole Shear Sonic Image Tool超声波成像USI Ultrasonic Imager Tool核磁共振CMR Combination Magnetic Resonance模块式地层动态测试仪MDT Modular Formation Dynamics Tester测井曲线名称汇总GRSL—能谱自然伽马POR 孔隙度NEWSANDPORW 含水孔隙度NEWSANDPORF 冲洗带含水孔隙度NEWSANDPORT 总孔隙度NEWSANDPORX 流体孔隙度NEWSANDPORH 油气重量NEWSANDBULK 出砂指数NEWSANDPERM 渗透率NEWSANDSW 含水饱和度NEWSANDSH 泥质含量NEWSANDCALO 井径差值NEWSANDCL 粘土含量NEWSANDDHY 残余烃密度NEWSANDSXO 冲洗带含水饱和度NEWSANDDA 第一判别向量的判别函数NEWSANDDB 第二判别向量的判别函数NEWSANDDAB 综合判别函数NEWSANDCI 煤层标志NEWSANDCARB 煤的含量NEWSANDTEMP 地层温度NEWSANDQ 评价泥质砂岩油气层产能的参数NEWSAND PI 评价泥质砂岩油气层产能的参数NEWSAND SH 泥质体积CLASSSW 总含水饱和度CLASSPOR 有效孔隙度CLASSPORG 气指数CLASSCHR 阳离子交换能力与含氢量的比值CLASS CL 粘土体积CLASSPORW 含水孔隙度CLASSPORF 冲洗带饱含泥浆孔隙度CLASSCALC 井径差值CLASSDHYC 烃密度CLASSPERM 绝对渗透率CLASSPIH 油气有效渗透率CLASSPIW 水的有效渗透率CLASSCLD 分散粘土体积CLASSCLL 层状粘土体积CLASSCLS 结构粘土体积CLASSEPOR 有效孔隙度CLASSESW 有效含水饱和度CLASSTPI 钍钾乘积指数CLASSPOTV 100%粘土中钾的体积CLASSCEC 阳离子交换能力CLASSQV 阳离子交换容量CLASSBW 粘土中的束缚水含量CLASSEPRW 含水有效孔隙度CLASSUPOR 总孔隙度,UPOR=EPOR+BW CLASSHI 干粘土骨架的含氢指数CLASSBWCL 粘土束缚水含量CLASSTMON 蒙脱石含量CLASSTILL 伊利石含量CLASSTCHK 绿泥石和高岭石含量CLASSVSH 泥质体积CLASSVSW 总含水饱和度CLASSVPOR 有效孔隙度CLASSVPOG 气指数CLASSVCHR 阳离子交换能力与含氢量的比值CLASS VCL 粘土体积CLASSVPOW 含水孔隙度CLASSVPOF 冲洗带饱含泥浆孔隙度CLASSVCAC 井径差值CLASSVDHY 烃密度CLASSVPEM 绝对渗透率CLASSVPIH 油气有效渗透率CLASSVPIW 水的有效渗透率CLASS VCLD 分散粘土体积CLASS VCLL 层状粘土体积CLASS VCLS 结构粘土体积CLASS VEPO 有效孔隙度CLASSVESW 有效含水饱和度CLASS VTPI 钍钾乘积指数CLASSVPOV 100%粘土中钾的体积CLASS VCEC 阳离子交换能力CLASS VQV 阳离子交换容量CLASS VBW 粘土中的束缚水含量CLASS VEPR 含水有效孔隙度CLASS VUPO 总孔隙度 CLASSVHI 干粘土骨架的含氢指数CLASS VBWC 粘土束缚水含量CLASS VTMO 蒙脱石含量CLASSVTIL 伊利石含量CLASSVTCH 绿泥石和高岭石含量CLASS QW井筒水流量PLIQT井筒总流量PLISK射孔井段PLIPQW单层产水量PLIPQT单层产液量PLIWEQ 相对吸水量ZRPMPEQ 相对吸水强度ZRPM POR 孔隙度PRCOPORW 含水孔隙度PRCO PORF 冲洗带含水孔隙度PRCO PORT 总孔隙度PRCOPORX 流体孔隙度PRCO PORH 油气重量PRCOBULK 出砂指数PRCOHF 累计烃米数PRCOPF 累计孔隙米数PRCO PERM 渗透率PRCOSW 含水饱和度PRCOSH 泥质含量PRCOCALO 井径差值PRCOCL 粘土含量PRCODHY 残余烃密度PRCOSXO 冲洗带含水饱和度PRCO SWIR 束缚水饱和度PRCO PERW 水的有效渗透率PRCO PERO 油的有效渗透率PRCOKRW 水的相对渗透率PRCOKRO 油的相对渗透率PRCOFW 产水率PRCOSHSI 泥质与粉砂含量PRCOSXOF 199*SXO PRCOSWCO 含水饱和度PRCOWCI 产水率PRCOWOR 水油比PRCOCCCO 经过PORT校正后的C/O值 PRCO CCSC 经过PORT校正后的SI/CA值PRCO CCCS 经过PORT校正后的CA/SI值PRCO DCO 油水层C/O差值PRCOXIW A 水线视截距PRCOCOW A 视水线值PRCOCONM 视油线值PRCOCPRW 产水率(C/O计算)PRCOCOAL 煤层CRAOTHR 重矿物的百分比含量CRASALT 盐岩的百分比含量CRASAND 砂岩的百分比含量CRALIME 石灰岩的百分比含量CRADOLM 白云岩的百分比含量CRAANHY 硬石膏的百分比含量CRA ANDE 安山岩的百分比含量CRA BASD 中性侵入岩百分比含量CRA DIAB 辉长岩的百分比含量CRA CONG 角砾岩的百分比含量CRA TUFF 凝灰岩的百分比含量CRA GRA V 中砾岩的百分比含量CRA BASA 玄武岩的百分比含量CRA常用测井曲线名称A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AA VG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMA V 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATA V 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀V AMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比W A V1 第一扇区的波列W A V2 第二扇区的波列W A V3 第三扇区的波列W A V4 第四扇区的波列W A V5 第五扇区的波列W A V6 第六扇区的波列W A VE 变密度图WF 全波列波形ZCORR 密度校正值测井曲线代码一览表常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formationresistivity 冲洗带地层电阻率Ild deep investigate induction log深探测感应测井Ilm medium investigate induction log中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double 浅双侧向电阻率测井lateral resistivity logRMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像MAC 多极阵列声波成像MRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP ATTN 纵波衰减Shear ATTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜。
技术 _ 高镍正极电池无EC电解液提高电池性能和安全性
技术 | 高镍正极电池无EC电解液提高电池性能和安全性导读:经过多年的发展及反复不断的优化,目前动力电池电解液溶剂组分主要为EC、EMC、DEC、DMC和PC之间的搭配组合。
其中,EC由于其低粘度和高介电常数,已成为电解液中不可或缺的溶剂组分。
但是进来相关研究显示含EC电解液似乎对三元正极电池并不“友好”,如Jeff Dahn等研究显示当使用不含EC的电解液后NCM523软包电池的4.4 V高电压循环性能有显著提升,Hubert A. Gasteiger等研究显示三元材料在过充、加热等条件下会释放单线态氧且单线态氧更容易同EC反应生成H2O2进而恶化电池性能。
因此,对于三元正极以及高镍正极电池,从性能和安全角度出发,能否使用无EC电解液呢?最近,德克萨斯大学奥斯汀分校的Arumugam Manthiram组对比研究了分别使用EC体系电解液和EMC体系电解液时LiNi0.94Co0.06O2电池的电性能和安全性,结果显示当使用EMC体系电解液时LiNi0.94Co0.06O2电池无论是循环、倍率还是产热均优于使用EC体系电解液。
该成果以Ethylene Carbonate-Free Electrolytes for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries为题发表在Adv. Energy Mater.上。
图1.LiNi0.94Co0.06O2电池使用EC体系电解液和EMC体系电解液电性能对比。
研究中作者使用的正极材料为LiNi0.94Co0.06O2,Ni含量高达0.94。
如图1a所示LiNi0.94Co0.06O2颗粒为圆球形,粒径约12μm。
LiNi0.94Co0.06O2的电导率和锂离子扩散系数分别为8.6×10−5Scm−1和0.5-1.5×10−8cm2s−1,高于目前正商业化使用的NCM811材料,且LiNi0.94Co0.06O2的放电比容量高达235 mAh g−1 (图1b)。
Power-spectrum condition for energy-efficient watermarking
1 Also called cover data" or host data."
watermarked document
y~ n
-
estimated attacked watermark + document ^ n g -g ^n w ~ - , y ~ Wiener ? lter h~ n 6 +6 gain additive factor noise
Hale Waihona Puke ABSTRACTattacks. However, others have proposed placing the watermark in the middle or high frequencies to make it easier to separate from the original image 7, 8 or making it white, as in conventional spread spectrum. This paper elaborates on a simple theoretical watermarking and attack model from 9 . Analysis leads to a meaningful way to evaluate robustness. It is shown that watermarks that resist the attack should satisfy a powerspectrum condition. Finally, experiments with theoretical signal models and natural images verify and reinforce the importance of this condition.
蜂巢式散热鳍片应用于高功率LED散热的研究(英文)
身 最 大 的 难 题 在 于 散 热 , 高 的 温 度 会 降 低 IED 的 发 光 效 率 、 命 , 至 4 颜 色 改 变 。 然 而 不 论 是 过 寿 甚 # -
传 统 的 散 热 技 术 , 是 较 新 型 的 散 热 技 术 , 设 计 LE )灯 具 上 , 难 以 降 低 成 本 使 其 普 及 大 众 , 或 在 } 皆 因 此 发 展 新 的 散 热 技 术 一 直 是 重 要 的 议 题 。 本 研 究 将 利 用 蜂 巢 结 构 与 自 然 对 流 散 热 的 优 点 , 合 烟 结 囱 效 应 , 发 出 特 殊 的 散 热 方 式 , 蜂 巢 式 散 热 鳍 片 。 研 究 分 析 的 方 式 主 要 利 用 CF Rc 软 件 包 开 即 D— 进 行 模 拟 , 配 合 实验 做 验 证 。研 究 发 现 , 散 热 效 能 影 响 最 大 的 是 高 度 , 想 的 高 度 选 择 约 在 6 并 对 理
.
e la lc to r a pp ia i n, s h s uc a ho y om b o a c le — ne c s l r o l c
t s or [
,
ha e b e o m e i g i c i e ncos e v e n f r d usn n ln d e l ur
lr r s u r e l ,h s b e t d e y To q a o a ,o q a e c ls a e n s u id b r u t
e 1 _I I a ii ta.1 n dd ton,mos h ne c t o y ombs o he — f r t r
qu lt t e t e t a a iy of h s r e l mp, t e he ma ma g — h t r l na e m e fLED e c s i e ev ng gr a te to n nto d vie sr c i i e ta t n i n i t i tn n s r . LED s pa tc a l u t l he lgh i g i du t y i r iulr y s iab e
倏逝波模式下修饰化电极的太阳电池层厚优化
电转 化效 率 姗。此外 , A l 电极 涂 布 HF上 能提 高 电 池填 充 因子 和稳 定 开路 电压 , 修饰 层 厚度 不 同会 产 生不 同的效 果 [ 5 , 7 , 8 , 1 3 1 。对 比 L i F和 N a F发 现 。 N a F修 饰 层 对 电池 光 电 转 换 效 率 提 高 更 为 理 想 3 1 , 而 且 薄膜 层 厚 组 合 也会 影 响 到有 机 太 阳 电池 光 电 转换
间光 强 分 布 理 论 模 型 。 根 据 多层 薄 膜 结 构 的 有机 太 阳 能 电 池 的材 料 及 光 学特 性 . 采 用 绒 化 入 射 面 的 方 法 引入 朗伯 漫
反 射 ,并 结 合 对 倏 逝 波 模 式 下 有 机 太 阳能 电池 光 捕 获 率 的 探 讨 ,通 过 数 值 计 算研 究 了 Na F修 饰 层 对 光 场 分布 的影 响 ,提 高 了模 型 的 光 捕 获 并得 出 了有机 太 阳能 电池 捕 获 可 见 太 阳 光 能 最 大 值 时各 层 厚 参 数 G l m s( 1 m m) / I T O( 1 2 0 mn ) / P E DOT: P S S ( 2 0 n m) / MDMO— P P V : P C B M( 1 2 0 n m) / Na F ( 1 n m) /  ̄ f 1 1 0 i r m) 和 电池的短路 电流为 2 . 7 6 mA / c m
效率 【 。然 而 , 这 些研 究 主要集 中在 电学 性 能上 的
机 聚 合 物 和 富勒 烯 构 成 的 本 体 异 质 结 太 阳 电池 的 激 子分 离率 更 高,光 电转换 效 率也 相应 的高 些 。但
是, 这 种 电池 会 在 有 机 活性 材 料 与 阴极之 间形 成 富
第一性原理研究贵金属Co、Rh、Ir的表面能和表面功函数
J1 0 0 u .2 1
文章 编 号 :0056 (00 0—.00 10-82 21 )404—6 3
第一 性原 理研 究贵 金属 C 、 h I 的 oR 、 r 表 面 能 和 表 面 功 函 数
曾祥 明 , 欧 阳楚英 , 雷敏 生 , 一 , 2
(. I江西师范大学 物理与通信电子学 院, 江西 南 昌 30 2 ; . 30 22 江西省光 电子重点实验室 , 江西 南昌 302 ) 30 2
验 对其进行 了研究 . 很多 先进材料 表 面的加 工处理 过程 至关 重要 , 各种 电学 、 学 、 如 磁 光学 设 备 , 传感 器 、 催 化剂 、 质涂层 等 . 硬 因此 , 深人 认识 金属 的表 面 性质 对 高新 技 术 的发 展 具 有推 动 作 用 . 面 能 和功 函数 是 表
杂[ ]然而 , . 通过第 一性 原理从 头计算 的方法 , 够 比较 方便 地计 算 不 同表 面 的 功 函数 , 理 论上 估 算 出 能 从
这些 贵金属 的表面 功 函数 . 本文 应用基 于密度 泛 函理 论 ( esyF nt nl ho , 称 D r D ni u c oa T er 简 t i y F )的第 一性 原 理 计 算方 法 , 究 了 Ⅷ一 研 A 族 元素 中的 C 、 h I 同具有 7外层 电子结 构 ) 种 金属 的 3个低 密勒指 数表 面( 0 ) ( 1 ) ( 1 ) 0R 、 ( r 3 10 、 10 和 11 的表 面 能及功 函数 , 这些计算 结果 和实验 进行 比较 , 算结 果 和实验 符合 得较 好 , 对 计 并从 物 理上 对这 些 计算 结 果进
第 3 卷第 4期 4
21 00年 7 月
《2024年La-Y-Ni基储氢合金单相超晶格结构和容量衰减机理研究》范文
《La-Y-Ni基储氢合金单相超晶格结构和容量衰减机理研究》篇一La-Y-Ni基储氢合金单相超晶格结构与容量衰减机理研究一、引言随着电动汽车和可再生能源的快速发展,储能材料的需求日益增长。
其中,La-Y-Ni基储氢合金因其高能量密度、快速充放电能力和长寿命等优点,在电池领域得到了广泛的应用。
然而,其在实际应用中面临的一个主要问题是容量衰减。
为了更好地理解和改善这一问题,本文对La-Y-Ni基储氢合金的单相超晶格结构以及容量衰减机理进行了深入研究。
二、La-Y-Ni基储氢合金的单相超晶格结构La-Y-Ni基储氢合金的晶体结构由多种元素组成,形成了一个复杂的超晶格结构。
通过高分辨率透射电子显微镜(HRTEM)和X射线衍射(XRD)等手段,我们观察到该合金具有单相特征,其超晶格结构由La、Y和Ni等元素的原子有序排列构成。
这种有序的原子排列有助于提高合金的储氢性能和稳定性。
三、容量衰减机理研究尽管La-Y-Ni基储氢合金具有诸多优点,但在实际应用中仍会出现容量衰减的问题。
为了研究这一现象,我们进行了系统的实验和理论分析。
首先,通过电化学测试,我们发现容量衰减与合金的充放电循环次数密切相关。
随着循环次数的增加,合金的储氢能力逐渐降低。
这可能是由于在充放电过程中,合金表面发生了氧化反应,导致活性物质的损失。
其次,我们通过微观结构分析发现,容量衰减还与合金内部的微观结构变化有关。
在充放电过程中,合金的晶格参数会发生改变,导致超晶格结构的稳定性下降。
此外,合金中的杂质和缺陷也会加速容量衰减的过程。
四、改善措施与展望针对La-Y-Ni基储氢合金的容量衰减问题,我们提出以下改善措施:1. 优化合金成分:通过调整La、Y、Ni等元素的配比,提高合金的稳定性和储氢能力。
2. 改善制备工艺:采用先进的制备技术,如球磨、热处理等,以改善合金的微观结构和提高其稳定性。
3. 表面处理:通过在合金表面涂覆保护层或进行化学处理,以减少合金在充放电过程中的氧化和腐蚀。
【精品】薄膜电池英文述语
薄膜电池材料及术语(中英文对照) AAcetone-丙酮Adjustment-调整,调节Aluminium(Al)-铝Arqon(Ar)-氩气Alternatingcurrent(AC)-交流电Ammonia(NH3)-氨气Amorphous-非晶的Anneal-退火Assembly-组装averagepower-平均功率BBackplane背板Backconductor-背电极Backelectrode-背电极balancegas-平衡气B2H6-硼烷Bouding-绑定Buffer-缓冲器built-involtage-内建电压BuildingIntegratedPhotovoltaic-建筑一体化CCable-电缆Carrier-运送者,搬运器Coverglass-覆盖玻璃ChemicalVaporDeposition(CVD)-化学气相沉积Commit-提交,答应负责Copper(Cu)-铜Contamination-污染,玷污Conversion-转换,转化Cumulate-adj.累积的;v.累积Cathode-阴极Crystalline-晶体的Crystallite-微晶Chamber-室,房间Curve-曲线DDenser-密集的,浓厚的Deviation-背离,偏离Diffusion-扩散,传播,漫射Diode-二极管Doublesidestickingtape-双边粘结带Deposition-沉积Drill-钻孔Dielectric-电介质,绝缘体Directcurrent(DC)-直流电Dilution-稀释driftcurrent-漂移电流EEdge-边缘,边EVA-乙烯-醋酸乙烯共聚物Evaporation-蒸发,蒸镀Etch-蚀刻efficiency-效率Encapsulation-封装Energy-能量FFastglue-快干胶Feature-特征,特色Flux-流量Foil-金属薄片Flaming-烧结Fabrication-制作,构成Furnace-熔炉,炉子GGlasswashingdetergent-玻璃清洗液Guarantee-保证,担保HHydrogen(H2)-氢气Helium(He)-氦气Ii-layer-i-层,本征层Infra-red(IR)-红外线I-V-电流-电压IncidenceWaves-入射波initial-初始的,最初的Installation-安装,装置JJunction-结KLLaser-Scribing-镭射分层,激光划线Layout-平面图Lamination-层压,迭片Laminators层压机Lift-升距Liquidnitroqen-液氮MMagnetron-磁电管Maintenance-维修,维护Maskingtape-包装带Maskingpaper-包装纸Methane(CH4)-甲烷Micromorph-微晶Module-模组Modify-更改,修改MetalorganicChemicalVaporDeposition(MOCVD)-金属有机化学气相沉积NNitrogen(N2)-氮气NF3-三氟化氮n-layer-n-层,含电子较多,掺N或POon-grid-并网organization-组织,机构,团体Oven-烤箱,烤炉Output-产量Outdoor-户外的PPattern-V.形成,图案化;n.模式,图案PBS-聚(丁二烯-苯乙烯)PBT-聚对苯二甲酸丁二酯peakwatt-峰瓦Plasma-等离子PlasmaEnhanceChemicalVaporDeposition(PECVD)-等离子增强化学气相沉积p-layer-p层,空穴较多,掺硼Pilot-试生产Phosipine(PH3)-膦烷Power-功率pottedcomponent-密封元件Preheat预热Preliminary-初步的Pressure-压力PVB-聚乙烯醇缩丁醛树脂PhysicalVaporDeposition(PVD)—物理气相沉积PESC电池-发射结钝化太阳电池QQualityassessment(QA)-质量评价Qualitycontrol(QC)-质量控制,质量管理Qualification-资格,资质RRadiofrequency(RF)-射频Recombination-复合Rise-升程Reliability-可靠性SSandblastingmaterial-喷沙材料Seal-密封Sealbelt-密封带Sealgum-密封胶Sealingarrangement-密封装置Semiconductor-半导体Silane(SiH4)-硅烷Siliconrubber-硅胶Silver(Ag)-银Singlejunction-单结Solar-太阳的,太阳能的Solarcell-太阳能电池Solarsimulator-太阳光模拟器Solder-焊料,焊接Sputter-溅射Sodiumbisulfide-硫化钠Sodiumcloride-氯化钠SF6-六氟化硫Substrate-底物,基板Specify-指定,详细说明TTandem-叠层Target-靶材Tedlar-聚乙烯氟化物薄膜TemperatureCoefficient-温度系数Thinfilm-薄膜TPT-太阳能背膜TPE-磷酸三苯酯,薄膜电池封装材料之一TransparentConductiveOxide(TCO)-透明导电氧化层Trap-诱捕Trimethylborate<B(CH3)3>-三甲基硼Trimmer-整理,清理Texturing-织构turn-keysolution-交钥匙工程UUV-紫外Ultravacuum-超中空Vgloves-手套Vacuum-真空,空间VeryHighFreqency(VHF)-甚高频Vertical-垂直的WWafer-晶片,圆片,硅片Wiring-配线ZZinc(Zn)-锌常用符号Js-反向饱和电流密度R-反射系数T-透射系数α-吸收系数λ-波长Voc-开路电压:在p-n开路情况下(R=∞),p-n结两端的电压。
纸机专业用语
纸机专用术语中英文对照Overhaul and repair:大修与小修Maintenance:维护,维修Downtime:(工厂、机器等由于维修或待料等的)停工期Fillet:纸幅接头,镶边,接头Carrier drum:复卷机底辊,支承辊Carrier roll:导网辊Coating:涂布Coater:涂布机Coatings:涂料Centriclone,centrifugal cleaner, centricleaner, cyclean:锥形除渣器Centriffler:两段除渣器Centrifiner:立式除渣器Centri-sorter:旋翼筛Chain conveyer:链式运输机,链板机Check:检查,核对Check damper:风挡Check plate:挡板Check valve, clack valve, non-return valve:单向阀,止逆阀Chuck:夹盘,夹头Chute:斜槽,送料槽Clear cutting:净切边Clearance:刀距,间隙(paper machine) clothing:造纸机贵重器材(指毛毯、铜网、塑料网等)Coarse screen:粗筛Fine screen:细筛Flat screen, jog strainer:平筛,平板筛浆机Slot/hole:筛缝/筛孔Coarse screenings, ejects.浆渣Coffer dam:白水沟堰板Conditioner:毛毯洗涤器,调节器Conditioning:调整处理,调湿Consistency transmitter:浓度传感器Cooling cylinder, cooling drum:冷缸Spacing:间隔,空隙Core:纸芯Corrugated roll:沟纹辊Corrugating:起瓦楞Corrugator:瓦楞成形机Corrugator roll:瓦楞辊Couch:堰伏,伏辊Couch break:伏辊断头Couch felt, couch jacket, couch roll jacket:伏辊毯(套)Black liquor:黑液Blotting capacity:吸墨性能Cellular board, corrugated board:瓦楞纸板Board, paperboard:纸板Liner board:挂面纸板Lining board:衬里纸板No test board=non-test board:低耐破度纸板Kraft test liner:牛皮纸箱纸板,高耐破度硫酸盐纸板Packaging board:包装用纸板Packing board:垫圈纸板Bottom couch roll:下伏辊Bowed roll, cheese roll, curved bar spreader, curved roll, spreader roll:弧形辊,弓形辊,舒展辊Bowl:纸粕辊(超级压光机)Break:断纸,断头Break resistance 抗断裂性能Breaking length裂断长Breast board胸板Breast box网前箱Breast roll 胸辊Brightness 亮度Broke 损纸Waste 废(纸),废(水)Brooming 帚化Bulge resistance (纸板)抗破裂度Bulk 松厚(度)Bunch tube flowbox 束管式流浆箱Converflo headbox 层流式流浆箱Burst 破裂(度),耐破度Burst tester,bursting tester 耐破度测定仪Cady test 耐破度测定Calender 压光机Calender (water) box 压光机水闸Calender bowl 压光辊Calender section 压光部Calender train 压光机组Calender stack 压光辊组Caliper, thickness 厚度Cambered roll, downed roll 中高辊Crown controlled roll可控中高辊Capital repair大修Black liquor 黑液Blotting capacity 吸墨性能Cellular board, corrugated board:瓦楞纸板Board,paperboard:纸板Liner board:挂面纸板Lining board:衬里纸板No test board = non-test board 低耐破度纸板Kraft test liner 牛皮纸箱纸板,高耐破度硫酸盐纸板Packaging board 包装用纸板Packing board 垫圈纸板Bottom couch roll 下伏辊Bowed roll, cheese roll, curve bar spreader, curved roll, spreader roll 弧形辊,弓形辊舒展辊bowl:纸粕辊(超级压光机)break:断纸,断头break resistance:抗断裂性能breaking length:裂断长breast board:胸板breast box:网前箱breast roll:胸辊bringhtness:亮度broke:损纸waste:废(纸),废(水)brooming:帚化bulge resistance:(纸板)抗破裂度bulk:松厚(度)bunch tube flowbox:束管式流浆箱converflo headbox:层流式流流浆箱burst:破裂(度),耐破度burst tester, bursting tester:耐破度测定仪cady test:耐破度测定calender:压光机cslender (water) box:压光机水匣calender bowl:压光辊calender section:压光部calender train:压光机组calender stack:压光辊组caliper, thioiness:厚度camberd roll, ctowned roll:中高辊crown controlled roll:可控中高辊capital repair:大修leading strips, leading through tape, tail:引(领)纸纸条lick up, licking, tail threading:引纸lick-up felt:引纸毛毯tail shooter:切纸水针jack:千斤顶lifting device:提升装置,起吊装置lifting, hoist, elevation:提升,起吊long direction, longitudinal, machine direction:纵向(的)cross direction:横向cross-machine:machine direction:纸机纵向lowering device, lowerator:(卷筒纸)降落装置lubrication:润滑machine pit, wire pit:(纸机)白水坑manostat:恒压器,稳压器mesh:网目monitor:监测器,班组长nip:压区nip roll:光泽辊nominal:额定的,公称的,标称的rated:额定的optimum:最优化的,最佳的paddle:浆叶,搅拌叶padding:衬垫paper carrying roll:引纸辊paper spring roll:导纸弹簧辊paper core:纸芯管paper roll:卷筒纸pin adhesion:(瓦楞纸板)面层与芯层的粘合强度pneumatic:气动的hydraulic:液压的ventilation:通风press felt conditioner:压榨毛毯洗涤器press part (section):压榨部preparation of stock:备浆,浆料处理pressure differential:压差pressure drop, relief pressure:压降pressure loss:压损procedure:过程,工艺过程,方法,程序,步骤process:过程,方法profile:外形,轮廓,全幅profile caliper (thickenss):全幅横向厚度reel:纸轴,纸卷,卷筒纸,卷纸inner race:(滚动轴承的)内座圈,内环outer race:(滚动轴承的)外座圈,外环retaining ring:扣(卡、承托)环,挡圈washer spacer ,gasket, insert, shim:垫片,垫圈flinger:抛油环(圈)snap ring:开口环,弹性挡环labyrinth ring:迷宫(圈,环)sling:吊环contamination:污染,杂质additive:添加剂aging:老化,返黄yellowing:返黄artificial aging:人工老化air deckle:气控定边器doctor:刮刀air doctor:气刀air knife:气刀analytical balance:分析天平angle coder:角度编码器approach flow (of stock):(浆料)上网approach flow system(纸机上的)流浆系统pulper, aquapulper, hydrapulper:水力碎浆机batch type hydrapulper:间歇式水力碎浆机arc foil:弧形案板,弧形胶脱水板ash, ash content:灰分,杰分含量aspect ratio:纵横比assembly:机组,成套设备,联动装置,基团average fiber length:纤维平均长度dryer:烘缸back liner:纸板芯层,纸板衬层back side, drive side:传动侧,传动面fore side, service side, tending side, tender side:操作侧,操作面back tender:干燥工back tender help:压光工back water, white water:回水,白水weak white liquor:稀白液strong (thickened) white water:浓白水baffle:挡板,挡不板,挡浆板bale opener:拆包机bibliometer:吸水性能测定仪biological oxygen demand (BOD):生物耗氧量chemical oxygen demand (BOD):化学耗氧量rewind diameter:复卷纸卷直径axial regulation: 轴向调节radial regulation:径向调节oscillation path:振动路径natural brown:本色牛皮纸浆paperboard grade(stock): 纸板用纸浆fluting paper, corrugated paper: 瓦楞纸papermaking:抄纸,造纸pulp and paper technology:制浆造纸工艺AOCC:美国旧瓦楞纸,美国进口废纸(American old corrugated case)A flute: A级瓦楞纸波形数(每30厘米36±3个)B flute: B 级瓦楞纸波形数(每30厘米51±3个)C flute: C级瓦楞纸波形数(每30厘米42±3个)Abietene acid:松香酸Absolute dry, bone dry(B.D.,b.d.),oven dry(O.D.o.d.):绝对干度(绝干)Air dry(A.D.,a.d.):风干(含水量20%)Absolute humidity:绝对湿度Accepted stock:合格浆料,良浆Accept:合格品,良浆Mechanic:钳工,技工Technician:技术员Critical part:主要构件,要害部件Pronze:阳极化,(防腐)处理Reducer:减速箱,传动箱Gear reducer:齿轮减速箱Worm gear:蜗轮Clutch:离合器Coupling:联轴器,轴接,偶联Bevel gear:斜齿轮,伞形齿轮Tooth:齿牙Heel:斜齿轮的大端Toe:齿牙的齿顶Toe:齿牙的齿顶Mate:啮合,配合Mating gear:啮合齿轮,配套的齿轮Carbide-tipped:(头上镶有碳化物)硬质合金的Switchgear:开关齿轮Bearing:轴承Bear M against N:把M靠(压)在N上Bearing cap:轴承盖,轴承套Sleeve (bracket)bearing:轴承套Tooth bearing areas:(齿轮的)齿牙承载区域Tapered roller bearing:滚锥轴承,锥形滚柱轴承Suction baby press:真空预压榨Suction breast roll:真空胸辊Suction couch (roll), vacuum couch:真空伏辊Supervisor:管理人,主管Table:表,网案Table roll:案辊Torque, moment:扭力矩,转力矩Moment of interia:惯性矩,转动惯量Fork-lift, forklift truck:叉车,铲车Trouble shooting:排除故障Defect, trouble, malfunction:故障Tangential:切线的,切向的V-belt:V形皮带,三角皮带Conical, taper:锥形的Ventilation:通风Upright, vertical:立式的Horizontal:水平的,卧式的Water shed:(网上)纸幅水线,分水界线Water shed offset:水线偏差Watermark:水印,罗纹Wrong side:(纸幅)网面,反面Yield:得率With respect to:关于Woodfree:不含磨木浆的Interlock:联锁Partial load:部分荷载Stuffing box:密封盒,填料盒Sling:吊环Snap ring:开口环Labyrinth ring:迷宫环(圈,垫)Lock nut,jam nut:锁紧(锁定,防松)螺帽Annex:附加,附带,附件Massreject rate:浆渣重量比例Air relief valve:减压阀,安全阀Access door:检修门,人孔门Dust cap:防尘盖Dual control:二分控制(空压机自动控制系统)Quadro control:四分控制IP:(大气)防护等级Uhle box:(真空)吸水箱Adjustor stript:(真空箱的调节吸水宽度的密封条)SymBelt TM roll:靴压辊(二压的上辊)shoe:靴套,belt 皮套Tension:张力(stock, pulp, stuff) cousistency:浆浓filler, fillings, loading material:填料ash content:灰分impact tester:冲击强度测定仪wet strength:湿强度air permeability:秀气度,秀气性air permeability tester:秀气度测定仪burst, bursting strength, pop strength:耐破度burst factor:耐破因子fold:折叠folding endurance, folding strength:耐折度folding resistance:耐折性能bending stiffness:弯曲挺度smoothness:平滑度contact angle test:(施胶度)接触角测定法whiteness:白度absorbability:吸收性能opacity, opaqueness:不透明度diaphanometer:不透明度测量仪ring crush compression resistance:环压强度ring stiffness:环压挺度flat crush resistance:平压强度(瓦楞芯纸)acid fastness:耐酸度acid fastness:耐酸性能,耐酸强度beater:打浆机beating degree:打浆度SR:肖氏打浆度Canadian freeness standard(CFS,cfs):加拿大标准游离度Canadian standard freeness tester:加拿大标准游离度测定仪Basis weight, gramage:定量,克重(specific) gravity:比重bend strength:弯曲强度bending chip:耐折叠纸板bending fatigue tester:弯曲疲劳性能测定仪wind,winding:卷纸winder,rewinder:卷纸机,复卷机unwind,unreeling:退纸unwinder, unreeling stand, unwinding stand, back stand:退纸架unwind roll:退纸的纸卷unroll:纸卷退纸unwind diameter:退纸纸卷直径couch pit:伏辊坑pit:坑,池,纹孔couch press, couch roll:伏辊couch squirt:伏辊水针couch vacuum tranfer:伏辊真空引纸装置coucher:伏辊,伏辊工cutter:切纸机cylinder:缸,圆网dry cylinder:烘缸dampening roll, damping roll:润湿辊dancer (roll):压纸辊dancing roll:导纸辊threading:领纸,引纸guide roll:校正辊,导辊dandy roll:水印辊dead knife:固定刀decker:浓缩机deckle:定边装置,定幅装置feather edge: 毛边feather edge deckle:定边带intermittently:间歇地defiber, defibrize, defibering, defibration:纤维分离deflake:碎解,分层(片),剥片knead:揉搓flank:侧面,后面defoam:消泡dehydrate, dewater:脱水cooking, digesting:蒸煮distributor roll:(涂料)分配辊,匀浆辊evener plate:匀浆板evener (roll):匀浆辊perforation:筛孔,钻孔perforation plate:匀浆板,多孔板perforator:匀浆辊holey roll ,holy roll:整流辊,匀浆辊draping:换网driven roll:从动辊driven shaft:从动轴dry line:水线dry end ,drying nest,dryer section,dryer part :干燥部dumping valve,empty valve:放料阀,放浆阀eject valve :排渣阀entering reel:带裁切纸卷,带退纸卷flow sensor:流量传感器flying splice:纸幅机上联绪粘连flying paster:纸幅自动接头anchor screw,foot screw:地脚螺丝anchor stud :地脚螺栓lock screw:锁紧螺丝eye screw:环首螺丝anen screw:六角固定螺丝set screw:固定螺丝loctite,locktite:螺丝紧固剂grout:罐浆(水泥地面)destortion:变形,变态,失真pivot-point:支点,中心点form,forming:(纸页)成形forming box:成形箱forming drum,forming roll:成形辊forming section,forming sector:成形区,成形部forming shoe:弧面成形板forming table,fourdrinier table:网案fourdrinier:长网造纸机fourdrinier part,fourdrinier section:网部fourdinier wet end:湿部fractionator:筛分仪fractionation:分级,筛分tertiary(screen):三级(筛)quartiary:四级(筛)free run:空转run-in ,test run:对…试车,试运转free water:游离水fresh water:清水glazing,gloss:光泽的,光泽groove roll:沟纹辊hatch:人孔,升降孔head tank:高位槽housing:罩,套in-line basis weight controller:机上定量控制装置in-line moisture controller:机上水分含量控制装置ink absorbency:吸墨性能kraft:牛皮纸,硫酸盐酱,牛皮浆bleach:漂白unbleached pulp(stock):未漂浆laminater,laminator:层压机leading roll:导纸辊refine:精磨,精致,磨浆refiner:磨浆,精墨机,精浆机guard(s):安全罩,安全装置regulate,adjust:调节right(left) hand machine:右(左)手机rotor:转子rotor blade(vane):转子叶片filling:转子叶片,耐磨片stator:定子ripper:纵切机slitter:纵切机,总切刀roll set:卷筒纸边缘卷曲rubber covered roll:包胶辊rubbe-lined,rubber lining:橡胶轴里的separator:捕沙器,捕沙沟saveall:白水回收器,白水回收装置saveall box(pan,tray):白水槽shavings,trimmings:纸边strip:窄条,吹堤,解析,(真空吸水箱)密封条strips:纸条sheave,pully:皮带轮,滑轮stepless control:无级控制,连续控制shower:喷水,喷水罐(器)screen,sueve:筛子size,sizing:胶料,涂胶,施胶size resitance,sizing degree:施胶度light(soft,slack) sized:轻度施胶sleeve,socket:套管,套slide(sliding) valve:滑阀span:跨距,跨度spare parts:备件critical part:主要部件,要害部件spray cutter,squirt,squirt cut,tail cutter:水针trim shower,trim squirt:水针nozzle cutter:切边水针stainless steel:不锈钢mild steel:低碳钢normally-closed:常(原)位闭合的,常闭的starch:淀粉bus:(电器)总线terminal:端子,端部,接头,线端stretcher:张紧辊stretch:伸长(率)suction:吸水。
印刷电路板式换热器的设计分析
第37卷,总第214期2019年3月,第2期《节能技术》ENERGY CONSERVATION TECHNOLOGYVol.37,Sum.No.214Mar.2019,No.2 印刷电路板式换热器的设计分析董爱华(哈尔滨电气股份有限公司中央研究院,黑龙江 哈尔滨 150028)摘 要:为了对基于超临界二氧化碳燃气轮机余热利用循环的印刷电路板式换热器进行性能分析,提出了一种定热负荷下对印刷电路板式换热器的离散分析方法。
该方法将印刷电路板式换热器看成由许多子换热单元组成的整体,利用MATLAB建模,并参考了美国国家标准与技术研究院的物性库。
通过分析定热负荷下,不同冷热侧流速对印刷电路板式换热器性能的影响。
结果表明:二氧化碳在临界点和近临界点附近的比热具有较大的变化。
采用分段设计的方法可以避免换热器性能剧烈变化带来的问题。
在相同的初始条件下,换热器局部效率随冷流体质量流量的增加而增大,但是平均对数温差随冷流体质量流量的增加而减小。
因此,换热性能的提高是以热导率为代价的。
为了提高超临界二氧化碳印刷电路板式换热器的性能与安全运行,必须仔细选择设计参数的工作范围。
关键词:印刷电路板式换热器;定热负荷;超临界二氧化碳;子换热单元;数值模拟;局部换热效率中图分类号:TM617;TK4213 文献标识码:A 文章编号:1002-6339(2019)02-0170-04Design Analysis of Printed Circuit Heat ExchangerDONG Ai-hua(China Central Academy Harbin Electric Corporation,Harbin150028,China)Abstract:In order to analyze the performance of printed circuit heat exchanger(PCHE)used in super⁃critical carbon dioxide cycle on heat recovery of gas turbine,a discrete analysis method for PCHE under constant heat load was proposed.In this method,the PCHE is regarded as a whole composed of many sub-heat exchangers,referring to the physical properties database of the National Institute of Standards and Technology by MATLAB.The differences between cold and hot side under constant heat load were analyzed.The results show that the specific heat of carbon dioxide varies greatly near the critical point. The segmented design method can avoid the problems caused by the changes in the performance of sub-heat exchangers.Under the same initial conditions,the local efficiency of the heat exchanger increases with the increase of cold side mass flow rate,but the mean logarithmic temperature differences decrease with the increase of cold side mass flow rate.Therefore,the improvement of heat transfer performance is at the cost of thermal conductivity.In order to improve the performance and safe operation of supercritical carbon dioxide PCHE,the working range of design parameters must be carefully selected.Key words:printed circuit heat exchanger;constant heat load;supercritical carbon dioxide;sub-heat exchangers;numerical simulation;local efficiency收稿日期 2018-12-27 修订稿日期 2019-01-13作者简介院董爱华(1974~),女,博士研究生,高级工程师,现从事新能源技术研发工作。
多元玻璃电性能的计算机计算方法
多元玻璃电性能的计算机计算方法
葛曼珍
【期刊名称】《玻璃与搪瓷》
【年(卷),期】1991(19)1
【摘要】众所周知,R_2O-SiO_2玻璃中双碱效应对玻璃的离子迁移性能有重大影响。
例如,玻璃的电导性质,当玻璃中两种碱金属氧化物含量达一定比率时,其电阻率最大。
为了求得钾-钠-钙-镁-铝-硅酸盐多元玻璃中工艺性能变化较小而电阻率高的玻璃成分,我们设计了一个基本成分,利用双碱效应,采用马祖林计算公式。
【总页数】1页(P55)
【作者】葛曼珍
【作者单位】不详;不详
【正文语种】中文
【中图分类】TQ171.7
【相关文献】
1.一种C型夹层雷达天线罩损伤后修补区域电性能计算方法 [J], 蔡承文;赵永鹏;李伟林
2.天线表面误差的精确计算方法及电性能分析 [J], 王从思;段宝岩;仇原鹰
3.电浮法工艺因素与电浮法玻璃着色性能之间关系的研究 [J], 陆章明;黄维炜
4.玻璃熔窑数值模拟的计算方法和计算机语言的使用 [J], 朱建飞;颜晖
5.毫米波复合材料雷达罩的研究Ⅰ BMI/E-玻璃布复合材料的电性能、耐热性能[J], 陈立新;孙曼灵;周希真
因版权原因,仅展示原文概要,查看原文内容请购买。
advanced energy materials能量效率 -回复
advanced energy materials能量效率-回复Advanced Energy Materials: Enhancing Energy EfficiencyIntroduction:In a world where the demand for energy is constantly increasing, the need for efficient energy materials has become crucial. Advanced energy materials play a significant role in improving energy efficiency and reducing environmental impact. This article aims to delve into the concept of energy efficiency and explore how advanced energy materials contribute to enhancing it.1. Understanding Energy Efficiency:Energy efficiency refers to the ability to achieve more output with less input of energy. It focuses on reducing energy waste while maintaining or even enhancing the desired outcome. Energy efficiency plays a vital role in mitigating climate change, conserving resources, and ensuring sustainable development.2. The Role of Advanced Energy Materials:Advanced energy materials act as enablers for energy efficiency improvements across different sectors. These materials possess unique properties that make them ideal for energy generation,storage, and conversion. Let's explore some key areas where advanced energy materials are making a notable difference:A. Energy Generation:Renewable energy sources such as solar, wind, and hydroelectric power rely on advanced materials for efficient energy generation. For example, new rooftop solar panels incorporate advanced photovoltaic materials that capture sunlight and convert it into electricity with high efficiency. Similarly, advanced wind turbine materials enable better energy extraction from wind resources, increasing energy generation capacity.B. Energy Storage:Efficient energy storage is crucial for balancing the intermittent nature of renewable energy sources and meeting peak demand. Advanced energy storage materials, such as lithium-ion batteries, supercapacitors, and fuel cells, have revolutionized the storage industry. These materials exhibit high energy density, fast charging capabilities, and long cycle life, enabling efficient energy capture and release.C. Energy Conversion:Converting one form of energy into another is a critical process in various applications. Advanced energy materials play a significant role in improving the efficiency of energy conversion devices. For instance, fuel cell catalyst materials enhance the efficiency of converting chemical energy to electrical energy. Additionally, thermoelectric materials allow the conversion of waste heat into electricity, reducing energy losses and improving overall efficiency.3. Advancements in Energy Materials Technology:Continuous research and innovation in advanced energy materials have led to significant advancements in their performance. Here are some notable examples:A. Nanomaterials:Nanotechnology has revolutionized the field of energy materials. Nanostructured materials, such as nanoparticles and nanocomposites, exhibit unique properties due to their small size and increased surface area. These materials enhance energy efficiency by improving energy conversion processes, reducing resistance, and enabling better control of energy flows.B. Smart Materials:Smart materials, also known as responsive or adaptive materials, change their properties in response to external stimuli. These materials can dynamically adjust their behavior to optimize energy usage. For example, shape memory alloys can recover their original shape upon heating, reducing energy loss due to deformation during operation.C. Sustainable Materials:Sustainability is a key consideration in energy materials development. Researchers are focusing on designing materials that are environmentally friendly throughout their life cycle. This includes using abundant, non-toxic, and recyclable materials. By adopting sustainable materials, energy systems can minimize their environmental footprint and ensure long-term viability.Conclusion:Advanced energy materials play a pivotal role in enhancing energy efficiency across various sectors. From energy generation to storage and conversion, these materials enable more sustainable and efficient energy usage. Continuous advancements in energy materials technology, such as nanomaterials, smart materials, andsustainable materials, further contribute to improving energy efficiency and reducing environmental impact. Embracing and fostering research in advanced energy materials is crucial for building a sustainable future energy system.。
太阳能边缘能量表:商品说明书
Safety Emmissions
ENVIRONMENTAL
Operating Temperatures Relative Humidity (noncondensing) Enclosure type Protection Rating
INSTALLATION SPECIFICATIONS
Grids supported
Power Consumption (Nominal)
METER ACCURACY (@ 77°F / 25°C, PF:0.7- 1)
1 - 100% of Rated Current CT
CURRENT TRANSFORMERS(1)
Nominal Input (at CT Rated Current) Rated RMS current(2) Dimensions (Internal / External)
Energy Meter with Modbus Connection
for North America
SE-MTR240-NN-S-S1
SUPPORTED INVERTERS ELECTRICAL SERVICE
AC Input Voltage (Nominal) AC Frequency (Nominal) Max AC Input Current Connector Type
±1.0
CT1, CT2: 0.333
200
400
0.8 x 0.8; 2.4 x 2.4 / 20 x 20; 61 x 61
1.26 x 1.83; 3.3 x 4.5 / 32 x 46.5; 83.4 x 114
UL 1741:2010 Ed.2(Supplement SA)+R: 07 Sep 2016 FCC 47 CFR Part 15 Subpart B
费恩曼物理学讲义第二卷 英文版
费恩曼物理学讲义第二卷英文版全文共3篇示例,供读者参考篇1Richard Feynman was a renowned physicist who made numerous contributions to the field of theoretical physics. His lectures at the California Institute of Technology were famously engaging and accessible to students. The second volume of his lectures, titled "The Feynman Lectures on Physics Volume 2: Mainly Electromagnetism and Matter," was published in 1964 and remains a popular resource for students and researchers today.In this volume, Feynman delves into the fascinating world of electromagnetism and the behavior of matter. He starts by discussing the concept of electromagnetism and the laws that govern the interaction between electric and magnetic fields. The book covers a wide range of topics, including the Maxwell equations, electromagnetic waves, and the behavior of charged particles in electric and magnetic fields.One of the highlights of the book is Feynman's unique teaching style, which combines clear explanations with insightfulanalogies and examples. He breaks down complex concepts into simple, easy-to-understand explanations, making even the most challenging topics accessible to readers. Feynman's passion for physics shines through in his writing, making the book a joy to read for both beginners and experts in the field."The Feynman Lectures on Physics Volume 2" is a valuable resource for anyone looking to deepen their understanding of electromagnetism and the behavior of matter. Whether you are a student, a researcher, or simply a physics enthusiast, this book offers a wealth of knowledge and insights that will inspire and educate you. Richard Feynman's legacy lives on through his lectures and writings, and this volume is a testament to his brilliance and dedication to the pursuit of knowledge.篇2Feynman Lectures on Physics Volume 2 - English VersionThe Feynman Lectures on Physics, written by NobelPrize-winning physicist Richard P. Feynman, is a renowned set of introductory physics textbooks. Volume 2 of this series delves into electromagnetism, optics, and quantum mechanics. This volume provides a comprehensive understanding of thesefundamental topics in physics, explained in Feynman's unique and engaging style.One of the key concepts covered in Volume 2 is electromagnetism. Feynman explains the fundamental principles of electricity and magnetism, including Coulomb's law, Gauss's law, and Faraday's law of electromagnetic induction. He explores the relationship between electric and magnetic fields, and how they interact to produce electromagnetic waves. Feynman's clear explanations and insightful analogies make these complex concepts accessible to readers of all levels.In the section on optics, Feynman discusses the behavior of light, including reflection, refraction, and diffraction. He explains the wave nature of light and the principles of interference and diffraction patterns. Feynman also covers the properties of lenses, mirrors, and prisms, and how they affect the behavior of light rays. His detailed explanations and illustrations provide a thorough understanding of the principles of optics.Quantum mechanics is another important topic covered in Volume 2. Feynman introduces the basic principles of quantum mechanics, including the wave-particle duality of matter, the uncertainty principle, and the quantization of energy levels. He explores the behavior of particles at the quantum level, includingthe concept of superposition and the measurement problem. Feynman's clear and concise explanations help readers grasp the counterintuitive principles of quantum mechanics.Overall, Volume 2 of the Feynman Lectures on Physics is an essential resource for students, educators, and anyone interested in gaining a deep understanding of electromagnetism, optics, and quantum mechanics. Feynman's engaging writing style, clear explanations, and insightful analogies make this volume an invaluable addition to any physics library. Whether you are a seasoned physicist or a beginner looking to explore the wonders of the universe, Feynman's Lectures on Physics Volume 2 is sure to enlighten and inspire.篇3Feynman Lectures on Physics Volume 2 – English VersionRichard Feynman, the renowned physicist and Nobel laureate, delivered a series of lectures on physics at the California Institute of Technology in the early 1960s. These lectures were later compiled into a three-volume set called the "Feynman Lectures on Physics." The second volume covers topics in electromagnetism and matter.In Volume 2 of the Feynman Lectures, Feynman covers the fundamental principles of electromagnetism, including Maxwell's equations and the behavior of electric and magnetic fields. He also discusses the properties of conductors, insulators, and semiconductors, as well as the phenomenon of induction and how it relates to electromagnetic waves.One of the highlights of Volume 2 is Feynman's discussion of quantum mechanics and how it applies to the behavior of electrons and other subatomic particles. He explains thewave-particle duality of matter and introduces the concept of quantum superposition, where particles can exist in multiple states simultaneously.Feynman's engaging and accessible writing style makes complex physics concepts easy to understand, even fornon-experts. He uses analogies, diagrams, and real-world examples to illustrate key principles and make the material more relatable to readers.Volume 2 of the Feynman Lectures on Physics is a valuable resource for students, educators, and anyone with an interest in physics. Whether you're a beginner or a seasoned physicist, Feynman's insights and explanations are sure to deepen yourunderstanding of the natural world and inspire a sense of wonder about the universe.In conclusion, the "Feynman Lectures on Physics Volume 2" is a must-read for anyone looking to expand their knowledge of electromagnetism, quantum mechanics, and the fundamental forces of nature. Feynman's unique blend of insight, humor, and enthusiasm make this book a timeless classic that will continue to educate and inspire readers for generations to come.。
advanced energy materials总结电化学测试方法
advanced energy materials总结电化学测试方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电化学测试方法在先进能源材料研究中扮演着至关重要的角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Iwan Setyawan, Reginald L. Lagendijk
Delft University of Technology, Faculty of Information Technology and Systems, Information and Communication Theory Group, Delft, The Netherlands {i.setyawan, gendijk}@its.tudelft.nl
2. THE EXTENDED DEW ALGORITHM
2.1. The DEW Algorithm The DEW algorithm embeds watermark bits into an MPEG stream (or any other block DCT based video/image compression systems) by enforcing energy difference between certain groups of 8 × 8 DCT blocks of the I-frames to represent either a ‘1’ or a ‘0’ watermark bit. The energy difference is enforced by selectively removing high frequency components from the DCT blocks. The 8 × 8 DCT blocks of an I-frame are first randomly shuffled using a secret seed. This process serves two
extension scheme is explained in detail. In Section 3, the experiment setup and results are presented. Finally in Section 4 we present the conclusions of our experiments.
Keywords: Copyright protection, data monitoring, invisible watermarking, low bit-rate video, Internet video
ABSTRACT
Digital video data distribution through the Internet is becoming more common, and is now seen as a powerful marketing media by the entertainment industry. These materials need to be protected to avoid copyright infringement issues. However, they are encoded at a low bit-rate to facilitate Internet distribution and this poses a challenge to the watermarking operation. In this paper we present an extension to the Differential Energy Watermarking (DEW) algorithm, to use it in low bit-rate environment. We present the extension scheme and evaluate its performance in terms of watermark capacity, robustness and visual impact.
1. INTRODUCTION
Digital video data distribution through the Internet is becoming more common [1]. The rapid growth of the Internet makes it a very strong marketing media to reach potential customers. Nowadays, when Hollywood studios release new movies, they the movies where they put multimedia materials such as movie trailers, interviews, etc. The same goes for music publishing companies, that put video clips of the artists under their label to promote the sales of their albums. The computer games industry also sees the internet as a medium not only to distribute demos or preview versions of their games, but also as a medium to distribute video materials of their games, such as ingame video sequences, opening cinematics or dedicated “game trailers” in which they show off the exciting parts of their games. All these marketing efforts, especially for the last case, may make or break the sales of the products. These multimedia materials share an important feature, namely they must be compressed at low bit rates to facilitate distribution through the Internet. Furthermore, these materials need to be protected in order to prevent copyright infringement issues. Digital watermarking is one of the possible solutions for this copyright protection problem [2], [5], [7].
However, most existing video watermarking algorithms are more geared towards high bit rate environments suitable for DVD or television broadcast [3], [6]. Low bit rate (below 1 kbps) video watermarking utilizing MPEG-4 facial animation parameters has been investigated [4], which is suitable for video telephony application. However, low bit-rate watermarking for other applications, such as the one mentioned in the previous paragraph, has received little attention in the literature. Low bit rate environment presents challenges to the watermarking operation not found in watermarking operations at high bit-rate environments. Video encoded at low bit rates inherently possesses low redundancy and small visual degradation tolerance. This brings forward three important issues. The first issue is the watermark capacity, i.e. the number of watermark bits we can embed into the data. The second issue is the visual impact. The low visual degradation tolerance of the original video sequence/stream means that we must take special care before embedding the watermark, which essentially adds more distortion into the data. The third issue is the robustness of the watermark. These three issues are closely interrelated and adjusting one of these performance aspects will affect the performance of the others. In our previous work, we have developed a video watermarking scheme for MPEG-1/-2 video streams at high bit rates (1.4 to 8 Mbps), called the Differential Energy Watermarking (DEW) algorithm [7], [9]. This method has been shown to have relatively low complexity, high capacity and low visual impact. We consider this technique to have a potential to be extended for use in low bit-rate environments, and in this paper we present the extension scheme and an evaluation of its performance in order to investigate the behavior of this technique in low bit rate environments. This paper is organized as follows. In Section 1 a brief introduction to the problem is given. In Section 2, the DEW algorithm is briefly described and the