初中数学专题汇编--探究中考试卷中的几何旋转
中考经典几何题讲义系列:旋转、翻折问题
∴AE=EF,∠EAF=∠EFA= =22.5°。∴∠FAB=67.5°。
2
设 AB=x,则 AE=EF= 2 x,
∴an67.5°=tan∠FAB=t FB 2x+x 2 1。故选 B。 AB x
4. (广东河 源 3 分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点 D、E 分别在边 AB、 AC 上,将△ABC 沿着 DE 折叠压平,A 与 A′重合.若∠A=75º,则∠1+∠2=【 】
∴BC=CM。
设 CF=x,D′F=DF=y, 则 BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,
在 Rt△D′FM 中,tan∠M=tan30°= DF y 3 ,∴ x 3-1 y 。
FM 2x y 3
2
∴ CF x 3-1 。故选 A。 FD y 2
3. (江苏连云港 3 分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片 ABCD 沿过点 B 的直线折叠, 使点 A 落在 BC 上的点 E 处,还原后,再沿过点 E 的直线折叠,使点 A 落在 BC 上的点 F 处,这样就可以求出 67.5° 角的正切值是【 】
A.150º
B.210º
C.105º
D.75º
【答案】A。
【考点】折叠的性质,平角的定义,多边形内角和定理。
【分析】根据折叠对称的性质,∠A′=∠A=75º。
根据平角的定义和多边形内角和定理,得
∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。
(1)如图 1,当点 D 与点 C 位于直线 AB 的两侧时,a=b=3,且∠ACB=60°,则 CD=
中考数学+“旋转”专题
立体图形的旋转
总结词
立体图形在旋转过程中,其形状、大小和方 向均保持不变,但位置会发生变化。
详细描述
立体图形的旋转通常涉及三维图形,如球体 、圆柱体、圆锥体等。在旋转过程中,图形 的形状、大小和方向都不会改变,但位置会 发生变化。例如,一个球体可以围绕其轴线 进行旋转,形成一个圆柱体。这种旋转在中 考数学中也是常见的考点之一,需要学生掌 握相关的概念和计算方法。பைடு நூலகம்
这些题目往往涉及多个知识点和解题技巧 ,需要学生全面掌握旋转的性质和应用。
题目1
题目2
在等腰梯形ABCD中,AD∥BC, AB=CD=5,AD=3,将△ABD绕点D逆时 针旋转90°得到△ECD,则经过路径长为( ) 。
在平面直角坐标系中,点A的坐标为(0,3), 将点A绕原点顺时针旋转135°得到点B,则 点B的坐标是( )。
04
中考中旋转的考点分析
旋转的基本考点
旋转的定义与性质
01
掌握旋转的基本性质,如旋转不改变图形 的形状和大小,只改变其位置。
03
02
理解旋转的基本概念,包括旋转中心、旋转 方向和旋转角度。
04
旋转的表示方法
掌握如何使用数学符号表示图形的旋转。
05
06
了解如何使用旋转矩阵或旋转公式来描述 图形的旋转。
旋转可以应用于解决代数问题,特别是在方程和不等式 的求解中。
例如,在解方程时,可以通过旋转来消元或转化方程的 形式。
旋转的应用题解法
旋转在几何、物理和工程等领域有广泛的应用 。
例如,在机械工程中,旋转运动是常见的机械运动形 式,可以利用旋转的性质来分析机械的运动规律。
掌握旋转在实际问题中的应用
通过将实际问题抽象为几何图形,并利用旋转的 性质进行求解,可以找到实际问题的解决方案。
中考数学旋转与几何探究(有答案)
在各种考试的几何压轴题压轴题中,平移,轴对称,旋转中,旋转考查的最多,但是很多题目之间,都有很多类似的地方,也就是“共性”问题,充分的掌握这些“共性”问题的分析思路和解决方法,能够使学生快速的发现解决问题的关键因素。
本讲会给出与旋转有关,且经常在考试中出现的几种基本模型模型一:共顶点旋转模型模型说明:本模型是由全等三角形中一道最基本,最经典的题型,由此题型可演变出很多变化,注意让学生体会,各种变化之间相同点和不同点。
下面给出基本模型,此部分内容系个人总结,如果还有不完善的地方,或者还有其他补充,亦或者还有更好的命名方式,易于学生记忆和理解,请到教师论坛→初数版块→疑难交流区进行反馈,大家一起讨论以下图形虽然很多,但都是一个基本模型,共顶点旋转模型(证明基本思想“SAS”)等边三角形共顶点共顶点等腰直角三角形共顶点等腰三角形例题精讲旋转与几何探究共顶点等腰三角形以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化而我们都知道,“全等三角形”是“相似三角形”的一种特殊情况,因此此模型进一步延伸,可引出相似三角形,也就是此模型的最一般的情况,也就是“通法”“共性”,下面也会给出几组连续变化的图形,注意仔细体会各种变化之间的区别与联系共性:ADAB=AEACCEEDCBA共顶点相似的直角三角形共顶点相似的一般三角形共顶点相似的直角三角形各部分阴影三角形相似的判定方法,均是:“两边成比例且夹角相等的两个三角形相似”,类比“SAS”真题体验【例1】以ABC∆的两边AB、AC为腰分别向外作等腰Rt ABD∆和等腰Rt ACE∆,90BAD CAE∠=∠=︒.连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.⑴如图①当ABC∆为直角三角形时,AM与DE的位置关系是;线段AM与DE的数量关系是 ;⑵将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,⑴问中得到的两个结论是否发生改变?并说明理由.【答案】此题方法不唯一⑴AM DE ⊥,12AM DE =; ⑵结论仍然成立。
九年级数学上册 旋转几何综合中考真题汇编[解析版]
九年级数学上册旋转几何综合中考真题汇编[解析版]一、初三数学旋转易错题压轴题(难)1.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EAD AF AE=⎧⎪∠=∠⎨⎪=⎩,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=53,即DE=53.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.2.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(1)150°,7;(2)135°,5【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP=2,BE=BP’=1,勾股定理可求得正方形边长.(1)150° 7(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=2;连接PP′,在Rt△BP′P中,∵BP=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP=5,∵222+=,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=5;∴∠BPC=135°,正方形边长为5.点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.3.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.5.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.6.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.7.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.8.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.10.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.。
初中数学中考冲刺必备(旋转几个类型题)
初中数学中考冲刺必备(旋转几个类型题)
几何图形变换包括平移、旋转和翻折三种基本变换。
这些变换是根据确定的法则对给定的图形进行位置变化,然后在新的图形中分析有关图形之间的关系。
在这些变换中,旋转是其中一种基本变换。
旋转是指根据确定的旋转中心和旋转角度,将图形绕旋转中心旋转一定角度,得到新的图形。
在初中数学中考中,常见的旋转图形有三种类型:正三角形、正方形和等腰直角三角形。
对于正三角形类型的旋转题目,一般要求根据旋转角度和旋转中心,求出图形中某些线段的长度或角度。
例如,在正三角形ABC中,如果将ΔABP绕A点逆时针旋转60°,使得
AB与AC重合,那么需要求∠APB的度数。
对于正方形类型的旋转题目,一般要求根据旋转角度和旋转中心,求出正方形的面积或其他相关的线段长度或角度。
例如,在正方形ABCD中,如果将ΔABP绕B点顺时针旋转90°,使得BA与BC重合,那么需要求正方形ABCD的面积。
对于等腰直角三角形类型的旋转题目,一般要求根据旋转角度和旋转中心,求出图形中某些线段的长度或角度。
例如,在等腰直角三角形ABC中,如果将ΔAPC绕C点逆时针旋转90°,使得AC与BC重合,那么需要求∠___的度数。
通过以上三种类型的旋转题目的练,可以帮助学生更好地理解几何图形变换,提高他们的几何图形变换能力。
初中几何旋转经典例题
初中几何旋转经典例题【最新版】目录1.初中几何旋转的概念和基本原理2.旋转变换的性质和应用3.经典例题解析3.1 正三角形类型的旋转3.2 正方形类型的旋转3.3 平移、旋转、轴对称的易错题型整理正文初中几何旋转经典例题初中几何中的旋转是一种重要的变换方式,它不仅可以帮助我们更好地理解图形的性质,还能在解决实际问题中发挥关键作用。
本文将围绕初中几何旋转的概念、性质和应用,以及经典例题进行讲解。
一、初中几何旋转的概念和基本原理旋转是指将一个图形围绕某一点按某个方向转动一定的角度,这样的图形变换叫做旋转。
旋转时,旋转中心不变,旋转角度也不变。
根据旋转的方向和角度,旋转可以分为顺时针旋转和逆时针旋转。
二、旋转变换的性质和应用旋转变换具有以下性质:1.旋转变换不改变图形的大小和形状。
2.旋转变换只改变图形的位置,不改变图形的方向。
3.旋转变换可以用来简化问题,将复杂的图形变为简单的图形。
4.旋转变换在实际问题中有广泛的应用,如计算旋转体的表面积和体积等。
三、经典例题解析1.正三角形类型的旋转【例 1】如图(1-1),设 p 是等边 abc 内的一点,pa=3,pb=4,pc=5,apb 的度数是 60°。
将 abp 绕 a 点按逆时针方向旋转 60°,使得 ab 与 ac 重合。
经过这样旋转变化,将图(1-1-a)中的 pa、pb、pc 三条线段集中于图(1-1-b)中的一个 p"cp 中,此时 p"ap 也为正三角形。
2.正方形类型的旋转【例 2】如图,以点 O 为旋转中心将正方形 AMNB 顺时针旋转 90°,得到三角形 ANG。
连接 GN,易得∠GBC=90°,∠MGN=∠ANG=45°,∠MGB=∠ANC=90°,所以三角形 AMN 全等于三角形 ANG,所以 GN=MN,又因为∠GMB=90°,所以 MN>BN,所以 MN 最大,能构成直角三角形。
初中数学专题汇编--探究中考试卷中的几何旋转
探究中考试卷中的旋转与旋转有关的计算问题,常见的是计算角度、计算线段的长度、计算图形的周长与面积以及旋转前后坐标系内点的坐标变换等.下面结合2017年部分省市的中考试题,对和旋转有关的问题进行分类探究,供同学们参考.一、与旋转有关的角度计算例1 (2017•菏泽)如图1,将绕直角顶点时针旋转90°,得到,Rt ABC ∆C A B C ''∆连接,若,则的度数是( )AA '125∠=︒BAA '∠A.55°B.60°C.65°D.70°解:由旋转的性质,得.,90,AC A C ACA BAC B A C ''''=∠=︒∠=∠.45CAA AA C ''∴∠=∠=︒又,125∠=︒ .故选C.45(451)65BAA CAA BAC ''∴∠=∠+∠=︒+︒-∠=︒ 评注:与旋转有关的角度计算,一般联系旋转的性质、三角形全等的性质、三角形的内角和以及三角形的外角的性质等,注意结合图形信息,寻找已知角与未知角之间的关系,灵活运用三角形的边与角之间的关系解题.二、与旋转有关的线段长度的计算问题例2 (2017•娄底)如图2,在平面直角坐标系中,点的坐标分别是(3,0), ,A B A B (0,4),把线段绕点旋转后得到线段,使得点的对应点落在轴的正半轴AB A AB 'B B 'x 上,则点的坐标是( )B 'A.(5,0)B.(8,0)C.(0,5)D.(0,8)解:易得.5AB == 把线段绕点旋转后得到线段,使得点的对应点落在轴的正半轴AB A AB 'B B 'x 上,则.5AB AB '==所以点到原点的距离是3 + 5=8.B ' 又点落在轴的正半轴上,B 'x 所以点的坐标是(8,0).故选B.B ' 评注:此题旋转角度不是特殊角,但旋转后点的对应点位于轴的正半轴上,计算线B x 段的长度是解决问题的关键.AB 一般地,如果旋转特殊角,有以下规律:坐标平面内的点,绕着原点旋转一个90°,①如果是顺时针旋转,则有旋转后(,)P x y 的对应点的坐标为;②如果是逆时针旋转,则有旋转后的对应点的坐标为.坐(,)y x -(,)y x -标平面内的点绕着原点旋转180°,得出的点关于原点中心对称,点关于原点的中(,)P x y 心对称点的坐标是,位于相对的两个象限,即分别位于第一、第三象限(,)P x y '--,P P '或者第二、第四象限.三、与多次旋转有关的探究规律问题例3 (2017•菏泽)如图3 , 轴,垂足为,将绕点逆时针旋转到AB y ⊥B ABO ∆A的位置,使点的对应点落在直线上,再将绕点逆时针11AB O ∆B 1B y x =11AB O ∆1B旋转到位置,使点的对应点落在直线上,依次进行下去……若112A B O ∆1O 2O y =点的坐标是(0,1),则点的纵坐标是 .B 12O解:如图4,过点作轴于点,过点作轴于点.2O 21O M x ⊥1M 4O 42O M x ⊥2M根据图形信息,,把代入,1OB =1y =y x =,x ∴=.AB ∴=,2OA ∴==根据旋转的性质,得.11211221,2AB AB B O B O OB A O OA =======点到原点的距离是.∴2O O 2112213OO OA AB B O =++=++=+2111(32O M OM ∴=⨯====点的坐标是,点的横坐标与纵坐标是点的横坐标与纵∴2O (4O 2O 坐标的2倍,点的横坐标与纵坐标分别是点的横坐标与纵坐标的3倍……6O 2O由于12÷2=6, 点的横坐标与纵坐标分别是点的横坐标与纵坐标的6倍,∴12O 2O点的坐标是,即是.∴12O (6(⨯(9,9-+点的的纵坐标是.∴12O 9+ 评注:此题运用坐标系内的点到原点的距离与到坐标轴的距离之间的平方关系,再者根据旋转的性质,旋转前后对应线段的长度相等,因此得出之间的相等关22446,,OO O O O O 系,运用直角三角形中三边之间的倍数关系,注意每一次偶数序号的变化,横坐标与纵坐标都是点的横坐标与纵坐标的若干倍,这个倍数是序号的下标与2的商.2O 四、与旋转有关的开放探究问题例4 (2017•河南)如图5,在中,,点分别在边Rt ABC ∆90,A AB AC ∠=︒=,D E 上,,连接,点分别为的中点.,AB AC AD AE =DC ,,M P N ,,DE DC BC(1)观察猜想 如图5,线段与的数量关系是 ,位置关系是 .PM PN(2)探究证明 把绕点逆时针旋转到图6的位置,连接,判断的形ADE ∆A ,,MN BD CE PMN ∆状,并说明理由;(3)拓展延伸 把绕点在平面直角坐标系内自由旋转,若,请直接写出ADE ∆A 4,10AD AB ==面积的最大值.PMN ∆解:(1)猜想.,PM PN PM PN =⊥(点分别在边上,,90,A AB AC ∠=︒=Q ,D E ,AB AC AD AE =.AB AD AC AE ∴-=-.DE EC ∴= 又点分别为的中点,,,M P N ,,DE DC BC .11,22PM EC PN BD ∴==,且.PM PN ∴=//,//PM EC PN BD ,即,AB AC ⊥Q BD EC ⊥.)PM PN ∴⊥(2)是等腰直角三角形.PMN ∆理由如下:由旋转的性质,得.BAD CAE ∠=∠又,,AB AC AD AE ==.BAD CAE ∴∆≅∆.,ABD ACE BD CE ∴∠=∠=又点分别为的中点,,,M P N ,,DE DC BC .11,22PM EC PN BD ∴== 是等腰三角形.PMN ∴∆根据旋转的性质,旋转前后对应线段的夹角相等,得.BAD CAE ∆≅∆ 可以看作是绕点逆时针旋转90°得到,即是.CAE ∴∆BAD ∆A BD EC ⊥.,90PM PN MPN ∴⊥∠=︒是等腰直角三角形.PMN ∴∆ (3) .492(如图7,以点为圆心,为半径画圆,可以发现当点位于的延长线上时A AD D BA 与的长度都取得最大值10 + 4=14,此时,而始BD CE 11,22PM EC PN BD ==PMN ∆终都是等腰直角三角形,其面积此时最大,这个最大面积是.)11111491414222282PM PN EC BD ⨯⨯=⨯⨯=⨯⨯=评注:由于旋转具有旋转前后图形的大小形状不变的性质,因此旋转前后对应线段的长度,对应线段(或线段所在直线)的夹角都分别相等,因此结合特殊图形:等腰三角形(含等腰直角三角形与等边三角形),正方形及相似的平行四边形(含矩形、菱形),相似的三角形等绕其一个顶点旋转,探究对应线段(及对应线段的等分点之间的线段)等的数量与位置关系,是中考命题的一个热点,其一般解法是联系三角形的全等,综合旋转的性质等层层探究,为了找出最大值或最小值,有时可以构造辅助圆。
中考数学模拟试题立体几何的旋转问题
中考数学模拟试题立体几何的旋转问题中考数学模拟试题—立体几何的旋转问题立体几何是中考数学中一个重要的考点,而其中的旋转问题更是难倒不少学生。
本文将就中考数学模拟试题中的立体几何旋转问题展开论述。
一、旋转问题的基本概念旋转是立体几何中常见的一种操作,它将一个几何体绕着某个轴进行转动,形成一个新的几何体。
在旋转问题中,我们需要了解以下几个基本概念:1. 旋转轴:几何体绕其旋转的直线称为旋转轴。
2. 旋转中心:旋转轴上的一个点,称为旋转中心。
3. 旋转角:几何体绕旋转轴旋转的角度。
二、常见的旋转问题类型及解题方法1. 空间图形的旋转空间图形的旋转包括柱体、圆锥体、球等的旋转。
在解决此类问题时,一般需要根据问题中给出的条件,确定旋转轴和旋转角度,然后利用几何关系进行计算。
例如,某题给出了一个高为10cm、半径为3cm的圆柱体,要求将其绕着底面半径为3cm的圆柱轴旋转一周,问旋转所得的立体图形的体积是多少。
解题思路:根据题目描述可知,圆柱体绕着底面半径为3cm的圆柱轴旋转一周,即旋转角为360度。
利用圆柱体体积的计算公式V=πr²h,将给定的数据带入公式中计算,即可得到旋转所得的立体图形的体积。
2. 平面图形的旋转平面图形的旋转包括圆、三角形等的旋转。
在解决此类问题时,我们需要确定旋转轴和旋转角度,并运用平面几何的相关知识进行计算。
例如,某题给出了一个半径为5cm的圆,要求将其绕着圆心所在直线旋转90度,问旋转所得的圆的周长是多少。
解题思路:根据题目描述可知,圆沿圆心所在直线旋转90度。
旋转90度后,该圆的直径将成为圆的周长,因此我们只需将给定的半径乘以2π即可得到旋转后圆的周长。
三、解题技巧与注意事项在解决立体几何的旋转问题时,我们还需要掌握一些解题的技巧与注意事项:1. 熟练掌握旋转操作的基本概念与公式,了解各类常见图形的旋转特性。
2. 注意理解问题描述,并将其转化为几何操作来进行计算。
3. 注意单位的转换,确保结果的准确性。
中考数学复习13:旋转
中考数学复习13:旋转知识集结知识元图形的旋转知识讲解旋转1.旋转的认识旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.【注意】①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键;②旋转中心是点而不是线,旋转必须指出旋转方向.2.旋转对称图形(1)旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.3.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.4.中心对称(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.中心对称图形(1)中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【注意】中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形:平行四边形、圆形、正方形、长方形等等.6.平面直角坐标系中的旋转变换(1)关于原点对称的点的坐标:P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.7.旋转变换的作图(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.8.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.【注意】三要素中只要任意改变一个,图形就会不一样.旋转线段(直线)在近几年的中考试题中,以图形为载体、以旋转为手段考查同学们操作、想象、探究能力的中考题层出不穷.旋转变换是一种全等变换,它只改变图形的位置,使原来比较分散的条件相对集中,从而使图形的各种关系明朗化,从而达到化繁为简,化难为易的目的.旋转是图形之间的一种主要变换,在旋转过程中,图形上的每一点都绕着旋转中心旋转了相同的角度,线段的长度与角的大小都没有改变,图形的形状与大小没有发生变化.旋转线段是常考的一种类型,主要探究角度,线段之间数量关系等.旋转三角形旋转三角形是考查最频繁的一种类型,因为三角形旋转后能够构成特殊的四边形,旋转等腰三角形,等边三角形,直角三角形等最受命题者的青睐,旋转前、后的图形全等,所以借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,找到解题突破口.旋转四边形旋转四边形是旋转的又一种类型,虽然没有前两种考得那么频繁,但一些特殊的四边形旋转起来更有难度.特别是旋转菱形与正方形,正方形被人们称为完美的四边形,它集平行四边形及特殊平行四边形特性于一身,中考中有许多题目围绕它的旋转性来.两个正方形绕着某点旋转,图形位置发生变化,但每个正方形自身和特征并没有变化.例题精讲图形的旋转例1.如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是_________.例2.如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是_____.例3.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为______.例4.如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE 绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=___.例5.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.例6.下列图案中,是中心对称图形的是()A.B.C.D.例7.在平面直角坐标系中,已知点A(-4,3)与点B关于原点对称,则点B的坐标为()A.(-4,-3)B.(4,3)C.(4,-3)D.(-4,3)例8.如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.对称变换例9.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.例10.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.例11.图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?()A.10B.20C.D.例12.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.当堂练习单选题练习1.下列四个汽车图标中,既是轴对称图形又是中心对称图形的图标是()A.B.C.D.练习2.在下列四个图案中,不是中心对称图形的是()A.B.C.D.解答题练习1.'如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C。
中考数学复习----《图形的旋转变换》知识点总结与专项练习题
中考数学复习----《图形的旋转变换》知识点总结与专项练习题知识点总结1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点。
2.旋转的要素:①旋转中心;②旋转方向;③旋转角。
3.旋转的性质:①旋转前后的两个图形全等。
即有对应边相等,对应角相等。
②对应点到旋转中心的连线距离相等。
③对应点与旋转中心的连线构成的夹角等于旋转角。
4.旋转对称图形:若一个图形旋转一定角度(小于360°)之后与原图形重合,则这个图形叫做旋转对称图形。
如正多边形或圆。
5.中心对称:①定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
②性质:I:关于中心对称的两个图形能够完全重合;II:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分。
6. 坐标的旋转变换:①若点()y x P ,顺时针或逆时针旋转90°,则横纵坐标的绝对值互换,符号看象限。
②若点()y x P ,顺时针或逆时针旋转180°,即关于原点成中心对称,则横纵坐标变为原来的相反数。
即()y x P −−,7. 旋转作图:基本步骤:①确定旋转方向与旋转角;②把图形的关键点按照旋转方向与旋转角进行旋转,得到关键点的对应点;③将对应点按照原图形连接。
练习题1、(2022•德州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:B .2、(2022•黄石)下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )A.温州博物馆B.西藏博物馆C.广东博物馆D.湖北博物馆【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.既是中心对称图形,又是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.3、(2022•河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B 顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为()A.25π+24 B.5π+24 C.25πD.5π【分析】根据勾股定理得到AB,然后根据扇形和三角形的面积公式即可得到结论.【解答】解:∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴Rt△ABC所扫过的面积=+×6×8=25π+24,故选:A .4、(2022•呼和浩特)如图.△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△EDC ,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若∠BCD =α,则∠EFC 的度数是(用含α的代数式表示)( )A .90°+21αB .90°﹣21αC .180°﹣23αD .23α 【分析】由旋转的性质可知,BC =CD ,∠B =∠EDC ,∠A =∠E ,∠ACE =∠BCD ,因为∠BCD =α,所以∠B =∠BDC ==90°﹣,∠ACE =α,由三角形内角和可得,∠A =90°﹣∠B =.所以∠E =.再由三角形内角和定理可知,∠EFC =180°﹣∠ECF ﹣∠E =180°﹣α.【解答】解:由旋转的性质可知,BC =CD ,∠B =∠EDC ,∠A =∠E ,∠ACE =∠BCD , ∵∠BCD =α,∴∠B =∠BDC ==90°﹣,∠ACE =α,∵∠ACB =90°,∴∠A =90°﹣∠B =. ∴∠E =. ∴∠EFC =180°﹣∠ECF ﹣∠E =180°﹣α.故选:C .5、(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.33B.23C.3 D.2【分析】由直角三角形的性质求出AC=2,∠B=60°,由旋转的性质得出CA=CA′,CB=CB′,∠ACA′=∠BCB′,证出△CBB′和△CAA′为等边三角形,过点A作AD⊥A'C于点D,由等边三角形的性质及直角三角形的性质可得出答案.【解答】解:连接AA′,如图,∵∠ACB=90°,∠BAC=30°,BC=2,∴AC=BC=2,∠B=60°,∵将△ABC绕点C顺时针旋转得到△A'B'C,∴CA=CA′,CB=CB′,∠ACA′=∠BCB′,∵CB=CB′,∠B=60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A作AD⊥A'C于点D,∴CD=AC=,∴AD=CD==3,∴点A到直线A'C的距离为3,故选:C.6、(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DEC.∠DFC=90°D.DG=3GF【分析】根据等边三角形的判定定理得到△BCE为等边三角形,根据等边三角形的性质得到BE=BC,判断A选项;证明△ABC≌△CFD,根据全等三角形的性质判断B、C选项;解直角三角形,用CF分别表示出GF、DF,判断D选项.【解答】解:A、由旋转的性质可知,CB=CE,∠BCE=60°,∴△BCE为等边三角形,∴BE=BC,本选项结论正确,不符合题意;B、在Rt△ABC中,∠ABC=90°,∠ACB=30°,点F是边AC的中点,∴AB=AC=CF=BF,由旋转的性质可知,CA=CD,∠ACD=60°,∴∠A=∠ACD,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS),∴DF=BC=BE,∵DE=AB=BF,∴四边形EBFD为平行四边形,∴BF∥DE,BF=DE,本选项结论正确,不符合题意;C、∵△ABC≌△CFD,∴∠DFC=∠ABC=90°,本选项结论正确,不符合题意;D、在Rt△GFC中,∠GCF=30°,∴GF=CF,同理可得,DF=CF,∴DF=3GF,故本选项结论错误,符合题意;故选:D.7、(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC【分析】根据旋转变换的性质、等边三角形的性质、平行线的性质判断即可.【解答】解:A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本选项结论正确,符合题意;D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;故选:C.8、(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A .90°B .60°C .45°D .30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B =30°,∠C =90°,∴∠CAB =180°﹣∠B ﹣∠C =60°,∵将直角三角板ABC 绕顶点A 顺时针旋转到△AB ′C ′,∴∠C ′AB ′=∠CAB =60°.∵点B ′恰好落在CA 的延长线上,∴∠BAC ′=180°﹣∠CAB ﹣∠C ′AB ′=60°.故选:B .9、(2022•内蒙古)如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′,图中阴影部分的面积为( )A .21B .33C .1﹣33D .1﹣43 【分析】设B ′C ′与CD 的交点为E ,连接AE ,利用“HL ”证明Rt △AB ′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE =∠B ′AE ,再根据旋转角求出∠DAB ′=60°,然后求出∠DAE =30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB ′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.10、(2022•朝阳)如图,在矩形ABCD中,AD=23,DC=43,将线段DC绕点D 按逆时针方向旋转,当点C的对应点E恰好落在边AB上时,图中阴影部分的面积是.【分析】由旋转的性质可得DE=DC=4,由锐角三角函数可求∠ADE=60°,由勾股定理可求AE的长,分别求出扇形EDC和四边形DCBE的面积,即可求解.【解答】解:∵将线段DC绕点D按逆时针方向旋转,∴DE=DC=4,∵cos∠ADE===,∴∠ADE=60°,∴∠EDC=30°,∴S扇形EDC==4π,∵AE===6,∴BE=AB﹣AE=4﹣6,∵四边形ABCD是矩形,∴EB∥CD,∠B=∠DCB=90°,∵EB≠CB,∴四边形DCBE是直角梯形,∴S四边形DCBE==24﹣6,∴阴影部分的面积=24﹣6﹣4π,故答案为:24﹣6﹣4π.11、(2022•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=.【分析】先在含30°锐角的直角三角形中计算出两条直角边,再根据旋转性质得到对应边相等、对应角相等得到AC=AC'=C'E=3,BC=B'C'=3,即可解答.【解答】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,∴AC=3,BC=3,∠CAB=60°,∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,∴△ABC≌△AB′C′,∠C'AE=45°,∴AC=AC'=C'E=3,BC=B'C'=3,∴B'E=B'C'﹣C'E=3﹣3.12、(2022•上海)有一个正n边形旋转90°后与自身重合,则n为()A.6 B.9 C.12 D.15【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.13、(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3 B.﹣1 C.1 D.3【分析】由中心对称的性质可求a,b的值,即可求解.【解答】解:∵点A(a,1)与点B(﹣2,b)关于原点成中心对称,∴a=2,b=﹣1,∴a+b=1,故选:C.14、(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4 B.4 C.12 D.﹣12【分析】首先根据关于原点对称的点的坐标特点可得a+2=﹣4,﹣b=﹣2,分别求出a、b的值,再代入即可得到答案.【解答】解:∵在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则∴得a+2=﹣4,﹣b=﹣2,解得a=﹣6,b=2,∴ab=﹣12.故选:D.15、(2022•湘西州)在平面直角坐标系中,已知点P(﹣3,5)与点Q(3,m﹣2)关于原点对称,则m=.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得m﹣2=﹣5,∴m=﹣3.故答案为:﹣3.16、(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.【分析】根据关于原点对称的点的坐标,可得答案.【解答】解:∵点A(﹣2,b)与点B(a,3)关于原点对称,∴a=2,b=﹣3,∴a﹣b=2+3=5,故答案为:5.17、(2022•枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是()A.(4,0)B.(2,﹣2)C.(4,﹣1)D.(2,﹣3)【分析】作出旋转后的图形即可得出结论.【解答】解:作出旋转后的图形如下:∴B'点的坐标为(4,﹣1),故选:C.18、(2022•青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是()A.(2,0)B.(﹣2,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)【分析】利用平移的性质得出对应点位置,再利用关于原点对称点的性质直接得出答案.【解答】解:由图中可知,点A(﹣2,3),将△ABC先向右平移3个单位,得坐标为:(1,3),再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是(﹣1,﹣3).故选:C.19、(2022•聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是()A .(﹣2,3)B .(﹣3,2)C .(﹣2,4)D .(﹣3,3)【分析】根据旋转的性质解答即可.【解答】解:连接AP ,A 1P .∵线段A 1B 1是将△ABC 绕着点P (3,2)逆时针旋转一定角度后得到的△A 1B 1C 1的一部分,∴A 的对应点为A 1,∴∠APA 1=90°,∴旋转角为90°,∴点C 绕点P 逆时针旋转90°得到的C 1点的坐标为(﹣2,3),故选:A .20、(2022•杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在M 1(﹣33,0),M 2(﹣3,﹣1),M 3(1,4),M 4(2,211)四个点中,直线PB 经过的点是( )A.M1B.M2C.M3D.M4【分析】根据含30°角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答.【解答】解:∵点A(4,2),点P(0,2),∴PA⊥y轴,PA=4,由旋转得:∠APB=60°,AP=PB=4,如图,过点B作BC⊥y轴于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),设直线PB的解析式为:y=kx+b,则,∴,∴直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=﹣,∴点M1(﹣,0)不在直线PB上,当x=﹣时,y=﹣3+2=﹣1,∴M2(﹣,﹣1)在直线PB上,当x=1时,y=+2,∴M3(1,4)不在直线PB上,当x=2时,y=2+2,∴M4(2,)不在直线PB上.故选:B.21、(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为.【分析】过点B作BN⊥x轴,过点B′作B′M⊥y轴,先求出ON=8,再证明△AOB≌△A′OB′(AAS),推出OM=ON=8,B′M=BN=4,从而求出点B′的坐标.【解答】解:过点B作BN⊥x轴,过点B′作B′M⊥y轴,∴∠B′MO=∠BNO=90°,∵OA=AB=5,点B到x轴的距离为4,∴AN=3,∴ON=8,∵将△OAB绕点O逆时针旋转90°,得到△OA′B′,∴∠BOB′=90°,OB=OB′,∴∠BOA′+∠B′OA′=∠BOA+∠BOA′,∴∠BOA=∠B′OA′,∴△NOB≌△MOB′(AAS),∴OM=ON=8,B′M=BN=4,∴B′(﹣4,8),故答案为:(﹣4,8).。
中考数学专题复习:旋转
A A1
B
D D1
C
C1 B1 图(1)
A
D D1
A1
C B
B1
图(2)
A
D
A1 C1
B
D1 C
B1
C1
图(3)
• 例1:如图,方格纸中的每个小方格都是边长为1个单位的 小正方形,每个小正方形的顶点称为格点.△ABC的顶点都 在格点上,建立平面直角坐标系后,点A、B、C的坐标 分别为(1,1),(4,2),(2,3).
∠AOD=∠BOE
1 选择题: ⑴下列图形中即是轴对称图形又是中心对称图形的 是( )C A 角 B 等边三角形 C 线段 D平行四边形
(2) 下列多边形中,是中心对称图形而不是轴对 称图形的是( ) A A平行四边形 B矩形 C菱形 D正方形 (3) 已知:下列命题中真命题的个数是( ) ①关于中心对称的两个图形一定不全等 B ②关于中心对称的两个图形是全等形 ③两个全等的图形一定关于中心对称 A0 B1 C2 D3
C
C (A2)
OA
B3 A2
OA
OA
B1
B2
O
A1(C2)
A(C1)
A1
乙
B1
甲
B2
下列图形中,不能通过上述方式得到的是( D)
(A)
(B)
(C)
(D)
3.以下四家银行行标中,轴对称图形的有 ( A )
A.
B.
C.
D.
4. 下列说法正确的是( B )
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
中考数学专题复习
1、概念:在平面内,把一个图形绕着某一个定点转 动一个角度的图形变换叫做旋转。 这个定点称为旋转中心,转动的角称为旋转角。
中考数学专题复习之 图形的旋转
ቐ∠=∠
=
∴△BDG≌△ADE(SAS),
∴BG=AE,∠DEA=∠DGB,
∵∠DEA+∠DNE=90°,∠DNE=∠MNG,
∴∠MNG+∠DGM=90°,
即BG⊥AE且BG=AE;
(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,
即A,D,E在一条直线上时,AE最大;
中考数学专题复习
图形的旋转
一、核心知识点
1、中心对称和中心对称图形
把一个图形绕着某一个点旋转180°,如果它能与另一个图
形重合,则称这两个图形关于这个点成中心对称图形,这个
点叫做对称中心;把一个图形绕某一个点旋转180°,如果
旋转后的图形能够和原图形互相重合,那么这个图形叫做中
心对称图形,这个点叫做旋转中心.
2、图形旋转的要素
(1)旋转中心;(2)旋转方向;(3)旋转角度
3、图形旋转的性质
(1)对应点到旋转中心的距离________;
旋转角
相等
(2)对应点与旋转中心所连线段的夹角等于________;
全等
(3)旋转前后的图形________
二、核心考点演练
1、中心对称与中心对称图形
例1:(1) 4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后
∴∠GMA=∠EDA=90°,
∴线段BG和AE相等且垂直;
(2)成立,
如图(2),延长EA分别交DG、BG于点M′、N′两点,
∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴∠ADB=90°,且BD=AD,
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,
∵在△BDG和△ADE中
中考数学旋转知识点总结
中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。
在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。
2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。
最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。
3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。
这些性质对于理解旋转的本质和应用都具有重要的意义。
二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。
对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。
2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。
旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。
三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。
通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。
2. 向量的旋转在向量几何中,旋转是常见的几何变换。
向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。
3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。
通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。
四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。
通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。
2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。
通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。
3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。
初三数学旋转试题及答案
初三数学旋转试题及答案在解答初三数学旋转试题时,我们首先需要理解旋转的概念和性质,然后应用这些知识来解决具体的几何问题。
以下是一些典型的旋转试题及其答案。
1. 题目:在平面直角坐标系中,点A的坐标为(3,4),若将点A绕原点O逆时针旋转90°,求旋转后点A的新坐标。
答案:首先,我们需要知道逆时针旋转90°后,点的坐标变换规则是(x, y)变为(-y, x)。
因此,点A(3,4)旋转后的新坐标为(-4, 3)。
2. 题目:已知三角形ABC,其中∠A=30°,∠B=60°,∠C=90°,边AB的长度为6,边BC的长度为4,求将三角形ABC绕点C逆时针旋转90°后,点A的新位置。
答案:由于三角形ABC是一个直角三角形,且∠C=90°,旋转后点A 将位于点B的正上方,且与点B的距离等于AB的长度。
因此,点A的新位置可以通过计算得到,即点A的新坐标为(4, 6)。
3. 题目:在平面直角坐标系中,点P的坐标为(2, -1),若将点P绕点Q(1, 2)顺时针旋转45°,求旋转后点P的新坐标。
答案:首先,我们需要计算点P相对于点Q的向量,即(2-1, -1-2)=(1, -3)。
然后,将这个向量顺时针旋转45°,可以通过旋转矩阵来实现。
旋转矩阵为:\[\begin{bmatrix}\cos(-45°) & -\sin(-45°) \\\sin(-45°) & \cos(-45°)\end{bmatrix}=\begin{bmatrix}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{bmatrix}\]将向量(1, -3)与旋转矩阵相乘,得到新的向量为(\(\frac{\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}\), \(-\frac{\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}\))。
九年级几何旋转知识点
九年级几何旋转知识点几何学是数学中一个非常重要的分支,它研究平面和空间中的形状、大小、相对位置等几何属性。
而几何旋转则是几何学中的一项基本运动变换,通过围绕一个中心点旋转图形来改变其位置和方向。
在九年级的学习中,我们需要掌握几何旋转的相关知识点,下面将详细介绍。
一、点的旋转在几何旋转中,最基本的形式就是点的旋转。
点的旋转是围绕一个中心点进行的,通过旋转角度改变点的位置。
1. 顺时针旋转顺时针旋转是指点沿着逆时针方向旋转,这种旋转是以正角度表示的。
顺时针旋转后的点的坐标可以通过以下公式计算:新点坐标(x', y') = (x * cosθ - y * sinθ, x * sinθ + y * cosθ)其中,(x, y)为原始点的坐标,θ为旋转角度。
2. 逆时针旋转逆时针旋转是指点沿着顺时针方向旋转,这种旋转是以负角度表示的。
逆时针旋转后的点的坐标计算方式与顺时针旋转相同。
二、图形的旋转除了点的旋转,我们还需要了解图形的旋转。
图形的旋转是以某个点为中心,围绕中心点旋转整个图形。
1. 顺时针旋转图形顺时针旋转时,旋转角度与点的旋转相同。
旋转后的图形可以通过旋转每个点来获得,其中每个点的旋转公式为:新点坐标(x', y') = (x * cosθ - y * sinθ, x * sinθ + y * cosθ)2. 逆时针旋转图形逆时针旋转时,旋转角度与顺时针旋转相反,即为负角度。
同样可以通过旋转每个点来获得旋转后的图形。
三、旋转的性质在几何旋转中,还有一些重要的性质需要了解:1. 旋转不改变形状和大小无论是点的旋转还是图形的旋转,都不会改变它们的形状和大小。
旋转只是改变位置和方向,但形状和大小保持不变。
2. 旋转角度的运算旋转角度可以进行运算,如两个图形的旋转角度相加或相减。
这是因为旋转角度是可以相互叠加的。
四、应用举例几何旋转在实际生活中有许多应用,比如:1. 轮子的旋转汽车的轮子是通过旋转来使车辆行驶的,而旋转正是由轮子围绕其中心旋转产生的。
2023年中考数学【图形的旋转】真题汇编(共30题,解析版)
图形的旋转(30题)一、单选题江苏无锡·统考中考真题)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α< 55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【答案】B【分析】根据旋转可得∠B=∠ADB=∠ADE,再结合旋转角α=40°即可求解.【详解】解:由旋转性质可得:∠BAC=∠DAE=55°,AB=AD,∵α=40°,∴∠DAF=15°,∠B=∠ADB=∠ADE=70°,∴∠AFE=∠DAF+∠ADE=85°,故选:B.【点睛】本题考查了几何-旋转问题,掌握旋转的性质是关键.天津·统考中考真题)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BEDB.AB=AEC.∠ACE=∠ADED.CE=BD【答案】A【分析】根据旋转的性质即可解答.【详解】根据题意,由旋转的性质,可得AB=AD,AC=AE,BC=DE,故B选项和D选项不符合题意,∠ABC=∠ADE∵∠ACE=∠ABC+∠BAC∴∠ACE=∠ADE+∠BAC,故C选项不符合题意,∠ACB=∠AED∵∠ACB=∠CAE+∠CEA∵∠AED=∠CEA+∠BED∴∠CAE=∠BED,故A选项符合题意,故选:A .【点睛】本题考查了旋转的性质,熟练掌握旋转的性质和三角形外角运用是解题的关键.3(2023·四川宜宾·统考中考真题)如图,△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,把△ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =3,AD =1.以下结论:①BD =CE ;②BD ⊥CE ;③当点E 在BA 的延长线上时,MC =3-32;④在旋转过程中,当线段MB 最短时,△MBC 的面积为12.其中正确结论有()A.1个B.2个C.3个D.4个【答案】D 【分析】证明△BAD ≌△CAE 即可判断①,根据三角形的外角的性质得出②,证明∠DCM ∽∠ECA 得出MC 3=3-12,即可判断③;以A 为圆心,AD 为半径画圆,当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt △MBC 中MC =BC 2-MB 2=2+1,然后根据三角形的面积公式即可判断④.【详解】解:∵△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,∴BA =CA ,DA =EA ,∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴∠ABD =∠ACE ,BD =CE ,故①正确;设∠ABD =∠ACE =α,∴∠DBC =45°-α,∴∠EMB =∠DBC +∠BCM =∠DBC +∠BCA +∠ACE =45°-α+45°+α=90°,∴BD ⊥CE ,故②正确;当点E 在BA 的延长线上时,如图所示∵∠DCM =∠ECA ,∠DMC =∠EAC =90°,∴∠DCM ∽∠ECA∴MC AC =CD EC ∵AB =3,AD =1.∴CD =AC -AD =3-1,CE =AE 2+AC 2=2∴MC 3=3-12∴MC =3-32,故③正确;④如图所示,以A 为圆心,AD 为半径画圆,∵∠BMC =90°,∴当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,∠ADM =∠DAE =∠AEM =90°∴四边形AEMD 是矩形,又AE =AD ,∴四边形AEMD 是正方形,∴MD =AE =1,∵BD =EC =AC 2-AE 2=2,∴MB =BD -MD =2-1,在Rt △MBC 中,MC =BC 2-MB 2∴PB 取得最小值时,MC =AB 2+AC 2-MB 2=3+3-2-1 2=2+1∴S △BMC =12MB ×MC =122-1 2+1 =12故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.4(2023·山东聊城·统考中考真题)如图,已知等腰直角△ABC ,∠ACB =90°,AB =2,点C 是矩形ECGF 与△ABC 的公共顶点,且CE =1,CG =3;点D 是CB 延长线上一点,且CD =2.连接BG ,DF ,在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中,当线段BG 达到最长和最短时,线段DF 对应的长度分别为m 和n ,则m n的值为()A.2B.3C.10D.13【答案】D【分析】根据锐角三角函数可求得AC=BC=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,求得BG=4,DG=5,根据勾股定理求得DF=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,则BG=2,DG=1,根据勾股定理求得DF=2,即n =2,即可求得mn=13.【详解】∵△ABC为等腰直角三角形,AB=2,∴AC=BC=AB⋅sin45°=2×22=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,如图:则BG=BC+CG=4,DG=DB+BG=5,在Rt△DGF中,DF=DG2+GF2=52+12=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,如图:则BG=CG-BC=2,DG=BG-DB=1,在Rt△DGF中,DF=DG2+GF2=12+12=2,即n=2,故mn=262=13,故选:D.【点睛】本题考查了锐角三角函数,勾股定理等,根据旋转推出线段BG最长和最短时的位置是解题的关键.二、填空题5(2023·江苏连云港·统考中考真题)以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A B CD E 的顶点D 落在直线BC上,则正五边ABCDE旋转的度数至少为°.【答案】72【分析】依据正五边形的外角性质,即可得到∠DCF的度数,进而得出旋转的角度.【详解】解:∵五边形ABCDE是正五边形,∴∠DCF=360°÷5=72°,∴新五边形A B CD E 的顶点D 落在直线BC上,则旋转的最小角度是72°,故答案为:72.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.6(2023·湖南张家界·统考中考真题)如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC 绕点A逆时针方向旋转后,得到四边形AB O C ,且∠OAC =100°,则四边形ABOC旋转的角度是.【答案】75°【分析】根据角平分线的性质可得∠BAO=∠OAC=25°,根据旋转的性质可得∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,求得∠OAO =75°,即可求得旋转的角度.【详解】∵AO为∠BAC的平分线,∠BAC=50°,∴∠BAO=∠OAC=25°,∵将四边形ABOC绕点A逆时针方向旋转后,得到四边形AB O C ,∴∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,∴∠OAO =∠OAC -∠O AC =100°-25°=75°,故答案为:75°.【点睛】本题考查了角平分线的性质,旋转的性质,熟练掌握以上性质是解题的关键.7(2023·湖南常德·统考中考真题)如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中BDCE的值为.【答案】45【分析】首先根据勾股定理得到AC =AB 2+BC 2=10,然后证明出△ADE ∽△ABC ,得到AD AB =AE AC ,进而得到AD AE =AB AC ,然后证明出△ABD ∽△ACE ,利用相似三角形的性质求解即可.【详解】∵在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,∴AC =AB 2+BC 2=10∵DE ∥BC ∴∠ADE =∠ABC =90°,∠AED =∠ACB∴△ADE ∽△ABC∴AD AB =AE AC ∴AD AE =AB AC∵∠BAC =∠DAE∴∠BAC +∠CAD =∠DAE +∠CAD∴∠BAD =∠CAE∴△ABD ∽△ACE∴BD CD =AB AC =810=45.故答案为:45.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.8(2023·江苏无锡·统考中考真题)已知曲线C 1、C 2分别是函数y =-2x (x <0),y =k x(k >0,x >0)的图像,边长为6的正△ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为.【答案】6【分析】画出变换后的图像即可(画△AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据△ABC 为等边三角形且AO ⊥BC ,可得OB OA =13,过点A 、B 分别作x 轴垂线构造相似,则△BFO ∽OEA ,根据相似三角形的性质得出S △AOE =3,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,∵△ABC 为等边三角形且AO ⊥BC ,则∠BAO =30°,∴tan ∠BAO =tan30°=OB OA=33,如图所示,过点A ,B 分别作x 轴的垂线,交x 轴分别于点E ,F ,∵AO ⊥BO ,∠BFO =∠AEO =∠AOB =90°,∴∠BOF=90°-∠AOE=∠EAO,∴△BFO∽OEA,∴S△BFOS△AOE=OBOA2=13,∴S△BFO=-22=1,∴S△AOE=3,∴k=6.【点睛】本题考查了反比例函数的性质,k的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.9(2023·辽宁·统考中考真题)如图,线段AB=8,点C是线段AB上的动点,将线段BC绕点B顺时针旋转120°得到线段BD,连接CD,在AB的上方作RtΔDCE,使∠DCE=90°,∠E=30°,点F为DE的中点,连接AF,当AF最小时,ΔBCD的面积为.【答案】3【分析】连接CF,BF,BF,CD交于点P,由直角三角形的性质及等腰三角形的性质可得BF垂直平分CF,∠ABF=60°为定角,可得点F在射线BF上运动,当AF⊥BF时,AF最小,由含30度角直角三角形的性质即可求解.【详解】解:连接CF,BF,BF,CD交于点P,如图,∵∠DCE=90°,点F为DE的中点,∴FC=FD,∵∠E=30°,∴∠FDC=60°,∴△FCD是等边三角形,∴∠DFC=∠FCD=60°;∵线段BC绕点B顺时针旋转120°得到线段BD,∴BC=BD,∵FC=FD,∴BF垂直平分CF,∠ABF=60°,∴点F在射线BF上运动,∴当AF⊥BF时,AF最小,此时∠FAB=90°-∠ABF=30°,∴BF=12AB=4;∵∠BFC=12∠DFC=30°,∴∠FCB=∠BFC+∠ABF=90°,∴BC=12BF=2,∵PB=12BC=1,∴由勾股定理得PC=BC2-PB2=3,∴CD=2PC=23,∴S△BCD=12CD⋅PB=12×23×1=3;故答案为:3.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.10(2023·江西·统考中考真题)如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.【答案】90°或270°或180°【分析】连接AC,根据已知条件可得∠BAC=90°,进而分类讨论即可求解.【详解】解:连接AC,取BC的中点E,连接AE,如图所示,∵在▱ABCD中,∠B=60°,BC=2AB,∴BE=CE=12BC=AB,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE,∴AE=EC∠AEB=30°,∴∠EAC=∠ECA=12∴∠BAC=90°∴AC⊥CD,如图所示,当点P在AC上时,此时∠BAP=∠BAC=90°,则旋转角α的度数为90°,当点P在CA的延长线上时,如图所示,则α=360°-90°=270°当P在BA的延长线上时,则旋转角α的度数为180°,如图所示,∵PA=PB=CD,PB∥CD,∴四边形PACD是平行四边形,∵AC⊥AB∴四边形PACD是矩形,∴∠PDC=90°即△PDC是直角三角形,综上所述,旋转角α的度数为90°或270°或180°故答案为:90°或270°或180°.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.11(2023·上海·统考中考真题)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α< 180°),旋转后的点B落在BC上,点B的对应点为D,连接AD,AD是∠BAC的角平分线,则α=.【答案】110 3°【分析】如图,AB=AD,∠BAD=α,根据角平分线的定义可得∠CAD=∠BAD=α,根据三角形的外角性质可得∠ADB=35°+α,即得∠B=∠ADB=35°+α,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB=AD,∠BAD=α,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,则在△ABC中,∵∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:α=1103°;故答案为:110 3°【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.12(2023·湖南郴州·统考中考真题)如图,在Rt△ABC中,∠BAC=90°,AB=3cm,∠B=60°.将△ABC绕点A逆时针旋转,得到△AB C ,若点B的对应点B 恰好落在线段BC上,则点C的运动路径长是cm(结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.13(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则ADDC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB 是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD=52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB=AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF⊥AB,∴∠FDB=45°,∴△DFB是等腰直角三角形,∴DF=BF,∵S△ADB=12×BC×AD=12×DF×AB,即AD=10DF,∵∠C=∠AFD=90°,∠CAB=∠FAD,∴△AFD∼△ACB,∴DF BC =AFAC,即AF=3DF,又∵AF=10-DF,∴DF=104,∴AD=10×104=52,CD=3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.14(2023·黑龙江绥化·统考中考真题)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A BC ,延长C A 交直线BC于点D.则A D的长度为.【答案】4+23或4-23【分析】根据题意,先求得BC=23,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A作AM⊥BC于点M,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∴AM=1AB=1,BM=CM=AB2-AM2=3,2∴BC=23,如图所示,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,∵∠BAC=120°,∴∠DA B=60°,∠A EB=30°,在Rt△A BE中,A E=2A B=4,BE=A E2-A B2=23,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∵△ABC以点B为旋转中心逆时针旋转45°,∴∠ABA =45°,∴∠DBE=180°-90°-45°-30°=15°,∠A BD=180°-45°-30°=105°在△A BD中,∠D=180°-∠DA B-∠A BD=180°-60°-105°=15°,∴∠D=∠EBD,∴EB=ED=23,∴A D=A E+DE=4+23,如图所示,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,在△BFD中,∠BDF=∠CBC =45°,∴DF=BF在Rt△DC F中,∠C =30°FC'∴DF=33∴BC=BF+3BF=23∴DF=BF=3-3∴DC =2DF=6-23∴A D=C D-A C =6-23-2=4-23,综上所述,A D的长度为4-23或4+23,故答案为:4-23或4+23.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.15(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中,∠C =∠D =90°,∠B =30°,∠E =45°,BC =EF =12.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是,现将△DEF 绕点C (F )按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0°到60°的过程中,线段DH 扫过的面积是.【答案】66-62;12π-183+18【分析】如图1,过点G 作GH ⊥BC 于H ,根据含30°直角三角形的性质和等腰直角三角形的性质得出BH =3GH ,GH =CH ,然后由BC =12可求出GH 的长,进而可得线段CG 的长;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,AD 1,△D 2E 2F 是△DEF 旋转0°到60°的过程中任意位置,作DN ⊥CD 1于N ,过点B 作BM ⊥D 1D 交D 1D 的延长线于M ,首先证明△CDD 1是等边三角形,点D 1在直线AB 上,然后可得线段DH 扫过的面积是弓形D 1D 2D 的面积加上△D 1DB 的面积,求出DN 和BM ,然后根据线段DH 扫过的面积=S 弓形D 1D 2D +S △D 1DB =S 扇形CD 1D -S △CD 1D +S △D 1DB 列式计算即可.【详解】解:如图1,过点G 作GH ⊥BC 于H ,∵∠ABC =30°,∠DEF =∠DFE =45°,∠GHB =∠GHC =90°,∴BH =3GH ,GH =CH ,∵BC =BH +CH =3GH +GH =12,∴GH =63-6,∴CG =2GH =2×63-6 =66-62;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,由旋转的性质得:∠E 1CB =∠DCD 1=60°,CD =CD 1,∴△CDD 1是等边三角形,∵∠ABC =30°,∴∠CG 1B =90°,∴CG 1=12BC ,∵CE1=BC,∴CG1=12CE1,即AB垂直平分CE1,∵△CD1E1是等腰直角三角形,∴点D1在直线AB上,连接AD1,△D2E2F是△DEF旋转0°到60°的过程中任意位置,则线段DH扫过的面积是弓形D1D2D的面积加上△D1DB的面积,∵BC=EF=12,∴DC=DB=22BC=62,∴D1C=D1D=62,作DN⊥CD1于N,则ND1=NC=32,∴DN=D1D2-ND12=622-322=36,过点B作BM⊥D1D交D1D的延长线于M,则∠M=90°,∵∠D1DC=60°,∠CDB=90°,∴∠BDM=180°-∠D1DC-∠CDB=30°,∴BM=12BD=32,∴线段DH扫过的面积=S弓形D1D2D +S△D1DB,=S扇形CD1D -S△CD1D+S△D1DB,=60π⋅622360-12×62×36+12×62×32,=12π-183+18,故答案为:66-62,12π-183+18.【点睛】本题主要考查了旋转的性质,含30°直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点D1在直线AB上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题16(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.【答案】(1)见解析(2)∠AEF=90°,证明见解析【分析】(1)由旋转的性质得DM=DE,∠MDE=2α,利用三角形外角的性质求出∠DEC=α=∠C,可得DE=DC,等量代换得到DM=DC即可;(2)延长FE到H使FE=EH,连接CH,AH,可得DE是△FCH的中位线,然后求出∠B=∠ACH,设DM=DE=m,CD=n,求出BF=2m=CH,证明△ABF≅△ACH SAS,得到AF=AH,再根据等腰三角形三线合一证明AE⊥FH即可.【详解】(1)证明:由旋转的性质得:DM=DE,∠MDE=2α,∵∠C=α,∴∠DEC=∠MDE-∠C=α,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°;证明:如图2,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是△FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2α,∴∠FCH=2α,∵∠B=∠C=α,∴∠ACH=α,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC,设DM=DE=m,CD=n,则CH=2m,CM=m+n,∴DF=CD=n,∴FM=DF-DM=n-m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM-FM=m+n-n-m=2m,∴CH=BF,在△ABF和△ACH中,AB=AC∠B=∠ACH BF=CH,∴△ABF≅△ACH SAS,∴AF =AH ,∵FE =EH ,∴AE ⊥FH ,即∠AEF =90°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.17(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,DE =2,AB =4.(1)将△CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将△CDE 绕顶点C 逆时针旋转120°(如图2),求MN 的长.【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出CM ,CN 的值,进而根据题意求得最大值与最小值即可求解;(2)过点N 作NP ⊥MC ,交MC 的延长线于点P ,根据旋转的性质求得∠MCN =120°,进而得出∠NCP =60°,进而可得CP =1,勾股定理解Rt △NCP ,Rt △MCP ,即可求解.【详解】(1)解:依题意,CM =12DE =1,CN =12AB =2,当M 在NC 的延长线上时,M ,N 的距离最大,最大值为CM +CN =1+2=3,当M 在线段CN 上时,M ,N 的距离最小,最小值为CN -CN =2-1=1;(2)解:如图所示,过点N 作NP ⊥MC ,交MC 的延长线于点P ,∵△CDE 绕顶点C 逆时针旋转120°,∴∠BCE =120°,∵∠BCN =∠ECM =45°,∴∠MCN =∠BCM -∠ECM =∠BCE =120°,∴∠NCP =60°,∴∠CNP =30°,∴CP =12CN =1,在Rt △CNP 中,NP =NC 2-CP 2=3,在Rt △MNP 中,MP =MC +CP =1+1=2,∴MN =NP 2+MP 2=3+4=7.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.18(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.【答案】(1)见解析(2)见解析(3)5+5π2【分析】(1)先作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,然后顺次连接即可;(2)先作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,然后顺次连接即可;(3)证明△ABC 为等腰直角三角形,求出S △ABC =12AB ×BC =52,S 扇形CAA 2=90π×10 2360=5π2,根据旋转过程中△ABC 扫过的面积等于△ABC 的面积加扇形CAA 1的面积即可得出答案.【详解】(1)解:作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,顺次连接,则△A 1B 1C 1即为所求,如图所示:(2)解:作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,顺次连接,则△A 2B 2C 2即为所求,如图所示:(3)解:∵AB =12+22=5,AC =32+12=10,BC =12+22=5,∴AB =BC ,∵5 2+5 2=10=10 2,∴AB 2+BC 2=AC 2,∴△ABC 为等腰直角三角形,∴S △ABC =12AB ×BC =52,根据旋转可知,∠ACA 2=90°,∴S 扇形CAA 2=90π×10 2360=5π2,∴在旋转过程中△ABC 扫过的面积为S =S △ABC +S 扇形CAA 2=5+5π2.【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题的关键是作出平移或旋转后的对应点.19(2023·辽宁·统考中考真题)在Rt ΔABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.【答案】(1)EF=22AD(2)见解析(3)59或17 9【分析】(1)可先证△BCD≌△BCE,得到BD=BE,根据锐角三角函数,可得到BE和EF的数量关系,进而得到线段AD与线段EF的数量关系.(2)可先证△ACD≌△GEC,得到DA=CG,进而得到CG+BD=DA+BD=AB,问题即可得证.(3)分两种情况:①点D在线段AB上,过点C作CN垂直于FG,交FG于点N,过点E作EM垂直于BC,交BC于点M,设EF=a,利用勾股定理,可用含a的代数式表示EC,根据三角形面积公式,即可得到答案.②点D在线段BA的延长线上,过点E作EJ垂直于BC,交BC延长线于点J,令EF交AC于点I,连接BE,设EF=b,可证△CDA≌△CEB,进一步证得△EBJ是等腰直角三角形,EJ=BJ,利用勾股定理,可用含b的代数式表示EC,根据三角形面积公式,即可得到答案【详解】(1)解:EF=22 AD.理由如下:如图,连接BE.根据图形旋转的性质可知CD=CE.由题意可知,△ABC为等腰直角三角形,∵CD为等腰直角三角形△ABC斜边AB上的中线,∴∠BCD=45°,AD=BD.又∠DCE=90°,∴∠BCE=45°.在△BCD和△BCE中,CD =CE∠BCD =∠BCEBC =BC∴△BCD ≌△BCE .∴BD =BE ,∠CBE =∠CBD =45°.∴∠EBF =45°.∴EF =BE ·sin ∠EBF =22BE .∴EF =22AD .(2)解:∵CO 为等腰直角三角形△ABC 斜边AB 上的中线,∴AO =BO .∵∠ACD +∠DCB =∠BCE +∠DCB =90°,∴∠ACD =∠BCE .∵BC ⊥l ,EF ⊥l ,∴BC ∥EF .∴∠G =∠OCB =45°,∠GEC =∠BCE .∴∠G =∠A ,∠ACD =∠GEC .在△ACD 和△GEC 中,∠ACD =∠GEC∠A =∠GCD =CE∴△ACD ≌△GEC .∴DA =CG .∴CG +BD =DA +BD =AB =2BC .(3)解:当点D 在线段AB 延长线上时,不满足条件EF :BC =1:3,故分两种情况:①点D 在线段AB 上,如图,过点C 作CN 垂直于FG ,交FG 于点N ;过点E 作EM 垂直于BC ,交BC 于点M .设EF =a ,则BC =AC =3a .根据题意可知,四边形BFEM 和CMEN 为矩形,△GCN 为等腰直角三角形.∴EF =BM =a ,CM =NE =2a .由(2)证明可知△ACD ≌△GEC ,∴AC =GE =3a .∴NG =NC =a .∴NC =EM =a .根据勾股定理可知CE =EM 2+CM 2=2a 2+a 2=5a ,△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=125a 2123a2=59②点D 在线段BA 的延长线上,过点E 作EJ 垂直于BC ,交BC 延长线于点J ,令EF 交AC 于点I ,连接BE ,由题意知,四边形FBJE ,FBCI 是矩形,∵∠DCE =∠ACB =90°∴∠DCE -∠ACE =∠ACB -∠ACE即∠DCA =∠ECB又∵CD =CE ,CA =CB∴△CDA ≌△CEB∴∠DAC =∠EBC而∠DAC =180°-∠CAB =180°-45°=135°∴∠EBC =135°∠EBJ =180°-∠EBC =45°∴△EBJ 是等腰直角三角形,EJ =BJ设EF =b ,则BC =IF =3b ,EJ =BJ =CI =b∴EI =EF +IF =4b Rt △CIE 中,CE =CI 2+EI 2=b 2+(4b )2=17b△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=1217b 2123b2=179【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.20(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②322πcm 问题拓展:83π-833cm 2【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作BB 和AA 的垂直平分线,两垂直平分线的交点即为所求点O ;②根据弧长公式求解即可;问题拓展,连接PA ,交AC 于M ,连接PA ,PD ,AA ,由旋转得∠PA B =30°,PA =PA =4,在Rt △PAM 和Rt △A DM 中求出A M 和DM 的长,可以求出S 阴影部分B DP =S 扇形B A P -S △ADP ,再证明△ADP ≌△A DP ,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等(2)①下图中,点O 为所求②连接OB ,OB ,∵扇形纸板ABC 绕点O 逆时针旋转90°到达扇形纸板A B C 的位置,∴∠BOB =90°,OB =OB ,∵BB =6cm ,设OB =OB =xcm ,∴x 2+x 2=62,∴OB =OB =32cm ,在旋转过程中,点B 经过的路径长为以点O 为圆心,圆心角为90°,OB 为半径的所对应的弧长,∴点B 经过的路径长=90×π×32180=322πcm ;【问题拓展】解:连接PA ,交AC 于M ,连接PA ,PD ,AA 如图所示∴∠PAC =12∠BAC =30°.由旋转得∠PA B =30°,PA =PA =4. 在Rt △PAM 中,A M =PM =PA ⋅sin ∠PAM =4×sin30°=2.在Rt △A DM 中,∵∠DA M =12∠B A C =30°,∴A D =A M cos ∠DA M =2cos30°=433,DM =12A D =12×433=233. ∴S △A DP =12DM ⋅A P =12×233×4=433.S 扇形B A P =30×π×42360=43π.∴S 阴影部分B DP =S 扇形B A P -S △ADP =43π-433, 在△ADP 和△A DP 中,∵AD =AM -DM =23-233=433=A D ,又∵∠PAD =∠PA D =30°,PA =PA ,∴△ADP ≌△A DP .又∵S 扇形PAC =S 扇形B AP ,∴S 阴影部分BDP =S 阴影部分CDP ,∴S 阴影部分=2S 阴影部分BDP =2×43π-433 =83π-833 cm 2.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.21(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点A ,B ,C ,D 按逆时针方向排列),AB =12,AD =10,∠B 为锐角,且sin B =45.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点C ,D 同时绕点P 按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA 上时,求BP 的长.②当△AC D 是直角三角形时,求BP 的长.【答案】(1)8(2)①BP =347;②BP =6或8±2【分析】(1)利用正弦的定义即可求得答案;(2)①先证明△PQC ≌△CHP ,再证明△AQC ∽△AHC ,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C 为直角顶点;第二种:A 为直角顶点;第三种,D 为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在▱ABCD 中,BC =AD =10,在Rt △BCH 中,CH =BC sin B =10×45=8.(2)①如图1,作CH ⊥BA 于点H ,由(1)得,BH =BC 2-CH 2=6,则AH =12-6=6,作C Q ⊥BA 交BA 延长线于点Q ,则∠CHP =∠PQC =90°,∴∠C PQ +∠PC Q =90°.∵∠C PQ +∠CPH =90°∴∠PC Q =∠CPH .由旋转知PC =PC ,∴△PQC ≌△CHP .设BP =x ,则PQ =CH =8,C Q =PH =6-x ,QA =PQ -PA =x -4.∵C Q ⊥AB ,CH ⊥AB ,∴C Q ∥CH ,∴△AQC ∽△AHC ,∴C Q CH =QA HA ,即6-x 8=x -46,∴x =347,∴BP =347.②由旋转得△PCD ≌△PC D ,CD =C D ,CD ⊥C D ,又因为AB ∥CD ,所以C D ⊥AB .情况一:当以C 为直角顶点时,如图2.∵C D ⊥AB ,∴C 落在线段BA 延长线上.∵PC ⊥PC ,∴PC ⊥AB ,由(1)知,PC =8,∴BP =6.情况二:当以A 为直角顶点时,如图3.设C D 与射线BA 的交点为T ,作CH ⊥AB 于点H .∵PC ⊥PC ,∴∠CPH +∠TPC =90°,∵C D ⊥AT ,∴∠PC T +∠TPC =90°,∴∠CPH =∠PC T .又∵∠CHP =∠PTC =90°,PC =C P ,∴△CPH ≌△PC T ,∴C T =PH ,PT =CH =8.设C T =PH =t ,则AP =6-t ,∴AT =PT -PA =2+t∵∠C AD =90°,C D ⊥AB ,∴△ATD ∽△C TA ,∴AT TD =CT TA ,∴AT 2=C T ⋅TD ,∴(2+t )2=ι12-t ,化简得t 2-4t +2=0,解得t =2±2,∴BP =BH +HP =8±2.情况三:当以D 为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,BP =6或8±2.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.22(2023·四川南充·统考中考真题)如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED =EC ;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B 落在AC 上,连接MB ′.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断△CMB ′的形状,并说明理由.(3)在(2)的条件下,已知AB =1,当∠DEB ′=45°时,求BM 的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)BM =2-3【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出△EAD ≌△EBC ,即可证得结论;(2)由旋转的性质得EB =EB =AE =EM ,从而利用等腰三角形的性质推出∠MB C =90°,再结合正方形对角线的性质推出B M =B C ,即可证得结论;(3)结合已知信息推出△CME ∽△AMC ,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,AD =BC ,∵点E 是AM 的中点,∴EA =EB ,∴∠EAB =∠EBA ,∴∠BAD -∠EAB =∠ABC -∠EBA ,即:∠EAD =∠EBC ,在△EAD 与△EBC 中,EA =EB∠EAD =∠EBCAD =BC∴△EAD ≌△EBC SAS ,∴ED =EC ;。
(简略版)中考数学旋转模型及例题
(简略版)中考数学旋转模型及例题本文档旨在介绍中考数学中的旋转模型及相关例题。
以下是一些常见的旋转模型及其解题方法。
1. 点绕原点旋转当一个点绕原点进行旋转时,可以利用坐标系中点的坐标变化来解题。
假设有点P(x, y)绕原点逆时针旋转α角后得到的点为P'(x', y'),则有以下结论:- P'的横坐标x' = x * cosα - y * sinα- P'的纵坐标y' = x * sinα + y * cosα下面是一个例子:例题:点A(2, 3)绕原点逆时针旋转90°,求旋转后点的坐标。
解题思路:根据上述结论,带入坐标值可得:- A'的横坐标x' = 2 * cos90° - 3 * sin90° = -3- A'的纵坐标y' = 2 * sin90° + 3 * cos90° = 2因此,点A旋转90°后得到的点为A'(-3, 2)。
2. 图形绕原点旋转当一个图形绕原点进行旋转时,可以先找出图形中的点坐标,然后通过点的旋转来确定旋转后整个图形的形状和位置。
下面是一个例子:例题:如图所示的三角形ABC绕原点逆时针旋转60°,连接旋转后的点A', B', C',求旋转后的三角形ABC'的面积。
解题思路:- 首先,可以求出点A(2, 3)、B(4, 5)、C(6, 1)绕原点逆时针旋转60°后的点坐标。
- 然后,连接旋转后的点A', B', C'得到旋转后的三角形。
- 最后,计算旋转后的三角形ABC'的面积。
通过上述步骤可以得到旋转后的三角形ABC'的面积。
以上是中考数学旋转模型的一些例题和解题思路。
旋转模型在中考数学中经常出现,掌握了旋转模型的解题方法,可以更好地应对考试中的相关问题。
中考数学旋转问题专题
中考数学旋转问题专题
压轴题全解——中考数学旋转问题专题
碰到旋转问题如何解决呢?
第一步→找旋转点,角相等;
第二步→证明全等、相似;
第三步→利用全等、相似得到的边、角条件。
结论:旋转后连结得到两个三角形全等或相似,(因为旋转的两个三角形全等,连结后会出现等腰三角形,顶角相等,则底角亦相等:或根据夹角边成比例证相似)
6Hale Waihona Puke 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究中考试卷中的旋转
与旋转有关的计算问题,常见的是计算角度、计算线段的长度、计算图形的周长与面积以及旋转前后坐标系内点的坐标变换等.下面结合2017年部分省市的中考试题,对和旋转有关的问题进行分类探究,供同学们参考.
一、与旋转有关的角度计算
例1
(2017•菏泽)如图1,将Rt ABC ∆绕直角顶点C 时针旋转90°,得到A B C ''∆,连接AA ',若125∠=︒,则BAA '∠的度数是()
A.55°
B.60°
C.65°
D.70°
解:由旋转的性质,得,90,AC A C ACA BAC B A C ''''=∠=︒∠=∠.
45CAA AA C ''∴∠=∠=︒.
又125∠=︒,
45(451)65BAA CAA BAC ''∴∠=∠+∠=︒+︒-∠=︒.故选C.
评注:与旋转有关的角度计算,一般联系旋转的性质、三角形全等的性质、三角形的内角和以及三角形的外角的性质等,注意结合图形信息,寻找已知角与未知角之间的关系,灵活运用三角形的边与角之间的关系解题.
二、与旋转有关的线段长度的计算问题
例2(2017•娄底)如图2,在平面直角坐标系中,点,A B 的坐标分别是A (3,0),B (0,4),把线段AB 绕点A 旋转后得到线段AB ',使得点B 的对应点B '落在x 轴的正半轴上,则点B '的坐标是()
A.(5,0)
B.(8,0)
C.(0,5)
D.(0,8)
解:易得5AB =
=.把线段AB 绕点A 旋转后得到线段AB ',使得点B 的对应点B '落在x 轴的正半轴上,
则5AB AB '==.
所以点B '到原点的距离是3+5=8.
又点B '落在x 轴的正半轴上,
所以点B '的坐标是(8,0).故选B.
评注:此题旋转角度不是特殊角,但旋转后点B 的对应点位于x 轴的正半轴上,计算线段AB 的长度是解决问题的关键.
一般地,如果旋转特殊角,有以下规律:
坐标平面内的点(,)P x y ,绕着原点旋转一个90°,①如果是顺时针旋转,则有旋转后的对应点的坐标为(,)y x -;②如果是逆时针旋转,则有旋转后的对应点的坐标为(,)y x -.坐标平面内的点绕着原点旋转180°,得出的点关于原点中心对称,点(,)P x y 关于原点的中心对称点的坐标是(,)P x y '--,,P P '位于相对的两个象限,即分别位于第一、第三象限或者第二、第四象限.
三、与多次旋转有关的探究规律问题
例3(2017•菏泽)如图3,AB y ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到
11AB O ∆的位置,使点B 的对应点1B 落在直线3
y x =-上,再将11AB O ∆绕点1B 逆时针
旋转到112A B O ∆位置,使点1O 的对应点2O 落在直线3y x =-
上,依次进行下去……若点B 的坐标是(0,1),则点12O 的纵坐标是.
解:如图4,过点2O 作21O M x ⊥轴于点1M ,过点4O 作42O M x ⊥轴于点2M .
根据图形信息,1OB =,把1y =代入3
y x =-,
x ∴=,
AB ∴=.
2OA ∴==,
根据旋转的性质,得11211221,2AB AB B O B O OB A O OA =======.
∴点2O 到原点O 的距离是2112213OO OA AB B O =++=+=+
2111333(3,2222
O M OM ++∴=⨯==⨯=
∴点2O 的坐标是33(,)22
+-,点4O 的横坐标与纵坐标是点2O 的横坐标与纵坐标的2倍,点6O 的横坐标与纵坐标分别是点2O 的横坐标与纵坐标的3倍……
由于12÷2=6,
∴点12O 的横坐标与纵坐标分别是点2O 的横坐标与纵坐标的6倍,
∴点12O 的坐标是33333(6(),6)22
+⨯-⨯,即是(9,9-+.
∴点12O 的的纵坐标是9+.
评注:此题运用坐标系内的点到原点的距离与到坐标轴的距离之间的平方关系,再者根据旋转的性质,旋转前后对应线段的长度相等,因此得出22446,,OO O O O O 之间的相等关系,运用直角三角形中三边之间的倍数关系,注意每一次偶数序号的变化,横坐标与纵坐标都是点2O 的横坐标与纵坐标的若干倍,这个倍数是序号的下标与2的商.
四、与旋转有关的开放探究问题
例4(2017•河南)如图5,在Rt ABC ∆中,90,A AB AC ∠=︒=,点,D E 分别在边,AB AC 上,AD AE =,连接DC ,点,,M P N 分别为,,DE DC BC 的中点.
(1)观察猜想
如图5,线段PM 与PN 的数量关系是,位置关系是.
(2)探究证明
把ADE ∆绕点A 逆时针旋转到图6的位置,连接,,MN BD CE ,判断PMN ∆的形状,并说明理由;
(3)拓展延伸
把ADE ∆绕点A 在平面直角坐标系内自由旋转,若4,10AD AB ==,请直接写出PMN ∆面积的最大值.
解:(1)猜想,PM PN PM PN =⊥.
(90,A AB AC ∠=︒=Q 点,D E 分别在边,AB AC 上,AD AE =,
AB AD AC AE ∴-=-.
DE EC ∴=.
又点,,M P N 分别为,,DE DC BC 的中点,
11,22
PM EC PN BD ∴==.PM PN ∴=,且//,//PM EC PN BD .
AB AC ⊥Q ,即BD EC ⊥,
PM PN ∴⊥.)
(2)PMN ∆是等腰直角三角形.
理由如下:
由旋转的性质,得BAD CAE ∠=∠.
又,AB AC AD AE ==,
BAD CAE ∴∆≅∆.
,ABD ACE BD CE ∴∠=∠=.
又点,,M P N 分别为,,DE DC BC 的中点,
11,22PM EC PN BD ∴=
=.PMN ∴∆是等腰三角形.根据旋转的性质,旋转前后对应线段的夹角相等,得BAD CAE ∆≅∆.
CAE ∴∆可以看作是BAD ∆绕点A 逆时针旋转90°得到,即是BD EC ⊥.
,90PM PN MPN ∴⊥∠=︒.
PMN ∴∆是等腰直角三角形.(3)492
.(如图7,
以点A 为圆心,AD 为半径画圆,可以发现当点D 位于BA 的延长线上时BD 与CE 的长度都取得最大值10+4=14,此时11,PM EC PN BD ==,而PMN ∆始终都是等腰直角三角形,其面积此时最大,这个最大面积是11111491414222282
PM PN EC BD ⨯⨯=⨯⨯=⨯⨯=.)
评注:由于旋转具有旋转前后图形的大小形状不变的性质,因此旋转前后对应线段的长度,对应线段(或线段所在直线)的夹角都分别相等,因此结合特殊图形:等腰三角形(含等腰直角三角形与等边三角形),正方形及相似的平行四边形(含矩形、菱形),相似的三角形等绕其一个顶点旋转,探究对应线段(及对应线段的等分点之间的线段)等的数量与位置关系,是中考命题的一个热点,其一般解法是联系三角形的全等,综合旋转的性质等层层探究,为了找出最大值或最小值,有时可以构造辅助圆。