7.22初中数学旋转专题
中考数学——初中数学 旋转的综合压轴题专题复习含详细答案
![中考数学——初中数学 旋转的综合压轴题专题复习含详细答案](https://img.taocdn.com/s3/m/84507e2648d7c1c708a14570.png)
中考数学——初中数学旋转的综合压轴题专题复习含详细答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =2114. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m≤7),反比例函数y =16x(x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16,x∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△C P′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD 的关系式为∵图象过点B (0,4),D (4,)∴,解得∴直线BD 的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
初中数学《几何旋转》重难点模型汇编(四大题型)含解析
![初中数学《几何旋转》重难点模型汇编(四大题型)含解析](https://img.taocdn.com/s3/m/73d1385beef9aef8941ea76e58fafab068dc4412.png)
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
初中旋转知识点及类型题
![初中旋转知识点及类型题](https://img.taocdn.com/s3/m/709ee51eb207e87101f69e3143323968001cf44b.png)
初中旋转知识点及类型题知识点一:1、 旋转:把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P 经过旋转变为点P ’,那么这两个点叫做这个旋转的对应点。
2、 旋转的性质:对应点到旋转中心的距离相等。
对应点与旋转中心所连线段的夹角等于旋转角。
旋转前后的图形全等。
例1:按要求分别画出旋转图形:(1) 画△ABC 绕O 点顺时针方向旋转90°后得到△'''C B A〔2〕把四边形ABCD 绕O 点逆时针方向旋转90°后得四边形''''D C B A 。
例2:如图5,点O 是正三角形ABC 三条高的交点,现将△AOB 绕点O 至少要旋转几度后与△BOC 重合。
〔 〕A. 60°B. 120°C. 240°D. 360°例3:如图,△ABD,△AEC 都是等边三角形,BE 与DC 有什么关系?你能用旋转的性质说明上述关系成立的理由吗?OBCABAFDEC稳固练习:1.如图,E 为正方形ABCD 内一点,∠AEB=135º,BE=3cm,AEB ∆按顺时针方向旋转一个角度后成为CFB ∆,图中________是旋转中心,旋转_______度.2.如图,△ABC 、△ADE 均为是顶角为42º的等腰三角形,BC 和DE 分别是底边,图中△_________与△___________,可以通过以点________为旋转中心,旋转角度为 .3、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,假设∠BEC=600,那么∠EFD 的度数为〔 〕 A .100B .150C .200D .2504、如图,图形旋转一定角度后能与自身重合,那么旋转的角度可能是( )EDCBA FE DCBAA .300B .600C .900D .1200 5、如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD,AE ⊥BC 于E,BEA ∆旋转后能与DFA ∆重合.(1) 旋转中心是哪一点? (2) 旋转了多少度?(3) 假设AE=5㎝,求四边形AECF 的面积.FEDCBA6、如图,ABC ∆的∠BAC=120º,以BC 为边向形外作等边BCD ∆,把ABD ∆ 绕着D 点按顺时针方向旋转60º后到ECD ∆的位置。
初中数学《旋转》专题100题含答案
![初中数学《旋转》专题100题含答案](https://img.taocdn.com/s3/m/e75b80dc0029bd64793e2c0d.png)
(1)画出O AB'C';
(2)点B'的坐标为;
(3)求点C旋转到C'所经过的路线长.
28. 取一副三角板按如图所示拼接,固定三角板A‸C,将三角板ABC绕点A顺时针方向旋转,旋转角度为αto€αtt5o,得到OABC'.
(1)当α为多少度时,AB∥‸C?
(2)将O ABC绕点0逆时针旋转9to,画出旋转后得到的O A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
15.如图,OABC和OA'B'C'是两个完全重合的直角三角板,²B=²B' =3to,斜边长为1tcm.三角形板A'B'C'绕直角顶点C顺时针旋转,当点A'落在AB边上时,求C'A'旋转所构成的扇形的弧长AˆA'.
(2)将O ABC绕着点B顺时针旋转9to后得到O A2BC2,请在图中画出O A2BC2,并求出线段
BC旋转过程中所扫过的面积(结果保留π).
18.如图所示,正方形网格中,O ABC为格点三角形(即三角形的顶点都在格点上).
(1)把O ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的O A1B1C1;
(2)当旋转到图③所示位置时,α为多少度?
(3)连接B‸,当to€αtt5o时,探求²‸BC' +²CAC' +²B‸C值的大小变化情况,并给出你的证明.
29.如图,试画出四边形ABC‸绕点0逆时针旋转9to之后的图形A1B1C1‸1,C1的坐标是;BB1=.
30.如图,点h是正方形ABC‸的边‸C上一点,把OA‸h顺时针旋转到OAB′的位置.
七年级旋转平移知识点归纳总结
![七年级旋转平移知识点归纳总结](https://img.taocdn.com/s3/m/bc74c0809fc3d5bbfd0a79563c1ec5da50e2d6e6.png)
七年级旋转平移知识点归纳总结旋转和平移是数学中非常重要的几何变换方式,它们在解决问题、证明定理等方面有着广泛的应用。
在七年级的几何学习中,学生首次接触到旋转平移的概念和相关知识点。
本文将对七年级旋转平移的知识进行归纳总结。
一、旋转旋转是指物体以某一点为中心进行旋转,使物体的每一点都绕着这一中心旋转相同的角度。
旋转可以按顺时针或逆时针方向进行。
1. 旋转的基本概念旋转可以用角度来表示,常用的单位有度和弧度。
旋转角度可以为正数、负数或零。
当旋转角度为正数时,表示顺时针旋转;当旋转角度为负数时,表示逆时针旋转。
2. 旋转的性质旋转具有以下性质:- 旋转不改变物体的大小和形状,只改变物体的位置和方向;- 旋转之后,物体上各点之间的距离保持不变;- 旋转是一个可逆变换,即可以通过相同的角度进行逆时针旋转恢复到原来的位置。
3. 旋转的图像变化通过以下几点进行总结:- 若旋转角度为90°或270°,则图像是以旋转中心为对称中心的;- 若旋转角度为180°或360°,则图像是以旋转中心为象限对称的;- 旋转不会改变物体上各点与旋转中心的连线长度。
二、平移平移是指物体在平面上沿直线方向移动一段距离,使物体的各个点保持平行距离不变。
1. 平移的基本概念平移可以用向量来表示。
平移向量的大小和方向表示了平移的位移量和方向。
2. 平移的性质平移具有以下性质:- 平移不改变物体的大小、形状和方向,只改变物体的位置;- 平移后,物体上各点之间的相对位置关系保持不变;- 平移是一个可逆变换,即可以通过相反方向的平移恢复到原来的位置。
3. 平移的图像变化通过以下几点进行总结:- 平移不改变形状,只改变位置;- 平移前后,物体上各点之间的距离保持不变;- 平移后的图像与原图像是全等图形。
三、旋转和平移的关系旋转和平移是几何中的两种基本变换方式,它们之间有着密切的关系。
1. 旋转与平移的区别旋转和平移的区别主要体现在以下几个方面:- 旋转是以某一点为中心进行旋转,而平移是沿直线方向进行移动;- 旋转可以改变物体的方向,平移只改变物体的位置;- 旋转会保持物体的形状不变,而平移不改变物体的形状。
旋转知识点总结大全初中
![旋转知识点总结大全初中](https://img.taocdn.com/s3/m/5c657fa4b9f67c1cfad6195f312b3169a451ea8a.png)
旋转知识点总结大全初中一、基本概念1. 旋转的定义旋转是指把一个点或者一个图形绕着一个旋转中心进行旋转操作,使其在平面内按照一定的方向进行转动。
在旋转中,点或图形的位置会发生改变,但其大小和形状不会发生改变。
2. 旋转的要素旋转包括旋转中心、旋转角度和旋转方向三个要素。
旋转中心是确定旋转的点,在平面上可以是任意一点;旋转角度是指旋转的角度大小,通常用弧度或者度数表示;旋转方向是指顺时针旋转或者逆时针旋转。
3. 旋转的表示旋转可以用旋转矩阵、向量旋转、复数旋转等多种数学方法进行表示,不同表示方法适用于不同的场景和问题。
二、旋转的性质1. 旋转的封闭性旋转是封闭的,即两个旋转图形的旋转之后的结果仍然是一个图形。
2. 旋转的不变性旋转不改变图形的大小和形状,只是改变了其位置。
3. 旋转的对称性旋转具有对称性,旋转之后的图形与原图形具有镜像对称关系。
4. 旋转的交换律两个旋转操作可以交换次序,即先进行一个旋转再进行另一个旋转的结果与先进行另一个旋转再进行一个旋转的结果是相同的。
三、旋转的计算方法1. 旋转矩阵对于平面上的点(x, y)进行绕原点逆时针旋转θ度,旋转后的坐标为(x', y'),可以用旋转矩阵进行表示:\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]2. 向量旋转对于任意向量(a, b)进行绕原点逆时针旋转θ度,旋转后的向量为(a', b'),可以通过向量的线性变换进行计算。
3. 复数旋转对于复数z=a+bi进行绕原点逆时针旋转θ度,旋转后的复数为z'=a'+bi',可以通过复数的乘法进行计算。
七年级数学下册《旋转》知识点归纳湘教版
![七年级数学下册《旋转》知识点归纳湘教版](https://img.taocdn.com/s3/m/7c97100eb80d6c85ec3a87c24028915f804d8497.png)
旋转是指物体绕定点旋转或者移动的过程。
在七年级数学下册湘教版中,关于旋转的知识点主要包括旋转的定义、旋转的性质和旋转的应用等方面。
以下是对这些知识点进行详细归纳的内容。
一、旋转的定义:1.旋转:物体绕着一个固定点进行旋转,该固定点称为旋转中心。
2.旋转角度:物体绕旋转中心旋转的角度,可以用顺时针或逆时针表示,单位是度(°)。
二、旋转的性质:1.旋转是一种刚体运动:在旋转过程中,物体的形状、大小和各部分之间的相对位置保持不变。
2.旋转的方向:顺时针旋转和逆时针旋转。
3.旋转角度的添加性和减性:若物体A在两次旋转中分别旋转了α°和β°,则总的旋转角度为α+β°。
4.旋转角度的相等性:若两个物体互为旋转,它们的旋转角度相等。
三、旋转的应用:1.确定物体旋转中心:通过观察物体的旋转,找出旋转中心的位置。
2.旋转图形:通过旋转一个给定的图形,得到新的图形。
a.利用旋转对称性:若图形A相对于旋转中心旋转了α°后与图形B重合,则称图形A和图形B互为旋转对称图形。
b.选择合适的旋转中心:对于一些图形,可以选择不同的旋转中心,使得图形旋转后更易判断和绘制。
四、旋转的例题:1.判断正方形是否具有旋转对称性。
2.若图形A绕旋转中心旋转了72°后与图形B重合,求旋转角度。
3.如何用旋转来构造一个正三角形。
4.给定一个矩形ABCD,通过旋转可以得到几种特殊的图形,分别是什么形状?5.利用旋转的对称性,画出一个条件是等腰直角三角形的图形。
在七年级数学下册《旋转》的学习中,我们不仅需要掌握旋转的定义、性质和应用,还需要通过解题来加深对旋转的理解和灵活运用。
通过实际的练习和思考,可以提高我们的数学思维能力和创造性思维能力,并应用到实际生活中。
同时,还要注意与其他几何性质相结合,形成更加全面的数学知识体系。
初中数学旋转专题(含答案)
![初中数学旋转专题(含答案)](https://img.taocdn.com/s3/m/12717663f705cc1754270939.png)
初中数学旋转专题要点感知1将一个平面图形F上的每一个点,绕这个平面内一定点旋转同一个角α,得到图形F′,图形的这种变换叫做旋转.这个定点叫__________,角α叫__________.预习练习1-1 下列运动属于旋转的是( )A.滚动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折的过程要点感知2 一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离__________,两组对应点分别与旋转中心的连线所成的角__________.预习练习2-1如图,把三角形ABC绕着点C顺时针旋转,得到三角形A′B′C,则图中一定与∠ACA′相等的角是__________.要点感知3旋转不改变图形的__________和__________.预习练习3-1如图,点D是三角形ABC内一点,将三角形DBC绕点B旋转到三角形EBA的位置,若三角形BDC的周长为22 cm,AC=9 cm,则三角形AEB的周长是( )A.31 cmB.13 cmC.22 cmD.15 cm知识点1 旋转1.如图,将左边的长方形绕点P旋转一定角度后,得到位置如右边的长方形,则旋转的角度是( )A.30°B.60°C.90°D.180°2.如图,将三角形ABC绕着点C顺时针旋转50°后得到三角形A′B′C,则图中一定等于50°的角的个数有( )A.1个B.2个C.3个D.4个3.能由左图旋转得到的图形是( )4.如图,三角形ABC是由三角形EBD旋转得到的,旋转中心是点__________.知识点2 旋转的性质5.如图,将三角形AOB绕点O按逆时针方向旋转60°后得到三角形COD,若∠AOB=15°,则∠AOD 的度数是 ( )A.15°B.60°C.45°D.75°6.如图,三角形ABC由三角形A′B′C′绕O点旋转180°而得到,则下列结论不成立的是( )A.点A与点A′是对应点B.BO=B′OC.∠ACB=∠C′A′B′D.AB=A′B′7.如图,绕点O旋转得到的两个图形的对应点M与N到旋转中心O的距离__________.(填“相等”或“不相等”)8.如图,将三角形OAB绕点O按逆时针方向旋转至三角形OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,BB′=1 cm,则A′B长是__________cm.知识点3 旋转的作图9.如图,三角形ABC以O为旋转中心顺时针旋转90°,请作出旋转后的图形.10.如图,在正方形网格中,将三角形ABC绕点A旋转后得到三角形ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°11.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )12. 如图,将直角三角形AOB绕点O旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为( )A.40° B.50° C.60° D.30°13.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是( )A.60B.90C.120D.18014.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点MB.格点NC.格点PD.格点Q15.有两个完全重合的长方形,将其中一个始终保持不动,另一个长方形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图1,第2次旋转后得到图2,…,则第10次旋转后得到的图形与图1~4中相同的是( )A.图1B.图2C.图3D.图416.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕着O任意转动其中一个三角尺,则与∠AOD始终相等的角是__________.17.怎样将图中的甲图案变成乙图案?18.在图中作出“三角旗”绕O点按逆时针旋转90°后的图案.19.如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共有多少个?是哪几个?参考答案要点感知1旋转中心旋转角预习练习1-1 B要点感知2相等相等预习练习2-1 ∠BCB′要点感知3形状大小预习练习3-1 C1.C2.B3.B4.B5.C6.C7.相等8.39.图略.10.B 11.A 12.B 13.C 14.B 15.B 16.∠BOC17.步骤:(1)将图甲绕某点逆时针旋转一定角度,使树干与地面垂直;(2)接着将旋转后的图形向右平移至与图乙重合即可.18.图略.19.3个.绕点D顺时针旋转90°;绕点C逆时针旋转90°;绕CD中点旋转180°.。
初中数学旋转专题含答案
![初中数学旋转专题含答案](https://img.taocdn.com/s3/m/56d2556932687e21af45b307e87101f69e31fb9d.png)
初中数学旋转专题要点感知1将一个平面图形F上的每一个点,绕这个平面内一定点旋转同一个角.,得到图形 F',图形的这种变换叫做旋转.这个定点叫,角.叫.预习练习1-1以下运动属于旋转的是〔〕A.滚动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D. 一个图形沿某直线对折的过程要点感知2 一个图形和它经过旋转所得到的图形中,对应点到旋转中央的距离,两组对应点分别与旋转中央的连线所成的角.预习练习2-1如图,把三角形ABC绕着点C顺时针旋转,得到三角形A'B' C,那么图中一定与NACA'相等的角是.要点感知3旋转不改变图形的和.预习练习3-1如图,点D是三角形ABC内一点,将三角形DBC绕点B旋转到三角形EBA的位置, 假设三角形BDC的周长为22 cm, AC=9 cm,那么三角形AEB的周长是〔〕A.31 cmB.13 cmC.22 cmD.15 cmZ?C知识点1旋转1.如图,将左边的长方形绕点P旋转一定角度后,得到位置如右边的长方形,那么旋转的角度是〔〕A.30°B.60°C.90°D.180°P2.如图,将三角形ABC绕着点C顺时针旋转50°后得到三角形人'8, C,那么图中一定等于50°的角的个数有〔〕A.1个B.2个C.3个D.4个3.能由左图旋转得到的图形是〔〕4.如图,知识点2旋转的性质5.如图,将三角形人08绕点0按逆时针方向旋转60°后得到三角形〔30口,假设NAOB=15°,那么NAOD 的度数是〔〕A.15°B.60°C.45°D.75°6.如图,三角形ABC由三角形人'8, C'绕O点旋转180°而得到,那么以下结论不成立的是〔〕A.点A与点A'是对应点B.BO=B Z 0C.NACB=NC' A’ B‘D.AB=A‘ B’7.如图,绕点O旋转得到的两个图形的对应点M与N到旋转中央O的距离.〔填“相等〞或“不相等〞〕8 .如图,将三角形0人8绕点0按逆时针方向旋转至三角形0八'8',使点B 恰好落在边A'B'上. AB=4 cm,BB Z =1 cm,那么 A,B 长是 cm.知识点3旋转的作图9 .如图,三角形ABC 以0为旋转中央顺时针旋转90°,请作出旋转后的图形.A /v.月C将三角形ABC 绕点A 旋转后得到三角形八口£,那么以下旋转方式中,符 B.逆时针旋转90° C.顺时针旋转45°D.逆时针旋转45°11 .以下四个圆形图案中,分别以它们所在圆的圆心为旋转中央,顺时针旋转120°后能与原图形 完全重合的是〔〕10.如图,在正方形网格中, 合题意的是〔〕A.顺时针旋转90°12 .如图,将直角三角形AOB 绕点O 旋转得到直角三角形COD,假设NAOB=90°,NBOC=130°,那么 NAOD 的度数为〔〕A. 40°B. 50°C. 60°D. 30°A.点MB.格点NC.格点PD.格点Q15.有两个完全重合的长方形,将其中一个始终保持不动,另一个长方形绕其对称中央.按逆时 针方向进行旋转,每次均旋转45°,第1次旋转后得到图1,第2次旋转后得到图2,…,那么第 10次旋转后得到的图形与图1〜4中相同的是〔〕16.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕着O 任意转动其中一个三角尺,那么 与NAOD 始终相等的角是.13 .将如下图的图案绕其中央旋转 A.60 B.9014 .如图,在6X4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,那么其旋转中央是〔〕图1图3C.图3图4D.图4 ,那么n 的最小值是〔〕D.18017.怎样将图中的甲图案变成乙图案?18.在图中作出“三角旗〞绕0点按逆时针旋转90°后的图案.1——— 心一■=:: B 二* , ■ i • -■ ! °L■■■■—_-r, ! ■L™J19.如图,如果正方形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上可以作为旋转中央的点共有多少个?是哪几个?AE参考答案要点感知1旋转中央旋转角预习练习1-1 B要点感知2相等相等预习练习2-1 NBCB,要点感知3形状大小预习练习3-1 C1.C2.B3.B4.B5.C6. C7.相等8.39.图略.10. B 11. A 12. B 13. C 14. B 15. B 16. ZBOC17.步骤:(1)将图甲绕某点逆时针旋转一定角度,使树干与地面垂直;(2)接着将旋转后的图形向右平移至与图乙重合即可.18.图略.19. 3个.绕点D顺时针旋转90°;绕点C逆时针旋转90°;绕CD中点旋转180。
初中数学旋转的知识点归纳总结
![初中数学旋转的知识点归纳总结](https://img.taocdn.com/s3/m/df483d3d854769eae009581b6bd97f192279bf9c.png)
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。
那么接下来的旋转内容请同学们认真记忆了。
旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
初中数学-旋转变换专题
![初中数学-旋转变换专题](https://img.taocdn.com/s3/m/e63eb3fba48da0116c175f0e7cd184254b351b63.png)
旋转变换阅读与思考在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角.旋转变换不改变图形的形状和大小.通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度.旋转变换前后的图形有下列性质: (1)对应点到旋转中心的距离相等;(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心.例题与求解【例1】如图,边长为1的正△A 1B 1C 1的中心为O ,将正△A 1B 1C 1绕中心O 旋转到△A 2B 2C 2,使得A 2B 2丄B 1C 1,则两个三角形的公共部分(即六边形ABCDEF )的面积为__.解题思路:S 六边形ABCDEF =22223A B C B CD S S ∆∆-,解题的关键是寻找CB 1,CB 2,CD ,C 1D 之间的关系.【例2】如图,已知△AOB ,△COD 都是等腰直角三角形,∠AOB =∠CQD =90°,N ,M ,Q ,P 分别为AB ,CB ,CD ,AD 的中点. 求证:四边形NMQP 为正方形.解题思路:连结BD ,AC ,并延长AC 交于点E ,则△OAC 可以看作是由△OBD 绕点O 逆时针旋转90°得到的,且∠AED =90°,这是证明本例的关键.QAB CDEM NOP1B 22【例3】如图,巳知在△ABC 中,AB =AC ,P 为形内一点,且∠APB <∠APC . 求证:PB >PC .解题思路:以A 为中心,将△APB 旋转一个∠BAC ,使AB 边与AC 边重合,这时△APB 到了△AP 'C 的位置.【例4】点B ,C ,E 在同一直线上,点A ,D 在直线CE 的同侧,AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE ,BD 交于点F .(1)如图1,若∠BAC =60°,则∠AFB =____;如图2,若∠BAC =90°,则∠AFB =____; (2)如图3,若∠BAC =α,则∠AFB =____(用含α的式子表示);(3)将图3中的△ABC 绕点C 旋转(点F 不与点A ,B 重合),得图4或图5.在图4中,∠AFB 与∠α的数量关系是___;在图5中,∠AFB 与∠α的数量关系是___.请你任选其中一个结论证明.解题思路:从特殊到一般,在动态的旋转过程中,有两组不变的关系:△ABC ∽△EDC ,△BCD ∽△ACE ,这是解本例的关键.AB CDEF图1A BCDEF图2AB CDEF图3ABCDEF 图4ABCDEF图5Q AB C PP '【例5】如图,已知凸五边形ABCDE 中,AB =BC =CD =DE =EA ,∠ABC =2∠DBE . 求证:∠ABC =60°.解题思路:将△ABE 以B 为旋转中心顺时针旋转∠ABC ,使得AB 与BC 重合,落在△CBE '位置,则△ABE ≌△CBE ′,AE =CE ′,BE =BE ′,∠CBE ′=∠ABE .【例6】如图,已知正方形ABCD 内一动点E 到A ,B ,C方形的边长.解题思路:本例是费马点相关的问题的变形,解题的关键是确定最小值时E 点的位置,通过旋转变换,把EA ,EB ,EC 连结起来.ABCDEE 'A B C DE。
初中数学旋转定理专题
![初中数学旋转定理专题](https://img.taocdn.com/s3/m/039b5ac8a1116c175f0e7cd184254b35eefd1ad6.png)
初中数学旋转定理专题一、旋转定理的概念旋转定理是初中数学中的一个重要概念,主要用于解决平面图形在旋转过程中的性质变化问题。
在旋转定理中,我们通常关注图形的旋转中心、旋转角度和旋转结果。
二、旋转定理的基本原理1. 旋转中心:图形的旋转中心是指固定绕其进行旋转的点。
我们可以通过观察图形的对称性来确定旋转中心。
2. 旋转角度:旋转角度是指图形在旋转中心周围旋转的角度。
通常以逆时针方向为正向。
3. 旋转结果:通过旋转定理,我们可以确定图形在旋转过程中的性质变化。
例如,旋转后的图形是否还保持原来的面积、周长等性质。
三、旋转定理的应用旋转定理在初中数学中有广泛的应用,常见的应用情况包括:1. 图形的旋转对称性:通过旋转定理,我们可以判断一个图形是否具有旋转对称性,即是否在旋转某个角度后能够重合。
这对于判断图形的相似性、等价性等非常有帮助。
2. 图形的蛇形填充:通过旋转定理,我们可以生成一系列相似的图形,然后将其按一定规律排列,从而形成具有美观效果的蛇形填充图案。
3. 图形的旋转变换:通过旋转定理,我们可以将图形绕旋转中心进行旋转,从而得到旋转后的图形。
这对于几何图形的线条设计、图案组合等具有重要意义。
四、旋转定理的练题以下是几个旋转定理的练题,供同学们进行思考和解答:1. 以点A为旋转中心,将线段AB绕点A逆时针旋转60度,求旋转后线段的长度。
2. 图形A和图形B绕同一个旋转中心进行旋转,旋转角度分别为120度和240度,它们之间是否相等?3. 图形C在旋转180度后能否与原图重合?为什么?以上练题旨在帮助同学们提高对旋转定理的理解和应用能力,不同题目可能存在不同的解法,请同学们根据自己的思路进行解答。
五、总结旋转定理是初中数学中的重要概念,通过理解旋转中心、旋转角度和旋转结果,我们可以应用旋转定理解决图形的旋转问题。
同时,通过练题的解答,可以巩固对旋转定理的理解和运用能力。
希望本文介绍的初中数学旋转定理专题能够帮助同学们更好地理解和应用旋转定理,提高数学学习成绩。
2024年中考数学高频考点专题复习——旋转综合题(含解析)
![2024年中考数学高频考点专题复习——旋转综合题(含解析)](https://img.taocdn.com/s3/m/aa750455f08583d049649b6648d7c1c708a10bd6.png)
2024年中考数学高频考点专题复习——旋转综合题1.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.2.在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位.(1)画出关于原点O 的中心对称图形;(2)在(1)的条件下,请分别写出点A 、B 、C 的对应点、、的坐标.ABC ABC 111A B C 1A 1B 1C3.如图1,图2,△ABC 是等边三角形,D 、E 分别是AB 、BC 边上的两个动点(与点A 、B 、C 不重合),始终保持BD=CE.(1)当点D 、E 运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE 绕着A 点顺时针旋转60°到△ABF 的位置(如图2),分别连结DF 、EF.①找出图中所有的等边三角形(△ABC 除外),并对其中一个给予证明;②试判断四边形CDFE 的形状,并说明理由.4.如图,矩形 中, ,将矩形 绕点C 顺时针旋转得到矩形 .设旋转角为 ,此时点 恰好落在边 上,连接 .(1)当 恰好是 中点时,此时 ;(2)若 ,求旋转角 及 的长.5.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD ,连接CD 、BD .(1)如图,若α=80°,则∠BDC 的度数为 ;(2)请探究∠BDC 的大小是否与角α的大小有关,并说明理由.ABCD 4BC =ABCD A B C D ''''αB 'AD B B 'B 'AD α=75AB B ︒∠='αAB6.在平面直角坐标系中,小方格都是边长为1的正方形,△ABC ≌△DEF ,其中点A 、B 、C 、都在格点上,请你解答下列问题:(1)如图(a )在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为 .(2)画出△ABC 关于y 轴对称的△A 1B 1C 1;画出△ABC 绕点P (1,﹣1)顺时针旋转90°后的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.7.图1是某小型汽车的侧面示意图,其中矩形 表示该车的后备箱,在打开后备箱的过程中,箱盖 可以绕点A 逆时针方向旋转,当旋转角为 时,箱盖 落在 的位置(将后备箱放大后如图2所示).已知 厘米, 厘米, 厘米.在图2中求: (1)点 到 的距离(结果保留根号);(2)E 、 两点的距离(结果保留根号).ABCD ADE 60︒ADE AD E ''90AD =30DE =40EC =D 'BC E '8.如图, 是等腰直角三角形, 是直角三角形, ,点 为边 中点将 绕点 顺时针旋转,旋转角记为 ,点 为边 的中点.(1)如图,求初始状态时 的大小;(2)如图,在旋转过程中,若点 构成平行四边形,请直接写出此时 的值;(3)在旋转过程中,若点 和点 重合,请在图中画出 并连接 ,判断此时是否有 ?如果成立,请证明;如果不成立,请说明理由.ABC 90,ABC BDE ∠=︒ 30E ∠=︒D BC BDE D (0360)αα<<︒F BE AEC ∠,,,B D F B 'a F B ,B DE ' AE AE ED ⊥9.如图,在菱形 中, ,将边 绕点 逆时针旋转至 ,记旋转角为 .过点 作 于点 ,过点 作 直线 于点 ,连接 .(1)(探索发现)填空:当 时, = .的值是 (2)(验证猜想)当 时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(拓展应用)在(2)的条件下,若 ,当 是等腰直角三角形时,请直接写出线段 的长.ABCD 120BAD ∠= AB A 'AB αD DF BC ⊥F B BE ⊥'B D E EF 60α= 'EBB ∠ 'EF DB 0360α<< AB =BDE ∆EF10.如图(1),在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD 相交于点E,已知∠ABC=∠AEP= (0°< <90°).(1)求证: ∠EAP=∠EPA;(2)APCD是否为矩形?请说明理由;(3)如图(2),F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.αα11.定义:有一组邻边相等,且它们的夹角为60°的四边形叫做半等边四边形.(1)已知在半等边四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.①如图1,若∠B=∠D ,求证:BC=CD ;②如图2,连结AC ,探索线段AC 、BC 、CD 之间的数量关系,并说明理由;(2)如图3,已知∠MAC=30°,AC=10+10,点D 是射线AM 上的一个动点,记∠DCA=a ,点B 在直线AC 的下方,若四边形ABCD 是半等边四边形,且CB=CD .问:当点D 在15°≤a≤45°的变化过程中运动时,点B 也随之运动,请直接写出点B 所经过的路径长.12.已知,把45°的直三角板的直角顶点E 放在边长为6的正方形ABCD 的一边BC 上,直三角板的一条直角边经过点D ,以DE 为一边作矩形DEFG ,且GF 过点A ,得到图1.(1)求矩形DEFG 的面积;(2)若把正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC 的直角顶点B 重合,直三角板夹这个45°角的两边分别交CA 和CA 的延长线于点H 、P ,得到图2.猜想:CH 、PA 、HP 之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD 沿着对角线AC 剪掉一半得到等腰直角三角形ABC ,点M 是Rt △ABC 内一个动点,连接MA 、MB 、MC ,设MA+MB+MC =y ,直接写出 的最小值.2y13.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是 ,位置关系是 .(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图②位置时,(1)中的结论是否仍然成立?如果成立,请你就图②的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图③,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,BC =2AB =8,BD =2BE =4,连接AE ,点F 是AE 的中点,连结CD 、BF ,将△BDE 绕点B 在平面内自由旋转,请直接写出BF 的取值范围,14.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中, , ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 , 的面积为 ;(2)探究2,如图2,在一般的 中, ,( , ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m ,n 的式子表示 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中, , ( ,, ),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a ,b ,c 的式子表示 的面积,要有探究过程.90ACB ∠=︒5BC =BCD Rt ABC 90ACB ∠=︒22()()BC m n m n =+--0m >0n >BCD AB AC =BC a b c =++0a >0b >0c >BCD15.如图1,在△ABC中,∠A=120°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接BE,点M,N,P分别为DE,BE,BC的中点,连接NM,NP.(1)图1中,线段NM,NP的数量关系是 ,∠MNP的度数为 ;(2)把△ADE绕点A顺时针旋转到如图2所示的位置,连接MP.求证:△MNP是等边三角形;(3)把△ADE绕点A在平面内旋转,若AD=2,AB=5,请直接写出△MNP面积的最大值.16.(1)问题发现:如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .(2)问题探究:如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD =CD,连接DQ,求DQ的最小值;(3)问题解决:“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.17.如图14-1,在平面直角坐标系xOy 中,直线l 2:y=与x 轴交于点B ,与直线l 1交于点c ,c点到x 轴的距离CD 为2 ,直线1交x 轴于点A(-3,0) .(1)求直线l 1的函数表达式;(2)如图14-2,y 轴上的两个动点E 、F(E 点在F 点上方)满足线段EF 的长为 ,连接CE 、AF ,当线段CE+EF+AF 有最小值时,求出此时点F 的坐标,以及CE+EF+AF 的最小值;(3)如图14-3,将△ACB 绕点B 逆时针方向旋转60°,得到△BGH ,使点A 与点H 重合,点C 与点G 重合(C 、G 两点恰好关于x 轴对称),将ABGH 沿直线BC 平移,记平移中的△BGH 为△B'G'H',在平移过程中,设直线B'H'与x 轴交于点M ,是否存在这样的点M ,使得△B'MG'为等腰三角形?若存在,请直接写出此时点M 的坐标;若不存在,说明理由.18.如图(1)问题发现:如图1,已知点C 为线段 上一点,分别以线段 为直角边作两个等腰直角三角形, ,连接 ,线段 之间的数量关系为 ;位置关系为 .(2)拓展研究:如图2,把 绕点C 逆时针旋转,线段 交于点F ,则 之间的关系是否仍然成立,说明理由;x AB ,AC BC 90,,ACD CA CD CB CE ︒∠===,AE BD ,AE BD Rt ACD ∆,AF BD ,AE BD(3)解决问题:如图3,已知 ,连接 ,把线段AB 绕点A 旋转,若 ,请直接写出线段 的取值范围.19.如图1,在 中, , ,点 分别是 的中点,连接 .(1)探索发现:图1中,的值为 ; 的值为 ;(2)拓展探究若将 绕点 逆时针方向旋转一周,在旋转过程中的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当 旋转至 三点在同一直线时,直接写出线段 的长.,,90AC CD BC CE ACD BCE ︒==∠=∠=,,AB AE AD 7,5AB AC ==AE ABC 2AB AC ==120BAC ∠=︒,D E ,AC BC DE AB BC AD BE CDE C AD BECDE ,,A D E BE20.有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中∠ACB =∠DCE =90°.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上.(1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周,①在旋转过程中,若∠BCD =35°,则∠ACE = ▲ °;②在旋转过程中,∠BCD 与∠ACE 有怎样的数量关系?请依据图②说明理由.(2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为12°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为2°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当∠ACE =2∠BCD 时,t 为多少秒?21.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板 和 叠放在一起,使三角形板 的顶点 与三角形板 的AC 边中点 重合,把三角形板 固定不动,让三角形板 绕点 旋转,设射线 与射线 相交于点M ,射线 与线段 相交于点N.ABC DEF DEF D ABC O ABC DEF O DE AB DF BC(1)如图1,当射线 经过点 ,即点N 与点 重合时,易证△ADM ∽△CND.此时,AM·CN= .(2)将三角形板 由图1所示的位置绕点 沿逆时针方向旋转,设旋转角为 .其中 ,问AM·CN 的值是否改变?说明你的理由.(3)在(2)的条件下,设AM= x ,两块三角形板重叠面积为 ,求 与 的函数关系式.(图2,图3供解题用)22.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DF B B DEF O α090α<< y y x 2y ax bx c =++a b c 0a ≠()14M -,x A B A B y C ()03C -,A B A B 90︒A 1A A 1A M 1A P BC P PD x BC D P PE y x E PD PE +P答案解析部分1.【答案】(1)解:对称中心O 如图所示;(2)解:∵A 与F ,C 与D 是对应点,∴AO=DO ,CO =FO ,∴四边形ACDF 是平行四边形.2.【答案】(1)解:如图所示:(2)解:由图可知:,,.3.【答案】(1)证明:∵△ABC 是正三角形,∴BC=CA ,∠B=∠ECA=60°.又∵BD=CE ,∴△BCD ≌△CAE.∴CD=AE.(2)解:① 图中有2个正三角形,分别是△BDF ,△AFE.由题设,有△ACE ≌△ABF ,∴CE=BF ,∠ECA=∠ABF=60°又∵BD=CE ,∴BD=CE=BF ,∴△BDF 是正三角形,∵AF=AE ,∠FAE=60°,∴△AFE 是正三角形.1(12)A -,1(33)B -,1(40)C ,② 四边形CDFE 是平行四边形.∵∠FDB=∠ABC =60°∴FD ∥EC.又∵FD=FB=EC ,∴四边形CDFE 是平行四边形.4.【答案】(1)60°(2)解:∵四边形 是矩形,∴ ,∴ .由旋转的性质得 ,∴ ,∴ ,即旋转角 为30°.作 于点E.则 .5.【答案】(1)30°(2)解:无关.理由如下:由旋转变换可知:∠BAC=60°,∠CAD=α, = , AB=AC=AD ,∴ ,,ABCD //AD BC 75CBB AB B ︒'∠=∠='CB CB ='75CB B CBB ︒∠'=∠='180757530BCB ︒︒︒︒∠--='=αB E BC '⊥122AB B E CB '='==()1180602ADB α∠=︒-+︒⎡⎤⎣⎦1202α︒-()11802ADC α∠=︒-()11202ADB α︒∠=-∴∠BDC=∠ADC-∠ADB= - =30° ,∴∠BDC 的大小与ɑ的度数无关.6.【答案】(1)②(2)解:如图(3)解:如图所示:△A 1B 1C 1与△A 2B 2C 2成中心对称图形,对称中心的坐标为:(1,0).7.【答案】(1)解:过点 作 ,垂足为点H ,交 于点F .由题意得 (厘米), .∵四边形 是矩形,∴ , .在 中, 又∵ , ,∴ .∴ (厘米)答:点 到 的距离是 (厘米).(2)解:连结 、 、 .()11802α︒-()11202α︒-D 'D H BC '⊥AD 90AD AD =='60DAD ∠='︒ABCD AD BC 90AFD BHD ∠'=∠='︒Rt AD F ∆'sin 90sin 60D F AD DAD ︒=⋅∠=⋅='''40CE =30DE =70FH=70)D H D F FH ='++'=D 'BC ()70+AE AE 'EE '由题意得 , .∴ 是等边三角形.∴ .∵四边形 是矩形,∴ .在 中, , ,∴(厘米)答:E 、 两点的距离是厘米.8.【答案】(1)解:∵∠BED =30°,△BDE 是直角三角形,∴∠EBD =90°-∠BED =60°.又∵D 是BC 的中点,∴DE 是BC 的垂直平分线.∵BE =CE ,∠BEC =60°,∴△BCE 是等边三角形.∴BC =BE .∵△ABC 是等腰三角形,∠ABC =90°,∴AB =BC .∴BE =AB .∵AB ⊥BC ,DE ⊥BC ,∴AB ∥DE ,∴∠ABE =∠BED =30°.∴∠BAE =∠BEA = (180°-∠ABE)=75°.∴∠AEC =∠BAE +∠BEC =135°.(2)解:∵四边形BDFB '是平行四边形,∠FB 'D =60°∴B 'F ∥BD ,∴∠B D B '=∠FB 'D =60°AE AE ='60EAE ∠='︒AEE ∆'EE AE '=ABCD 90ADE ∠=︒Rt ADE ∆90AD =30DE =AE ===E '12即 =60°.(3)解:△B 'DE 如图所示,AE ⊥DE 不成立,理由如下:DE 与AB 相交于点G ,假设AE ⊥DE ,则△AEG ∽△DBG ,设BG =a ,∠BDG =30°,∴DG =2a ,BD = a ,AB =2 BD = a .∴AG =AB -BG =(-1)a ,B 'D =BD =a .∴DE = =3a.∴GE =DE -DG=3a -2a =a .∴ , .∴ 与假设矛盾.∴AE ⊥DE 不成立.9.【答案】(1)30(2)解:当 时, (1)中的结论仍然成立.证明:如图1,连接 .a tan 30B D'AG DG ==1GE a GB a ==AG GE DG GB≠0360α<< BD,, . , . . .,即 . ,, . .,(3)解:线段 的长为 或 .连接 , 交于点 .,, ,,∵DE=BE ,∠DEB=90°,∴∠EDB=∠EBD=45°,. ,∠B′EB=90°,, . , . .'AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒11(180)3022CBD ABC BAD∠=∠=︒-∠=︒ 'EBB CBD ∴∠=∠'''EBB FBB CBD FBB ∴∠+∠=∠+∠'DBB EBF ∠=∠cos BF DBF BD ∠== cos ''BE EBB BB ∠=='BF BE BD BB ∴='DBB FBE ∆∆∽''EF BE DB BB ∴==EF 3+3-AC BD O AC DB ⊥ 1602BAO BAD ∠=∠=︒sin OB AB BAO ∴=⋅∠=2BD OB ∴==sin DE BE BD DBE ∴==⋅∠=='AB AD AB == 1'(180)9022AB B αα∴∠=︒-=︒-1'[180(120)]3022AB D αα∠=︒-︒-=︒+'180''180(90)(306022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒'30EBB ∴∠=︒'tan '2EB BE EBB ∴=⋅∠==分两种情况: 如图,,∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF ,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ , . 如图,.①''2B D DE BE =+=+EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF D '∴==+=②''2B D DE B E =-=∵∠B′BE=∠DBF=30°,∴cos ∠B′BE=cos ∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF ,∴△B′BD ∽△EBF ,∴ ,.综上所述,线段 的长为或 .10.【答案】(1)证明:(1)在△ABC 和△AEP 中,∠ABC=∠AEP,∠BAC=∠EAP, ∠ACB=∠APE,在△ABC 中,AB=BC. ∠ACB=∠BAC,∠EPA=∠EAP,(2)解: APCD 是矩形.四边形APCD 是平行四边形,AC=2EA,PD=2EP.由(1)知, ∠EPA=∠EAP.EA=EP ,进而AC=PDAPCD 是矩形.(3)解:EM=ENEA=EP, ∠EPA=90° - ∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+ 由(2)知, ∠CPB=90°,F 是BC 的中点, FP=FB,∠FPB=∠ABC= ,∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+ =90°+ ∠EAM=∠EPN∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN ,EB FB B B DB ='=EB FB EF B B DB B D '='2)3EF B D ∴===-'EF 33 ∴∴∴ ∴∴∴ ∴12α∴12α12α∴∴α∴12αα12α∴∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.△EAM ≌△EPN,EM=EN.11.【答案】(1)解:①证明:连结AC ,∵∠A+∠B+∠C+∠D=360°,且∠A=60°,∠C=120°,∴∠B+∠D=180°,且∠B=∠D ,∴∠B=∠D=90°,∵AB=AD ,AC=AC ,∴△ABC ≌△ADC (HL ),∴BC=DC ;②解:延长CB ,使得CD=BE ,∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠D=180°,且∠ABC+∠ABE=180°,∴∠D=∠ABE ,又∵AB=AD∴△ABE ≌△ADC ,∴AE=AC,∴∴∴∠BAE=∠DAC ,∴∠EAC=∠BAE+∠BAC=∠DAC+∠BAC=∠BAD=60°,∴△ACE 是等边三角形,∴AC=CE=CB+BE=CB+CD(2)解:如图,设∠ACD=15°,∠DCD‘=30°,作CM ⊥AD ,D‘H ⊥AC ,由旋转图形的特点可知,CB=CD ,CB‘=CD’,∠BCB'=DCD‘=30°,∴△∠BCB'≌△DCD‘,BB'=DD’,设D'H=x ,由勾股定理得:, HC=x,则,解得x=10, 即D'H=10,得,AD’=20,在Rt △AMC 中,∵,∠DAC=30°,∴,AM=(,-5,,∴DD’为D 点的运动路程,则BB‘的运动路程也为10 .12.【答案】(1)解:∵四边形ABCD 是正方形,∴∠ADC =∠DCE =90°,∵四边形DEFG 是矩形,∴∠AGD =∠GDE =90°,∴∠DCE =∠AGD =90°,∠ADC =∠GDE =90°,∴∠ADC ﹣∠ADE =∠GDE ﹣∠ADE ,∴∠EDC =∠ADG ,∵∠EDC =∠ADG ,∠DCE =∠AGD =90°,∴△ECD ∽△AGD ,∴ ,∴DG•DE =DC•DA =6×6=36,∴矩形DEFG 的面积=DG•DE =36;(2)解: ,证明:把△BAP 绕着点B 顺时针旋转90°得到△BCK ,连接KH ,由旋转得△BAP ≌△BCK ,∴BK =BP ,∠PBA =∠KBC ,∠BCK =∠BAP = ,∴∠HCK = = ,∴由勾股定理得, ,∵∠PBE =45°,∴∠PBA+∠ABE =45°,∵∠PBA =∠KBC ,∴∠KBC+∠ABE =45°,∵∠ABC =90°,∴∠HBK =45°,∵∠PBE =45°,∴∠HBK =∠PBE =45°,∵BK =BP ,∠HBK =∠PBE ,BH =BH ,∴△BHP ≌△BHK (SAS ),CD DE DG DA=222CH PA HP +=18045135︒-︒=︒BCK BCA ∠-∠1354590︒-︒=︒222CH PA KH +=∴HK =HP ,∵ ,∴ ;(3)解:把△BMC 绕着点B 顺时针旋转60°得到△BKN ,连接MK ,BN ,NC ,由旋转得,△BMC ≌△BKN ,∴MC =KN ,BM =BK ,∵BM =BK ,∠MBK =60°,∴△BKM 是等边三角形,∴MK =BM ,∴MA+MB+MC =AM+MK+KN ,当A ,M ,K ,N 四点共线时,AN 就是所求的MA+MB+MC 的最小值,过N 作NQ ⊥AB 交AB 的延长线于Q ,∵ ,∠BQN =90°,∴QN =BN•sin30°=6× =3,BQ =BN•cos30°= ,∴AQ =AB+BQ =,在Rt △AQN 中,由勾股定理得,,∴ 的最小值为 .13.【答案】(1)CD=2BF ;BF ⊥CD(2)解:BF ⊥CD ,CD=2BF 成立,证明:∵△ABC 与△DBE 都是等腰直角三角形,∴AB=BC ,DB=EB ,∠ABC=∠DBE=90°,222CH PA KH +=222CH PA HP +=180906030NBQ ∠︒-︒-︒=︒=126=6+(222226372AN AQ QN +=++=+=2y 72+如图②,将△ABE 绕点B 顺时针旋转90°得到△CBG ,点E 、F 的对应点分别是G 、H ,连BH , 则△ABE ≌△CBG ,BE=BG ,AE=CG ,BF=BH ,∠FBH=∠EBG=90°,AF=CH ,EF=GH , ∴BF ⊥BH ,∵AF=EF ,∴CH=GH ,∵∠DBE=90°,∴∠DBE+∠EBG=180°,∴D 、B 、G 三点共线,∴BH ∥CD ,,∴BF ⊥CD ,,即CD=2BF ,∴BF ⊥CD ,CD=2BF 成立;(3)14.【答案】(1)DE=BC ;12.5(2)解:过点D 作BC 边上的高DE ,如图,∵∠ABC+∠A=90°,∠ABC+∠DBE=90°,∴∠A=∠DBE ,又∵∠ACB=∠E=90°,AB=BD ,∴ ,∴,12BH CD =12BF CD =13BF ≤≤ACB BED ≌BC DE =又 .∴ 的面积为:.(3)解:作 于G ,过点D 作BC 边上的高DE ,如图,由(2)同理,可证 ,∴ ,又 ,∵AB=AC , ,∴ .∴ 的面积为: .15.【答案】(1)NM=NP ;60°(2)证明:由旋转得:∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠ABD=∠ACE ,∵点M ,N ,P 分别为DE ,BE ,BC 的中点,∴MN= BD ,PN= CE ,MN ∥BD ,PN ∥CE ,∴MN=PN ,∠ENM=∠EBD ,∠BPN=∠BCE ,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB ,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE ,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°-∠BAC=60°,∴△MNP 是等边三角形;(322()()4mn BC m n m n =+--=BCD 221448m n 2mn mn ⨯⨯=AGB BED ≌BG DE =BC a b c =++BC a b c =++11()22BG BC a b c ==++BCD 2111()()()224a b c a b c a b c ⨯++⨯++=++121216.【答案】(1)4(2)解:如图②中,连接BD ,取AC 的中点O ,连接OB ,OD.∵∠ABD =∠ADC =90°,AO =OC ,∴OA =OC =OB =OD ,∴A ,B ,C ,D 四点共圆,∴∠DBC =∠DAC ,∵DA =DC ,∠ADC =90°,∴∠DAC =∠DCA =45°,∴∠DBQ =45°,根据垂线段最短可知,当QD ⊥BD 时,QD 的值最短,DQ 的最小值=BQ =5 .(3)解:如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA , ∵∠ABC+∠ADC =180°,∴∠BCD+∠BAD =∠EAD+BAD =180°,∴B ,A ,E 三点共线,∵DE =DB ,∠EDB =90°,∴BE = BD ,∴AB+BC =AB+AE =BE =BD,∴BC+BC+BD =( +1)BD ,∴当BD 最大时,AB+BC+BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB+BC+BD 的值最大,最大值=600( +1).17.【答案】(1)解:∵点C 的纵坐标为2 ,点c 在直线l 2:y= ∴点C(-1,2 )设l 1的表达式为y= kx+ b将A(-3,0)、C(-1,2)代入, 解得故直线l 1的表达式为:y=x+3 (2)解:作点a关于y 轴的对称点A(3,0),将点a4向上平移个单位长度得E (3,)连接E'C 交y 轴于点E ,在E下方取EF= ,则点F是所求点,将点C 、E' 的坐标代入一次函数表达式,同理可得: CE' 的函数表达式为:y= 故点E(0,),点F(0,)CE+EF+4F 的最小值=FE+CE'= +.(3)M(5+8,0)或(5-8,0)或(-3,0)或(-19,0) x +03k bk b=-+⎧⎪⎨=-+⎪⎩k b ⎧=⎪⎨=⎪⎩x +18.【答案】(1)AE=BD ;AE ⊥BD(2)解: 仍然成立.由题意得,∵△ACD 和△BCE 是等腰直角三角形即 ,∴∴ .∴∴ .(3)解: 连接BD.由(2)可知,AE=BD ,在△ABD 中,且 ,所以 即 在AB 绕点A 旋转过程中,当A ,B ,D 三点在一条直线上时, 或者,AE BD AE BD =⊥90ACD DCE ECB DCE DCE ︒∴∠+∠=∠+∠=+∠,,ACE DCB AC CD EC CB ∠=∠==ACE DCB∆≅∆,12AE DB =∠=∠180(4512)90EFB ︒︒︒∠=--∠+∠=AE BD⊥77AE -≤≤7AD AB ===77BD <<+77AE -<<+7AE =7AE =∴ ≤AE≤ 19.【答案】(1(2)解:无变化,理由: 由(1)知,CD=1, ,∴,∴ ,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE,∴,(3)解:线段BE 的长为或 ,理由如下: 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴ ,∴,7-7+CE BE ==CD CE =AC BC =CD AC CE BC ==AD AC BE BC ==1122DF CD ==CF ==在Rt △AFC 中,AC=2,根据勾股定理得, ,∴AD=AF+DF=,由(2)知, ,∴当点D在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴ ,∴ ,在Rt △ACG 中,根据勾股定理得,,∴ ,由(2)知,,∴即:线段BE 的长为或.AF ==AD BE =BE ==1122DG CD ==CG ==AG =AD AG DG =-=AD BE =BE ==20.【答案】(1)①145;②∠BCD+∠ACE =180°,理由如下:∵∠ACE =∠ACB+∠BCE ,∴∠BCD+∠ACE =∠BCD+∠ACB+∠BCE =∠ACB+∠DCE =90°+90°=180°;(2)解:三角板ABC 和CDE 重合之前,∠ACE =180°-10°t ,∠BCD =10°t ,依题意有180°-10°t =2×10°t ,解得t =6;三角板ABC 和CDE 重合之后,∠ACE =10°t-180°,∠BCD =360°-10°t ,依题意有10°t-180°=2×(360°-10°t ),解得t =30.故当t =6或30秒时,有∠ACE =2∠BCD .故答案为:6或30.21.【答案】(1)4(2)解:AM•CN 的值不会改变.连接BD ,在△ADM 与△CND 中,∵∠A=∠C=60°,∠DNC=∠DBN+∠BDN=30°+α,∠ADM=30°+α,∴∠ADM=∠CND ,∴△ADM ∽△CND∴ ,∴AM•CN=AD•CD=2×2=4,∴AM•CN 的值不会改变;(3)解:情形1,当0°<α<60°时,1<AM <4,即1<x <4,此时两三角形板重叠部分为四边形AD AM CN CD如图2,过D 作DQ ⊥AB 于Q ,DG ⊥BC 于G ,∴DQ=DG= ,由(2)知,AM•CN=4,得CN=,于是y=(1<x <4); 情形2,当60°≤α<90°时,AM≥4时,即x≥4,此时两三角形板重叠部分为△DPN ,如图3,过点D 作DH ∥BC 交AM 于H ,易证△MBP ∽△MHD ,∴ ,又∵MB=x-4,MH=x-2,DH=2,∴BP=,∴PN=4- ,于是y= ,综上所述,1<x <4时,y=;x≥4时,y= 22.【答案】(1)解:设抛物线解析式为,将点代入得,4x 21122AB AM DQ CN DG x -⋅-⋅=BP MB DH MH=282x x --4282x x x ---114284222x PN DG x x -⎛⎫⋅=--= ⎪-⎝⎭x ()214y a x =--()03C -,解得:∴抛物线解析式为当时,解得:,∵点在点的左侧,∴,;(2)解:∵,抛物线,与轴相交于,两点∴,对称轴为直线,设,则,∴∵点绕点逆时针方向旋转得到,则点一定在第四象限,如图所示,则,,∵,两点关于点中心对称,∴解得:,则∴,1a =()214y x =--0y =()2140x --=1213x x =-=,A B ()10A -,()30B ,()14M -,2y ax bx c =++x A B 0a >1x =()0A m ,()20B m -,222AB m m m=--=-A B 90︒A 'A '22BA BA m ='=-()222A m m '--,A 1A M 228m -=-3m =-()58A '-,()30A -,()50B ,将点代入得,解得:∴抛物线解析式为;(3)解:如图所示,设交于点,由(1)可得,,设直线的解析式为,将点代入得,解得所以直线的解析式为,∵抛物线解析式为,设,则,∴,∵轴,轴,由∵则是等腰直角三角形,∴()30A -,()214y a x =--1640a -=14a =()21144y x =--PE BC F ()30B ,()03C -,BC 3y kx =-()30B ,330k -=1k =BC 3y x =-()221423y x x x =--=--()223P t t t --,()0E t ,()3F t t -,223233FP t t t t t =--++=-+223PE t t =-++PD x PE y OC OB=OCB 45FDP OBC ∠=∠=︒∴也是等腰直角三角形,∴∴∴当时,取得最大值此时,即.PDF PD PF=PD PE+22323t t t t =-+-++2253t t =-++252525232168t t ⎛⎫=--+++ ⎪⎝⎭2549248t ⎛⎫=--+ ⎪⎝⎭54t =PD PE +498225632314416t t ⎛⎫--=--=- ⎪⎝⎭563416P ⎛⎫- ⎪⎝⎭。
中考数学 专题22 图形的旋转(知识点串讲)(原卷版)
![中考数学 专题22 图形的旋转(知识点串讲)(原卷版)](https://img.taocdn.com/s3/m/fcb647a8b14e852458fb57e5.png)
专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转证明一. 利用旋转添加辅助线例1. 如图,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的动点,且始终045=∠EAF .过点A 做AP ⊥EF.(1)求证:EF=DE+BF.(2)求证:AP=AD.(3)若△EFC 周长为a ,求正方形的面积.变式1:如图,点M 、N 分别在正方形ABCD 的边BC 、CD 上,已知AB=a ,△MCN 的周长为2a , 求证:∠MAN=45°1.如图,直角梯形ABCD 中,AD ∥BC,AB ⊥BC,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90到ED ,连结AE 、CE,则△ADE 的面积是 。
2.如图,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的动点,且始终满足AF 平分BAE ∠, 探究:BF 、DE 与AE 的关系.5.如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF=45°,则有结论EF=BE+FD 成立。
(1)如图2,在四边形ABCD 中,AB=AD ,∠B=∠D=90°,E 、F 分别是BC 、CD 上的点,且∠EAF 是∠BAD 的一半,那么结论EF=BE+FD 是否仍然成立?若成立,请证明;若不成立,请说明理由。
(2)若将(1)中的条件改为:在四边形ABCD 中,AB=AD ,∠B+∠D=180°,延长BC 到点E ,延长CD 到点F ,使得∠EAF 仍然是∠BAD 的一半,则结论EF=BE+FD 是否仍然成立?若成立,请证明;若不成立。
请写出它们之间的数量关系,并证明。
A B C D EFABD CEF A DM B CN A B C ED例2.在等边△ABC 中,O 为△ABC 内一点,连接AO 、BO 、CO 且AO=2,BO=1,CO=3,求∠AOB ,∠BOC 的度数分别是多少?2.如图,点D 为等边△ABC 外一点,030=∠ADC ,AD=4,CD=3,求BD 的长。
3.在等边△ABC 中,O 为△ABC 内一点,连接AO 、BO 、CO ,有∠AOB =0150,∠BOC=0120.问:AO 、BO 、CO 三条线条能否构成一个三角形若能,求出这个三角形的三个内角分别是多少度?若不能,请说明理由。
25(09朝阳一模). (本小题8分)图① 图② (1) 已知:如图①,Rt △ABC 中,∠ACB=90°,AC=BC ,点D 、E 在斜边AB 上,且∠DCE=45°. 求证:线段DE 、AD 、EB 总能构成一个直角三角形; (2)已知:如图②,等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE=30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数; (3)在(1)的条件下,如果AB=10,求BD·AE 的值.25(09西城一模).已知:2PA =,4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长; (2)当∠APB 变化,且其它条件不变时,求PD 的 最大值,及相应∠APB 的大小.AB CDEDBCA二. 旋转型相似例1.图1是边长分别为a 和b (a >b )的两个等边三角形纸片ABC 和C ′DE 叠放在一起(C 与C ′重合)的图形.(1)操作:固定△ABC ,将△C ′DE 绕点C 按顺时针方向旋转30°,连结AD ,BE ,如图2;在图2中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论.(2)操作:若将图1中的△C ′DE 绕点C 按顺时针方向任意旋转一个角度,连结AD ,BE ,如图3;在图3中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论. (3)根据上面的操作过程,请你猜想当为多少度时,线段AD 的长度最大?是多少?当为多少度时,线段AD 的长度最小?是多少?(不要求证明)EADEA图1 图2 图3例2. 如图为等边△ABC 和菱形BDEF,∠DBF=60°(1)观察图形○1,猜想AF 与CD 之间有怎样的数量关系?直接写出结论,不必证明.(2)将菱形BDEF 绕点B 按顺时针方向旋转,使菱形BDEF 的一边落在等边△ABC 内部,在图○2中画出一个变换后的图形,并对照已知图形标记字母,请问:(1)中的结论是否依然成立?若成立请证明;若不成立,请说明理由;(3)在上述旋转过程中,AF 与CD 之间所夹的锐角度数是否发生变化?若不变,请你求出它的度数,并说明理由;若改变,请说明它的度数是如何变化的.练习1.点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ∆和BCF ∆,连接AF ,CE .取AF 、CE 的中点M 、N ,连接BM ,BN , MN .(1)若ABE ∆和FBC ∆是等腰直角三角形,且090=∠=∠FBC ABE (如图1),则MBN ∆ 是三角形.(2)在ABE ∆和BCF ∆中,若BA=BE,BC=BF,且α=∠=∠FBC ABE ,(如图2),则MBN ∆是三角形,且=∠MBN .ACBDF E○1 ACB ○2(如图2)NM C EF(如图3)M NEA C F (如图1)NM FE (3)若将(2)中的ABE 绕点B 旋转一定角度,(如同3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.3.填空或解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F 。
(1)如图①,若∠BAC =60°,则∠AFB =_________;如图②,若∠BAC =90°,则∠AFB =_________; (2)如图③,若∠BAC =α,则∠AFB =_________(用含α的式子表示);(3)将图③中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图④或图⑤。
在图④中,∠AFB 与∠α的数量关系是________________;在图⑤中,∠AFB 与∠α的数量关系是________________。
请你任选其中一个结论证明。
4、我们给出如下定义:若一个四边形中存在一组对边的平方和等于另外一组对边的平方和,则称这个四边形为等平方和四边形。
(1)写出一个你所学过的特殊四边形中是等平方和四边形的图形的名称:(2)如图①,在梯形ABCD 中,AD ∥BC ,AC ⊥BD ,垂足为O 。
求证:AD 2+BC 2=AB 2+DC 2。
即四边形ABCD 是等平方和四边形。
(3)如果将图①中的△AOD 绕点O 按逆时针方向旋转a 度(0<a<90°)后得到图,那么四边形ABCD 能否成为等平方和四边形?若能,请证明;若不能,请说明理由。
三.正方形中的旋转例1.如图1已知△ABC 中,AB =BC =1,∠ABC =90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF),将直角三角板DEF 绕D 点按逆时针 方向旋转。
(1)在图1中,DE 交AB 于M ,DF 交BC 于N 。
①证明DM =DN ;②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM =DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM =DN 是否仍然成立?请写出结论,不用证明。
练习:1.已知∠AOB=900,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与C 重合,它的 两条直角边分别与OA 、OB(或它们的反向延长线)相交于点D 、E .当三角板绕点C 旋转到CD 与OA 垂直时(如图1),易证:OD+OE=2OC .当三角板绕点C 旋转到CD 与OA 不垂直时,在图2、图3这两 种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD 、OE 、OC 之间又有怎样的 数量关系?请写出你的猜想,不需证明.2.(08平谷一模25).在图中,把一副直角三角板ABC 和EFG (其短直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕点O 顺时针旋转(旋转角α满足条件:o 0900<α<),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论;(2)联结HK ,在上述旋转过程中,设BH=x ,△GKH 的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的161?若存在,求出此时x 的值;若不存在,说明理由.αH K EF G(O)A C G(O)B A CA 图13.(08延庆一模23).(1)已知:有两块完全相同的含45°角的三角板,如图10-1,将Rt △DEF 的直角的=顶点D 放在Rt △ABC 斜边AB 的中点处,这时两块三角板重叠部分△DBC 的面积 是△ABC 的面积的 ;(2)如图10-2,点D 不动,将Rt △DEF 绕着顶点D 旋转α(0°<∠α<90°),这时两块三角板重叠部分为任意四边形DNCM ,这时四边形DNCM 的面积是△ABC 的面积的 ; (3)若Rt △DEF 的顶点D 在AB 上移动(不与点A 、B 重合),且两条直角边与Rt △ABC 的两条直角边相交,是否存在一点,使得两块三角板重叠部分的面积是Rt △ABC 的面积的49 ,如果存在,请在图10-3中画出此时的图形,并说明点D 在AB 上的位置。
如果不存在,说明理由。
4.(08东城一模25).已知△ABC 中,AB=AC=3,∠BAC=900,点D 为BC 上一点,把一个足够大的直角三角板的直角顶点放在D 处.(1)如图1,若BD=CD, 将三角板绕点D 逆时针旋转,两条直角边分别交AB 、AC 于点E 、点F,求出重叠部分AEDF 的面积(直接写出结果);(2)如图2,若BD=CD, 将三角板绕点D 逆时针旋转,使一条直角边交AB 于点E 、另一条直角边交AB 的延长线于点F,设AE =x ,两块三角板重叠部分的面积为y ,求出 y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若2BD CD =,将三角板绕点D 逆时针旋转,使一条直角边交AC 于点F 、另一条直角边交射线AB 于点E ,设CF=(1)x x >,两块三角板重叠部分的面积为y ,求出 y 与x 的函数关系,并写出自变量x 的取值范围 .图10-1 图10-2 图10-324(09延庆一模).如图24-1,正方形ABCD 和正方形QMNP , M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E . (1)猜想:ME 与MF 的数量关系(2)如图24-2,若将原题中的“正方形”改为“菱形”,且∠M =∠B ,其它条件不变,探索线段ME 与线段MF 的数量关系,并加以证明.(3)如图24-3,若将原题中的“正方形”改为“矩形”,且其它条件不变,探索线段ME 与线段MF 的数量关系, (4)如图24-4,若将原题中的“正方形”改为平行四边形,且∠M =∠B ,AB:BC = m ,其它条件不变,求出ME :MF 的值。