九年级数学: 旋转基础知识及专题练习(含答案)
专题3.2图形的旋转--知识点梳理+练习(含解析)浙教版九年级数学上册
![专题3.2图形的旋转--知识点梳理+练习(含解析)浙教版九年级数学上册](https://img.taocdn.com/s3/m/58ebe5a1760bf78a6529647d27284b73f342367b.png)
【知识点 1 旋转的定义】
在平面内,把一个平面图形绕着平面内某一点 O 转动一个角度,就叫做图形的旋转,
点 O 叫做旋转中心,转动的角叫做旋转角.我们把旋转中心、旋转角度、旋转方向称为
旋转的三要素.
【题型 1 生活中的旋转现象】
【例 1】(2023 春·广东揭阳·九年级统考期中)
1.下列现象:①地下水位逐年下降,②传送带的移动,③方向盘的转动,④水龙头
试卷第 7 页,共 15 页
的对应点为 E ,点 A 的对应点 D 落在线段 AB 上,连接 BE.下列结论:① DC 平分 ADE ; ② BDE BCE ;③ BD BE ;④ BC DE .其中所有正确结论的序号是 .
【题型 6 判断旋转对称图形】
【例 6】(2020 秋·河南许昌·九年级统考期中) 21.阅读理解并解决问题:一般地,如果把一个图形绕着一个定点旋转一定角度 α(α 小于 360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫 做旋转对称中心,α 叫做这个旋转对称图形的一个旋转角.请依据上述定义解答下列问 题: (1)请写出一个旋转对称图形,这个图形有一个旋转角是 90°,这个图形可以是 ______; (2)为了美化环境,某中学需要在一块正六边形空地上分别种植六种不同的花草,现 将这块空地按下列要求分成六块:①分割后的整个图形必须既是轴对称图形又是旋转 对称图形;②六块图形的面积相同;请你按上述两个要求,分别在图中的两个正六边 形中画出两种不同的分割方法(只要求画图正确,不写作法).
的转动;其中属于旋转的有( )
A.4 个
B.3 个
C.2 个
D.1 个
【变式 1-1】(2023 春·江苏·九年级期中)
2.将数字“6”旋转180 ,得到数字“9”,将数字“9”旋转180 ,得到数字“6”,现将数字 “689”整体旋转180 ,得到的数字是 .
九年级数学上册《旋转》练习与答案
![九年级数学上册《旋转》练习与答案](https://img.taocdn.com/s3/m/e02ec59ea98271fe900ef91e.png)
九年级数学上册《旋转》练习一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为( )A .B .C .D .5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A .1个B .2个C .3个D .4个6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A .正方形B .正六边形C .五角星D .圆7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( ) A .B .C .D .8.下列图形中,既是中心对称又是轴对称的图形是( ) A .B .C .D .9.时钟上的分针匀速旋转一周需要60min ,则经过20min ,分针旋转了( )A .20B .60C .90D .12010.如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE=CF ,连接CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角是A .45°B .60°C .90°D .120°二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b )12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________.14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________. 16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________.三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后'''.的A B C20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.22.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G在小方形的顶点上.24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.九(上)数学《旋转》练习答案一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=【答案】D2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°【答案】B3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个【答案】D4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为()A.B.C.D.【答案】C5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个【答案】A6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A.正方形B.正六边形C.五角星D.圆【答案】D7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A.B.C.D.【答案】C8.下列图形中,既是中心对称又是轴对称的图形是()A.B.C.D.【答案】D9.时钟上的分针匀速旋转一周需要60min,则经过20min,分针旋转了()A.20B.60C.90D.120【答案】D10.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A .45°B .60°C .90°D .120°【答案】C二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b ) 【答案】﹣2.12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.【答案】13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________. 【答案】()3,2- ()3,2--14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________. 【答案】1m 12-<<.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________.【答案】(-1)16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________. 【答案】()1,2- ()1,2 52π三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.【答案】解:△ABE 是等边三角形.理由如下:……………………………………… 1分 由旋转得△PAE ≌△PDC∴CD=AE ,PD=PA,∠1=∠2……………………3分 ∵∠DPA=60°∴△PDA 是等边三角形…………4分 ∴∠3=∠PAD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°. ∴∠1=∠4=∠2=30°………………………6分 ∴AE =CD =AB ,∠EAB =∠2+∠4=60°, ∴△ABE 为等边三角形…………………………7分 18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.【答案】(1)见解析;(2)19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°'''.后的A B C【答案】详见解析.20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.【答案】(1)证明见解析;(2)OC=2√3.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.【答案】见解析22.如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.【答案】(1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析. 23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G 在小方形的顶点上.【答案】见解析24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.【答案】(1)( . (2) 120a =或300a = (3)( -或(1, 25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数. (2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.【答案】(1)PAP'60∠=;(2)APB 150∠=.。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)
![初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)](https://img.taocdn.com/s3/m/099bc17f227916888486d7ac.png)
《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
初三旋转试题及答案
![初三旋转试题及答案](https://img.taocdn.com/s3/m/58091a746d175f0e7cd184254b35eefdc8d315bb.png)
初三旋转试题及答案一、选择题1. 将一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C2. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:B3. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:A4. 一个图形绕着某一点旋转90°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:C5. 一个图形绕着某一点旋转120°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C二、填空题6. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为中心对称图形,这个点称为____。
答案:对称中心7. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为轴对称图形,这条直线称为____。
答案:对称轴8. 一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为旋转对称图形,这个角度称为____。
答案:旋转角9. 一个图形绕着某一点旋转360°后,与原图形重合,这种图形称为____。
答案:旋转对称图形10. 一个图形绕着某一点旋转360°/n后,与原图形重合,这种图形称为n次旋转对称图形,这个点称为____。
答案:旋转中心三、解答题11. 已知一个图形绕着某一点旋转90°后,与原图形重合,求这个图形的旋转角。
答案:旋转角为90°。
12. 已知一个图形绕着某一条直线旋转180°后,与原图形重合,求这个图形的对称轴。
答案:对称轴为该直线。
【专项】中考数学复习几何旋转解答题专题练习(含解析)
![【专项】中考数学复习几何旋转解答题专题练习(含解析)](https://img.taocdn.com/s3/m/517df206182e453610661ed9ad51f01dc281572f.png)
中考数学复习几何旋转解答题专题练习1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为;∠AOB度数为;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为.29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=时,DE∥BC,当∠α=时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为度时,AD∥BC,当α为度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).参考答案1.如图,在△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°能与△DEC重合,点F是边AC中点.(1)求证:△CFD≌△ABC;(2)连接BE,求证:四边形BEDF是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△CFD和△ABC中,,∴△CFD≌△ABC(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵BF=AC=AB,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.2.如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A 的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.【解答】解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=(180°﹣50°)=65°;(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF===4.3.如图①,△ABC和△ECD都是等边三角形.(1)若B、C、E在同一条直线上,AC与BD相交于点N,AE与CD相交于点M,BD 与AE相交于点O,试判断AE与BD的数量关系为AE=BD;∠AOB度数为60°;(2)将△ECD绕点C顺时针旋转,B、C、E不在一条直线上时,如图②,则(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.【解答】解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABO中,∠AOB=180°﹣(∠BAO+∠ABO)=180°﹣(∠BAO+∠CBO+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AOB=60°,故答案为:AE=BD,60°;(2)成立.证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,又∵∠ANO=∠BNC,∴180°﹣∠CAE﹣∠ANO=180°﹣∠CBD﹣∠BNC,∴∠AOB=∠ACB=60°.4.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是点D,E.(1)如图①,当点E恰好在AC边上时,连接AD,求∠ADE的度数;(2)如图②,当α=60°时,若点F为AC边上的动点,当∠FBC为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明.【解答】解:(1)∵将△ABC绕点C顺时针旋转一定的角度α得到△DEC,E点在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∴∠CAD=∠CDA==75°,又∵∠DEC=∠ABC=90°,∴∠ADE=90°﹣75°=15°;(2)∠FBC=30°时,四边形BFDE为平行四边形,∴∠FBC=∠ACB=30°,∴∠ABF=∠A=60°,∴BF=CF=AF,∴△ABF是等边三角形,∴BF=AB,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴DE=AB,△BCE是等边三角形,∠DEC=∠ABC=90°,∴∠CBE=∠BEC=60°,∴∠EBF=∠EBC﹣∠FBC=30°,∴∠DEB+∠EBF=180°,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形.5.如图,在△ABC中,AB=,BC=3,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE.当点B的对应点D恰好落在BC边上时,求CD的长.【解答】解:∵由旋转的性质可知AD=AB=,∴∠B=∠BDA=45°.∴∠DAB=90°.∴DB==2.∴CD=BC﹣DB=3﹣2=1,故DC的长为1.6.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D'.当点B'恰好落在边AD上时,旋转角为α,连接BB'.若∠AB'B=75°,求旋转角α及AB的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=2.7.如图,在Rt△ABC中,∠C=90°,∠CBA=32°,如果△ABC绕点B顺时针旋转至△EBD,使点D落在AB边上,连接AE,求∠EAB的度数.【解答】解:由旋转可知:∠EBA=∠CBA=32°,AB=EB,∴∠EAB=∠AEB=(180°﹣32°)=74°.8.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE+∠BAE=90°,∴∠F AE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.9.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′∥AB,求∠CC'A的度数.【解答】解:∵CC′∥AB,∴∠ACC′=∠BAC=70°,∵△ABC绕点A旋转到△AB'C′的位置,∴AC′=AC,∴∠CC′A=∠ACC′=70°,10.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,且B′,C′两点分别与B,C两点对应,延长BC与B′C′边交于点E,求∠CEC′的度数.【解答】解:设BE与AB′交于F,∵将△ABC绕点A逆时针旋转30°得到△AB′C′,∴∠B′=∠B,∠BAB′=30°,∵∠AFB=∠B′FE,∴∠BEB′=∠BAB′=30°,∴∠CEC′=180°﹣∠BEB′=150°.11.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转得到△AED,且点D在边BC上.(1)若∠DAC=50°,则∠ABE=65度;(2)求证:BE⊥BC;(3)若点D是BC的中点,AC=2,求BE的值.【解答】解:(1)∵将△ABC绕点A顺时针旋转得到△AED,∴AB=AE,∠DAE=∠CAB,∴∠AEB=∠ABE,∠EAB=∠CAD=50°,∴∠ABE==65°,故答案为:65;(2)证明:∵将△ABC绕点A顺时针旋转得到△AED,∴AD=AC,∴∠ADC=∠C=x,∴∠DAC=180°﹣2x,由旋转的性质得∠EAB=∠DAC=180°﹣2x,AE=AB,∴∠EBA=,∵∠BAC=90°,∴∠ABC=90°﹣x,∴∠EBC=∠EBA+∠ABC=x+(90°﹣x)=90°,即BE⊥BC;(3)由旋转的性质得AD=AC=2,∵∠BAC=90°,点D是BC的中点,∴BD=DC=AD=2,∴BC=4,∵DE=BC=4,∴BE==2.12.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.【解答】(1)证明:∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AE=AF,∠EAF=∠CAB=45°,∴∠F AC=∠EAB,在△ABE和△AMF中,∴△ABE≌△AMF(AAS),∴BE=FM;(2)∵四边形ABCD是正方形,∴AC=AB=4,∠ACD=45°,∵将线段AE绕点A逆时针旋转45°得到线段AF,∴AM=AB=4,∴CM=4﹣4,∵FM⊥AC,∠ACD=45°,∴∠ACD=∠CFM,∴FM=CM=4﹣4,∴BE=4﹣4.13.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,CQ,求证:AP=CQ.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将BP绕点B顺时针旋转90°到BQ,∴BP=BQ,∠PBQ=90°,∴∠PBQ=∠ABC,∴∠ABP=∠CBQ,在△ABP和△CBQ中,,∴△ABP≌△CBQ(SAS),∴AP=CQ.14.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图①,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.【解答】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴△BFC≌△BEA,∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC,∵,BC2=22=4,∴BF2+FC2=BC2,∴∠BFC=90°=∠AEB,∴∠AEB+∠EBF=180°,∴AE∥BF;(2)解:AE2+AF2=2BF2,理由如下:∵AC是正方形ABCD的角平分线,∴∠BCA=∠BAC=45°,∴∠EAF=45°+45°=90°,∴AE2+AF2=EF2,∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合,∴BE=BF,∠EBF=90°,∴2BF2=EF2,∴AE2+AF2=2BF2.15.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD,AC,DE相交于点P.(1)求证:△ADB是等边三角形;(2)直接写出∠APD的度数60°.【解答】解:(1)∵将△ABC绕点B顺时针旋转60°得△DBE,∴AB=DB,∠ABD=60°,∴△ADB是等边三角形;(2)如图:∵点C的对应点E恰好落在AB的延长线上,∴∠ABD=∠BDE+∠E,由(1)知△ADB是等边三角形,∴∠BDE+∠E=∠ABD=60°,∵将△ABC绕点B顺时针旋转60°得△DBE,∴∠BDE=∠BAP,∴∠BAP+∠E=60°,∴∠APD=∠BAP+∠E=60°;故答案为:60°.16.已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)【解答】解:(1)∠BOC=∠AOC,∠BOC+∠AOB=∠AOC,∴∠AOB=∠AOC,∵∠AOB=30°,∴∠AOC=120°;(2)由(1)知,∠AOC=120°,∠BOC=90°,①OP逆时针运动时,即0≤t≤12时,由OP,OQ的运动可知,∠AOP=10°t,∠BOQ=6°t,OP,OQ相遇前,如图2(1),∠AOQ=∠AOP+∠POQ=∠AOB+∠BOQ,即10°t+10°=30°+6°t,解得t=5,OP,OQ相遇后,如图2(2),∠AOP=∠AOB+∠BOQ+∠POQ,即10°t=30°+6°t+10°,解得t=10;②OP顺时针旋转时,∠COP=10°t﹣120°,∠BOQ=6°t,OP,OQ相遇前,如图(3),∠BOC=∠COP+∠BOQ+∠POQ,即90°=10°t﹣120°+6°t+10°,解得t=12.5,OP,OQ相遇后,如图(4),∠BOC=∠COP+∠BOQ﹣∠POQ,即90°=10°t﹣120°+6°t ﹣10°,解得t=13.75,综上,当t的值为5,10,12.5或13.75时,∠POQ=10°.(3)由(1)知∠AOC=120°,根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,如图3(1),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=∠AOC=60°;②当射线OP与OA重合后,∠AOP=180°前,如图3(2),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM﹣∠PON=∠AOP﹣∠COP=∠AOC=60°;③∠CON=180°前,如图3(3),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=(360°﹣∠AOC)=120°;④OP与OQ重合前,如图3(4),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠PON﹣∠POM=∠COP+∠AOP=∠AOC=60°;综上,∠MON的度数为60°或120°.17.将两块全等的三角板按如图1所示摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△ABC按顺时针方向旋转45°得图2,A1C与AB交于点P1,A1B1与BC 交于点Q,求证:CP1=CQ;(2)在图2中,若AP1=2,求CQ的长.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA),∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=2,CQ=CP1,∴CQ=.18.如图,将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,使点A的对应点C落在AB边上,过点D作DE∥AB,交AO的延长线于点E,求证:∠BCO=∠E.【解答】证明:∵将Rt△AOB绕直角顶点O顺时针旋转得到Rt△COD,∴AO=CO,∴∠A=∠ACO,∵AB∥DE,∴∠A+∠E=180°,又∵∠ACO+∠BCO=180°,∴∠BCO=∠E.19.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.【解答】解:(1)由图①知,∠ADB=∠DBC=37°,如图②,连接BD,则BD=DG,∴∠DGB=∠DBG=37°,∴∠CDG=90°﹣∠DGC=90°﹣37°=53°,∴旋转角为:53°﹣37°=16°;(2)DL=EN+GM,理由如下:过点G作GK∥BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK∥ML,KL∥GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=EN+GM.20.将正方形ABCD的边AB绕点A逆时针旋转至AB1,记旋转角为α,连接BB1,过点D 作DE垂直于直线BB1,垂足为点E,连接DB1,CE.(1)如图1,当α=60°时,△DEB1的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=α=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形;连接BD,∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴==,故答案为:等腰直角三角形,;(3)(1)中的两个结论仍然成立.理由如下:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣﹣(90°﹣)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形;∴=,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴==,21.如图,在矩形ABCD中,AD=8,AB=6,将△ADC绕点A按顺时针旋转到△AEF(A,B,E在同一直线上),连接CF,求CF的大小.【解答】解:∵AD=8,AB=6,∠D=90°,∴AC===10,∵△ADC按逆时针方向绕点A旋转到△AEF,∴∠EAF=∠DAC,AF=AC=10,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠F AC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠F AC=90°,∴△F AC是等腰直角三角形,∴CF=AC=10.22.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,若AE=1,BE=.(1)求EF的长;(2)当EC=时,求∠AEB的度数.【解答】解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴△ABE≌△CBF,∴BE=BF=,AE=CF=1,∠EBF=90°,∠AEB=∠BFC,∴△BEF为等腰直角三角形,∴EF=BE=2;(2)在△CEF中,CE=,CF=1,EF=2,∵CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.23.如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.【解答】(1)证明:∵△ABC绕点B按逆时针方向旋转100°,∴∠ABC=∠DBE=40°,∴∠ABD=∠CBE=100°,又∵BA=BC,∴AB=BC=BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS).(2)解:∵∠ABD=∠CBE=100°,BA=BC=BD=BE,∴∠BAD=∠ADB=∠BCE=∠BEC=40°.∵∠ABE=∠ABD+∠DBE=140°,∴∠AFE=360°﹣∠ABE﹣∠BAD﹣∠BEC=140°,∴∠AFC=180°﹣∠AFE=40°.24.如图①,在等边三角形ABC中,点D、E分别在边AB、AC上,AD=AE,连接BE、CD,点M、N、P分别是BE、CD、BC的中点,连接DE、PM、PN、MN.(1)观察猜想:图①中△PMN是等边三角形(填“等腰”或“等边”);(2)探究证明:如图②,△ADE绕点A按逆时针方向旋转,其他条件不变,则△PMN 的形状是否发生改变?并说明理由.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=CE,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.25.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,BH⊥CE交于点H,求证:CG=BH.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴∠DEC=∠BCH,∵∠D=90°,BH⊥AC,∴∠D=∠BHC,由旋转得,CE=CB,CD=CG,在△EDC和△CHB中,,∴△EDC≌△CHB(AAS),∴BH=CD=CG.26.如图,等边三角形ABC的外部有一点P,且∠BP A=30°,将AP绕点B逆时针旋转60°得到CQ,连接BQ.(1)求证:△ABP≌△CBQ;(2)若AP=4,BP=3,求P,C两点之间的距离.【解答】解:(1)设CQ与AP交于D点,AB与CQ交于E点,∵将AP绕点B逆时针旋转60°得到CQ,∴AP=CQ,∠ADC=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ADC=∠ABC,∵∠AED=∠BEC,∴∠BAP=∠BCQ,在△ABP与△CBQ中,∴△ABP≌△CBQ(SAS),(2)连接PQ,PC,由△ABP≌△CBQ得:PB=BQ,∠PBA=∠CBQ,∠BP A=∠BQC=30°,QC=AP=4,∴∠QBP=∠ABC=60°,∴△PBQ为等边三角形,∴∠PQB=60°,PQ=BQ=3,∴∠PQC=∠PQB+∠BQC=60°+30°=90°,∴PC2=PQ2+QC2,∴PC===5.27.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,求BD的长.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD==.∴BD的长为.28.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:GE=FE;(2)若DF=3,求BE的长为2.【解答】(1)证明:∵将△ADF绕点A顺时针旋转90°得到△ABG,∴△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,(2)解:设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,29.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.【解答】(1)证明:∵AB=BC,∴∠A=∠C,∵△A1BC1是由△ABC绕顶点B逆时针旋转而得,∴∠A=∠A1=∠C,∠A1BD=∠CBC1,AB=A1B,在△BCF和△BA1D中,,∴△BCF≌△BA1D(ASA);(2)解:四边形A1BCE是菱形.∵△ABC是等腰三角形,∠C=50°,∴∠A=∠C1=∠C=50°,又∵△BCF≌△BA1D,∴∠CBF=∠A1BD=50°,∴∠C1=∠CBF,∠A=∠A1BD,∴A1E∥BC,A1B∥EC,即四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.30.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,猜想P A和DC的数量关系并说明理由;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.【解答】(1)解:P A=DC,理由如下:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,在△PBA和△DBC中,,∴△PBA≌△DBC(SAS),∴P A=DC;(2)解:CD=P A;理由如下:如图2中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=2BA•cos30°=BA,BD=2BP•cos30°=BP,∴,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴=,∴CD=P A.31.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=36°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0<α<180°),在旋转过程中:(1)如图2,当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N.①此时∠α的度数范围是49°<α<85°;②∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数和;若变化,请说明理由.③若使得∠2≥2∠1,求∠α的度数范围.【解答】解:(1)当DE∥BC时,如图(1),∵DE∥BC,∴∠EDA=∠B=40°,∵∠FDE=36°,∴∠α=∠EDA﹣∠FDE=40°﹣36°=4°,∴∠α=4°时,DE∥BC.当DE⊥BC时,如图(2),∵DE⊥BC,∴∠BGD=90°,∵∠B=40°,∠GDA是△GDB的一个外角,∴∠GDA=∠B+∠BGD=40°+90°=130°,∵∠EDF=36°,∴∠α=∠GDA﹣∠FDE=130°﹣36°=94°,∴∠α=94°时,DE⊥BC.故答案为:4°;94°.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=45°,∵∠ABC=40°,∴∠ADC=∠ABC+∠BCD=40°+45°=85°,当ED经过点C时,∠α=∠ADC﹣∠EDF=85°﹣36°=49°,当FD经过点C时,∠α=∠ADC=85°,∴顶点C在△DEF内部时,49°<α<85°.∠1与∠2度数的和不发生变化,理由如下:延长DC至点H,∵∠NCH、∠MCH分别是△NCD和△MCD的外角,∴∠NCH=∠2+∠NDC,∠MCH=∠1+∠MDC,∴∠NCH+∠MCH=∠2+∠1+∠NDC+∠MDC,∴∠NCM=∠1+∠2+∠NDM,∵∠NCM=∠ACB=90°,∠NDM=∠FDE=36°,∴90°=∠1+∠2+36°,∴∠1+∠2=54°.③∵∠ABC=40°,∠ACB﹣90°,∴∠A=180°﹣40°﹣90°=50°,∵∠ADF是△MBD的外角∴∠α=∠ABC+∠1=40°+∠1,∵∠2≥2∠1,∠1+∠2=54°,∴54°﹣∠1≥2∠1,∴∠1≤18°,∴α≤58°,又∵49°<α<85°,∴49°<α≤58°.32.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).操作发现:(1)在旋转过程中,当α为15度时,AD∥BC,当α为105度时,AD⊥BC;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;拓展应用:当0°<α<45°时,连接BD,利用图3探究∠BDE+∠CAE+∠DBC值的大小变化情况,并说明理由.【解答】解:(1)如图(1),记DE与AC的交点为点F,DE与BC的交点为点G,∵AD∥BC,∴∠DAF=∠C=30°,∵∠DAE=45°,∴∠CAE=15°,即α=15°,如图(2),记AD与BC的交点为F,∵AD⊥BC,∴∠ADF=90°,∴∠DAC=180°﹣∠AFC﹣∠C=180°﹣90°﹣30°=60°,∴∠CAE=∠DAC+∠EAD=60°+45°=105°,即α=105°,故答案为:15,105.(2)①当AD∥BC时,如图1所示,由(1)得,α=15°;②当DE∥BC时,如图2所示,由(1)得,AD⊥BC,∴∠AFC=90°,∵∠ADE=90°,∴DE∥BC,∴α=105°;③当DE∥AB时,如图3所示,α=45°;④当DE∥AC时,如图4所示,α=∠EAD+∠BAC=45°+90°=135°;⑤∠EAC+∠C=180°,∵∠C=30°,∴∠EAC=150°,即α=150°;综上所述:旋转角α的所有可能的度数是:15°,45°,105°,135°,150°.拓展应用:当0°<α<45°,∠BDE+∠CAE+∠DBC=105°,保持不变,理由如下:如图6,设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠BDE+∠CAE+∠DBC=105°.33.在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B逆时针旋转一个角度α后得到△DBE,点A,C的对应点分别为点D,E.(1)如图1,若点D恰好落在边BC的延长线上,连接CE,求∠DEC的度数.(2)如图2,若α=60°,F为BD的中点,连接CD,CF,EF,请判断四边形CDEF是什么特殊的四边形,并说明理由.【解答】解:(1)如图1,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,由旋转得∠D=∠A=60°,BE=BC,∠DBE=∠ABC=30°,∴∠BCE=∠BEC=(180°﹣30°)=75°,∴∠DEC=∠BCE﹣∠D=75°﹣60°=15°.(2)四边形CDEF是菱形,理由如下:如图2,∵△ABC绕点B逆时针旋转一个角度α得到△DBE,∴∠CBE=α=60°,∠DBE=∠ABC=30°,∠DEB=∠ACB=90°,∴∠DBC=30°,∴∠DBE=∠DBC,∵BD=BD,BE=BC,∴△DBE≌△DBC(SAS),∴∠BED=∠BCD=90°,∴CD=BD,ED=BD,∵F为BD的中点,∴CF=BD,EF=BD,∴CD=ED=CF=EF,∴四边形CDEF是菱形.34.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.。
九年级数学上册第二十三章旋转知识点汇总(带答案)
![九年级数学上册第二十三章旋转知识点汇总(带答案)](https://img.taocdn.com/s3/m/47aeec6186c24028915f804d2b160b4e767f81d7.png)
九年级数学上册第二十三章旋转知识点汇总单选题1、下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.答案:B分析:根据中心对称图形和轴对称图形的定义判断即可.解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.小提示:本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.2、有一个正n边形旋转90∘后与自身重合,则n为()A.6B.9C.12D.15答案:C分析:根据选项求出每个选项对应的正多边形的中心角度数,与90∘一致或有倍数关系的则符合题意.如图所示,计算出每个正多边形的中心角,90∘是30∘的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.小提示:本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.3、如图,在边长为6的正方形ABCD中,点E是边CD的中点,F在BC边上,且∠EAF=45°,连接EF,则BF 的长为()A.2B.3√2C.3D.2√22答案:A分析:把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,首先证明△AFE≌△AGE,进而得到EF=FG,问题即可解决.解:∵四边形ABCD是正方形,∴AB=AD,∴把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图:∴∠BAF=∠DAG,AB=AG∵∠BAD=90°,∠EAF=45°,∴∠BAF+∠DAE=∠DAG+∠DAE=45°,∴∠EAF=∠EAG,∵∠ADG=∠ADC=∠B=90°,∴∠EDG=180°,点E、D、G共线,在△A FE和△AGE中,AG=AF,∠FAE=∠EAG,AE=AE,∴△AFE≌△AGE(SAS),∴EF=EG,即:EF=EG=ED+DG,∵E为CD的中点,边长为6的正方形ABCD,∴CD=BC=6,DE=CE=3,∠C=90°,∴设BF=x,则CF=6−x,EF=3+x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(3+x)2=32+(6−x)2,解得:x=2,即BF=2,故选:A.小提示:本题考查了正方形的性质、全等三角形的判定及其性质的应用,解题的关键是作辅助线,构造全等三角形.4、如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C= 90°,则∠BAC′为()A.90°B.60°C.45°D.30°答案:B分析:根据直角三角形两锐角互余,求出∠BAC的度数,由旋转可知∠BAC=∠B′AC′,在根据平角的定义求出∠BAC′的度数即可.∵∠B=30°,∠C=90°,∴∠BAC=90°−∠B=90°−30°=60°,∵由旋转可知∠BAC=∠B′AC′=60°,∴∠BAC′=180°−∠BAC−∠B′AC′=180°−60°−60°=60°,故答案选:B.小提示:本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.5、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.6、如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.答案:B分析:根据绕点B按顺时针方向旋转90°逐项分析即可.A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故选:B.小提示:本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.7、如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是()A.B.C.D.答案:A分析:将图沿着它自己的右边缘翻折,则圆在正方形图形的右上角,然后绕着右下角的一个端点按顺时针方向旋转180°,则圆在正方形的左下角,利用此特征可对四个选项进行判断.先将图沿着它自己的右边缘翻折,得到,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形为.故选:A小提示:本题考查了利用旋转设计图案:由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换一些复合图案.8、在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,−450°)C.Q(3,600°)D.(3,−120°)答案:B分析:根据中心对称的性质解答即可.解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选:B.小提示:本题考查了中心对称的问题,关键是根据中心对称的性质解答.9、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°,则∠BAA'的度数是()A.70°B.65°C.60°D.55°答案:B分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故选:B.小提示:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10、如图,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,若点D恰好在BC的延长线上,则∠BDE的度数为()A.100°B.80°C.70°D.60°答案:B分析:由旋转的性质可知∠B=∠ADE,AB=AD,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BDA=∠ADE=40°,从而可求得∠BDE=80°.解:由旋转的性质可知:∠B=∠ADE,AB=AD,∠BAD=100°.∵AB=AD,∠BAD=100°,∴∠B=∠BDA=40°,∴∠ADE=40°,∴∠BDE=∠BDA+∠ADE=40°+40°=80°.故选B.小提示:本题考查旋转的性质,等腰三角形的性质,三角形内角和定理.由旋转的性质得到△ABD为等腰三角形是解题的关键.填空题11、如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是__.答案:38°分析:根据旋转变换的性质得到∠AOD=31°,∠BOC=31°,结合图形,计算即可.解:由旋转的性质可知,∠AOD=31°,∠BOC=31°,∴∠DOB=∠AOC−∠AOD−∠BOC=38°,所以答案是:38°.小提示:本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.12、在平面直角坐标系内,点P(−3,2)关于原点的对称点Q的坐标为______.答案:(3,−2)分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即可直接作答.根据中心对称性质可知:点P (−3,2)关于原点的对称点Q 的坐标为(3,−2),故答案为(3,−2).小提示:本题考查了关于原点对称点的坐标,属于基础问题,熟记知识点是解题关键.13、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是______________答案:2S 1=3S 2分析:过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,根据点O 是平行四边形ABCD 的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM ,再根据S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,则可得到答案.过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,∵点O 是平行四边形ABCD 的对称中心,∴S 平行四边形ABCD =AB •2ON , S 平行四边形ABCD =BC•2OM ,∴AB•ON=BC•OM ,∵S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,∴S 1=14AB•ON ,S 2=16BC•OM , ∴2S 1=3S 2,故答案为2S 1=3S 2.小提示:本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.14、如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为___________.答案:(−√2,√6+1)##(−√2,1+√6)分析:连接OB,OB′由题意可得∠BOB′=75°,可得出∠COB′=30°,可求出B′的坐标,即可得出点B″的坐标.解:如图:连接OB,OB′,作B′M⊥y轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=2√2∵绕原点O逆时针旋转75°∴∠BOB′=75°∴∠COB′=30°∵OB′=OB=2√2∴MB′=√2,MO=√6∴B′(−√2,√6)∵沿y轴方向向上平移1个单位长度∴B″(−√2,√6+1)所以答案是:(−√2,√6+1)小提示:本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.15、如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P1AC,则∠PAP1等于________度.答案:60分析:利用旋转的性质即可得出答案.解:∵△ABC是正三角形,∴∠CAB=60°,由旋转的性质可知,∠PAP1=∠CAB=60°.所以答案是:60.小提示:本题考查正三角形的性质和旋转的性质,由旋转的性质得出∠PAP1=∠CAB是解题的关键.解答题16、如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求该二次函数的解析式;(2)过点P作PQ⊥x轴,分别交线段AB、抛物线于点Q,C,连接AC.若OP=1,求△ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.答案:(1)y=16x2−16x−2;(2)SΔACQ=34;(3)D(3,−1)或D(−8,10)分析:(1)将B(0,−2)代入y=a(x+3)(x−4),即可求解;(2)先求直线AB的解析式为y=12x−2,则Q(1,−32),C(1,−2),可求SΔACQ=SΔACP−SΔAPQ=34;(3)设P(t,0),过点D作x轴垂线交于点N,可证明ΔPND≅ΔBOP(AAS),则D(t+2,−t),将D点代入抛物线解析式得−t=16(t+2+3)(t+2−4),求得D(3,−1)或D(−8,10).解:(1)将B(0,−2)代入y=a(x+3)(x−4),∴a=16,∴y=16(x+3)(x−4)=16x2−16x−2;(2)令y=0,则16(x+3)(x−4)=0,∴x=−3或x=4,∴A(4,0),设直线AB的解析式为y=kx+b,∴{b=−24k+b=0,∴{k=1 2b=−2,∴y=12x−2,∵OP=1,∴P(1,0),∵PQ⊥x轴,∴Q(1,−32),C(1,−2),∴AP=3,∴SΔACQ=SΔACP−SΔAPQ=12×3×2−12×3×32=34;(3)设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,∵BP=PD,∴ΔPND≅ΔBOP(AAS),∴OP=ND,BO=PN,∴D(t+2,−t),∴−t=16(t+2+3)(t+2−4),解得t=1或t=−10,∴D(3,−1)或D(−8,10).小提示:本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合.17、如图1,正方形ABCD的边长为4,点P在边AD上(P不与A,D重合),连接PB,PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF.连接EF,EA,FD.(1)求证:PD2;①ΔPDF的面积S=12②EA=FD;(2)如图2,EA.FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案:(1)①见详解;②见详解;(2)4≤MN<2√5分析:(1)①过点F作FG⊥AD交AD的延长线于点G,证明△PFG≌△CPD,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明△PEH≌△BPA,结合△PFG≌△CPD,可得GD=EH,同理:FG=AH,从而得△AHE≌△FGD,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,EF,HG= 2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=4√5,当点P与AD的中点重合MN=12时,EF最小值= HG=8,进而即可得到答案.(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴△PFG≌△CPD(AAS),∴FG=PD,∴ΔPDF的面积S=12PD⋅FG=12PD2;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH +∠BPA=90°,∴∠PEH =∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴△PEH≌△BPA(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:△PFG≌△CPD,∴PG=CD,∴PD+GD= CD= EH+FG,∴FG+GD= EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴△AHE≌△FGD,∴EA=FD;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:△AHE≌△FGD,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=1EF,2∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=√42+82=4√5,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,∴MN的取值范围是:4≤MN<2√5.小提示:本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.18、如图,△AOB中,OA=OB=6,将△AOB绕点O逆时针旋转得到△COD.OC与AB交于点G,CD分别交OB、AB 于点E、F.(1)∠A与∠D的数量关系是:∠A______∠D;(2)求证:△AOG≌△DOE;(3)当A,O,D三点共线时,恰好OB⊥CD,求此时CD的长.答案:(1)=(2)证明见解析(3)6√3,详见解析分析:(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知∠AOB=∠DOC,可证得∠AOG=∠DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设∠A=x°,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可.(1)解:由旋转知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,所以答案是:=.(2)证明:由旋转知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分两种情况讨论,①如图所示,设∠A=∠B=∠C=∠D=x°,则∠DOB=2x°,∵OB⊥CD,∴∠OED=90°,∴x+2x=90°,解得:x=30,即∠D=30°,在Rt△ODE中,OE=3,由勾股定理得:DE=√62−32=3√3,∵OC=OD,OE⊥CD,∴CD=2DE=6√3.②当D与A重合时,如图所示,同理,得:CD=6√3.综上所述,当A,O,D三点共线时,OB⊥CD,此时CD的长为6√3.小提示:本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系.。
人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)
![人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)](https://img.taocdn.com/s3/m/08e910b084254b35effd344d.png)
旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
九年级(初三)《旋转》知识点及练习(带答案)
![九年级(初三)《旋转》知识点及练习(带答案)](https://img.taocdn.com/s3/m/510088bb6529647d27285239.png)
旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
一、精心选一选 (每小题3分,共30分)1.下面的图形中,是中心对称图形的是()A.B.C.D.2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是 ( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.如图3的方格纸中,左边图形到右边图形的变换是( ) A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称,再以AB 为对称轴作轴对称C .绕AB 的中点旋转1800,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.如图4,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ). A .1对B .2对C .3对D .4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A ︒30B ︒45C ︒60D ︒909.如图5所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是( ) A .l 个B .2个C .3个D .4个ABCABCDCDE图4图5图图1210.如图6,ΔABC 和ΔADE 都是等腰直角三角形,∠C 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转后能 够与ΔADE 重合得到图7,再将图23—A —4作为“基本图形”绕 着A 点经过逆时针连续旋转得到图7.两次旋转的角度分别为( )A .45°,90°B .90°,45°C .60°,30°D .30°,60 二、耐心填一填(每小题3分,共24分)11.关于中心对称的两个图形,对称点所连线段都经过 ,而且被_____________平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_____________.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________. 14.如图8,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得△AB ′C ′,则△ABB ′是 三角形.15.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第___象限16.如图9,△COD 是△AOB 绕点O 顺时针方向旋转40°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 .17.如图10,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是___.18.如图,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD= 。
九年级数学旋转经典题含答案
![九年级数学旋转经典题含答案](https://img.taocdn.com/s3/m/2a39617cdd36a32d737581e1.png)
1、在厶ABC 中,/ CAB=70°,在同一平面内,△将ABC 试点A 旋试到△ AB C 的位置,使得CC // AB,试/ BAB =()A. 300 B. 35 0 C. 40 0 D. 50 °2、A ABC 是等腰直角三角形,BC 是斜边,将△ ABP 绕点A 逆时针旋转后,能与厶ACP'重合,如果AP=3,那么线段 PP'的长等于 _______________________________________ .3、在 Rt △ ABC 中,/ ACB=9 0°,/ ABC=3 0 °, AC=1,将△ ABC 绕点 C 逆时针旋转至△ A ' B ' C ,使得点 A '恰 好落在AB 上,连接BB ',贝U BB '的长度为 —14、已知/ AOB=90,点A 绕点0顺时针旋转后的对应点A i 落在射线OB 上,点A 绕点A i 顺时针旋转后的对应点 A 落在射线OB 上,点A 绕点A 顺时针旋转后的对应点 A 落在射线OB 上,…,连接AA ,AA 2,AA 3…,依此作法,则/ AAA n+i等于 _____ 度.(用含n 的代数式表示,n 为正整数)9、将边长为"3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形 A'B'C'D ',则图中阴影部分面积为 _______________ 5、已知△ ABC 是正三角形,OCLOB OC=OB 将厶ABC 绕点O 按逆时针方向旋转,使得 OA 与 OC 重合,得到△ OCD 则 旋转的角度是 _________________________ .,旋转了7、如图,在平面内将长为 ______________ . 8 在 Rt △ ABC 中,/ 边上,斜边DE 交AC 边于点F . ACB=9C °, 绕着直角顶点 C 逆时针旋转90°得到Rt △ EFC ,若AB =V 5,BC=1,则线段BE 的/ A=30°,BC=2将厶ABC 绕点C 顺时针旋转一定角度后得到△ EDC 此时点D 在AB则DC 的长 ____________ ;旋转的角度 _______________ ;图中阴影部分的面积 Rt △ ABC则图中阴影部分的面积之和为cm 2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1 )请画出旋转后的图形,并说明此时△ ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想厶PGC的形状,并说明理由.答案(找作业答案--->> 上魔方格)解:(1 )旋转后的厶BCG如图所示,旋转角为/ ABC=90 ° ;(2)连接PG,由旋转的性质可知BP=BG,Z PBG= Z ABC=90•;ZBPG为等腰直角三角形,又BP=BG=2 ,.•.PG八/阴5坯I ;(3)由旋转的性质可知CG=AP=1 ,已知PC=3,由(2)可知PG=2 亘IT PG2+CG 2(2進)2+1 2=9,PC2=9,Z.PG2+CG 2=PC2,.ZPGC为直角三角形.马上分享给同学1C 2、3倍根号2 3、根号3 4 180 度减去2的n次幕分之90 5、150度6、B,90 45 7、3 8、2分之根号 3 9、根号3 10、5。
初中数学知识点复习专题讲练:用坐标表示旋转(含答案)
![初中数学知识点复习专题讲练:用坐标表示旋转(含答案)](https://img.taocdn.com/s3/m/0ae2f6f8db38376baf1ffc4ffe4733687e21fce7.png)
用坐标表示旋转考点分析在坐标平面内,某一点绕原点旋转前后坐标的变化规律如下:1. 点A(a,b)绕原点旋转180°得点A'(-a,-b),即点A(a,b)关于原点对称的点的坐标是A'(-a,-b).2. 点A(a,b)绕原点旋转90°所得点A'的坐标是(-b,a).方法归纳:坐标系中的旋转问题通常构造全等三角形加以解决,而且一般是直角三角形.因为图形的旋转问题都可以归结为点的旋转问题,而点的坐标可以表示某点到坐标的距离.所以解决坐标系的旋转问题时经常过图形的顶点向坐标轴作垂线段,构造直角三角形来解决问题.总结:1. 通过具体实例认识直角坐标系中图形的旋转变换,加深理解旋转变换的概念和基本性质,并能按要求作出简单平面图形绕坐标原点旋转90度、180度后的图形.2. 通过多角度地认识旋转图形的形成过程,培养学生的发散思维能力.解题技巧例题1在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC 上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A. (1.4,-1)B. (1.5,2)C. (1.6,1)D. (2.4,1)解析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1的坐标,进而利用中心对称图形的性质得出P2点的坐标.答案:∵A 点坐标为:(2,4),A 1(-2,1),∴点P (2.4,2)平移后的对应点P 1为(-1.6,-1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴P 2点的坐标为(1.6,1).故选C .点拨:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.例题2 在如图所示的直角坐标系中,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1,则线段A 1B 1所在直线l 的函数解析式为( )A. y =32x -2B. y =-32x +2C. y =-32x -2D. y =32x +2解析:根据旋转方向及角度画出旋转后的三角形,求出对应点坐标,设直线的解析式为y =kx +b ,将点的坐标代入,用待定系数法确定其解析式.答案:如图,根据旋转可得A 1(0,-2),B 1(-2,1),设直线的解析式为y =kx +b ,由题意得:⎩⎨⎧-2=b1=-2k +b ,解之得:⎩⎪⎨⎪⎧k =-32b =-2,所以直线的解析式为:y =-32x -2.故选C .点拨:本题考查图形的旋转及一次函数的解析式,关键是能够根据图形的旋转找出点的坐标,然后根据点的坐标来确定直线的解析式,求函数解析式,常用方法是待定系数法,把点的坐标代入解析式,然后组成关于k 与b 的方程组求解.总结提升平面直角坐标系中的旋转问题,若旋转角是180°,则可按中心对称图形问题来解决.有些题目的旋转角为90°,和少量的旋转角为30°,45°,60°,120°,150°等的问题,解答这类问题时除了要构造旋转本身形成的全等三角形外,一般还要通过向坐标轴作垂线来构造含有特殊角的直角三角形,利用特殊角的边角关系和勾股定理求解.例题如图,△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A. (-1,-3)B. (-1,-3)或(-2,0)C. (-3,-1)或(0,-2)D. (-3,-1)解:∵△ABO中,AB⊥OB,OB=3,AB=1,∴OA=2,∴∠AOB=30°.如图1,当△ABO 绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°-∠AOB-∠BOC=150°-30°-90°=30°,则易求A1(-1,-3);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则易求A1(0,-2).综上所述,点A1的坐标为(-1,-3)或(-2,0),故选B.解析:本题考查了坐标与图形的变化——旋转,解题时注意两点,一是未指明旋转方向的问题需分类讨论,以防错解;二是图形中一些特殊角往往和旋转角交织在一起,解题时需正确区分它们.巩固训练一、选择题1. 在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A’B’O,则点A的对应点A’的坐标及AA’的长分别为()A. (2,3),26B. (2,3),6C. (-3,2),26D. (-3,2),6*2. 如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO 'B ',则点B '的坐标是( )A. (3,4)B. (7,3)C. (7,4)D. (4,5)*3. 将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90至△A 'OB '的位置,点B 的横坐标为2,则点A '的坐标为( )xyOAB A'B'A. (1,1)B. (2, 2)C. (-1,1)D. (-2,2)**4. 如图所示,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2012的坐标是( )xy ABCDPA. (2010,2)B. (2010,-2) C . (2012,2) D. (2012,-2)二、填空题5. 如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.6. 如图,在直角坐标系中,△ABC各顶点的坐标分别为A(0,3)、B(-1,0)、C(1,0),若△DEF各顶点的坐标分别为D(3,0),E(0,1),F(0,-1),则△DEF由△ABC 绕O点顺时针旋转__________度得到.7. 如图,在方格纸上建立的平面直角坐标系中,A,B是格点,若△A′B′O与△ABO关于点O成中心对称,则AA′的距离为__________.**8. 如图,矩形ABCD的四个顶点的坐标分别为A(1,0),B(5,0),C(5,3),D(1,3),边CD上有一点E(4,3),过点E的直线与AB交于点F,若直线EF平分矩形的面积,则点F的坐标为__________.三、解答题9. 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. *10. 如图,已知A (—3,—3),B (—2,—1),C (—1,—2)是直角坐标平面上的三点.y x-1-2-3-4-55432112345-1-2-3-4-5OAB C(1)请画出ΔABC 关于原点O 对称的ΔA 1B 1C 1,(2)请写出点B 关于y 轴对称的点B 2的坐标,若将点B 2向上平移h 个单位,使其落在ΔA 1B 1C 1内部,指出h 的取值范围.11. 在平面直角坐标系中,四边形ABCD 的位置如图所示,解答下列问题:(1)将四边形ABCD 先向左平移4个单位,再向下平移6个单位,得到四边形A 1B 1C 1D 1,画出平移后的四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1绕点A 1逆时针旋转90°,得到四边形A 1B 2C 2D 2,画出旋转后的四边形A 1B 2C 2D 2,并写出点C 2的坐标.*12. △ABC 在平面直角坐标系xOy 中的位置如图所示.y x-1-2-35432112345-1-2O67ABC(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1.(2)将△A 1B 1C 1向右平移5个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使P A 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果).参考答案一、选择题1. A 解析:将△ABO 绕点O 按顺时针方向旋转90°得△A ’B ’O ,如下图:所以A ’(2,3),AA ’=52+12=26.*2. B 解析:令y =0,则y =-43x +4=0,解得x =3,即点A 的坐标为(3,0).令x =0,则y =4,即点B 的坐标为(0,4),∴OB =4=O 'B ',OA =3=O 'A ,点B '的横坐标为:3+4=7,纵坐标为3,∴点B '的坐标是(7,3).*3. C 解析:在Rt △AOB 中,OB =2,由勾股定理可得OA =2,所以OA '=2,过A '作A 'C ⊥y 轴于点C ,在Rt △A 'OC 中,∠A 'OC =45°,由勾股定理可得A 'C =1,OC =1,且点A '在第二象限,所以点A '的坐标为(-1,1).**4. C 解析:由题意可知,点P 1(2,0),P 2(2,-2),P 3(-6,0),P 4(4,2),P 5(-2,0),P 6(6,-2),P 7(-10,0),P 8(8,2);….规律如下:像点P 1,P 5,…这样的点横坐标逐个减4,纵坐标都是0;像点P 2、P 6,…这样的点横坐标逐个加4,纵坐标都是-2;像P 3,P 7,…这样的点横坐标逐个减4,纵坐标都是0;像P 4,P 8,…这样的点横坐标逐个加4,纵坐标都是2.因为2012÷4=503,观察P 4(4,2),P 8(8,2),…,得P 2012的坐标是(2012,2),故选C.PP 1P 2P 3P 4xy P 5P 6P 7P 8二、填空题5. (4,2) 解析:可利用旋转的性质,结合全等三角形求解.6. 90 解析:∵△ABC 各个顶点的坐标分别为A (0,3)、B (-1,0)、C (1,0);△DEF 各顶点的坐标分别为D (3,0),E (0,1),F (0,-1),∴旋转对应点为A 和D , B 和E ,C 和F ,∴△DEF 由△ABC 绕O 点顺时针旋转90°得到.7. 210 解析:因为△A ′B ′O 与△ABO 关于点O 成中心对称,所以A ′的坐标为(3,-1),AO =32+12=10,由中心对称图形的特征可知AA ′=210.**8. (2,0) 解析:∵EF 平分矩形ABCD 的面积,∴EF 过矩形ABCD 的对称中心,点E 、F 是对应点,∴CE =AF .∵A (1,0),B (5,0),C (5,3),D (1,3),E (4,3),∴点F 的坐标为(2,0).三、解答题9. 解:(1)如图所示:点A 1的坐标为(2,-4);(2)如图所示,点A 2的坐标为(-2,4).*10. 解:(1)作图如下:(2)点B 2的坐标为(2,-1),h 的取值范围是2<h <3.5.y x-1-2-3-4-55432112345-1-2-3-4-5OAB CA 1B 1C 111. 解:(1)四边形A 1B 1C 1D 1如图所示;(2)四边形A 1B 2C 2D 2如图所示,C 2(1,-2).*12. 解:(1)如图所示:(2)如图所示:(3)如图所示:作出A 1关于x 轴的对称点A ′,连接A ′C 2,交x 轴于点P ,可得P 点坐标为:(3,0).y x-1-2-35432112345-1-2O67ABCA 1B 1C 1A 2B 2C 2A'P。
初三上旋转试题及答案
![初三上旋转试题及答案](https://img.taocdn.com/s3/m/c2024d05bf23482fb4daa58da0116c175e0e1e68.png)
初三上旋转试题及答案在数学学习中,旋转是一个重要的几何概念,它涉及到图形在平面上的转动。
以下是一份初三上学期的旋转试题及其答案,旨在帮助学生掌握旋转的基本概念和计算方法。
1. 题目:一个点A(3,4)绕原点O逆时针旋转90度后,点A的新坐标是什么?答案:点A绕原点O逆时针旋转90度后,新坐标为(-4,3)。
2. 题目:如果一个图形绕某点旋转了180度,那么这个图形与原图形的关系是什么?答案:当一个图形绕某点旋转180度时,旋转后的图形与原图形关于旋转点对称。
3. 题目:一个矩形绕其中心点旋转90度后,得到的图形是什么?答案:一个矩形绕其中心点旋转90度后,得到的图形仍然是一个矩形,但其长和宽互换了位置。
4. 题目:已知点B(2,-3)绕点C(1,1)旋转了一定角度后,点B的新坐标为(-1,-2),求旋转的角度。
答案:通过计算可以得出,点B绕点C旋转了90度。
5. 题目:一个等边三角形绕其中心点旋转120度后,它的每个顶点的新坐标是什么?答案:等边三角形绕其中心点旋转120度后,每个顶点的新坐标可以通过旋转矩阵计算得出,具体坐标取决于原三角形的顶点坐标。
6. 题目:如果一个图形绕某点旋转了360度,那么这个图形有什么变化?答案:当一个图形绕某点旋转360度时,图形会回到原来的位置,没有任何变化。
7. 题目:一个圆绕圆心旋转任意角度,圆的形状和大小会改变吗?答案:一个圆绕圆心旋转任意角度,圆的形状和大小都不会改变,因为圆是中心对称图形。
8. 题目:已知点D(5,7)绕点E(4,4)旋转了一定角度后,点D的新坐标为(6,5),求旋转的角度。
答案:通过计算可以得出,点D绕点E旋转了45度。
9. 题目:一个正方形绕其中心点旋转45度后,它的对角线会有什么变化?答案:正方形绕其中心点旋转45度后,对角线的长度不会改变,但对角线的方向会发生变化。
10. 题目:如果一个图形绕某点旋转了90度,那么这个图形的面积会改变吗?答案:当一个图形绕某点旋转90度时,图形的面积不会改变,因为旋转是一种等距变换,不会改变图形的大小和形状。
初三旋转考试题及答案
![初三旋转考试题及答案](https://img.taocdn.com/s3/m/98217518777f5acfa1c7aa00b52acfc789eb9fdf.png)
初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。
7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。
8. 若一个圆绕其圆心旋转任意角度,其周长________。
9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。
10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。
三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。
12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。
13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。
初三数学旋转试题及答案
![初三数学旋转试题及答案](https://img.taocdn.com/s3/m/17b04f446fdb6f1aff00bed5b9f3f90f76c64d89.png)
初三数学旋转试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点A(3,4)绕原点O(0,0)顺时针旋转90°后,新位置的坐标是:A. (4,3)B. (-4,3)B. (3,-4)D. (4,-3)2. 若点P(-1,2)绕点O(0,0)逆时针旋转30°后,点P的新坐标为:A. (-1,2)B. (-√3/2, 1/2)C. (√3/2, 1/2)D. (1/2, √3/2)3. 在平面直角坐标系中,直线y=2x绕原点O(0,0)顺时针旋转45°后,新的直线方程是:A. y=xB. y=x+1C. y=x-1D. y=-x4. 点A(2,1)绕点B(1,2)旋转30°后,点A的新坐标为:A. (3,2)B. (1,3)C. (1,1)D. (2,3)5. 若一个正方形的四个顶点分别绕其对角线的交点顺时针旋转45°,那么正方形的边将:A. 变长B. 变短C. 保持不变D. 无法确定二、填空题(每题2分,共10分)6. 点A(1,1)绕原点O(0,0)顺时针旋转45°后,其坐标变为________。
7. 已知点P(2,3)绕点Q(1,1)顺时针旋转90°,点P的新坐标为________。
8. 直线y=3x+1绕原点O(0,0)逆时针旋转90°后,新的直线方程为________。
9. 若点M(-2,-3)绕点N(0,0)顺时针旋转60°,点M的新坐标为________。
10. 已知直线y=-2x绕原点O(0,0)逆时针旋转30°后,新的直线方程为________。
三、解答题(每题5分,共20分)11. 在平面直角坐标系中,点A(4,3)绕原点O(0,0)顺时针旋转60°后,求点A的新坐标。
12. 已知直线y=4x在平面直角坐标系中绕原点O(0,0)顺时针旋转30°,求旋转后的直线方程。
初三旋转试题及答案
![初三旋转试题及答案](https://img.taocdn.com/s3/m/eadd53476ad97f192279168884868762cbaebb61.png)
初三旋转试题及答案一、选择题(每题3分,共30分)1. 若一个图形绕某点旋转180°后与自身重合,则该图形是()。
A. 线段B. 等腰三角形C. 正方形D. 圆2. 一个正方形绕其中心旋转90°后,其形状和大小()。
A. 都不变B. 形状不变,大小改变C. 形状改变,大小不变D. 都改变3. 旋转对称图形的旋转中心是()。
A. 任意一点B. 图形的顶点C. 图形的中心点D. 图形的边4. 旋转对称图形的旋转角可以是()。
A. 任意角度B. 180°C. 90°D. 360°5. 一个图形绕某点旋转后,与原图形()。
A. 完全重合B. 形状相同C. 大小相同D. 位置相同6. 一个图形绕某点旋转180°后,其位置()。
A. 与原图形重合B. 与原图形相反C. 与原图形相邻D. 与原图形远离7. 一个图形绕某点旋转90°后,其()。
A. 形状不变B. 大小不变C. 位置不变D. 所有都不变8. 一个图形绕某点旋转360°后,其()。
A. 形状不变B. 大小不变C. 位置不变D. 所有都不变9. 一个图形绕某点旋转,若旋转前后图形完全重合,则该旋转是()。
A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称10. 一个图形绕某点旋转后,若旋转前后图形形状和大小都不变,则该旋转是()。
A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称二、填空题(每题4分,共20分)1. 一个图形绕某点旋转180°后,其位置与原图形()。
2. 一个图形绕某点旋转90°后,其形状()。
3. 一个图形绕某点旋转360°后,其位置()。
4. 一个图形绕某点旋转,若旋转前后图形大小不变,则该旋转是()。
5. 一个图形绕某点旋转,若旋转前后图形形状不变,则该旋转是()。
三、解答题(每题10分,共50分)1. 描述一个正方形绕其中心点旋转90°后的图形变化情况。
中考数学专题练习 旋转(含解析)-人教版初中九年级全册数学试题
![中考数学专题练习 旋转(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/8222f969dd88d0d232d46ac3.png)
旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PAPB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点 A 、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF= 45 度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60 度,图中除△ABC外,还有等边三形是△AOD .【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ .【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ 逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
初三旋转测试题及答案
![初三旋转测试题及答案](https://img.taocdn.com/s3/m/b559b94a15791711cc7931b765ce0508763275f6.png)
初三旋转测试题及答案一、选择题(每题3分,共30分)1. 旋转对称图形是指绕某一点旋转一定角度后能够与自身重合的图形。
下列选项中,哪一个不是旋转对称图形?A. 正方形B. 正三角形C. 五边形D. 圆2. 一个图形绕某点旋转180°后与原图形重合,这个点称为图形的:A. 旋转中心B. 对称轴C. 旋转角D. 旋转对称中心3. 一个图形绕一点旋转90°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 一个图形绕某点旋转180°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角5. 一个图形绕某点旋转120°后与自身重合,这个图形是:B. 正三角形C. 正五边形D. 正六边形6. 一个图形绕某点旋转360°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角7. 一个图形绕某点旋转60°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正八边形8. 一个图形绕某点旋转45°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正八边形9. 一个图形绕某点旋转30°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正十二边形10. 一个图形绕某点旋转72°后与自身重合,这个图形是:A. 正方形C. 正六边形D. 正十边形二、填空题(每题4分,共20分)1. 一个图形绕某点旋转______度后与自身重合,这个点是图形的旋转中心。
2. 一个图形绕某点旋转______度后与自身重合,这个图形是正六边形。
3. 一个图形绕某点旋转______度后与自身重合,这个图形是正五边形。
4. 一个图形绕某点旋转______度后与自身重合,这个图形是正三角形。
5. 一个图形绕某点旋转______度后与自身重合,这个图形是正方形。
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)
![九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)](https://img.taocdn.com/s3/m/93ef11998662caaedd3383c4bb4cf7ec4afeb6d6.png)
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)1、如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是().A. 60m2B. 63m2C. 64m2D. 66m22、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1) 若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.(3) 当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.3、某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.4、某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=−2x+80(20⩽x⩽40),设销售这种产品每天的利润为W(元).(1) 求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少元?5、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1) 求y与x之间的函数关系式.(2) 在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3) 当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?6、解答:(1) 一辆宽2米的货车要通过跨度为8米,拱高为4米的单行抛物线隧道(从正中通过),为保证安全,车顶左右两侧离隧道的垂直距离至少要0.5米,求货车的限高为多少?(2) 若将(1)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,求货车的限高应是多少?7、把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度ℎ(米)适用公式ℎ=20t−5t2(0⩽t⩽4).(1) 经过多少时间足球能到达最大高度,最大高度是几米?(2) 足球从开始踢至回到地面需要多少时间?(3) 若存在两个不相等的实数t,能使足球距离地面的高度都为m(米),请直接写出m的取值范围.8、运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度ℎ(m)与它的飞行时间t(s)满足二次函数关系,t与ℎ的几组对应值如下表所示:(1) 求ℎ与t之间的函数关系式(不要求写t的取值范围).(2) 求小球飞行3s时的高度.(3) 问:小球的飞行高度能否达到22m.请说明理由.9、军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的x2+10x,经过秒时间,炮弹落到地上爆炸了.关系满足y=−1510、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A出发沿AC向点C以1cm/s的速度运动,同时点Q从点C出发沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小为().A. 19cm2B. 16cm2C. 15cm2D. 12cm211、如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1) 若苗圃园的面积为100平方米,求x的值.(2) 若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.12、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1) 求S与x的函数关系式.(2) 如果要围成面积为45m2的花圃,AB的长是多少米?(3) 能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.13、某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=−2x+80,设这种水果每天的销售利润为w元.(1) 求w与x之间的函数关系式.(2) 该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元.(3) 如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元.14、服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1) 求y与x之间所满足的函数关系式,并写出x的取值范围.(2) 设服装厂所获利润为w(元),若10⩽x⩽50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?15、一条单车道的抛物线形隧道如图所示,隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式.(2) 现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.16、如图,以40m/s的速度将小球沿与地面成某一角度的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间(单位:s)之间具有函数关系ℎ=20t−5t2.请解答以下问题:(1) 小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2) 小球的飞行高度能否达到20.5m?为什么?(3) 小球从飞出到落地要用多少时间?1 、【答案】 C;【解析】设BC=xm,矩形ABCD的面积为ym2,易知AB=(16−x)m,根据题意得y=(16−x)x=−x2+16x=−(x−8)2+64,当x=8时,y取得最大值,为64,则所围成矩形ABCD的最大面积是64m2.故选C.2 、【答案】 (1) y=30−2x(6⩽x<15).;(2) 当x=7.5时,S最大值=112.5.;(3) x的取值范围为6⩽x⩽11.;【解析】 (1) y=30−2x(6⩽x<15).(2) 设矩形苗圃园的面积为S,则S=xy=x(30−2x)=−2x2+30x,∴S=−2(x−7.5)2+112.5.由(1)知,6⩽x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3) ∵这个苗圃园的面积不小于88平方米,即−2(x−7.5)2+112.5⩾88,∴6⩽x⩽11.由(1)可知6⩽x<15,∴x的取值范围为6⩽x⩽11.3 、【答案】70;【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.4 、【答案】 (1) w=−2x2+120x−1600 (20⩽x⩽40);(2) 当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元;【解析】 (1) w=y(x−20)=(x−20)(−2x+80)=−2x2+120x−1600 (20⩽x⩽40).(2) w=−2x2+120x−1600=−2(x−30)2+200则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.5 、【答案】 (1) y=−0.5x+80.;(2) 增种果树10棵时,果园可以收获果实6750千克.;(3) 当增种果树40棵时果园的最大产量是7200千克.;【解析】 (1) 设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得:{74=12k +b 66=28k +b ,解得,{k =−0.5b =80, ∴该函数的表达式为y =−0.5x +80.(2) 根据题意,得,(−0.5x +80)(80+x)=6750,解这个方程得,x 1=10,x 2=70,∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3) 根据题意,得w =(−0.5x +80)(80+x)=−0.5(x −40)2+7200, ∵a =−0.5<0,则抛物线开口向下,函数有最大值,∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.6 、【答案】 (1) 3.25米.;(2) 2.5米.;【解析】 (1) 以抛物线的对称轴为y 轴,地平线为x 轴,建立如图所示坐标系,∵抛物线的顶点坐标是(0,4),∴可设抛物线的解析式为y =ax 2+4.又∵抛物线过(4,0)点,∴0=a×42+4,∴a=−1.4x2+4(−4⩽x⩽4)∴y=−14当x=1时,y=3.75.∴货车限高为3.75−0.5=3.25(米).(2) 当x=2时,y=3,故货车限高为3−0.5=2.5(米).7 、【答案】 (1) 经过2s足球能到达最大高度,最大高度是20米.;(2) 足球从开始踢至回到地面需要4秒.;(3) 0⩽m<20.;【解析】 (1) ∵ℎ=20t−5t2=−5(t−2)2+20,∴t=2时,ℎ最大,最大值为20m,答:经过2s足球能到达最大高度,最大高度是20米.(2) 令ℎ=0,得:20t−5t2=0,解得:t=0或t=4,∴足球从开始踢至回到地面需要4秒.(3) 由(1)知足球的最大高度为20米,∴0⩽m<20.8 、【答案】 (1) ℎ=−5t2+20t.;(2) 15m.;(3) 小球的飞行高度不能达到22m.;【解析】 (1) ∵t =0时,ℎ=0∴设ℎ与t 的函数关系式为ℎ=at 2+bt(a ≠0),∵t =1时,ℎ=15,t =2时,ℎ=20,∴{a +b =154a +2b =20, 解得{a =−5b =20, ∴ℎ与t 之间的函数关系式为ℎ=−5t 2+20t .(2) 小球飞行3秒时,t =3,此时ℎ=−5×32+20×3=15(m),答:此时小球的高度为15m .(3) 方法一 : 设ts 时,小球的飞行高度达到22m ,则−5t 2+20t =22,即5t 2−20t +22=0,∵Δ=(−20)2−4×5×22<0,∴此方程无实数根,∴小球的飞行高度不能达到22m .(3) 方法二 : ∵ℎ=−5t 2+20t =−5(t −2)2+20,∴小球飞行的最大高度为20m ,∵22>20,∴小球的飞行高度不能达到22m .9 、【答案】 50;【解析】 依题意,关系式化为:y =−15(x −25)2+125.令y =0,解得:x =50秒.10 、【答案】 C;【解析】 在Rt △ABC 中,∠C =90°,AB =10cm ,BC =8cm ,∴AC =√AB 2−BC 2=√102−82=6(cm).设运动时间为t 秒(0⩽t ⩽4),则PC =(6−t)cm ,CQ =2tcm ,∴S 四边形PABQ =S △ABC −S △CPQ=12AC ⋅BC −12PC ⋅CQ=12×6×8−12(6−t)×2t=t 2−6t +24=(t −3)2+15,∴当t =3时,四边形PABQ 的面积有最小值,最小值为15.故选C .11 、【答案】 (1) x =10.;(2) 有,当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.;【解析】 (1) 由题意,得:平行于墙的一边长为(30−2x),根据题意,得:x(30−2x)=100,解得:x =5或x =10,∵{30−2x ⩽182x <30, ∴6⩽x <15.∴x =10.(2) ∵矩形的面积y =x(30−2x)=−2(x −152)2+2252,且30−2x ⩾8,即x ⩽11, ∴当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.12 、【答案】 (1) S =−3x 2+24x .;(2) 5m .;(3) 能,当长为10m ,宽为143m 时,最大面积为1403m 2. ;【解析】 (1) 根据题意,得S =x (24−3x ),即所求的函数解析式为:S =−3x 2+24x .(2) 根据题意,设AB 长为x ,则BC 长为24−3x ,则−3x 2+24x =45.整理,得x 2−8x +15=0,解得x =3或5,当x =3时,BC =24−9=15>10不成立,当x =5时,BC =24−15=9<10成立,∴AB 长为5m .(3) S =24x −3x 2=−3(x −4)2+48,由于0<24−3x ⩽10,得143⩽x <8. ∵143>4,∴当x =143时,S 取得最大值为1403>45,∴能围成面积比45m 2更大的花圃,当长为10m ,宽为143m 时,最大面积为1403m 2. 13 、【答案】 (1) w =−2x 2+120x −1600.;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.;(3) 该农户想要每天获得150元的销售利润,销售价应定为每千克25元.;【解析】 (1) 由题意得出:w =(x −20)⋅y=(x −20)(−2x +80)=−2x 2+120x −1600,故w 与x 的函数关系式为:w =−2x 2+120x −1600.(2) w =−2x 2+120x −1600=−2(x −30)2+200,∵−2<0,∴当x =30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3) 当w =150时,可得方程−2(x −30)2+200=150.解得x 1=25,x 2=35.∵35>28,∴x 2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.14 、【答案】 (1) y ={−0.5x +105(10⩽x ⩽50)80(x >50). ;(2) 批发该种服装40件时,服装厂获得利润最大,最大利润是800元.;【解析】 (1) 当10⩽x ⩽50时,设y 与x 的函数关系式为y =kx +b ,{10k +b =10050k +b =80,得{k =−0.5b =105, ∴当10⩽x ⩽50时,y 与x 的函数关系式为y =−0.5x +105,当x >50时,y =80,即y 与x 的函数关系式为:y ={−0.5x +105(10⩽x ⩽50)80(x >50). (2) 由题意可得,w =(−0.5x +105−65)x =−0.5x 2+40x=−0.5(x−40)2+800,∴当x=40时,w取得最大值,此时w=800,y=−0.5×40+105=85,答:批发该种服装40件时,服装厂获得利润最大,最大利润是800元.x2+6.15 、【答案】 (1) (答案不唯一)抛物线的表达式为y=−38;(2) 这辆货车能安全通过这条隧道.;【解析】(1) 以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系xOy,则A(−4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x−4)(x+4).∵抛物线经过点C,∴−16a=6.∴a=−3.8x2+6(−4⩽x⩽4).∴这条抛物线表示的二次函数表达式为y=−38(2) 当x=1时,y=45,8∵4.4+0.5=4.9<45,8∴这辆货车能安全通过这条隧道.16 、【答案】 (1) 当小球的飞行1s和3s时,高度达到15m.;(2) 小球的飞行高度不能达到20.5m.;(3) 小球从飞出到落地要用4s.;【解析】 (1) 令ℎ=15,得方程15=20t−5t2,解这个方程得:t1=1,t2=3,当小球的飞行1s和3s时,高度达到15m.(2) 令ℎ=20.5,得方程20.5=20t−5t2,整理得:t2−4t+4.1=0,因为(−4)2−4×4.1<0,所以方程无实数根,所以小球的飞行高度不能达到20.5m.(3) 小球飞出和落地时的高度都为0,令ℎ=0,得方程0=20t−5t2,解这个方程得:t1=0,t2=4,所以小球从飞出到落地要用4s.。
九年级数学旋转经典题含答案
![九年级数学旋转经典题含答案](https://img.taocdn.com/s3/m/ae79f40a551810a6f424865d.png)
一、在△ABC中,∠CAB=700,在同一平面内,△将ABC试点A旋试到△AB′C′的位置,使得CC′∥AB,试∠BAB′=()A. 300 B. 350 C. 400 D. 500二、△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合,若是AP=3,那么线段PP'的长等于_________________________.3、在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,那么BB′的长度为___4、已知∠AOB=90°,点A绕点0顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,那么∠AA n A n+1等于_____度.(用含n的代数式表示,n为正整数)五、已知△ABC是正三角形,OC⊥OB,OC=OB,将△ABC绕点O按逆时针方向旋转,使得OA与OC重合,取得△OCD,那么旋转的角度是_____________________.六、如图,P点是正方形ABCD内一点,△ABP经旋转后与△CBP'重合,旋转中心是点_____________,旋转了____________度,假设PB=3,那么△PBP/ 面积是_______________.7、如图,在平面内将Rt△ABC绕着直角极点C逆时针旋转90°取得Rt△EFC,假设AB=√5,BC=1,那么线段BE的长为_____________.八、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转必然角度后取得△EDC,现在点D在AB边上,斜边DE交AC边于点F.那么DC的长____________;旋转的角度_______________;图中阴影部份的面积________________..九、将边长为√3的正方形ABCD绕点A逆时针方向旋转30°后取得正方形A′B′C′D′,那么图中阴影部份面积为______10、如图是由三个叶片组成的,绕点O旋转120°后能够和自身重合,假设每一个叶片的面积为4cm2,∠AOB 为120°,那么图中阴影部份的面积之和为 cm2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由.答案解:(1)旋转后的△BCG如图所示,旋转角为∠ABC=90°;(2)连接PG,由旋转的性质可知BP=BG,∠PBG=∠ABC=90°,∴△BPG为等腰直角三角形,又BP=BG=2,∴PG==2;(3)由旋转的性质可知CG=AP=1,已知PC=3,由(2)可知PG=2,∵PG2+CG2=(2)2+12=9,PC2=9,∴PG2+CG2=PC2,∴△PGC为直角三角形.马上分享给同窗C 2、3倍根号2 3、根号3 4 180度减去2的n次幂分之90 五、150度六、B,90 45 7、3 八、2分之根号3 九、根号3 10、5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转及综合专题一、旋转相关定义1、定义:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角。
2、如果图形上的点 P 经过旋转变为 P 1 ,那么这两个点叫做这个旋转的对应点。
3、(1)对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后图形全等。
4、把一个图形绕着某一点旋转180︒ ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形的对称点叫做关于中心的对称点。
5、(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分;(2)关于中心对称的两个图形是全等图形。
6、把一个图形绕着某一点旋转180︒ ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
二、旋转相关结论如 图 , 将 ∆ABC 绕 点 A 逆 时 针 旋 转 α 角 到∆AB 1C 1 。
点 B 和点 B 1 为对应点,点 C 和C 1 为对 应点。
结论 1:旋转中心为对应点所连线段垂直平分 线的交点,也即对应点所连线段的垂直平分线 均经过旋转中心。
如图,线段 BB 1 的垂直平分 线l 1 、线段CC 1 的垂直平分线l 2 都经过旋转中心点 A 。
利用这个结论我们可以利用对应点坐标 求出旋转中心的坐标。
由于对应点所连线段的 垂直平分线均经过旋转中心,因此只需求出两 组对应点所连线段的垂直平分线解析式,然后 联立即可求出旋转中心坐标。
结论 2:对应点与旋转中心所构成的三角形均为等腰三角线,且等腰三角形顶角均等于旋转角α。
如图, ∆ABB 1 和 ∆ACC 1 均为等腰三角形, ∠BAB 1 = ∠CAC 1 = α。
结论 3:对应点与旋转中心所构成的三角形均相似。
如图, ∆BAB 1 ∽ ∆CAC 1 。
结论 4:旋转前、后图形全等。
如图, ∆ABC ≅ ∆AB 1C 1 。
示例 1:已知 A (-3,2) 、O (0,0) ,将线段OA 绕点 P 旋转得到线段O 1 A 1 ,其中O 1 (-1,-1) 、A 1 (-3,-4) ,O 1 为点O 的对应点, A 1 为点 A 的对应点,求点 P 的坐标。
分析:旋转中心为对应点所连线段垂直平分线的交点,因此只要求出线段 A A 1 和线段 O O 1 的解析 式,然后联立即可求出点 P 的坐标。
解析:∵ A (-3,2) , A 1 (-3,-4) ∴直线 A A 1 : x = -3∴直线 A A 1 的垂直平分线l 1 : y = -1 ∵ O (0,0) ,O 1 (-1,-1) ∴直线OO 1 : y = x ∴直线OO 1 的垂直平分线l 2 : y = - x - 1点 P 为 l 1 与 l 2 的交点,联立:11y y x =-⎧⎨=-⎩,可得: P (0,-1) 。
∴点 P 的坐标为 P (0,-1) 。
附:在直角坐标系中求线段的垂直平分线的方法(必须掌握知识点) 已知点 A ( x 1 , y 1 ) 和点 B ( x 2 , y 2 ) ,求线段 A B 的垂直平分线l 。
处理方法如下:第一步:根据点 A ( x 1 , y 1 ) 和点 B ( x 2 , y 2 ) 的坐标首先求出直线 A B 的解析式:l 1 : y = k 1 x + b 1 。
第二步:设线段 AB 的垂直平分线l 的解析式为: l : y = k 2 x +b 2 。
以为 l 2⊥ l 1 ,所以 k 1 • k 2 = -1 ,从而求出k 2 = -11k ,因此线段 A B 的垂直平分线l 的解析式转化为:211y x b k =-+第三步:根据中点坐标公式直接写出线段A B 中点 M (122x x +,122y y +) 。
分析:既然直线l 为线段 A B 的垂直平分线,所以直线l 经过线段 A B 的中点,也即线段 A B 的中点在直线 l 上。
第四步:将线段A B 的中点 M (122x x +,122y y +)代入 l : 211y x b k =-+中求出 b 2 的值。
最后将b 2 的值代入211y x b k =-+中即可求出线段 A B 的垂直平分线的解析式。
示例:已知点 A (-2,4) 和点 B (2,2) ,求线段 A B 的垂直平分线l 。
处理方式如下:第一步:由点 A (-2,4) 和点 B (2,2) ,可得直线 A B 的解析式l 1: y = -12x + 3 。
第二步:设线段 A B 的垂直平分线 l 的解析式为: l : y = k 2 x +b 2 。
以为 l 2⊥ l 1 ,所以k 1 • k 2 = -1 ,从而求出k 2 =2 ,因此线段 A B 的垂直平分线 l 的解析式转化为:l : y = 2 x +b 2 。
第三步:由点 A (-2,4) 和点 B (2,2) ,可得线段 A B 的中点M (0,3) 。
第四步:将点M(0,3) 代入l: y =2x+b2 中可得b2 = 3 。
因此,最终可得线段A B 的垂直平分线为l: y = 2x + 3 。
提醒:处理方法需要牢记,另外计算的时候要格外细心,千万不要算错了!三、点绕点旋转90︒问题此种问题通过构造两个直角三角形全等,然后利用对应直角边线段长度相等,从而求出对应点坐标。
示例:将点A(-3,4)绕点P(-1,1) 逆时针旋转90︒,求点A的对应点A1的坐标。
分析:旋转不改变图形线段长度及图形线段的夹角。
因此有P A =P A1。
由于旋转角为90︒,即∠AP A1 = 90︒,因此我们可以就斜边P A =P A1,以平行于坐标轴的线段构造两个直角三角形。
很显然,这两个直角三角形时全等三角形。
然后利用直角边线段长度关系即可求出点A1的坐标。
解析:如图,过点P作直线l 平行于x轴交y轴于点B,过点A作A M ⊥l 于M,过点A1 作A1N ⊥l于N。
易证∆AMP ≅∆PNA1 (A SA),则有:A M =PN ,P M =A1N 。
∵A(-3,4),P(-1,1)∴AM =3,P M =2,P B = 1∴N(2,1)∴A1(2,3) 。
四、旋转示例解析(理解如何利用线段旋转带动线段所在三角形旋转)在解决旋转相关题型时,最常见的是将等腰三角形中一腰旋转至与另一腰重合,从而利用等腰三角形的腰转动带动等腰三角形腰所在的三角形转动,进而构造全等三角形,再利用旋转知识解决相关问题。
因此,在处理此类题型时,同学们尤其要注意题干中是否说明某某三角形为等腰三角形,尤其注意等腰直角三角形、等边三角形、正方形、顶角为特殊角的等腰三角形,遇到以上三角形时,同学可以考虑以下利用旋转来解题。
以下通过一些实例来帮助同学们理解如何利用等腰三角形的腰转动带动等腰三角形腰所在的三角形转动,从而构造全等三角形进而利用旋转知识解决相关问题。
第3页共12页例1:已知如图∆ACB ,∠ACB =90︒,A C =AB ,P A =3 ,P C =2,P B =1,求∠BPC 的度数?分析:这里明显可以判断∆ACB 为等腰直角三角形,因此可以利用将其中一腰旋转至与另一腰重合,构造全等三角形。
图(1)图(2)解析:图(1)中是将等腰直角三角形∆ACB 的一腰A C 绕点C逆时针旋转90︒与另一腰B C 重合,从而带动∆CAP 逆时针旋转90︒至∆CBH ,可得:∆CAP ≅∆CBH ,CP =CH,∠HCP = 90︒,P A =BH = 3∴∠CPH =45︒,P H =2PC =2∴PH 2 +PB2 =BH 2∴∠HPB = 90︒∴∠BPC =135︒图(2)中是将等腰直角三角形∆ACB 的一腰B C 绕点C顺时针旋转90︒与另一腰A C 重合,从而带动∆CPB 逆时针旋转90︒至∆CHA ,可得∆CPB ≅∆CHA,可得∠CHP = 45︒,再利用勾股定理证∠PHA =90︒即可。
例2:已知,如图所示,等腰R t∆ACB ,∠ACB =90︒,D为∆ACB 外一点,且满足∠ADC =45︒,A D = 3,CD =4,求B D的值?分析:这里已知等腰R t∆ACB ,可以将等腰Rt∆ACB 的一腰B C 顺时针旋转90︒与另一腰AC 重合,从而带动∆DCB 顺时针旋转90︒至∆HCA 。
解析:将∆DCB 绕点 C 顺时针旋转90︒至∆HCA 。
则有,∆DCB ≅∆HCA ,D C =HC,∠DCH = 90︒,∠HDC = 45︒,DH 2DC =2又∵∠ADC = 45︒∴∠HDA =90︒,最后利用勾股定理可以求出A H 的值,也即B D 的值。
例3:已知如图,∆ABC 为等边三角形,P A 7,P B =3,P C 2,求∠APC 的度数?分析:这里已知∆ABC 为等边三角形,符合旋转条件,可以将∆ABC 一边A C 顺时针旋转60︒与另一边A B 重合解析:将∆APC 绕点A顺时针旋转60︒至∆AHB ,则∆APC ≅∆AHB,AP =AH,∠HAP = 60︒,PC =HB 2∴∆AHP 为等边三角形∴HP =P A =7∴HB2 +HP2 =PB2∴∠BHP = 90︒∴∠APC =∠AHB =150︒。
例4:已知如图,四边形A BCD ,∠ADC =60︒,∠ABC =30︒,且A D =AC ,求证:AB2 +BC2 =BD2 。
分析:这里实际可知∆ADC 为等边三角形,满足旋转条件。
解析:将∆ADB 绕点A逆时针旋转60︒至∆ACH 。
可得∆ABH 为等边三角形,又∵∠ABC = 30︒从而可得∠CBH = 90︒,直角三角形就可以使用勾股定理了。
例5:如图,已知等边∆ABC ,点D为∆ABC 外一点,且满足∠BDC =120︒,试问,BD,DA,DC是否有确定的数量关系?分析:这里∆ABC 为等边三角形,满足旋转条件。
解析:将∆ABD 绕点A 逆时针旋转60︒至∆ACH 。
则有,∆ABD ≅∆ACH ,∠ABD =∠ACH 。
∆ADH 为等边三角形∴DA =DH∵∠BDC =120︒,∠BAC = 60︒∴∠ABD +∠ACD = 180︒∴∠ACH +∠ACD = 180︒∴D,C,H 三点共线(必须证三点共线,否则扣分)∴DA =DC +DB 。
变式拓展:如图已知等边∆ABC ,点D为∆ABC 外一点,但∠BDC 大小不确定,BD =3 ,DC = 4 ,试问D A 的最大值为多少?分析:这里∆ABC 为等边三角形,满足旋转条件。
解析:将∆ABD 绕点A 逆时针旋转60︒至∆ACH 。