5月七年级数学阶段质量检测试卷

合集下载

山东省济宁市金乡县2023-2024学年七年级下学期5月月考数学试卷(含答案)

山东省济宁市金乡县2023-2024学年七年级下学期5月月考数学试卷(含答案)

七年级数学试题1.在平面直角坐标系中,点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在下列方程组: ①,②,③,④中,是二元一次方程组的是( ).A.①③B.①④C.①②D.只有①3.用加减消元法解方程组下列结果正确的是( )A.要消去,可以将①②B.要消去,可以将①②C.要消去,可以将①②D.要消去,可以将①②4.下列说法错误的是( )A.若,则B.若,则C.若,则D.若,则5.芳芳解方程组的解为,由于不小心两滴墨水遮住了两个数和,则与表示的数分别是( )A.B.C.D.6.下列说法正确的是( )A.点在第四象限B.若,则在坐标原点C.点在第二象限,且点到轴的距离为,点到轴的距离为,则点的坐标为D.在平面直角坐标系中,若点的坐标为,且平行于轴,,则点的坐标为7.如图,数轴上的点A和点B分别在原点的左侧和右侧,点对应的实数分别是a、b,下列结论一定成立的是( )A.B.C.D.8.若关于,的方程组的解满足,则的值是( )A.B.C.D.9.某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为( )A.B.C.D.10.如图,一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位长度,那么第99秒时质点所在位置的坐标是( )A.B.C.D.二、填空题(每题3分,共15分)11.教室里小蒙、小苗、小军三人坐在一排,小苗坐中间,如果小蒙的位置表示为,小军的位置表示为,则小苗的位置应表示为.12.若关于,的方程是二元一次方程,则.13.已知点,,点C在y正半轴上,且的面积是8,则点C的坐标为.14.若关于x,y的二元一次方程组的解是,则关于m、n的二元一次方程组的解是.15.已知当m,n都是实数,且满足时,称点为“如意点”.如:由点,得满足,因此,点是为“如意点”;若点是“如意点”,则=.三、解答题(共55分)16.(本题8分)解方程组:(1)(2)17.(本题6分)如图,已知三角形的顶点都在格点上,请回答下列问题:(1)将三角形先向上平移4个单位长度,再向右平移5个单位长度,画出平移后的三角形,并写出顶点的坐标;(2)求三角形的面积.18.(本题6分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问人数、羊价各是多少?19.(本题6分)已知点,解答下列各题:(1)若点P在轴上,求点P的坐标;(2)点Q的坐标为,直线轴,求点P的坐标.20.(本题7分)列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?21.(本题9分)定义:当两个实数x,y,满足,则称这两实数x与y具有“友好关系”.(1)判断方程组的解x与y是否具有“友好关系”?说明你的理由.(2)若方程组中方程组的解x与y具有“友好关系”,请求出方程组的解及a,b的正整数值.22.(本题13分)某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.①求A,B型两种台灯每台售价分别是多少元?②若按照第二次购进A,B型两种台灯的价格再购进一次,将再次购进的台灯全部售出后,要想使获得的利润为1000元,求有哪几种购进方案?七年级数学试题答案一、单选题(每题3分,共30分)1.D 2.B 3.C 4.B 5.A 6.C 7.D 8.A 9.C 10.A二、填空题(每题3分,共15分)11.;12.2;13.(0,4);14.;15.1.三、解答题(共55分)16.(本题8分)(1)解:由得:,解得把代入②得:,所以方程组的解是:;....................................................4分(2)解:整理方程组得:得:,把代入②得:,所以方程组的解是:.....................................................8分17.(本题6分)(1)解:如图,三角形即为所求,...............................................2分顶点的坐标为;....................................................3分(2)........................................6分18.(本题6分)解:设买羊人有人,羊价为钱,.................................1分依题意,得:,.............................................3分解得:,...................................................5分答:买羊人有21人,羊价为150钱..................................................6分19.(本题6分)(1)解:∵点在轴上,∴,....................................................1分∴,....................................................2分∴,∴点P的坐标为;....................................................3分(2)解:点,点Q,直线轴,∴,....................................................4分∴,....................................................5分∴,∴点P的坐标为.....................................................6分20.(本题7分)解:设小长方形的长为米,宽为米,...............................................1分依题意得....................................................3分解得....................................................5分∴(元)....................................................7分答:预计花费75600元.21.(本题9分)(1)解:x与y具有“友好关系”,理由如下:.......................................1分由方程组,②-①得...................................................3分∴方程组的解x与y具有“友好关系”;....................................................4分(2)∵方程组的解x与y具有“友好关系”,∴③联立,解得....................................................6分把代入中得....................................................7分则a,b的正整数值为或.....................................................9分22.(本题13分)(1)解:设第一次购进A型台灯每台进价为x元,B型台灯每台进价为y元,由题意得:....................................................2分解得:,答:第一次购进A型台灯每台进价为200元,B型台灯每台进价为50元.....................4分(2)解:第二次购进的A型台灯的价格为:(元),B型台灯的价格为:(元),..................................................5分①设A型台灯每台售价为m元,B型台灯每台售价为n元,由题意得:..................................................7分解得,,答:A型台灯每台售价为340元,B型台灯每台售价为120元;........................................9分②设购进A型台灯a台,B型台灯台,由题意得:,....................................................10分整理得:,a、b为正整数,或或或,....................................................12分有4种购进方案:①购进A型台灯2台,B型台灯14台;②购进A型台灯5台,B型台灯10台;③购进A型台灯8台,B 型台灯6台;④购进A型台灯11台,B型台灯2台....................................................13分。

河北省保定市雄县第一初级实验中学2024-2025学年七年级上学期第一次月考数学试题(无答案)

河北省保定市雄县第一初级实验中学2024-2025学年七年级上学期第一次月考数学试题(无答案)

实验一中第一次阶段性考试七年级数学试卷一、选择题(本题共16小题,每小题2分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.《九章算术》是中国古代第一部数学专著,书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A .+30元B .-50元C .-30元D .+50元2.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A .2B .3C .4D .13.图中所画的数轴,正确的是( )4.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A .液态氧B .液态氢C .液态氮D .液态氦5.我国新冠疫苗的保存温度一般是.以下温度适合储存我国新冠疫苗的是( )A .B .C .D .6.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )ABCD7.已知算式6□(-6)的值为0,则“□”内应填入的运算符号为( )A .+B .-C .×D .÷()53±℃10℃3℃1℃2-℃8.小磊解题时,将式子16+(-7)+56 +(-4)先变成(16+56)+[(-7)+(-4)]再计算结果,小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断9. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A. 4 ℃B. 6 ℃C. 8 ℃D. 10 ℃10. 下列各对数中,是互为相反数的是( )A .与B .与C .与D .与11.下列说法中,错误的是( )A .数轴上的每一个点都表示一个有理数B .任意一个有理数都可以用数轴上的点表示C .在数轴上,确定单位长度时可根据需要恰当选取D .在数轴上,与原点的距离是10的点有两个12.直尺中处对应数轴上的数是( )A .B .-2C .D .013.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个14.有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |15.有理数a ,b 在数轴上的对应点如图,则下列结论正确的是( )()7-+()7+-12-()0.5+-1(14--54--()0.01+-1()100-1cm 3-1-A . ab >0B . ba <0C . a +b <0D . b -a <016.如图所示,圆的周长为4个单位长度,在圆周的4等分点处依次标上数字1,2,3,4,先让圆周上数字1所对应的点与数轴上的数字2所对应的点重合,再让圆沿着数轴向左不滑动的滚动,数轴上的数字1所对应的点与圆周上的数字2所对应的点重合,则数轴上的数字-2024所对应的点与圆周上重合的点所对应的数字为( )A. 1B. 2C. 3D. 4二、填空题(每空2分,共20分)17.某蓄水池的标准水位记作0 m,如果水面高于标准水位0.23 m 记作+0.23 m, 那么水面低于标准水位0.1 m 记作 m.18. 比较大小:(填“>,=或<)”.19. 已知|x-3|+|y +5|=0,则x+y =_______.20.下列各数:,,,,,,3.14,其中有理数有 _______个.21.如果数轴上的A 点表示的数为-1,那么与A 点相距3个单位长度的点所表示的数为_____________.22.已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)根据图中A ,B 两点的位置,A 表示数 ,B 表示数 .(2)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.12-23-2 1.001000153-0π2021-②若数轴上M ,N 两点之间的距离为2 024(点M 在点N 的左侧),且M ,N 两点经折叠后重合,则点M 表示数 ,点N 表示数 .三、解答题(共53分)23.(24分)计算(1) (2)(3) (4)(5) (6)24.(12分)出租车司机李师傅国庆节第一天下午的营运是在一条南北走向的公路上进行的,如果向南记作“”,向北记作“”,他这天下午行车情况如下:(单位:千米,每次行车都有乘客),,,,,,,.(1)将最后一名乘客送到目的地时,他在出发地什么方向?距下午出发地多远?(2)若规定每趟车的起步价是10元,且每趟车行驶的路程在3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱,那么李师傅这天下午收到乘客所给车费共多少元?(3)若李师傅的出租车仪表盘上显示的百公里耗油为8升(汽车每行驶耗油8升),每升汽油8元,不计汽车的损耗,那么李师傅这天下午是盈利了还是亏损了?盈利(或亏损)多少钱?25.中秋节期间,子涵和妈妈一块去商场购买月饼,妈妈买了一盒某品牌月饼共计8枚.回家后子涵很仔细地看了看标签和有关说明,把8枚月饼的质量称重后统计列表如表(单位:克):序号12345678质量(克)565554.856.255.355.354.754.3(1)子涵为了简化运算,选取了一个恰当的基准质量,这个基准质量是_______克。

人教版七年级数学上学期5月份质量检测测试卷含答案

人教版七年级数学上学期5月份质量检测测试卷含答案

人教版七年级数学上学期5月份质量检测测试卷含答案一、选择题1.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=- 2.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-3.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种4.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-5.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( ) A .1B .-16C .16D .-16.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( )A .1个B .2个C .3个D .4个7.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ). A . 6.32.2x y =⎧⎨=⎩B .8.31.2x y =⎧⎨=⎩C .9.30.2x y =⎧⎨=⎩D .10.32.2x y =⎧⎨=⎩8.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④9.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天10.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是( )A .425cm 2B .525cm 2C .600cm 2D .800cm 2二、填空题11.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.12.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.13.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.14.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.15.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.16.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.17.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.19.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.22.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 23.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 24.某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).()1A 、B 两种花草每棵的价格分别是多少元?()2若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.25.方程组1327x y x y +=-⎧-=⎨⎩的解满足210(x ky k -=是常数),()1求k 的值.()2直接写出关于x ,y 的方程()1213k x y -+=的正整数解26.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.2.B解析:B 【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程2x +3y =6,即可得到一个关于k的方程,从而求解. 【详解】解232320x y k x y k +=⎧⎨-=⎩得72x k y k =⎧⎨=-⎩,由题意知2×7k +3×(−2k )=6,解得k =34. 故选:B 【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.3.C解析:C 【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y , 则210x y +=, 即52xy =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合; 当6x =时,2y =,符合; 当8x =时,1y =,符合, 共3种购买方案, 故选C. 【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.4.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意; 故选:D . 【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.C解析:C 【分析】首先根据绝对值和偶次方的非负性求出x ,y 的值,然后代入2y x 中计算即可. 【详解】解:∵()229310-++++=x y x y , ∴290310x y x y -+=⎧⎨++=⎩,解得:41x y =-=⎧⎨⎩, 所以,22(4)16yx =-=, 故选:C . 【点睛】本题主要考查了非负数的性质,即偶次方和绝对值的性质,熟练掌握相关性质是解答此题的关键.6.B解析:B 【详解】解:把①22x y ==⎧⎨⎩代入得左边=10=右边;把②2{1x y ==代入得左边=9≠10;把③2{2x y ==-代入得左边=6≠10;把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .7.A解析:A 【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.8.D解析:D 【分析】根据E 点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解. 【详解】E 点有4中情况,分四种情况讨论如下: 由AB ∥CD ,可得∠AOC=∠DCE 1=β ∵∠AOC=∠BAE1+∠AE 1C , ∴∠AE 1C=β-α过点E 2作AB 的平行线,由AB ∥CD , 可得∠1=∠BAE 2=α,∠2=∠DCE 2=β ∴∠AE 2C=α+β由AB ∥CD ,可得∠BOE 3=∠DCE 3=β ∵∠BAE 3=∠BOE 3+∠AE 3C , ∴∠AE 3C=α-β 由AB ∥CD ,可得∠BAE 4+∠AE 4C+∠DCE 4=360°, ∴∠AE 4C=360°-α-β∴∠AEC 的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论. 9.B解析:B【详解】解:根据题意设有x天早晨下雨,这一段时间有y天,有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6 y xy x-=⎧⎨--=⎩,解得411 xy=⎧⎨=⎩,所以一共有11天,故选B.【点睛】本题考查二元一次方程组的应用.10.B解析:B【解析】【分析】设每块墙砖的长为xcm,宽为ycm,根据“三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得.【详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:103 2240 x yx y+⎧⎨+⎩==,解得:3515x y ⎧⎨⎩==, 则每块墙砖的截面面积是35×15=525cm 2,故选:B .【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.二、填空题11.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.12.5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分, 由题意可得:5x+15y+40z=10(x ﹣3)+20(y ﹣2)+30(z ﹣1)①,z=y ﹣7 ②; 由①得:x+y ﹣2z=20 ③,将②代入③得:x+y ﹣2(y ﹣7)=20,解得:x ﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x ﹣3)﹣(y ﹣2)=(x ﹣y )﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.13.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

陕西省西安市铁一中学2022-2023学年七年级下学期5月月考数学试卷(含解析)

陕西省西安市铁一中学2022-2023学年七年级下学期5月月考数学试卷(含解析)

2022-2023-2七年级数学试题时间:100分钟满分:100分一、选择题(每小题3分,共30分)1. 下列计算正确的是()A. B. C. D.答案:C解析:解:A、,原计算错误,该选项不符合题意;B、,原计算错误,该选项不符合题意;C、,原计算正确,该选项符合题意;D、,原计算错误,该选项不符合题意.故选:C.2. 世界上最小的开花结果植物——澳大利亚的出水浮萍,其果实像一个微小的无花果,它的质量只有0.000000076克,将0.000000076用科学记数法表示为()A. B. C. D.答案:A解析:解:,故选:A.3. 已知三角形三边长分别为3,a,7,且a为奇数,则这样的三角形有()A. 2个B. 3个C. 4个D. 5个答案:B解析:解:∵三角形三边长分别为3,a,7,,∴,∵a为奇数,∴a可取5,7,9∴这样的三角形共3个,故B正确.故选:B.4. 如图,下列条件不能判定的是()A. B. C. D.答案:D解析:解;∵和是同位角,当时,,故A错误;∵和是同旁内角,当时,,故B错误;∵和是内错角,当时,,故C错误;∵和不是同位角,也不是内错角,当时,不能证明,故D正确,故选:D.5. 如图,为测量池塘两侧A,B两点间距离,在地面上找一点C,连接,,使,然后在的延长线上确定点D,使,得到,通过测量的长,就能得出的长.那么的理由是()A. B. C. D.答案:A解析:解:∵,∴,则在和中∴.故选:A.6. 若两个大小不同的正方形的周长之和为36,面积之和为53,分别以两个正方形的边长作为长方形的长和宽,则该长方形的面积为()A. 7B. 9C. 14D. 28答案:C解析:解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,∴,∴,∴以两个正方形的边长作为长方形的长和宽,则该长方形的面积为:,故C正确.故选:C..7. 如图,将长方形沿折叠,使点A落在边上的点E处,点B落在点F处,若,则的度数为()A. B. C. D.答案:A解析:解:根据折叠可知,,,∵,,∴,∴,∴,∴,故A正确.故选:A.8. 高原反应是人到达一定海拔高度后,由于机体对低压低氧环境的适应能力不足而引起的,下面是反映海拔高度与空气含氧量之间关系的一组数据:海拔高度/m01000200030004000空气含氧量299.3265.5234.8209.6182.1下列说法不正确的是()A. 海拔高度是自变量,空气含氧量是因变量B. 在海拔高度为的地方空气含氧量是C. 海拔高度每上升,空气含氧量减少D. 当海拔高度从上升到时,空气含氧量减少了答案:C解析:解:A.海拔高度是自变量,空气含氧量是因变量,故A正确,不符合题意;B.在海拔高度为的地方空气含氧量是,故B正确,不符合题意;C.,,海拔高度每上升,空气含氧量减少值不都是,故C错误,符合题意.D.当海拔高度从上升到时,空气含氧量减少了,故D正确,不符合题意.故选:C.9. 下列说法中正确的是()①过一点有且只有一条直线与已知直线平行;②两边分别相等的两个直角三角形全等;③直线外一点与直线上各点连接的线段中,垂线段最短;④全等三角形的周长和面积都相等;⑤三角形的三条角平分线交于一点、三条中线交于一点、三条高线交于一点.A. ①②B. ③④C. ③④⑤D. ①②③④⑤答案:B解析:解:①过直线外一点有且只有一条直线与已知直线平行,故原说法错误;②如果一个直角三角形的直角边和斜边与另一个直角三角形的两条直角边分别相等,则这两个直角三角形不全等,故原说法错误;③直线外一点与直线上各点连接的线段中,垂线段最短,此说法正确;④全等三角形的周长和面积都相等,此说法正确;⑤三角形的三条角平分线交于一点、三条中线交于一点、三条高线所在的直线交于一点,故原说法错误;综上分析可知,正确的有③④,故B正确.故选:B.10. 如图,在中,点D为上一点,E,F分别为线段,的中点,连接,,,已知,,则的面积为()A 25 B. 9 C. 2 D. 1答案:D解析:解:∵E为线段的中点,∴,,∴,∵F分别为线段的中点,∴,∴.故选:D二、填空题(每小题3分,共18分)11. 计算:______.答案:-1解析:解:,故答案为:.12. 如图,点,在上,,,请你添加一个条件__________,使得可用“”证明.(写出一个即可)答案:(答案不唯一)解析:解:添加一个条件可以是,,,,,,故答案为:(答案不唯一).13. 一副三角板如图放置,当∠1与∠2互余时,∠1的度数是__________.答案:##度解析:解:∵∠1与∠2互余,∴,∵与互余,∴,∴,∵与互余,∴,∴.故答案为:.14. 若为完全平方式,则m的值为_____.答案:10或-10##-10或10##±10.解析:∵,∴或,解得:m=10或-10.故答案为:10或-10.15. 已知等腰三角形的周长为,其一条边长为,则该等腰三角形的底边长为__________.答案:或解析:解:当为等腰三角形的底时,则腰长为:,此时等腰三角形的三边长分别为:,,,符合三角形三边关系,能够组成三角形;当为等腰三角形的高时,则底边长为:,此时等腰三角形的三边长分别为:,,,符合三角形三边关系,能够组成三角形;综上分析可知,该等腰三角形的底边长为或.故答案为:或.16. 如图,在中,,于点F,点D为延长线上一点,连接,过点D 作交延长线于点E,若,则__________.答案:8解析:解:∵,,∴,,∵,∴,∵,∴,即,解得:.故答案为:8.三、解答题(共52分)17. 计算题(1)(2)(3)(4)答案:(1)(2)(3)(4)小问1解析:解:;小问2解析:解:;小问3解析:解:;小问4解析:解:.18. 先化简,再求值:,其中,.答案:;解析:解:,把,代入得:原式.19. 小明不小心将一块三角形玻璃打碎,他拿出如图所示的一块去配新玻璃.请你用尺规作图的方法画一个,使所得的和原来的三角形玻璃全等.(不要求写作法,保留作图痕迹.)答案:见解析解析:解:如图所示,即为所求.20. 如图,已知和,,,,点B,C,E,F在同一条直线上.求证:.答案:见解析解析:证:∵,,∴,,在与中,∴,∴,∴,∴.21. 2023年世界泳联跳水世界杯在西安奥体中心举行,小亮和姐姐周末去观赛,姐姐骑共享单车保持匀速从家到奥体中心看比赛,到达赛场后看比赛用了,看完比赛后骑车以同样的速度沿原路返回家中,姐姐从家出发的同时小亮刚看完上一场比赛从奥体中心步行返回家中,结果比姐姐早到家,姐姐从家出发开始计时,两人离家的距离与所用时间之间的关系图像如图所示,请结合图像信息解答下列问题:(1)_______________,______________;(2)求出姐姐从家前往奥体中心的过程中,姐姐离家的距离与时间之间的关系式;(3)在姐姐去奥体中心的过程中,为何值时,两人相距.答案:(1)40;70(2)(3)在姐姐去奥体中心的过程中,或时,两人相距小问1解析:解:根据图像可知,姐姐从家到奥体中心用时,到达赛场后看比赛用了,因此;∵姐姐看完比赛后骑车以同样的速度沿原路返回家中,∴姐姐去奥体中心和返回用的时间都是,∴.故答案为:40;70.小问2解析:解:姐姐从家前往奥体中心的过程中,姐姐离家的距离与时间之间的关系式为,把代入得:,解得:,∴姐姐离家的距离与时间之间的关系式为.小问3解析:解:设小亮返回时的函数解析式为,把,代入得:,解得:,∴小亮返回时的函数解析式为,当时,,解得:;当时,,解得:;答:在姐姐去奥体中心的过程中,或时,两人相距.22. 如图,四边形和四边形是正方形,(正方形四条边都相等,四个内角都是直角)感知(1)某学习小组探究如下问题:如图1,连接,,直线于点H,交于点M,则与面积的大小关系是:_________.探究(2)该学习小组在探究(1)中面积问题时,发现M为中点,你认为是否成立?若成立,请证明;若不成立,请说明理由.拓展(3)经过以上探究,该学习小组也提出问题:若正方形和正方形的位置如图2所示,点M为中点,连接交于点H,那么与有怎样的关系?试探究,并说明理由答案:(1);(2)成立;理由见解析;(3),;理由见解析解析:解:(1)过点E作于点Q,延长,过点G作于点P,如图所示:则,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴.故答案为:.(2)成立;理由如下:过点E作于点P,过点B作于点Q,如图所示:∵,∴,∵,∴,∴,∵,∴,∴,同理得:,∴,∴,∵,,∴,∴,(3),.理由如下:延长,在延长线上截取,连接、,如图所示:∵M为的中点,∴,∵,∴,∴,,∵,∴,∵,∴,∴,∵,,∴,即,∴,∵,∴,∴,,∵,∴,∴,。

七年级第二学期5月份质量检测数学试题含答案

七年级第二学期5月份质量检测数学试题含答案

七年级第二学期5月份质量检测数学试题含答案一、选择题1.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩2.甲、乙两人练习跑步,如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,求甲、乙两人的速度.若设甲、乙两人的速度分别为/, /x m s y m s ,则下列方程组中正确的是( )A .()()510422x y x y x ⎧-=⎪⎨-=⎪⎩B .5105442y xy x x =+⎧⎨-=⎩C .()551042x y x y y -=⎧⎨-=⎩D .5510424x y x y =+⎧⎨-=⎩3.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种 4.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .45.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩6.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( ) A .2-,3 B .2,3C .2-,3-D .2,3-7.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-18.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩9.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩10.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A .56156x y x y y x +=⎧⎨-=-⎩B .65156x y x y y x +=⎧⎨+=+⎩C .56145x y x y y x +=⎧⎨+=+⎩D .65145x y x y y x +=⎧⎨-=-⎩二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.13.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.14.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 15.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.16.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.22.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?23.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”; (2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值. 25.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a,b,c的值;若不存在,请说明理由.26.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).()1A、B两种花草每棵的价格分别是多少元?()2若再次购买A、B两种花草共12棵(A、B两种花草价格不变),且A种花草的数量不少于B种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程计算即可求出a与b的值.【详解】联立得:312 516 x yx y+=⎧⎨+=⎩,解得:26 xy=⎧⎨=⎩,将26xy=⎧⎨=⎩代入得:124530a ba b-=-⎧⎨+=⎩,解得:202ab=⎧⎨=⎩,故选:C.【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.2.B解析:B【分析】本题有两个相等关系:如果让甲先跑10m,那么乙跑5s就追上了甲;如果让甲先跑2s,那么乙跑4s就追上了甲,然后根据追及问题的特点“两者路程相等”即可列出方程组.【详解】解:设甲、乙两人的速度分别为 /, /x m s y m s ,根据题意得:5105442y xy x x =+⎧⎨-=⎩.故选:B . 【点睛】本题考查了二元一次方程组的应用之行程问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为: 方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.4.D解析:D 【分析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值. 【详解】 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx-9中,得:-1=2k-9,解得:k=4. 故选D. 【点睛】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.5.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子,由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.6.B解析:B 【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可. 【详解】 由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B. 【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.7.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=,∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.8.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.9.D解析:D 【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确;故选D. 10.C解析:C 【分析】根据题意,可以列出相应的方程组,从而可以解答本题. 【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y=5y+x,故选C.【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.【分析】先把原方程化为的形式,再分别令a,b的系数为0,即可求出答案.【详解】解:由已知得:两式相加得:,即, 把代入得到,, 故此方程组的解为:. 故答案为:. 【点睛】 本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.13.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.14.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是 根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库 解析:358【分析】先设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a 根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a -=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a -=方程组可求得x 、y 关于a 的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y ÷-将x 、y 关于a 的关系式代入即可求解.设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a7(23)80%4(32)80%x y ax y a -=⎧⎨-=⎩解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时) 故答案为:358【点睛】本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同.15.508 【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可. 【详解】解:设0有a 个,1有b 个,2有c 个, 由题意得: 解得:故取值为2的个数为508个, 故答案为:508解析:508 【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组2019215251510a b c b c a c ++=⎧⎪+=⎨⎪+=⎩求解即可. 【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:2019215251510a b c b c a c ++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.16.五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.17.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键18.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 19.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1)(134)8F =;(2)325361s t =. 【分析】(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解. 【详解】解:(1)(134)(314431143)1118F =++÷=; (2)∵s ,t 都是“相异数”,10025s x =+,360t y =+, ∴()(2051052010052)1117F s x x x x =+++++÷=+,()(6301006330610)1119F t y y y y =+++++÷=+.∵()()20F s F t +=,∴791620x y x y +++=++=, ∴4x y +=,∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,13x y =⎧⎨=⎩,22x y =⎧⎨=⎩,31x y =⎧⎨=⎩ ∵s 是“相异数”, ∴2x ≠,5x ≠. ∵t 是“相异数”, ∴3y ≠,6y ≠.∴31x y =⎧⎨=⎩是符合条件的解∴100325325s =⨯+=,3601361t =+=∴325361s t =. 【点睛】本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键. 22.1 【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym. 因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m. 故答案为1. 【点睛】本题考查了二元一次方程组的应用. 23.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m =【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可. 【详解】解:(1)224(1)16(4,1)413a b a bT ⨯+⨯-+-==-; 故答案为:163a b+; (2)①∵()2,02T -=-且()5,16T -=,∴42,225 6.4aa b ⎧=-⎪⎪-⎨+⎪=⎪⎩解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x yx y-+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--, ∴610610m m -=-+,解得:53 m=.【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键24.(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=,∵201923m10{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6; m=73时,x=38,y=39; m=83时,x=11,y=72; ∴所有m 的值为63,73,83. 【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 .【解析】 【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得. 【详解】(1)由题意得2224-22x x +≥⎧⎨≥⎩,解得0≤x≤1; (2)①{}21221,213x xM x x x ++++==+,{}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩所以x=1 ②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c , 其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.26.(1)A 种花草每棵的价格是20元,B 种花草每棵的价格是5元;(2)购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【解析】【分析】()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据第一次分别购进A 、B 两种花草30棵和15棵,共花费940元;第二次分别购进A 、B 两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答.()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株,根据A 种花草的数量不少于B 种花草的数量的4倍,得出m 的范围,设总费用为W 元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.【详解】解:()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得:3015675125940675x y x y +=⎧+=-⎨⎩, 解得 {205x y ==. A ∴种花草每棵的价格是20元,B 种花草每棵的价格是5元;()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株, A 种花草的数量不少于B 种花草的数量的4倍,()412m m ∴≥-,解得:9.6m ≥,9.612m ∴≤≤,设购买树苗总费用为()205121560W m m m =+-=+,当10m =时,最省费用为:151060210(⨯+=元),答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【点睛】本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键.。

七年级下学期5月份质量检测数学试卷含解析

七年级下学期5月份质量检测数学试卷含解析

七年级下学期5月份质量检测数学试卷含解析一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-2.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩3.已知方程组2x y x y a-=⎧⎨+=⎩,且5x y =,则a 等于( ) A .5 B .4 C .3 D .24.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( ) A .20.25x y =⎧⎨=-⎩ B . 4.53x y =-⎧⎨=⎩ C .10.5x y =-⎧⎨=-⎩ D .10.5x y =⎧⎨=⎩5.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y +=⎧⎨=⎩ 6.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩ 7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是( )A .(5,44)B .(4,44)C .(4,45)D .(5,45)8.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( ) A .25a b =⎧⎨=⎩ B .52a b =⎧⎨=⎩ C .35a b =⎧⎨=⎩ D .53a b =⎧⎨=⎩ 9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩10.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③C .②③D .①②③ 二、填空题11.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.12.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110a b ⎛⎫+-= ⎪⎝⎭________.13.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.14.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.15.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.17.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)18.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______. 19.关于x ,y 的二元一次方程组5323x y x y a+=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.20.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__. 三、解答题21.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.22.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.23.已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;(3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.24.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?25.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?26.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A型电脑的进货量不少于14台,B 型电的进货量不少于A型电脑的2倍,那么该商店有几种进货方案?该商场购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.C解析:C【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组.【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元,∴0.6x y ,又∵新建3个地上停车位和2个地下停车位共需1.3万元,∴32 1.3x y +=,∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩, 故选:C .【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.3.C解析:C【分析】把x=5y 代入到方程组中,得到关于y 、a 的二元一次方程组,解方程组即可.【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a-=⎧⎨+=⎩, 解得123y a ⎧=⎪⎨⎪=⎩.故选C .【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.4.D解析:D【分析】整理后①×7+②×2得出41x=41,求出x ,把x 的值代入①求出y 即可.【详解】解:整理得:34510143x y x y +=⎧⎨-=⎩①② , ①×7+②×2得:41x=41,∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5x y =⎧⎨=⎩,【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.5.A解析:A【分析】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据题意得:2256x y x y +=⎧⎨=⎩. 故选:A .【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.D解析:D【解析】试题解析:∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .7.B解析:B【分析】根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:B .此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.8.B解析:B【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 9.D解析:D【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩, ∴111222985985a b c a b c +=⎧⎨+=⎩, 两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩, 故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.B解析:B【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案.【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩, ②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意. ③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩, 当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③.故选:B .【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.二、填空题11.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.12.0【分析】根据题意,将代入方程(2)可得出b的值,代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31xy=-⎧⎨=-⎩代入方程(2)可得出b的值,54xy=⎧⎨=⎩代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将31xy=-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54xy=⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110a b⎛⎫+-⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.13.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:1 2【分析】根据水果数量的等量关系,可设第一次购买B种水果数量为x个,用x分别表示第一次购买A种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x是可以约去的,化简即得到a与b的数量关系.【详解】解:设第一次购买B种水果数量为x,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x x x ++==, ∴第二次购买B 种水果个数为:312355x x x -=, 设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 14.13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解解析:13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解】解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得10(0.04 +m+n) ×(1+30%)=5.2解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y解得:1330 xy故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.15.五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.16.5【解析】设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.17.①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组,得,,,,当时,,,x ,y 的值互为相反数,结论正确;当时,,,方程两解析:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组343x y ax y a +=-⎧-=⎨⎩,得{121x a y a =+=-, 31a -≤≤,53x ∴-≤≤,04y ≤≤,①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,解得0a ≤,且31a -≤≤,30a ∴-≤≤,114a ∴≤-≤,14y ∴≤≤结论正确,故答案为①②③.【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.18.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 19.7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值. 详解:①-②×3,得2x=2解析:7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值.详解:5323x y x y a +=⎧⎨+=⎩①②①-②×3,得2x=23-3a解得x=2332a - 把x=2332a -代入②得y=5232a -∵关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数 ∴2332a ->0,5232a ->0 解得232353a << 即a=5、6、7∵x 、y 为正整数∴a 为5或7.故答案为:5或7.点睛:本题考查了二元一次方程组的解,解二元一次方程组,解一元一次方程的应用,关键是能根据题意得出关于a 的方程.20.【解析】分析:令x+y=a ,x-y=b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x+y=a ,x-y=b ,则关于x 、y 的二元一次方程组变为:.∵二元一次方程组的解是,解析:52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.∵二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,∴73a b =⎧⎨=⎩,∴73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点睛:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.三、解答题21.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩ (4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)41222MNAC S MC NA OB t t t =+⋅=⨯+-⨯=-+四边形. 当812t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形;当812t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当812t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.22.(1)x 1 y 3=⎧⎨=⎩,x 3y 2=⎧⎨=⎩,x 5y 1=⎧⎨=⎩;(2)x 3 y 7=⎧⎨=⎩;(3)63,73,83 【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kx k y +=-=,,根据“好解”的定义得5519k -<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k 的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x3 {y7==;(3)由33x23y2019{x y m+=+=,解得201923mx10{33m2019y10-=-=,∵201923m10{33m201910-->>,即201933<m<201923,∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.23.(1)214342k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)k <﹣52;(3)m 的值为1或2. 【分析】(1)把k 当成一个已知得常数,解出二元一次方程组即可;(2)将(1)中得,x y 的值代入+x y >5 ,即可求出k 的取值范围;(3)将(1)中得,x y 的值代入23m x y =-得m=7k ﹣5.由于m >0,得出7k ﹣5>0,及1k ≤得出解集517<k ≤ 进而得出m 的值为1或2 【详解】(1)2x 322x+y=1-k? y k -=-⎧⎨⎩①② ②+①,得4x =2k ﹣1, 即214k x -= ; ②﹣①,得2y =﹣4k +3 即342k y -=所以原方程组的解为214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩(2)方程组的解x 、y 满足x +y >5, 所以2134542k k --+> , 整理得﹣6k >15, 所以52k <﹣ ; (3)m =2x ﹣3y =21342342k k --⨯-⨯ =7k ﹣5由于m 为正整数,所以m >0即7k ﹣5>0,k >57 所以57<k ≤1当k =67时,m =7k ﹣5=1; 当k =1时,m =7k ﹣5=2.答:m 的值为1或2.【点睛】 本题主要考查了二元一次方程组的解法,熟练掌握解二元一次方程组的方法是解题的关键.24.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,则有5x+7y+10z=346,y=2z .易知0<x ≤69,0<y ≤49,0<z ≤34,∴5x+14z+10z=346,5x+24z=346,即346245z x -=. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14∴z 只能取14,9和4. ①当z 为14时,346242,228.445z x y z x y z -====++= 。

七年级第二学期5月份质量检测数学试卷含答案

七年级第二学期5月份质量检测数学试卷含答案

七年级第二学期5月份质量检测数学试卷含答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩3.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩4.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)5.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天6.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩7.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( ) A .2-,3B .2,3C .2-,3-D .2,3-8.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)9.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩10.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.12.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.13.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.14.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.15.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.16.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.17.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.19.若方程123x y-=的解中,x、y互为相反数,则32x y-=_________20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.24.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.25.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?26.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y =12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:方程组利用加减消元法求出解即可.详解:22x y x y +⎧⎨--⎩=①=②, ①+②得:2x=0, 解得:x=0,把x=0代入①得:y=2, 则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.3.A解析:A 【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择. 详解:∵y ﹣x =1,∴y =1+x . 代入方程x +3y =7,得:x +3(1+x )=7,即4x =4,∴x =1,∴y =1+x =1+1=2. ∴解为12x y =⎧⎨=⎩. 故选A .点睛:本题要注意方程组的解的定义.4.A解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.5.B解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天; 列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.6.A解析:A根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .7.B解析:B 【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可. 【详解】由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B. 【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.8.D解析:D 【解析】 【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则{ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0);9.B解析:B【解析】分析:首先利用②-①和②+③得出关于a和b的二元一次方程组,从而求出a和b的值,然后将a和b代入任何一个式子得出c的值,从而得出方程组的解.详解:0?25?34?a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a-2b=-5 ④, ②+③可得:5a-2b=-9⑤,④-⑤可得:-4a=4,解得:a=-1,将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121abc=-⎧⎪=⎨⎪=-⎩,故选B.点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.10.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题11.【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①,解得:n=6m , ②,可得: 解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.12.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.13.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a nb nc n=-⎧⎪=-⎨⎪=-⎩(其中n为整数),又∵a,b,c均是正整数,易得n=1.所以546 abc=⎧⎪=⎨⎪=⎩.∴150a+60b+40c=150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b+c=42,得知b=1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a,b,c,均为正整数.14.40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得13111290 9(990b aa b+=⎧⎨+=⎩),∴7040 ab=⎧⎨=⎩,故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.15.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.16.48设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可. 【详解】设选信息技术的有x人,选解析:48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意得:()()()()()1858824a x x ya x y x x⎧++=+⎪⎨++--+=⎪⎩①②,②可变形为:(a-1)(x+8)=24+x-y③,①+③,得2a(x+8)=24+6x+4y,即a=12328x yx+++;①-③,得x+3y=20.∵x、y都是正整数,∴171xy=⎧⎨=⎩或142xy=⎧⎨=⎩或113xy=⎧⎨=⎩或84xy=⎧⎨=⎩或55xy=⎧⎨=⎩或26xy=⎧⎨=⎩当171xy=⎧⎨=⎩、142xy=⎧⎨=⎩、113xy=⎧⎨=⎩、84xy=⎧⎨=⎩、55xy=⎧⎨=⎩,a=12328x yx+++都不是整数,不合题意.当26xy=⎧⎨=⎩时,a=12328x yx+++=3.∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,由于每名学生都填了调査表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人).故答案为48【点睛】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.17.16【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x 道,其中解出a 道,难题一共解出b 道,依题意得: 3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x 道,其中解出a 道,难题一共解出b 道,依题意得:(2)×3-(1)得x=16, ∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 18.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:3×(1)-2×(2)得:x+y+z=105解析:105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩ 3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键.19.【解析】试题分析:根据x 、y 互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.20.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)12xy=⎧⎨=⎩;(2)41mn=-⎧⎨=-⎩;(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得66x=,∴1x=,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.23.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.24.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【解析】【分析】(1)由点A 和点C 在y 轴上确定出向右平移3个单位,再根据△ACD 的面积求出向上平移的单位,然后写出点C 、D 的坐标即可. (2)①根据线段EF 平行于线段OM 且等于线段OM ,得出2a +1=﹣2b +3,|a ﹣b |=1,解答即可;②首先根据题意求出点P 的坐标为(,2),设点E 在F 的左边,由EF ∥x 轴得出a +b =1,求出△PEF 的面积=(b ﹣a )×|2a +1﹣2|=2,得出(b ﹣a )|2a ﹣1|=4,当EF 在点P 的上方时,(b ﹣a )(2a ﹣1)=4,与a +b =1联立得:,此方程组无解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +b =1联立得:,解得:,或;分别代入点E (a ,2a +1)、F (b ,﹣2b +3)即可.【详解】解:(1)∵A (﹣3,0),点C 在y 轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245z x-=.∵x,y,z均为正整数,346-24z≥0,即0<z≤14∴z只能取14,9和4.①当z为14时,346242,228.44 5zx y z x y z-====++=。

人教版七年级第二学期5月份 质量检测数学试卷含答案

人教版七年级第二学期5月份 质量检测数学试卷含答案

人教版七年级第二学期5月份 质量检测数学试卷含答案一、选择题1.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-2.下列各方程中,是二元一次方程的是( ) A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy3.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m的值为( ) A .52B .32C .12D .14.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩5.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩ 6.二元一次方程2x+3y=15的正整数解的个数是( ) A .1个B .2个C .3个D .4个7.在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( )A .1B .-3C .3D .48.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)9.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 2 10.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2二、填空题11.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .15.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒16.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.18.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________. 19.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 23.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A 型电脑的进货量不少于14台,B 型电的进货量不少于A 型电脑的2倍,那么该商店有几种进货方案?该商场购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.24.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?25.已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),a、b、c都为实数,并且满足3b-5c=-2a-18,4b-c=3a+10(1) 请直接用含a的代数式表示b和c(2) 当实数a变化时,判断△ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且S△PAB>S△PBC,求实数a的取值范围.26.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨部分b0.80超过30吨的部分 6.000.80【参考答案】***试卷处理标记,请不要删除一、选择题1.C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.2.B解析:B 【解析】根据二元一次方程的定义对四个选项进行逐一分析. 解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .3.A解析:A 【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可. 【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②,①+②2⨯得:510x =, 解得:2x =, 把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.4.A解析:A利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-, 故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.5.B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键.6.B解析:B【详解】解:2x+3y=15,解得:x=3152y-+,当y=1时,x=6;当y=3时,x=3,则方程的正整数解有2对.故选:B7.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.8.A解析:A【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题.【详解】依题意列出前面几个n A的坐标如下表对于n A,当n除以4余1时,n A的纵坐标为0,横坐标32n+;当n除以4余2时,n A的纵坐标为n2,横坐标1;当n除以4余3时,n A的纵坐标为0,横坐标32n--;当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.9.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2. 故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.10.C解析:C 【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案. 【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:1a b =⎧⎨=⎩.故选:C . 【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.二、填空题 11.51 【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积. 【详解】解:设小长方形的长、宽分别为、,依题意得: ,即, 解得:, , ,解析:51 【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y , 依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩,818S∴=⨯=小长方形,729DC DE EC ∴=+=+=, 11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51. 【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.12.±3 【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求. 【详解】解:把代入方程组得:, ①×2-②得:5m=15, 解得:m=3,把m=3代入①得:n=2, 则m+3n=3+6=9解析:±3 【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:64332 2532y x y xx y-+-⎧⎨+⎩==解得:x=128 43cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:76843【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.15.98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE列出三元一次方程组,再利用加减消元法即可求得y的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.16.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为.解析:28 y x xy=⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.17.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.18.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x z z y x y z -+=⎧⎪-+=⎨⎪+-+=⎩,解得135x y z =⎧⎪=⎨⎪=⎩, 所以x+y+z =9.19.【解析】试题分析:根据x 、y 互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.20.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题21.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.22.(1)19a ;(2)315;(3)23. 【解析】【分析】(1)首先根据题意,求得S △A1BC =2S △ABC ,同理可求得S △A1B1C =2S △A1BC ,依此得到S △A1B1C1=19S △ABC ,则可求得面积S 1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解.【详解】解:(1)连接A 1C , ∵B 1C=2BC ,A 1B=2AB ,∴122BCA ABC SS a ==,122BCA ABC S S a ==,1112A B C BCA S S =, ∴1144A B C ABC SS a ==, ∴1166A B B ABC S S a ==,同理可得出:11116A AC CB C S S a ==,∴S 1=6a+6a+6a+a=19a ;故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCES PE CG ∆==, ∴1·7022135·2BPCPCE BP CG S S PE CG ∆∆===. ∴2BP EP=,即2BP EP =. 同理,APB APE S BP S PE∆∆=. 2APB APE S S ∆∆∴=.842x y ∴+=.①8440APB BPD S AP x S PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩, 315ABC S ∆∴=.(3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==.PCE S m n ∆∴=-.BPC APB APE PCE S S BP S S PE∆∆∆∆==, ∴2m m n m n=-. 2()m m n mn ∴-=,0m ≠,22m n n ∴-=.∴23nm=.∴23APEBPFSS∆∆=.【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.23.(1) 每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)该商店有三种进货方案;商店购进14台A型电脑和36台B型电脑的销售利润最大;(3)见解析【解析】【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;(2)根据A型电脑的进货量不少于14台,B型电脑的进货量不超过A型电脑的2倍,列不等式组求出x的取值范围,再根据总利润等于两种电脑的利润之和列式整理即可得解;然后根据一次函数的增减性求出利润的最大值即可.(3)结合(2)找出y关于x的函数关系式,利用一次函数的性质分m-50<0、m-50=0和m-50>0来解决最值问题.【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得:10204000 20103500a ba b+=⎧⎨+=⎩,解得:100150 ab=⎧⎨=⎩.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)设购进A型电脑x台,则购进B型电脑(50-x)台,销售总利润为y元根据题意得,y=100x+150(50-x),即:y=-50x+7500;根据题意得,14 502xx x≥⎧⎨-≥⎩,解得:2 14163x≤≤,∵x为正整数,∴x=14,15,16;∴该商店有三种进货方案;∵y=-50x+7500,∴y 随x 的增大而减小,∴当x=14时,y 取最大值,则50-x=36,此时最大利润是y=-50×14+7500=6800.即商店购进14台A 型电脑和36台B 型电脑的销售利润最大,最大利润是6800元. (3)由已知得:y=(100+m )x+150(50-x )=(m-50)x+7500,当0<m <50时,m-50<0,则购进14台A 型电脑和36台B 型电脑的销售利润最大;当m=50时,m-50=0,则A 、B 两种电脑随意搭配(14≤A 型电脑数≤16),销售利润一样多;当50<m 100<时,m-50>0,则购进16台A 型电脑和34台B 型电脑的销售利润最大【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.24.(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2) ①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【分析】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m 人,招聘新工人n 名,根据一年的安装任务列出方程整理用m 表示出n ,然后根据人数m 是整数讨论求解即可.【详解】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车, 根据题意得:282314x y x y +=⎧⎨+=⎩, 解之得42x y =⎧⎨=⎩. 答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车; (2)设抽调熟练工m 人,招聘新工人n 名,由题意得:12(4m+2n )=240,整理得,n=10-2m ,∵0<n <10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点睛】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.25.(1)46b ac a=+⎧⎨=+⎩;(2)S△ABC=13为定值;(3)542a-≤<-【分析】(1)由4b-c=3a+10可知c=4b-3a-10,把c代入3b-5c=-2a-18可用a 表示出b,同理可表示c;(2)如图构造梯形,根据S△ABC=S梯形ADEC-S△ADB-S△CBE可证明S△ABC是定值,所以△ABC的面积无变化;(3)作AD⊥x轴,BE⊥x轴,CF⊥x轴,根据S△PAB>S△PBC可知AP>PC,进而可得S△OAP>S△OPC,所以S△OAB>S△OBC,利用梯形和三角形的面积差可表示出△OAB和△OBC的面积,即可列出不等式,由AB与y轴相交可得-4≤a≤0,结合前面的不等式求出公共解集即可求出a的取值范围.【详解】(1)∵4b-c=3a+10,∴c=4b-3a-10,∵3b-5c=-2a-18,∴3b-5(4b-3a-10)=-2a-18,∴b=a+4,同理可得:c=a+6,∴46b ac a=+⎧⎨=+⎩(2) 构造如图所示的梯形:S△ABC=12⨯(3+5)⨯6-12⨯3⨯4-12⨯2⨯5=13为定值,(3) 线段AB与y轴相交,故40aa≤⎧⎨+≥⎩,∴-4≤a≤0,∵S△PAB>S△PBC,∴AP>PC,∴S△OAP>S△OPC,∴S△OAB>S△OBC,作AD⊥x轴,BE⊥x轴,CF⊥x轴,S△OAB=12(3+6)4a a⎡⎤++⎣⎦ -124a+⨯6-12⨯6a⨯=6-32a,S△OBC=12⨯(1+6)(64a a+-+)+124a+⨯6-126a+=52a+16,∴6-32a>52a+16,解得:a<-5 2 ,∴5 4a2 -≤<-【点睛】本题考查解二元一次方程组,利用代入消元法可减少未知数的个数,从而实现消元;本题也考查了梯形与三角形的面积公式,熟练掌握相关知识是解题关键.26.(1)a=2.2,b=4.2;(2)小王家六月份最多能用水40吨【解析】分析:(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可;(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可.详解:(1)由题意,得解得(2)当用水量为30吨时,水费为17×(2.2+0.8)+(30-17)×(4.2+0.8)=116(元),9200×2%=184(元),∵116<184,∴小王家六月份的用水量可以超过30吨.设小王家六月份的用水量为x吨,则17×3+13×5+6.8(x-30)≤184,解得x≤40.∴小王家六月份最多能用水40吨.点睛:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.。

江苏省无锡市江阴市青阳初级中学2020-2021学年七年级下学期5月月考数学试卷

江苏省无锡市江阴市青阳初级中学2020-2021学年七年级下学期5月月考数学试卷

2020-2021学年第二学期初一数学月检测卷(2021.5)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各计算中,正确的是()A.a3÷a3=a B.x3+x3=x6C.m3·m3 =m6D.(b3)3=b62.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a>b D.﹣2a>﹣2b3.下列等式从左到右的变形中,是因式分解的是()A.x2-9+6x=(x+3)(x-3)+6x B.x2-8x+16=(x-4)2C.(x+5)(x-2)=x2+3x-10 D.6ab=2a·3b4.不等式组13xx≤⎧⎨>-⎩的解集在数轴上表示正确的是().5.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.70°B.68°C.60°D.72°6.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF的度数为()A.60°B. 65°C. 70°D.15°第5题第6题第8题第10题7. 在关于x、y的二元一次方程组321x y ax y+=⎧⎨-=⎩中,若232x y+=,则a的值为()A.1B. -3C. 3D.48.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=68°,则∠AED的度数是()A.88°B.92°C.98°D.112°9.已知(x+3)2+myx++3=0中,y为负数,则m的取值范围是()A.m>9 B.m<9 C.m>-9 D.m<-910.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),观察图案及以下关系式:①x-y=n;②xy=m2-n24;③x2-y2=mn;④x2+y2=m2-n22.其中正确的关系式的个数有()A.1个B.2个C.3个D.4个A B C D二、填空题(本大题共8小题,每空3分,共24分) 11.2019新型冠状病毒(2019)nCoV -,2020年1月12日被世命名.科学家发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 米;12.若三角形的两边长为2和5,则第三边m 的取值范围为.13.若a m =3,a m +n =9,则a n = .14. 已知{21x y ==是关于x 、y 的方程230x y k -+=的解,则k =______.15.若多项式()x m +与()1x +乘积的结果中不含x 的一次项,则m =______.16.当a 时,不等式(a —3)x >1的解集是x <31-a 17.如图,已知AB ∥CD ,则∠A=110°,∠D=25°,则∠E =.第17题18. 如图,在△ABC 中,∠ACB =90°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 分别沿CD ,DE 折叠,点A 、B 恰好重合于点A '处.若∠A 'CA =18°,则∠AED = °.三、解答题19.(本题8分)计算:(1)203211()()(5)(5)219--++-÷- (2) (-a 3)2-a 2•a 4+(2a 4)2÷a 220.把下列各式分解因式:(本题8分)(1) (2)x 2(x ﹣2)+4(2﹣x )21.(本题12分)解方程组或不等式组或化简求值 (1)解方程组104x-y 5x y y --=⎧⎨-=⎩()(2)解不等式组()2233123x x x x ⎧-≤-⎪⎨+<⎪⎩(3)()()()2211a a a +++-,其中34a =-;3222x x y xy -+第18题。

人教版七年级第二学期5月份 质量检测数学试题含答案

人教版七年级第二学期5月份 质量检测数学试题含答案

人教版七年级第二学期5月份 质量检测数学试题含答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( ) A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x yx y+=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩3.已知方程组2x y x y a-=⎧⎨+=⎩,且5x y =,则a 等于( )A .5B .4C .3D .24.已知方程组211x y x y +=⎧⎨-=-⎩,则x +2y 的值为( )A .2B .1C .-2D .35.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有( ) A .2B .3C .4D .56.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩7.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .48.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .699.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad ,则b c +的值为( )A .3-B .2-C .1-D .010.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.13.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.14.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.15.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.16.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.17.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费. 22.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 23.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆) 5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)24.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元. (1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.25.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量? 26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】分析:方程组利用加减消元法求出解即可. 详解:22x y x y +⎧⎨--⎩=①=②,①+②得:2x=0, 解得:x=0,把x=0代入①得:y=2, 则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.A解析:A 【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可. 【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-, 如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.C解析:C 【分析】把x=5y 代入到方程组中,得到关于y 、a 的二元一次方程组,解方程组即可. 【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a -=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.4.A解析:A 【分析】方程组中两方程相减即可求出x+2y 的值. 【详解】211x y x y +=⎧⎨-=-⎩①② ①-②得:x+2y=2, 故选A . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.B解析:B 【分析】设甲获胜x 局,平y 局,则负()9x y --局,根据题意得出关于x 和y 的二元一次方程,由x ,y ,()9x y --均为整数即可得出结论. 【详解】解:设甲获胜x 局,平y 局,则负()9x y --局, 根据题意可得:412x y +=,即124y x =-, 当1x =时,8y =,90x y --=; 当2x =时,4y =,93x y --=; 当3x =时,0y =,96x y --=; 当4x =时,4y =-(舍);综上所述,获胜的场数可能为1,2,3,共3种可能, 故选:B . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.A解析:A 【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可. 【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩.故选:A . 【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.7.D解析:D 【分析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值. 【详解】 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx-9中,得:-1=2k-9,解得:k=4. 故选D. 【点睛】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可. 【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1, 代入b+c=-1. 故选:C . 【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.10.C解析:C 【分析】运用加减消元法求解即可. 【详解】 解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3, 故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.13.19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az ,整理得:4z=3y+6x ①,当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz,整理得:z=3x ②,由①②可得:y=2x , ∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 14.3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积x 、贝母已种植面积x 、黄连已种植面积x ,依题意列出方程组,用y 的代数解析:3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x 依题意可得,5919()121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由①得32x y =③ 将③代入②得38z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202y z x y y y ==++ 故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键15.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.16.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】 解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.18.8【解析】试题分析:设小矩形的长为x,宽为y,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.解析:8【解析】试题分析:设小矩形的长为x,宽为y,则2 5.7{2 4.5x yx y+=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.19.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)19a;(2)315;(3)2 3.【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC ,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC的面积;(3)设S△BPF=m,S△APE=n,依题意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出23APEBPFSS∆∆=,从而求解.【详解】解:(1)连接A1C,∵B1C=2BC,A1B=2AB,∴122BCA ABCS S a==,122BCA ABCS S a==,1112A B C BCAS S=,∴1144A B C ABCS S a==,∴1166A B B ABCS S a==,同理可得出:11116A AC CB CS S a==,∴S1=6a+6a+6a+a=19a;故答案为:19a;(2)过点C作CG BE⊥于点G,设BPFS x∆=,APES y∆=,1·702BPCS BP CG∆==;1·352PCES PE CG∆==,∴1·7022135·2BPCPCEBP CGSS PE CG∆∆===.∴2BPEP=,即2BP EP=.同理,APBAPES BPS PE∆∆=.2APB APES S∆∆∴=.842x y∴+=.①8440APBBPDS AP xS PD∆∆+==,3530APCPCDS AP yS PD∆∆+==,∴84354030x y++=.②由①②,得5670xy=⎧⎨=⎩,315ABCS∆∴=.(3)设BPFS m∆=,APES n∆=,如图所示.依题意,得APF APCS S m∆∆==,BPC BPFS S m∆∆==.PCES m n∆∴=-.BPCAPBAPE PCESS BPS S PE∆∆∆∆==,∴2m mn m n=-.2()m m n mn∴-=,m≠,22m n n∴-=.∴23nm=.∴23APEBPFSS∆∆=.【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.23.(1)甲8辆,乙10辆;(2)甲2辆,乙10辆,丙3辆或甲4辆,乙5辆,丙6辆.【解析】【分析】(1)设需甲车x辆,乙车y辆列出方程组即可.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,列出等式.【详解】(1)设需要甲种车型x辆,乙种车型y辆,根据题意得:解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,由题意得:5a+8b+10(15-a-b)=120,化简得5a+2b=30,即a=6-b,∵a、b、15-a-b均为正整数,∴b只能等于5或10,当b=5时,a=4,15-a-b=6,当b=10时,a=2,15-a-b=3∴甲车2辆,乙车10辆,丙车3辆或甲4辆,乙5辆,丙6辆.【点睛】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.24.(1)甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】(1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=, 解得2050x y ⎧⎨⎩== . 答:甲内存卡每个20元,乙内存卡每个50元(2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10﹣a )个,则 ()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩, 解得5≤a≤623, 根据题意,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低(3)解:设老板一上午卖了c 个甲内存卡,d 个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c 、d 都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;。

河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)

河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)

2024-2025学年上学期阶段性评价卷一七年级数学(华师版)注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项、其中只有一个是正确的。

1.表示( )A .2024的倒数B.的相反数 C .的绝对值D .的倒数2.数轴上表示数a 的点的位置如图所示,则a 可以是()A .B .C .0D .33.下列有关0的说法中,不正确的是( )A .0是整数B .0既不是正数,也不是负数C .0乘任何有理数仍得0D .0除以任何有理数仍得04.下表是12月份河南省其中4个市某一天的平均气温,则这天平均气温最低的是()地区郑州市安阳市焦作市洛阳市平均气温/2A .郑州市B .安阳市C .焦作市D .洛阳市5.将算式改写成省略加号和括号的形式是( )A .B .C .D .6.下面各组大小关系中,正确的是( )A .B .C .D .7.下列各式中,与的运算结果相同的是( )A . B . C . D . 8.定义一种新运算*,已知,则的结果为( )A .B .C .0D .9.如图,圆的周长为3个单位长度,该圆上的3个点将圆的周长平均分成3份,在3个点处分别标上1,2,3,先让圆周上表示数字1的点与数轴上表示0的点重台,再将圆沿着数轴向右滚动,则数轴上表示2024的点2024-120242024-12024-4-2-C ︒1-2-2(1)(3)(4)--+--+2134-+-2134+--2134++-2134+-+302>-332288⎛⎫--=-- ⎪⎝⎭113333⎛⎫⎛⎫÷-<⨯- ⎪ ⎪⎝⎭⎝⎭(4)3|43|--<-+48577÷÷48577⎛⎫÷÷⎪⎝⎭48577⎛⎫÷⨯⎪⎝⎭84577⎛⎫÷÷⎪⎝⎭78547⨯⨯1*21211,2*(3)2(3)28=⨯-=-=⨯--=-1*(1)2-1-12-12与圆周上重合的点上标的数字为( )A .1B .2C .3D .无法确定10.在一条可以折叠的数轴上,点A ,B 表示的数分别是,5,如图,以点C 为折点,将此数轴向右对折,使A ,B 之间的距离为1,则点C 表示的数是()A .0B .C .或D .或二、填空题(每小题3分,共15分)11.请写出一个使的a 值:__________.12.2024年巴黎奥运会结束后,部分运动员组成代表团访问香港和澳门,弘扬体育强国精神,激励港澳同胞的爱国热情.大帽山是香港最高的山峰,海拔为,记作,螺洲门是香港海拔最低点,海拔为海平面以下,记作__________.13.数轴上与点A 距离3个单位长度的点表示的数是1,则点A 表示的数是__________.14.小华在计算时(代表一个有理数),误将“”看成“”,按照正确的运算顺序计算,结果为,则的正确结果是__________.15.一只蜗牛从树根沿竖直方向往上爬,每天白天向上爬行,晚上又下滑,这只蜗牛要爬到距离树根的树洞处,需要__________天.(填整数)三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1) (2)17.(8分)把下列各数填入相应的大括号里.正整数集:{ …}负数集:{ …}分数集:{ …}非负有理数集:{ …}18.(9分)阅读下面题目的运算过程,并解答问题.计算:10-2-1-2-2-3-a a >958m 958m +66m 2(30)5-÷⨯☆☆÷+26-2(30)5-÷⨯☆24cm 10cm 1m 233136135454⎛⎫⎛⎫⎛⎫⎛⎫-++-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭157(24)368⎛⎫-⨯+- ⎪⎝⎭354,,0,10,1.090909,|3|,1,(1)27------ 4(8)25625(6)10253⎛⎫-⨯-⨯+-⨯-+⨯ ⎪⎝⎭解:原式①②③④.⑤(1)第①步运用的运算律是____________________;第②步运用的运算律是____________________;(2)上述计算过程,从第__________步出现错误,本题运算的正确结果是__________;(3)运用上述解法,计算:.19.(9分)(1)如图,在数轴上画出表示下列各数的点:(2)如图,已知A ,B ,C ,D 是数轴上的点.①若点A 和点C 表示的数互为相反数,则点B 表示的数为__________;②如果将点D 向右移动2个单位长度,再向左移动5个单位长度,终点表示的数是,求原来点D 表示的数.20.(9分)规定表示不超过有理数a 的最大整数,例如:.(1)填空:__________,__________;(2)比大小:__________;(填“>”“<”或“=”)(3)计算:.21.(10分)学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,例如:.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式(不算出结果):4(8)256251025(6)3⎛⎫=-⨯-⨯+⨯+-⨯- ⎪⎝⎭4(8610)25(6)3⎛⎫=--+⨯+-⨯- ⎪⎝⎭442563=⨯-⨯1008=-92=11(170)3(2)0.2524.5525%42⎛⎫⎛⎫-⨯--⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭1,(2),2.5,0,|4|2--+--1-[]a [1.2]1,[ 1.8]2=-=-[3.7]=94⎡⎤-=⎢⎥⎣⎦[0.8][ 4.2]+-[0.8 4.2]-73[3.14π][π 3.14]22⎡⎤---+-⨯⎢⎥⎣⎦|23|23,|23|32,|32|32,|23|23+=+-=--=---=+①__________;②__________;③__________;(2)用合理的方法计算:.22.(10分)奥运pin (徽章)是奥运会期间由主办方、参赛代表队等推出的一种纪念品,奥运pin 的交换,不仅是一种收藏行为,更是一种跨越语言障碍的文化交流,也传递了奥林匹克精神中的团结与相互理解.巴黎奥运会期间,中国的熊猫pin 因其可爱的形象和精美的工艺深受大家的喜爱.某工厂从制作的熊猫pin 中抽取30枚样品,检测每枚的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)30枚样品中,质量最大的一枚比质量最小的一枚多__________g ;(2)与标准质量相比,30枚样品总计超过或不足的质量为多少克?(3)①若允许有的误差,30枚样品中不合格的有__________枚;②海枚熊猫pin 的制作成本是12元,工厂以20元的价格批发给某代理商800枚(不合格产品占),不合格产品需要返厂重新加工(重新加工费用忽略不计),且工厂需将不合格产品的进价费用返还代理商并承担每枚0.5元的返还运费,工厂在这次销售中的利润是多少?(利润=总价-成本)与标准质量的差值/g0123枚数135964223.(10分)观察下列等式,并解答问题.第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)按以上规律填空:①第5个等式:____________________;②第50个等式:____________________;(2)计算:.213-=| 5.44|-+=|3π|--=237037011999399322-+---2g ±8%3-2-1-211133=-⨯2113535=-⨯2115757=-⨯2117979=-⨯2222213355779399401+++++⨯⨯⨯⨯⨯2024-2025学年上学期阶段性评价卷一七年级数学(华师版)参考答案一、选择题(每小题3分,共30分)1.D 2.A 3.D 4.C 5.B 6.C 7.B 8.A 9.C 10.D二、填空题(每小题3分,共15分)11.(答案不唯一)12.13.或414. 15.7三、解答题(本大题共8个小题,共75分)16.解:(1)原式2分3分5分(2)原式2分.5分17.解:正整数集:10,; 2分负数集:; 4分分数集:;6分非负有理数集:.8分18.解:(1)加法交换律 乘法分配律 2分(2)③ 4分(3)原式 5分7分9分19.解:(1)画图如下所示:1-66m -2-65-233136135454=-+-+233131635544⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭510=-+5=157(24)(24)(24)368=-⨯+-⨯--⨯82021=--+7=-(1)--54,|3|,17----35,1.090909,127- 3,0,10,1.090909,(1)2-- 92-11(170)0.2524.5525%3(2)42⎛⎫⎛⎫=-⨯-+⨯--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭11117024.5 5.532444=⨯+⨯+⨯+⨯1(17024.5 5.5)324=⨯+++⨯1200324=⨯+⨯56=5分(2)① 7分②.所以原来点D 表示的数是2. 9分20.解:(1)3 2分(2)<4分(3)因为,所以. 6分原式9分21.解:(1)①2分② 4分③ 6分(2)原式 8分10分22.解:(1)62分(2). 4分因为,所以30枚样品总计超过的质量为. 5分(3)①36分②由题意得,不合格产品有(枚),(元).答:工厂在这次销售中的利润是5088元.10分23.解:(1)① 2分② 4分(2)原式6分05-.(1)522-+-=3-0 3.14π1,1π 3.140>->->->[3.14π]1,[π 3.14]0-=--=310(4)2=--+-⨯7=-213-5.44-3π+370213701993929932=-+--29=-(3)1(2)3(1)5091624326(g)-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=60>6g 8008%64⨯=.800(18%)2080012640.55088⨯-⨯-⨯-⨯=211911911=-⨯2119910199101=-⨯11111111113355779399401⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++- ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9分. 10分11111111113355779399401=-+-+-+-++-11401=-400401=。

七年级质量检测试卷数学

七年级质量检测试卷数学

一、选择题(每题3分,共30分)1. 下列数中,是正数的是()A. -2B. 0C. 1.5D. -0.32. 下列运算正确的是()A. 3 + 4 = 7B. 5 - 2 = 3C. 6 × 2 = 12D. 8 ÷ 4 = 23. 在数轴上,点A表示的数是-5,点B表示的数是3,那么点A和点B之间的距离是()A. 2B. 8C. 10D. 54. 下列各数中,有理数是()A. √9B. √16C. √-4D. √-95. 下列代数式中,同类项是()A. 2x + 3yB. 4a - 2bC. 5x^2 + 3xD. 2x^2 + 4xy6. 已知a = 2,b = -3,那么a - b的值是()A. 5B. -5C. 1D. -17. 下列图形中,不是平面图形的是()A. 矩形B. 三角形C. 圆D. 空间直角坐标系8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x9. 下列三角形中,是等边三角形的是()A. 底边长为3,腰长为4的三角形B. 底边长为5,腰长为5的三角形C. 底边长为6,腰长为7的三角形D. 底边长为8,腰长为9的三角形10. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x + 2 = 0D. 4x - 6 = 2二、填空题(每题5分,共20分)11. 有理数a的相反数是______。

12. 若x = 2,那么2x - 3的值是______。

13. 在数轴上,点P表示的数是-4,那么点P关于原点对称的点表示的数是______。

14. 下列各数中,绝对值最小的是______。

15. 若一个长方形的长是6cm,宽是3cm,那么它的面积是______cm^2。

三、解答题(每题10分,共40分)16. (1)计算:-5 + 3 - 2 × 4。

湖北省荆州市2023-2024学年七年级下学期5月月考数学试卷(含答案)

湖北省荆州市2023-2024学年七年级下学期5月月考数学试卷(含答案)

2024年5月质量评价七年级数学试卷(本试题卷共4页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.下列方程属于二元一次方程的是()A. B. C. D.2.x与3的差是负数,用不等式表示为()A. B. C. D.3.我们知道魔方可以看作是一个正方体,如图,有一个体积为的魔方,则这个魔方的棱长为()cm.A.3B.4C.5D.64.已知是二元一次方程的解,则a的值是()A.3B.0C.D.25.一把直尺和一个含30°,60°角的三角板如图所示摆放,直尺一边与三角板的两条直角边分别交于F,A两点,另一边与三角板的两条直角边分别交于D,E两点,若,则的度数为()A.15°B.25°C.35°D.45°6.已知点在y轴上,则m的值为()A.3B.C.D.27.如图,在三角形ABC中,点D,E,F分别在边BC,AB,AC上,下列条件能判定的是()A. B. C. D.8.《九章算术》中记载“今有共买羊,人出五,不足三十五;人出七,余五,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差35钱;若每人出7钱,多余5钱,问合伙人数、羊价各是多少?此问题中羊价为()A.110钱B.80钱C.125钱D.135钱9.在平面直角坐标系中,将点A向左平移3个单位长度,再向上平移2个单位长度后与点重合,则点A的坐标是()A. B. C. D.10.定义:如果一元一次不等式①的解都是一元一次不等式②的解,那么称一元一次不等式①是一元一次不等式②的蕴含不等式.例如:不等式的解都是不等式的解,则是的蕴含不等式.若是的蕴含不等式,则m的取值范围是()A. B. C. D.二、填空题(共5题,每题3分,共15分)11.已知点,则点P到x轴的距离为______.12.二元一次方程的正整数解为______(写出一个即可)13.的算术平方根是______.14.已知关于x,y的方程组的解满足,则______.15.如图是一款长臂折叠LED护眼灯示意图,EF与桌面MN垂直,当发光的灯管AB恰好与桌面MN平行时,若,,则的度数为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)计算:17.(6分)解方程组:(1)(2)18.(6分)解不等式,并在数轴上表示不等式的解集.19、(8分)在平面直角坐标系中,三角形ABC三个顶点的位置如图(点A,B,C均在格点上,每个小正方形的边长均为1)(1)将三角形ABC向下平移3个单位长度,再向右平移5个单位长度,请画出平移后的三角形;(2)直接写出点,,的坐标;(3)求三角形ABC的面积.20.(8分)如图,在四边形ABCD中.点E为AB延长线上一点,点F为CD延长线上一点,连接EF,交BC 于点G,交AD于点H,若,,求证:.21.(8分)解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求的平方根.22.(10分)快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件,快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为120件和30件,则他平均每天的提成是240元;若平均每天的送件数和揽件数分别为140件和25件,则他平均每天的提成是260元.(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元?(2)已知快递员小李一周内平均每天的送件数和揽件数共计180件,如果他平均每天的提成不低于295元,求他平均每天的送件数最多是多少件?23.(11分)阅读材料:善于思考的小聪同学在解方程组时,采用了一种“整体换元”的解法.解:把,看成一个整体,设,,原方程组可化为,解得,∴,∴原方程组的解为.(1)若方程组的解是,试求方程组的解:(2)仿照小聪同学的方法,用“整体换元”法解方程组.24.(12分)如图,在平面直角坐标系中,点A和点C的坐标分别为和,且a,c满足,四边形OABC是长方形,点P从点A出发,以每秒2个单位长度的速度沿着长方形ABCO移动一周(即沿着的路线移动),设运动时间为t秒.(1)直接写出点B的坐标;(2)当时,求出点P的坐标;(3)在移动过程中,若直线AP将长方形ABCO的面积分为两部分,求出t的值及点P的坐标.2024年5月质量评价七年级数学试卷参考答案与评分说明(请各位教师在阅卷前先做题审答案)一、选择题1.C2.B3.C4.A5.D6.B7.C8.D9.A 10.B二、填空题11.4 12.(或,,答案不唯一,符合题意即可,没有用大括号不扣分)13.14.415.115三、解答题(其他解法,正确即可。

陕西省咸阳市实验中学2024-2025学年七年级上学期阶段性检测数学试卷(一)(含答案)

陕西省咸阳市实验中学2024-2025学年七年级上学期阶段性检测数学试卷(一)(含答案)

试卷类型:A咸阳市实验中学2024~2025学年度第一学期阶段性检测(一)七年级数学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题)。

全卷共4页,总分120分。

考试时间120分钟。

2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名、班级和准考证号,同时用铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )。

3.请在答题卡上各题的指定区域内作答,否则作答无效。

4.作图时,先用铅笔作图,再用规定签字笔描黑。

5.考试结束,本试卷和答题卡一并交回。

第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.在数轴上表示的点与原点的距离为( )A.2B. C. D.02.下列各组数中,互为相反数的一组是( )A.5和 B.2和C.和D.和3.计算的结果是( )A.1B. C.5 D.4.有三个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置,请你判断数字4对面的数字是()A.6B.3C.2D.15.有理数,在数轴上的对应点的位置如图所示,则下列各式成立的是()A. B. C. D.6.下列各式计算正确的是( )A. B. C. D.7.将若干个相同的小正方体堆成如图所示的图形,若每个小正方体的棱长为,则这个图形的表面积为()2B 2-2-2±5-123-13-3-13()()32---1-5-a b 1a >-a b>-1b -<a b<33--=()33-+=33-=-()33--=aA. B. C. D.8.如图,数轴上、两点分别对应实数、,则下列结论正确的是()A.B. C. D.第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9.比较大小:______.(填“>”,“<”,“=”号)10.若比平均分高5分记作+5分,那么分表示______.11.在图中剪去1个小正方形,使得到的图形经过折叠能够围成一个正方体,则要剪去的正方形对应的数字是______.12.如图是某几何体从不同方向看所得图形,根据图中数据,求得该几何体的侧面积为______.(结果保留)13.,是绝对值最小的数,是最大的负整数,则______.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)请把下列各数填入相应的集合中:,,5.2,0,,,,2024,,整数集合:{ …};负分数集合:{ …}.15.(10分)计算下列各题:(1);(2);230a 240a 250a 260a A B a b 0a b +>0a b +<0a b ->0a b ->34-45-2-π5a =b c a b c +-=2-12-2311653-0.3-()3--()()1111---()()3227-++(3);(4).16.(5分)一个几何体是由大小相同的小立方块搭成,其中小正方形上的数字表示在该位置上的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.17.(5分)若,求的值.18.(5分)如图,用经过、、三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为,棱数为,求的值.19.(6分)若,互为相反数,,,互为倒数,求的值.20.(6分)请画出数轴,并在数轴上标出下列各数:0.5,,,,.并把它们用“>”连接起来.21.(6分)下表列出了国外几个城市与北京的时差.城市纽约巴黎东京芝加哥时差/h(1)如果现在北京的时间是17:00,那么现在的东京时间是几点?(2)小荣想在北京时间9:00给在巴黎的姑妈打电话,你认为合适吗?请说明理由;(3)王老师从北京乘坐早晨7:00的航班经过约到达纽约,那么王老师到达纽约时当地时间大约是几点?22.(6分)如图是一张铁片.(单位:米)(1)计算这张铁片的面积;(2)这张铁片能否做成一个无盖长方体盒子?若能,请计算它的体积;若不能,请说明理由.23.(6分)设表示取的整数部分,例如:,.()()()733510+-++-+-()()67128510⎛⎫---+-- ⎪⎝⎭202320240x y -++=x y +A B C m n m n +a b 5x =c d ()a b cd x --+-4-1132.5- 1.5-–137-1+–1420h []a a []2.32=[]55=(1)求的值;(2)令,求.24.(6分)近几年,全球的新能源汽车发展迅猛,尤其对于我国来说,新能源汽车产销量都大幅度增加.小明家新换了一辆新能源纯电汽车,他连续7天记录了每天行驶的路程(如表).以为标准,多于的记为“+”,不足的记为“”,刚好的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程+8+2+15(1)请求出小明家的新能源汽车这7天一共行驶了多少千米?(2)已知汽油车每行驶需用汽油5.5升,汽油价为8.2元/升,而新能源汽车每行驶耗电量为15度,每度电为0.56元,小明家换成新能源汽车后这7天的行驶费用比原来节省多少钱?25.(7分)有理数,,在数轴上的位置如图所示,且表示数的点、数的点与原点的距离相等.(1)用“>”,“<”或“=”填空:______0,______0,______0;(2)求的值.26.(8分)如图1,、两点在数轴上对应的数分别为和6.(1)直接写出、两点之间的距离______;(2)若在数轴上存在一点,使得到的距离是到的距离的3倍,求点表示的数;(3)如图2,现有动点、,若点从点出发,以每秒4个单位长度的速度沿数轴向右运动,同时点从点出发,以每秒2个单位长度的速度沿数轴向左运动,当点到达原点后立即以每秒3个单位长度的速度沿数轴向右运动,求:当到的距离是到的距离的4倍时的运动时间的值.图1图2咸阳市实验中学2024-2025学年第一学期阶段性检测(一)答案一、选择题(每小题3分,共24分)题号12345678答案AABBCDDC[][]12 3.675⎡⎤--+⎢⎥⎣⎦{}[]a a a =-[]312 2.4644⎧⎫⎧⎫-+⎨⎬⎨⎬⎩⎭⎩⎭40km 40km 40km -40km ()km 6-5-–511+100km 100km a b c a b a b +a c -b c -11b a -+-A B 16-A B P P B A P P Q P A Q B Q O P O Q O t二、填空题(每小题3分,共15分)9.10.比平均分低2分11.212.13.6或三、解答题(共81分)14.(5分)整数集合:负分数集合:15.(10分)(1,2小题各2分;3,4两小题各3分)(1)0;(2);(3);(4)16、(5分)(从正面看为3分,从左面看为2分)解:如图所示:17、(5分)【详解】解:由题意,得:,,,..18、(5分)【详解】解:由图可知,这个多面体的面数是7,即.又因为正方体有12条棱,被截去了3条棱,截面为三角形,所以增加了3条棱,故棱数不变,即.所以.19、(6分)或6解:由题知:,①当时原式>2π4-(){}2,0,3,2017---⋅⋅⋅15,,0.323⎧⎫---⋅⋅⋅⎨⎬⎩⎭5-4-1192-1-20230x -=20240y +=2023x ∴=2024y =-202320241x y ∴+=-=-19m n +=7m =12n =71219m n +=+=4-0a b +=5x =±1cd =5x =∴a b cd x=++-015=+-4=-②当时原式的值为或620、(6分)【详解】解:如图21、(6分)解:(1)现在的东京是18点(2)不合适,理由如下:当北京市9点时,巴黎是凌晨2点,姑妈正在休息,所以不合适。

人教版七年级数学第二学期5月份 质量检测测试卷含答案

人教版七年级数学第二学期5月份 质量检测测试卷含答案

人教版七年级数学第二学期5月份 质量检测测试卷含答案一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy2.已知|x+y -1|+(x -y+3)2=0,则(x+y)2019的值是( )A .22019B .-1C .1D .-220193.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩5.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .46.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③7.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .698.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-19.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .510.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.13.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.14.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.15.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.16.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.17.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____. 18.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 19.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y qx y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.22.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示);(2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”; (2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.26.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A、B两地的距离可以表示为千米(用含a,b的代数式表示);(2)甲从A到B所用的时间是:小时(用含a,b的代数式表示);乙从B到A所用的时间是:小时(用含a,b的代数式表示).(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.2.C解析:C【分析】由绝对值和平方的非负性可得1030x yx y+-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可.【详解】解:根据题意可得10?30?x yx y+-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2,故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组. 3.A解析:A【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛, ∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.4.C解析:C 【分析】根据题中的等量关系即可列得方程组. 【详解】设木头长为x 尺,绳子长为y 尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺, ∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺, ∴0.5y=x+1, 故选:C . 【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.5.D解析:D 【分析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值. 【详解】 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx-9中,得:-1=2k-9, 解得:k=4. 故选D. 【点睛】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.6.C解析:C 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.7.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.8.A解析:A 【解析】(1)−(2)得:6y=−3a , ∴y=−2a , 代入(1)得:x=2a ,把y=−2a,x=2a 代入方程3x+2y=10, 得:6a −a=10, 即a=2. 故选A.9.C解析:C 【解析】 根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=. 故选:C.10.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.【分析】由题意设已购进京式月饼价格2m,剩余资金为n,根据题意列出方程进行解答即可.【详解】解:设已购进京式月饼价格2m,剩余资金为n,由题意可得:可得:①,解得:n=6m,②,可得:解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.13.7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答. 【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品. 则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.14.824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每解析:824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++∵43120x y +≤∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元).故答案为:824.【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.15.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.16.508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:解得:故取值为2的个数为508个,故答案为:508 解析:508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.17.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x人,人数较多的部门有y人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x≤50,51≤y≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.18.76, 56.【解析】【分析】 逐项代入求值即可解题.【详解】解:将x =32代入x+3y=5得,y=76,将x =32,y=76代入x+2y-z=3得z=56, ∴y=76,解析:, .【解析】【分析】逐项代入求值即可解题.【详解】解:将x =代入x+3y=5得,y=,将x =,y=代入得z=, ∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键. 19.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z 后,得到的二元一次方程组是4 解析:. 【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3, ∴消去未知数z 后,得到的二元一次方程组是. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键. 20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”; (2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10.代入2m =8+n ,得2(a +1)=8﹣10,解得:a =﹣2,所以A 点坐标为(﹣2,﹣4);∵点B (4,b )是“爱心点”,同理可得m =5,n =2b ﹣2,代入2m =8+n ,得:10=8+2b ﹣2,解得:b =2.所以点B 坐标为(4,2).∴A 、B 两点的中点C 坐标为(2442,22-+-+),即(1,﹣1),在第四象限. (3)解关于x ,y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩,得:2x q y q ⎧=-⎪⎨=⎪⎩. ∵点B (x ,y )是“爱心点”,∴m ﹣1﹣q ,22n +=2q , 解得:m﹣q +1,n =4q ﹣2.代入2m =8+n ,得:﹣2q +2=8+4q ﹣2,整理得﹣6q =4.∵p ,q 为有理数,若使p ﹣6q 结果为有理数4,则P =0,所以﹣6q =4,解得:q =﹣23. 所以P =0,q =﹣23. 【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=,∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键23.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭ 【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论.【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】 本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.24.(1)x 1 y 3=⎧⎨=⎩,x 3y 2=⎧⎨=⎩,x 5y 1=⎧⎨=⎩;(2)x 3 y 7=⎧⎨=⎩;(3)63,73,83 【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解; (2)解方程组求得554{5594kx k y +=-=,,根据“好解”的定义得5519k -<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k 的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x 2-(x.y 为正整数). ∵x 0{7x 02->>, 即0<x <7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x 1{y 3==,x 3{y 2==,x 5{y 1==; (2)由x y k 15{x 5y 10k 70++=++=,解得554{5594kx k y +=-=, ∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“,∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.(1)手动型汽车560台,自动型汽车400台;(2)577.6万元.【分析】(1)根据题意设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,根据政策出台前一个月及出台后的第一月销售量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)由题意根据总价=单价×数量结合政府按每台汽车价格的5%给购买汽车的用户补贴,即可求出结论.【详解】解:(1)设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,依题意,得:()()960130%125%1228x y x y +=⎧⎪⎨+++=⎪⎩, 解得:560400x y =⎧⎨=⎩. 答:在政策出台前一个月,销售的手动型汽车560台,自动型汽车400台.(2)[560×(1+30%)×9+400×(1+25%)×10]×5%=577.6(万元).答:政府对这1228台汽车用户共补贴了577.6万元.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.(1)2(a +b );(2)(2+21b a +);(2+21a b +);(3)36. 【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了2a千米,乙已经走了2b千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21ba+小时到达B地,乙还需21ab+小时到达A地,所以甲从A到B所用的时间为(2+21ba+)小时,乙从B到A所用的时间为(2+21ab+)小时.故答案为:(2+21ba+);(2+21ab+).(3)设AB两地的距离为S千米,3小时36分钟=185小时.依题意,得:2()182(11)5S a bS a b=+⎧⎪⎨=+++⎪⎩,令x=a+b,则原方程变形为2182(2)5S xS x=⎧⎪⎨=+⎪⎩,解得:1836 xS=⎧⎨=⎩.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

七年级下学期5月份质量检测数学试卷含答案

七年级下学期5月份质量检测数学试卷含答案

七年级下学期5月份质量检测数学试卷含答案一、选择题1.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x+=C .23y x =-D .32y x =-2.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z z y =⎧⎪⎨+=⎪⎩3.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩4.已知方程组32453x y ax y -=⎧⎨+=⎩的解x 与y 互为相反数,则a 等于( )A .3B .﹣3C .﹣15D .155.二元一次方程组2213x y ax y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3B .13-C .3D .136.已知关于x 、y 的二元一次方程组434ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则+a b 的值是( )A .1B .2C .﹣1D .07.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩8.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)9.若关于x ,y 的二元一次方程组432x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2 B .10 C .2- D .410.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a xb yc a x b y c +-=⎧⎨+-=⎩的解为__________. 13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.15.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题. 16.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____.17.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y 的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.18.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.19.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 20.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 22.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.23.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨? (2)请你帮个体商贩张杰设计共有多少种租车方案? 25.已知12x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解. (1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点作直线,你有什么发现? x0 13y62.已知该厂家生产三种不同型号的电视机,出26.计划拨款9万元从厂家购进50台电视机厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售.在同时购进两种不同型号电视机的方案中,为使销售时获一台丙种电视机可获利250元利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.2.D解析:D【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.【详解】A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,故选:D . 【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.3.A解析:A 【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可. 【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩.故选:A . 【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.4.C解析:C 【分析】x 与y 互为相反数,得y=-x ,带入到方程组32453x y ax y -=⎧⎨+=⎩消去y ,得到关于x 、a 的二元一次方程组即可. 【详解】由x 与y 互为相反数,得y=-x , 代入方程组32453x y ax y -=⎧⎨+=⎩,得32453x x a x x +=⎧⎨-=⎩,解得:315x a =-⎧⎨=-⎩,故选:C . 【点睛】本题主要考查二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.5.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.6.B解析:B 【分析】 将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩即可求出a 与b 的值; 【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得:11a b =⎧⎨=⎩, ∴2a b +=; 故选B . 【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.7.D解析:D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a xb yc a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.8.D解析:D 【解析】 【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则{ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.9.D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②,①-②得:5k y =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.C解析:C 【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案. 【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩.故选:C . 【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.二、填空题 11.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8解析:6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张, 0.8x+1.2y=16,解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时, x=17、14、11、8、5、2, ∴共有6种购买方案, 故答案为:6. 【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.12.【分析】将解方程组变形为,依据题意得,求解即可. 【详解】∵关于,的方程组的解为, 将解方程组变形为, ∴关于,的方程组的解为, 解得, 故答案为:. 【点睛】本题考查了二元一次方程组的解法解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x 盒,装9个苹果的有y 盒,装6个苹果的有z 盒, ∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x 盒,装9个苹果的有y 盒,装6个苹果的有z 盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x <10,0<y≤11,0<z≤15,且x ,y ,z 都是整数,则10x+9y+6z =108,∴x =1089610--y z =3(3632)10--y z , ∵0<x <10,且为整数,∴36﹣3y ﹣2z 是10的倍数,即:36﹣3y ﹣2z =10或20或30,当36﹣3y ﹣2z =10时,y =2623-z , ∵0<y≤11,0<z≤15,且y ,z 都为整数,∴26﹣2z =3或6或9或12或15或18或21或24,∴z =232(舍)或z =10或z =172(舍)或z =7或z =112(舍)或z =4或z =52(舍)或z =1,当z =10时,y =2,x =3,当z =7时,y =4,x =3,当z =4时,y =8,x =3当z =1时,y =8,x =3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.15.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解. 【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 16.76, 56.【解析】【分析】逐项代入求值即可解题.【详解】解:将x =32代入x+3y=5得,y=76,将x =32,y=76代入x+2y-z=3得z=56,∴y=76, 解析:, .【解析】【分析】逐项代入求值即可解题.【详解】解:将x =代入x+3y=5得,y=,将x =,y=代入得z=, ∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键. 17.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】 解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.18.5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.19.14【解析】分析: (1)根据F (n )的定义式,分别将n=241和n=635代入F (n )中,即可求出结论;(2)由s=100x+32、t=150+y 结合F (s )+F (t )=18解析:1454【解析】分析: (1)根据F (n )的定义式,分别将n=241和n=635代入F (n )中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.20.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,再求解45x y =⎧⎨=⎩. 故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.三、解答题21.(1){-6,+3};(2)①y=7,②a=3,点A 表示的数1;(3)-3或-21【分析】(1)直接根据关联数的定义解题即可;(2)①首先根据关联数的定义求出a 的值,然后即可求解;②通过关联数的定义建立方程组求解即可;(3)通过关联数的定义建立关于A ,B 的方程组,然后通过A ,B 的速度的关系找到A ,B 之间的关系,最后通过解方程即可得出答案.【详解】(1)∵点A 表示-3,a =3,336,3233x y ∴=--=-=-+⨯=+,∴点A 的3关联数G (-3,3)={-6,+3};(2)①点A 表示-1,G (A ,a )={-5,y},51a ∴-=--解得4a =,1247y ∴=-+⨯=;②∵G (A ,a )={-2,7},272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},323x A y A =-⎧∴⎨=+⨯⎩,222m B n B =-⎧⎨=+⨯⎩. ∵点A 的速度是点B 速度的3倍,3A B ∴=,13B A ∴=. 6y m -=,()626A B ∴+--=,即16263A A ⎛⎫+--= ⎪⎝⎭, 解得3A =-或21A =-.【点睛】本题主要考查定义新运算,掌握关联数的定义是解题的关键.22.(1)(134)8F =;(2)325361s t =. 【分析】(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解.【详解】解:(1)(134)(314431143)1118F =++÷=;(2)∵s ,t 都是“相异数”,10025s x =+,360t y =+,∴()(2051052010052)1117F s x x x x =+++++÷=+, ()(6301006330610)1119F t y y y y =+++++÷=+.∵()()20F s F t +=,∴791620x y x y +++=++=,∴4x y +=,∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,13x y =⎧⎨=⎩,22x y =⎧⎨=⎩,31x y =⎧⎨=⎩ ∵s 是“相异数”,∴2x ≠,5x ≠.∵t 是“相异数”,∴3y ≠,6y ≠.∴31x y =⎧⎨=⎩是符合条件的解 ∴100325325s =⨯+=,3601361t =+= ∴325361s t =. 【点睛】 本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键.23.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数; 根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)4;(2)见解析.【解析】【分析】(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a 的值;(2)利用(1)中的a 值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】(1)将12x y =⎧⎨=⎩代入2x+y=a ,解得a=4. (2)完成表格如下: x -10 1 2 3 y6 4 2 0 -2由图可知,如果过其中任意两点作直线,其他点也在这条直线上.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.26.(1)①甲、乙两种型号的电视机各购25台,②甲种型号的电视机购35台,丙种型号的电视机购15台;(2)为使销售时获利最多,应选择第②种进货方案;(3)有四种进货方案:1、购进甲种电视27台,乙种电视20台,丙种电视3台,2、购进甲种电视29台,乙种电视15台,丙种电视6台,3、购进甲种电视31台,乙种电视10台,丙种电视9台,4、购进甲种电视33台,乙种电视5台,丙种电视12台.【解析】分析:(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是甲乙,乙丙,甲丙三种情况进行讨论.求出正确的方案; (2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案; (3)本题可先设两种电视的数量为未知数,然后根据三种电视的总量为50台,表示出另一种电视的数量,然后根据购进电视的费用总和为9万元,得出所设的两种电视的二元一次方程,然后根据自变量的取值范围,得出符合条件的方案.详解:()1设购进甲种x 台,乙种y 台.则有:501500210090000x y x y +=⎧⎨+=⎩,解得2525x y =⎧⎨=⎩; 设购进乙种a 台,丙种b 台.则有:502100250090000a b a b +=⎧⎨+=⎩,解得87.537.5a b =⎧⎨=-⎩;(不合题意,舍去此方案). 设购进甲种c 台,丙种e 台.则有:501500250090000c e c e +=⎧⎨+=⎩,解得:3515c e =⎧⎨=⎩. 通过列方程组解得有以下两种方案成立:①甲、乙两种型号的电视机各购25台.②甲种型号的电视机购35台,丙种型号的电视机购15台;()2方案①获利为:25150252008750(⨯+⨯=元);方案②获利为:35150152509000(⨯+⨯=元).所以为使销售时获利最多,应选择第②种进货方案;()3设购进甲种电视x 台,乙种电视y 台,则购进丙种电视的数量为:()z 50x y =--台.()1500x 2100y 250050x y 90000++--=,化简整理,得5x 2y 175+=.又因为0x <、y 、z 50<,且均为整数,所以上述二元一次方程只有四组解:x 27=,y 20=,z 3=;x 29=,y 15=,z 6=;x 31=,y 10=,z 9=;x 33=,y 5=,z 12=.因此,有四种进货方案:1、购进甲种电视27台,乙种电视20台,丙种电视3台,2、购进甲种电视29台,乙种电视15台,丙种电视6台,3、购进甲种电视31台,乙种电视10台,丙种电视9台,4、购进甲种电视33台,乙种电视5台,丙种电视12台.点睛:本题考查了二元一次方程组的应用.此类问题的关键在于通过题干找出等量关系列出式子.。

江苏省南通市启东市2023-2024学年七年级下学期5月月考数学质量检测试题(含答案)

江苏省南通市启东市2023-2024学年七年级下学期5月月考数学质量检测试题(含答案)

江苏省南通市启东市2023-2024学年七年级下学期5月月考数学质量检测试题一.选择题(共10小题,每小题3分,一共30分.)1.要调查下列问题,适合采用全面调查(普查)的是( )A.中央电视台《开学第一课》的收视率B.某市中学生学习“四史”,做红色接班人活动情况统计C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程2.如果a<b,c<0,那么下列不等式中成立的是( )A.a+c>b+c B.ac2<bc2C.ac<bc D.a2<b23.下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.6,8,10D.5,7,24.已知点P(2a﹣1,1﹣a)在第二象限,则a的取值范围是( )A.a<B.a>1C.<a<1D.a<15.对某校901班和902班的学生“最喜爱的球类体育项目”进行统计,分别绘制了扇形统计图(如图),下列说法正确的是( )A.901班中最喜欢足球的人数比902班中最喜欢足球的人数少B.902班中最喜欢篮球的人数和最喜欢足球的人数一样多C.901班中最喜欢足球的人数比最喜欢篮球的人数多D.901班中最喜欢篮球的人数和902班中最喜欢篮球的人数一样多6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.B.C.D.7.在△ABC中,∠A、∠B、∠C的三个外角度数的比为3:4:5,则∠A=( )A.45°B.60°C.75°D.90°8.若关于x的不等式组无解,则a的取值范围是( )A. a≥3 B.a>3C. a<﹣3D.a≤﹣39.已知关于x,y的方程组的解是,则关于x,y的方程组的解是( )A.B.C.D.10.如图,在△ABC中,∠ABC与∠ACB的平分线交于点D,且∠EBC=∠ABC,∠ECB=∠ACB,则∠D与∠E的数量关系可表示为( )A.3∠E﹣2∠D=180°B.3∠D﹣2∠E=180°C.3∠E﹣2∠D=90°D.3∠D﹣2∠E=90°二.填空题(共8小题,第11,12题每题3分,其余每题4分,一共30分.)11.某市教育机构为了全面了解本市2011年初中毕业学业考试学生对数学卷的答题情况,从全市40000名考生中随机抽查了10个试场(每个试场均有30名)学生进行分析,则这次调查中的样本的容量是 .12.已知△ABC的三个分别是∠A、∠B、∠C,若∠A:∠B:∠C=1:2:3,则∠C= .13.(m﹣3)x+2y|m﹣2|=24是关于x,y的二元一次方程,则m= .14.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售但要保证利润率不低于5%,问至多可以打几折?若设可以打x折,则列出的不等式是 .15.已知样本数据个数为30,且被分成3组,第一、二、三组的数据个数之比为2:5:3,则第三小组的频数为 .16.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P= °.17.已知是二元一次方程ax+by=1的一组解,则= .18.关于x的不等式ax+b<0的解集是x>2,则关于x的不等式(a+b)x>a﹣b的解集是 .三.解答题(共8小题,共90分.)19.(10分)解下列二元一次方程组:(1);(2).20.(8分)解不等式组,并将解集在数轴上表示出来.21.(10分)△ABC中,∠B=26°,∠C=74°,AD是高,AE是三角形的角平分线,求∠DAE的度数.22.(12分)某学校有4000名学生参加“中国梦,我的梦”知识竞赛活动.为了了解本次知识竞赛的成绩分布情况,从中随机抽取了若干名学生的得分进行统计.请你根据不完整的表格,解答下列问题:(1)本次抽样调查的样本容量是 ;(2)补全频数分布直方图;(3)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次该学校参加竞赛的学生约有多少学生参赛成绩被评为“B”?成绩频数百分比50≤x<601060≤x<70168%70≤x<8020%80≤x<906290≤x<1007236%23.(12分)已知△ABC的三边长是a,b,c.(1)若a=6,b=8,且三角形的周长是小于22的偶数,求c的值;(2)化简|a+b﹣c|+|c﹣a﹣b|.24.(12分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?25.(12分)已知关于x,y的二元一次方程组的解满足x﹣y<0.(1)求k的取值范围;(2)在(1)的条件下,若不等式(2k+1)x﹣2k<1的解为x>1,请写出符合条件的k 的整数值.26.(14分)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3:用<a>表示大于a的最小整数,例如:<2.5>=3,<3>=4,<﹣2.5>=﹣2.解决下列问题:(1)[﹣4.75]= ;<0.15>= ;(2)若,求所有满足条件的正整数x的值;(3)若,求所有满足条件的整数x的值;(4)已知x,y满足方程组,求x和y的取值范围.答案一.选择题(共10小题,每小题3分,一共30分.)12345678910C B C A B CD A D A 二.填空题(共8小题,第11,12题每题3分,其余每题4分,一共30分.)11. 300 12. 90° 13. m= 1 14. 900×﹣600≥600×5% 15. 9 16. 30 17. ﹣1 18. x>﹣3 .三.解答题(共8小题,共90分)19.(10分)解下列二元一次方程组:解:,①×4得:8x﹣4y=﹣16③,②+③得:13x=﹣13,解得:x=﹣1,把x=﹣1代入①得:﹣2﹣y=﹣4,解得:y=2,故原方程组的解是:;………………………………………………………..5分(2),整理得:,①×2得:8x﹣2y=10③,②+③得:11x=22,解得:x=2,把x=2代入①得:8﹣y=5,解得:y=3,故原方程组的解是:. ………………………………………………………..10分20.(8分)解:,由①得,x≥﹣5,由②得x<2,∴不等式组的解集为﹣5≤x<2.………………………………………………………..5分在数轴上表示为:……………………..8分21.(10分)解:∵∠B=26°,∠C=74°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣26°﹣74°=80°,∵AE是△ABC的角平分线,∴,∵AD是△ABC的高,∴∠BDA=90°,∴∠BAD+∠B=90°,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∴∠EAD=∠BAD﹣∠BAE=64°﹣40°=24°. ………………….………..10分22.(12分)解:(1)16÷8%=200(人),………………………………………………..3分故200;(2)“50≤x<60”的频数为:200×=10(人),“70≤x<80”的频数为:200×20%=40(人),补全频数分布直方图如下: ……………………………………7分(3)4000×(20%+62÷200)=2040(名). (12)分答:估计该学校有2040名学生参赛成绩被评为“B”等级.23.(12分)解:(1)∵a,b,c是△ABC的三边,a=6,b=8,∴2<c<14,∵三角形的周长是小于22的偶数,∴2<c<8,∴c=4或6; ……………………………………………..6分(2)|a+b﹣c|+|c﹣a﹣b|=a+b﹣c﹣c+a+b=2a+2b﹣2c. ……………………………………………..12分24.(12分)解:(1)设甲种书的单价是x元,乙种书的单价是y元,根据题意得:,解得:.答:甲种书的单价是25元,乙种书的单价是50元; (6)分(2)设该校购买m本乙种书,则购买(50﹣m)本甲种书,根据题意得:25(50﹣m)+50m≤2000,解得:m≤30,∴m的最大值为30.答:该校最多可以购买30本乙种书. …………………………………12分25.(12分)解:(1)由题意可得,①﹣②得,x﹣y=﹣k﹣3,∵x﹣y<0,∴﹣k﹣3<0,解得k>﹣3; …………………………………5分(2)不等式移项可得,(2k+1)x<2k+1,当2k+1>0时,x<1,不符合题意舍去;2k+1<0时,x>1,解得,由(1)得k>﹣3,∴符合的k值有﹣2,﹣1. …………………………………12分26.(14分)解:(1)∵﹣5≤﹣4.75,0<0.15<1,∴[﹣4.75]=﹣5;〈0.15〉=1.故﹣5,1; …………………………………4分(2)由题可列:,解得9.5≤x<12,所以满足条件的正整数x的值为10、11. …………………………………7分(3)由题可列:﹣4<﹣3,解得﹣8.5≤x<﹣6.5,所以满足条件的整数x的值为﹣8、﹣7. …………………………………10分(4)方程组,由配凑法可得:[x]=3,<y>=﹣2,由题意得:3≤x<4,﹣2≤<y<﹣1. …………………………………14分。

人教版七年级第二学期5月份 质量检测数学试卷

人教版七年级第二学期5月份 质量检测数学试卷

人教版七年级第二学期5月份 质量检测数学试卷一、选择题1.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.二元一次方程2x+3y=15的正整数解的个数是( )A .1个B .2个C .3个D .4个4.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .15.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是( )A .(5,44)B .(4,44)C .(4,45)D .(5,45)7.《九章算术》是我国东汉初年编订的一部数学经典著作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级: 姓名: 座位号:
----------------------------- 密 --------------------- 封 --------------------- 线 ------------------------------------------------------- (答题不能超出密封装订线)
2016~2017学年度第二学期七年级阶段质量检测
数学试卷
(时间:60分钟 满分:100分)
一、选择题:(本题满分26分,每小题2分)
1.下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 6 2.化简2(21)(2)x x x x ---的结果是( )
A .3x x --
B .3x x -
C .21x --
D .31x -
3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ; ③(a 3)2=a 5; ④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个 D .4个 4.如图,阴影部分的面积是( )
A .xy 27
B .xy 2
9
C .xy 4
D .xy 2
5.下列各式是完全平方式的是( ).
A .x 2-x +1
4
B .1+x 2
C .x +xy +1
D .x 2+2x -1
6.下列从左到右的变形,是分解因式的是( )
A .xy 2(x -1)=x 2y 2-xy 2
B .x 2+x -5=(x -2)(x +3)+1
C .(a +3)(a -3)=a 2-9
D .2a 2+4a =2a(a +2)
7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .1
8.若3x =15,3y =5,则3x -y
等于( ). A .5 B .3 C .15 D .10
9.下列多项式中能用平方差公式分解因式的是( ) (A )22)(b a -+ (B )mn m 2052
- (C )2
2y x -- (D )92
+-x
10.一个正方形的边长增加了2cm ,面积相增加了32cm 2,则这个正方形的边长为( )
A 、6cm
B 、5cm
C 、8cm
D 、7cm
11.若a ,b ,c 是三角形的三边长,则代数式(a -b)2-c 2
的值( ) A .大于0 B .小于0 C .等于0 D .不能确定
12.已知a=8131,b=2741,c=961,则a ,b ,c 的大小关系是( )
A 、 a >b >c
B 、 a >c >b
C 、 a <b <c
D 、 b >c >a
13.如图2,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下
部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )
A.()2
222a b a ab b -=-+ B.()2
222a b a ab b +=++ C.22()()a b a b a b -=+- D.2()a ab a a b +=+
二、填空题(本题满分22分,每小题2分)
14.计算:(-2mn 2
)·(-5m 2
n 3
)=
15.当x __________时,(x -4)0=1.
16.如果4=m a ,12=n a ,那么n m a += a
2m-n
=
17.若|a -2|+b 2-2b +1=0,则a =______,b =______.
18. 计算:()=-+2
23b a 19.若x 2+kx +4是完全平方式,则k =_______.
20.已知a b ab +=-=31,,求 a b 22+ = 21.若的则n n n x x x 22232)(4)3(,2---=值
22.若0352=-+y x ,则y
x 324⋅的值 .
23.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状 24.观察下列各式,探索发现规律:
22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;……用含正整数n 的等式表示你所发现的规律为 .

2
三、解答题(本大题满分52分)
25.计算:(每小题3分,共18分)
(1) (-13xy)×(2xy 2)2 (2) (-2a 2)(3a b 2-5a b 3)
(3)20052-2006×2004 (4) 4(x+1)2-(2x+5)(2x-5)
(5) ()()z y x z y x 3232+--+ (6) 2[(34)3(34)](4)x y x x y y +-+÷-
26.分解因式:(每小题3分,共18分)
(1) x x 93- (2) -2a 3+12a 2-18a
(3) 25(p +q )2+10(p +q )+1 (4)2222x xy y z -+-
(5)9a 2(x -y )+4b 2(y -x ) (6) 22)(16)(4b a b a +--
27.先化简,再求值:(每小题4分,共16分)
(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.
(2))2()())((2b a a b a b a b a +-++-+,其中a =32,b =-12
1
(3) 5x 2+(x -2)(-2-x ),其中x=-1.
(4) 3(a +1)2-(a +1)(2a -1),其中a =1.。

相关文档
最新文档