利用四旋翼无人机的高层建筑和崎岖山地地形灭火系统(IJIGSP-V10-N1-3)

合集下载

无人机1+X理论习题含答案

无人机1+X理论习题含答案

无人机1+X理论习题含答案一、单选题(共100题,每题1分,共100分)1.系统菜单英文( )A、SYSB、MDLC、LNK正确答案:A2.遥控无人机复飞时,正确的操纵方式是( )A、柔和地加满油门,保持好方向,同时柔和拉杆使飞机逐渐转入爬升,保持好爬升状态B、迅速推满油门,同时快速拉杆转入爬升C、保持油门,快速拉杆转入爬升正确答案:A3.下述何种天气现象是稳定大气的特征?( )A、有阵性降水B、能见度极好C、能见度较差正确答案:B4.遥控无人机着陆时,拉平低的修正方法是( )A、发现有拉低的趋势,应推杆B、发现有拉低的趋势,应适当地增大拉杆量C、发现有拉低的趋势,应停止拉杆或减小拉杆量正确答案:B5.无人机积水道面上起飞,其起飞距离比正常情况下:( )A、短B、长C、相等正确答案:B6.无人驾驶航空器系统必要的组成部分是:( )A、飞行器平台、通讯链路B、飞行器平台、控制站、通讯链路C、飞行器平台、控制站正确答案:B7.在融合空域3,000米以上运行的小型无人机驾驶员,应至少持有飞机或直升机等级的( )A、商照B、私照C、航线运输执照正确答案:A8.以下种类的电池,具有记忆效应的是( )A、镍镉电池B、铅酸电池C、聚合物锂电池正确答案:A9.卫星云图上下列哪个不是积雨云特征?( )A、在卫星图像上的积雨云常是几个雷暴单体的集合B、积雨云的尺度相差不大。

一般,初生的较小,成熟的较大C、无论可见光还是红外云图,积雨云的色调最白正确答案:B10.无人机飞行前,无人机飞行员( )A、照积累的经验指导飞行B、按照随机《无人机飞行手册》指导飞行C、重点参考《无人机所有者/信息手册》正确答案:B11.遥控无人机平飞转弯过程中( )A、注视地平仪,协调地向转弯方向压杆扭舵,形成一定坡度后,稳杆保持B、注视地平仪,协调地向转弯反方向压杆扭舵,形成一定坡度后,稳杆保持C、注视地平仪,向转弯方向压杆,同时反方向扭舵正确答案:A12.Ⅱ级别无人机指:( )A、1.5公斤<空机质量≤7㎏,1.5公斤<起飞全重≤15㎏B、1.5公斤<空机质量≤4㎏,1.5公斤<起飞全重≤7㎏,超视距运行的C、1.5公斤<空机质量≤4㎏,1.5公斤<起飞全重≤7㎏,视距内运行的正确答案:C13.爬升的注意事项,正确的是: ( )A、垂直上升中,保持直升机状态比较容易。

2021年无人机考试题库B(含答案)

2021年无人机考试题库B(含答案)

2021年无人机考试题库B(含答案) 207、对于涉及酒精或药物的违禁行为,按照规定可以给予给予警告、暂扣执照或合格证()或吊销执照A 3到6个月B 1到6个月C 1到3个月正确答案:B208、对于涉及酒精或药物的违禁行为处罚的人员,自其违禁行为发生之日起()内,局方将不接受该人员提出的任何按本规则颁发执照或等级的申请A 半年B 一年C 两年正确答案:B209、如CCAR61部授权的执照持有人在理论考试中作.弊或发生其他禁止的行为,局方拒绝其任何执照或等级的申请期限为A 一年B 视其违规的情节轻重而定C 半年正确答案:A210、在丘陵、山区、高原进行农业作业飞行的最低天气标准是A 云高距作业区的最高点不低于200米.能见度不小于5公里B 云高距作业区的最高点不低于300米.能见度不小于5公里C 云高距作业区的最高点不低于150米.能见度不小于3公里正确答案:B211、大气的组成是由:A 78%的氮气.21%的氧气以及1%的其它气体组成B 75%的氮气.24%的氧气以及1%的其它气体组成C 78%的氮气.20%的氧气以及2%的其它气体组成正确答案:A212、18000英尺高度的大气重量仅仅是海平面时的:A 三分之一B 一半C 四分之一正确答案:B213、地表和潮湿物体表面的水分蒸发进入大气就形成了大气中的水汽。

大气中的水汽含量平均约占整个大气体积的0~5%左右,并随着高度的增加而逐渐:A 增加B 不变C 减少正确答案:C214、下面大气分层的主要依据哪个是正确的?A 气层中风的垂直变化特点B 气层气温的垂直分布特点C 气层气压的垂直分布特点正确答案:B215、在实际运用中,通常使用气温的垂直递减率单位为:A ℃/1000mB ℃/500mC ℃/100m正确答案:C216、对流层因为空气有强烈的对流运动而得名,它的底界为地面,上界高度随纬度、季节、天气等因素而变化。

同一地区对流层上界高度:A 冬季与夏季相同B 夏季大于冬季C 冬季大于夏季正确答案:B217、对流层的主要特征,哪个正确?A 空气具有强烈的垂直混合B 气温.湿度的水平分布均匀C 气温随高度不变正确答案:A218、对流层中的平均气温垂直递减率为:A 0.5℃/100mB 6.5℃/100mC 0.65℃/100m正确答案:C219、对流层中,按气流和天气现象分布的特点,可分为下、中、上三个层次,代表对流层中层气流的基本趋势是:A 气流相对平稳B 水汽含量很少C 气流混乱正确答案:A220、平流层范围从对流层顶到大约55km的高度上,空气热量的主要来源是臭氧吸收太阳紫外辐射,因此:A 平流层中不含有水汽B 平流层中气温随高度增高而升高C 平流层中气温不随高度变化而变化正确答案:B221、平流层对航空活动有利的方面是:A 气流平稳.能见度好、空气阻力小B 气温低.飞机载重量增加、飞机真空速增大C 气流平稳.无恶劣天气、发动机推力增大正确答案:A29/180、在涉密科研项目结题阶段,要加强成果验收、奖项申报、专利申请等工作的保密管理。

无人机专升本试题及答案

无人机专升本试题及答案

无人机专升本试题及答案一、单选题(每题2分,共20分)1. 无人机的英文缩写是:A. UAVB. UASC. USVD. UCV答案:B2. 下列哪个不是无人机的组成部分?A. 动力系统B. 控制系统C. 通信系统D. 导航系统答案:D3. 无人机的飞行高度通常分为哪几个等级?A. 低空、中空、高空B. 低空、中空、超高空C. 超低空、低空、中空D. 低空、中空、高空、超高空答案:D4. 无人机的续航时间通常受哪些因素影响?A. 电池容量B. 飞行速度C. 环境温度D. 所有以上答案:D5. 下列哪项技术不是无人机导航系统常用的技术?A. GPSB. GLONASSC. BeiDouD. Wi-Fi答案:D6. 无人机的飞行控制模式通常包括哪些?A. 手动模式B. 自动模式C. 半自动模式D. 所有以上答案:D7. 无人机的通信链路通常使用哪种频段?A. VHFB. UHFC. HFD. SHF答案:B8. 无人机的起飞重量通常指的是:A. 无人机自身的重量B. 无人机携带的载荷重量C. 无人机和载荷的总重量D. 无人机起飞时的重量答案:C9. 无人机的飞行稳定性主要依赖于:A. 动力系统B. 导航系统C. 控制系统D. 通信系统答案:C10. 下列哪项不是无人机的应用领域?A. 农业监测B. 军事侦察C. 快递运输D. 深海探测答案:D二、多选题(每题3分,共15分)1. 无人机在农业领域的应用包括:A. 作物监测B. 土地测绘C. 农药喷洒D. 天气预报答案:A, B, C2. 无人机的飞行控制系统通常包括哪些部分?A. 传感器B. 执行器C. 控制器D. 通信模块答案:A, B, C3. 下列哪些因素会影响无人机的飞行性能?A. 风力B. 温度C. 湿度D. 无人机重量答案:A, B, C, D4. 无人机的导航系统通常包括哪些设备?A. GPS接收器B. 惯性测量单元C. 磁罗盘D. 无线电高度计答案:A, B, C, D5. 无人机的维护和保养包括哪些内容?A. 清洁B. 检查C. 维修D. 更新软件答案:A, B, C, D三、判断题(每题2分,共10分)1. 无人机不需要进行定期的维护和检查。

无人机1+X理论考试题与参考答案

无人机1+X理论考试题与参考答案

无人机1+X理论考试题与参考答案一、单选题(共100题,每题1分,共100分)1.三大气象要素为:( )A、气温、风和云B、气温、气压和空气湿度C、风、云和降水正确答案:B2.姿态遥控模式下操纵无人机爬升,俯仰角偏高时,下列正确的操纵是( )A、应柔和地向右扭舵B、应柔和地向后带杆C、应柔和地向前顶杆正确答案:C3.使用多旋翼飞行器作业( )A、不受环境影响B、应在人员密集区,如公园、广场等C、在规定空域使用,且起飞前提醒周边人群远离正确答案:C4.无人机系统飞行器平台主要使用的是______空气的动力驱动的航空器。

( )A、轻于B、重于C、等于正确答案:B5.层流翼型的特点是( )A、前缘半径大,后部尖的水滴形B、前缘尖的菱形C、最大厚度靠后正确答案:C6.飞机失速的原因是( )A、飞机速度太小B、飞机速度太大C、飞机迎角超过临界迎角正确答案:C7.姿态遥控模式下操纵无人机爬升,俯仰角偏低时,下列正确的操纵是( )A、应柔和地向右扭舵B、应柔和地向前顶杆C、应柔和地向后带杆正确答案:C8.伯努利定理指的是 ? ( )A、由于能量守恒定律, 同一流管内流速快的地方静压小B、由于能量守恒定律,同一流管内横截面积大的地方静压更小C、于能量守恒定律, 同一流管内流速快的地方静压大正确答案:A9.气象上把气温垂直递减率等于零(即γ=0)的气层称为:( )A、逆温层B、等温层C、不稳定气层正确答案:B10.飞机着陆进入地面效应区时,将( )A、经历诱导阻力减小的过程,需要减小动力B、出现短暂的机头上仰变化C、需要增大迎角以保持相同的升力系数正确答案:A11.遥控无人机由爬升转为平飞时( )A、上升至预定高度前10-20米时,开始改平飞B、到达预定高度时,开始改平飞C、超过预定高度10-20米时,开始改平飞正确答案:A12.可能需要执行的应急程序不包括:______( )A、备份系统切换操作B、导航系统重启操作C、动力装置重启操作正确答案:B13.无人机驾驶员操纵无人机复飞时,油门状态描述正确的是( )A、逐渐收至小车状态B、保持小油门C、逐渐推至大车状态正确答案:C14.在高海拔地区,多轴飞行器出现较难离地时,最有效的应对措施是( )A、更换大容量电池B、减重C、更换大桨正确答案:B15.学员单飞前必须达到的要求是:①通过由授权教员实施的理论考试;②接受并记录了单飞所用航空器的适用动作与程序的飞行训练;③经授权教员在该型号或类似航空器上检查,认为该驾驶员熟练掌握了这些动作与程序( )A、①②③B、②③C、①③正确答案:B16.无人机飞行时收起襟翼,会使飞机( )A、飞行速度减小B、飞行速度无明显变化C、飞行速度增大正确答案:C17.遥控无人机着陆时 ,关于大逆风着陆描述正确的是( )A、拉平后,速度减小加快,平飘距离缩短B、拉平后,速度减小加快,平飘距离增长C、拉平后,速度增大加快,平飘距离缩短正确答案:A18.无人机驾驶员舵面遥控操纵飞机时( )A、推油门飞机转入下降B、推杆飞机转入下降C、拉杆飞机转入下降正确答案:B19.飞行驾驶员操纵无人转弯时,下列描述正确的操纵方式是( )A、机头过高时,应向转弯一侧的斜后方适当推杆并稍扭舵B、机头过高时,应向转弯一侧的斜前方适当拉杆并稍扭舵C、机头过高时,应向转弯一侧的斜前方适当推杆并稍扭舵正确答案:C20.手抛电动固定翼民用无人机,一般在几级风以上就难以自驾飞行。

2021中级注册安全工程师《技术基础》答案解析

2021中级注册安全工程师《技术基础》答案解析

2021中级注册安全工程师《技术基础》答案解析一、单选题每题1分,共70题,共70分。

每小题的四个选项中,只有一项是最符合题意的正确答案,多选、错选或不选均不得分。

1.接地保护是防止间接接触触电技术措施。

关于接地保护系统说法错误的是()A.IT系统适用于各种不接地配电网B.TT系统适用于星形连接的低压中性点直接接地配电网C.TT系统适用于三角形连接的低压中性点直接接地配电网D.TT系统中装设能自动切断漏电故障线路的漏电保护装置【答案】B【考察考点】保护接地和保护接零【解析】选项A,保护接地适用于各种不接地配电网;选项B,TT系统为三相星形连接的低压中性点直接接地的三相四线配电网;选项D,在TT系统中应装设能自动切断漏电故障的漏电保护装置。

2.依据《气瓶安全技术规程》,关于气瓶公称工作压力说法错误的是()。

A.盛装压缩气瓶的公称工作压力,是指在基准温度(20℃)下,瓶内气体达到完全均匀状态时的限定(充)压力。

B.盛装液化气体气瓶的公称工作压力,是指温度为60°C时瓶内气体压力的下限值C.盛装溶解气体气瓶的公称工作压力,是指瓶内气体达到化学、热量以及扩散平衡条件下的静置压力(15℃)D.焊接泡热气瓶的公称工作压力,是指在气瓶正常工作状态下,内胆顶部气相空间可能达到的最高压力【答案】B【考察考点】《气瓶安全技术规程》【解析】公称工作压力确定原则:(1)盛装压缩气体气瓶的公称工作压力,是指在基准温度(一般为20℃)下的气瓶内气体达到完全均匀状态时的限定(充)压力,一般选用正整数系列;(2)盛装高压液化气体气瓶的公称工作压力,是指60°C时气瓶内气体压力的上限值;(3)盛装低压液化气体气瓶的公称工作压力,是指60°C时所充装气体的饱和蒸气压;低压液化气体在60°C时的饱和蒸气压值按照本规程附件B或者相关气体标准的规定确定,附件B或者相关气体标准没有规定时,可以采用气体供应单位提供并经过气瓶制造单位书面确认的相关数据:(4)盛装溶解气体气瓶的公称工作压力,是指在15℃时的气瓶内气体的化学性能、物理性能达到平衡条件下的静置压力;(5)低温绝热气瓶的公称工作压力,是指在气瓶正常工作状态下,内胆顶部气相空间可能达到的最高压力;根据实际使用需要,可在0.2MPa~3.5MPa范围内选取;(6)盛装标准沸点等于或者低于60C的液体以及混合气体气瓶的公称工作压力,按照相关标准规定选取;(7)消防灭火用气瓶的公称工作压力,应当不小于灭火系统相关标准中规定的最高工作温度下的最大工作压力。

无人机驾驶考试2022年理论知识模拟试题4-剖析精选全文完整版

无人机驾驶考试2022年理论知识模拟试题4-剖析精选全文完整版

可编辑修改精选全文完整版无人机驾驶考试2022年理论知识模拟试题4(总分:71.00,做题时间:90分钟)一、单项选择题(总题数:71,分数:71.00)1.()是无人机完成起飞、空中飞行、执行任务、返场回收等整个飞行过程的核心系统,对无人机实现全权控制与管理,因此该子系统之于无人机相当于驾驶员之于有人机,是无人机执行任务的关键。

(分数:1.00)A.飞控计算机B.飞控子系统JC.导航子系统解析:2.飞控子系统必须具备的功能为()。

(分数:1.00)A.无人机姿态稳定与控制,无人机飞行管理,应急控制VB.无人机飞行管理,与导航子系统协调完成航迹控制,信息收集与传递C.无人机起飞与着陆控制,无人机飞行管理,信息收集与传递解析:3.飞控子系统可以不具备如下功能?()。

(分数:1.00)A.姿态稳定与控制B.导航与制导控制C.任务分配与航迹规划V解析:4.属于无人机飞控子系统功能的是()。

(分数:1.00)A.无人机姿态稳定与控制VB.导航控制C.任务信息收集与传递解析:5.不属于无人机飞控子系统所需信息的是()。

(分数:1.00)A.经、纬度VB.姿态角C.空速解析:6.不应属于无人机飞控计算机任务范畴的是()。

(分数:1.00)A.数据中继VB.姿态稳定与控制C.自主飞行控制解析:7.无人机在增稳飞行控制模式下,飞控子系统()控制。

(分数:1.00)A.参与VB.不参与C.不确定解析:8.以下不是导航飞控系统组成部分的是()。

(分数:1.00)A.传感器B.电台VC.执行机构解析:9.下列哪项是飞行控制的方式之一?()。

(分数:1.00)A.陀螺控制B.指令控制VC.载荷控制解析:10.导航子系统功能是向无人机提供()信息,引导无人机沿指定航线安全、准时、准确的飞行。

(分数:1.00)A.高度、速度、位置JB.角速度C.角加速度解析:11.无人机通过()控制舵面和发动机节风门来实现无人机控制。

(分数:1.00)A.伺服执行机构JB.操纵杆C.脚蹬解析:12.无人机电气系统中电源和()两者组合统称为供电系统。

无人飞行器无人机在公共安全领域的应用考核试卷

无人飞行器无人机在公共安全领域的应用考核试卷
B.中型固定翼无人机
C.大型单旋翼无人机
D.微型无人机
16.无人机在公共安全领域使用时,以下哪项措施可以保障隐私?
A.使用加密通讯
B.避免在私人领地飞行
C.实施飞行审批制度
D.所有以上措施
17.在公共安全任务中,无人机飞行员的职责不包括以下哪一项?
A.飞行操控
B.数据分析
C.设备维护
D.现场指挥
18.以下哪项不属于无人机在公共安全领域的发展趋势?
A.固定翼无人机
B.旋翼无人机
C.太阳能无人机
D.有人驾驶无人机
2.下列哪种无人机更适合用于公共安全监控?
A.小型多旋翼无人机
B.大型固定翼无人机
C.单旋翼无人机
D.管道无人机
3.无人机在公共安全领域的主要应用不包括以下哪一项?
A.灾难救援
B.犯罪侦查
C.交通监控
D.环境保护
4.在使用无人机进行搜救任务时,以下哪项因素最为关键?
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
1.无人机在公共安全领域的应用主要包括以下哪些方面?
A.灾害监测
B.环境保护
C.交通监管
D.医疗救护
2.以下哪些技术对无人机在公共安全领域的应用至关重要?
A.导航定位技术
B.图像传输技术
C.数据处理技术
A.无人机的飞行速度
B.无人机的续航时间
C.无人机的载荷能力
D.无人机的操控距离
5.以下哪种技术通常用于无人机在公共安全领域的定位?
A.雷达系统
B.激光雷达
C.卫星导航
D.以上都是
6.无人机在火灾现场的主要作用是?

林业防火机械装备与应用考核试卷

林业防火机械装备与应用考核试卷
A.定期检查燃油系统
B.检查电气系统是否正常
C.更换磨损严重的零件
D.随意更改机械装备的结构
19.以下哪个不是森林消防员在扑救火灾时应遵循的原则?()
A.保障自身安全
B.尽快扑灭明火
C.避免火势蔓延
D.立即撤离火场
20.在森林火灾现场,以下哪种做法可能导致火场失控?()
A.按照预定方案进行灭火
B.保持与指挥部的联系
B.确定灭火主攻方向
C.随意更改灭火策略
D.保持通讯畅通
18.以下哪些装备可用于森林火灾的火情监测?()
A.热成像仪
B.摄像头
C.森林消防无人机
D.雷达
19.以下哪些因素可能导致森林火灾扑救困难?()
A.地形复杂
B.气候干燥
C.火场附近交通不便
D.灭火装备不足
20.以下哪些是森林火灾应急预案的主要内容?()
标准答案
一、单项选择题
1. C
2. D
3. D
4. D
5. C
6. D
7. D
8. D
9. D
10. C
11. D
12. B
13. D
14. A
15. C
16. B
17. C
18. D
19. D
20. C
二、多选题
1. ABC
2. ABCD
3. ABC
4. ABC
5. ABCD
6. AB
7. ABC
C.随意更改灭火策略
D.关注火场周围环境变化
(以下为答题纸,请将答案填写在相应位置)
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)

2022年-2023年一级注册建筑师之建筑物理与建筑设备题库附答案(典型题)

2022年-2023年一级注册建筑师之建筑物理与建筑设备题库附答案(典型题)

2022年-2023年一级注册建筑师之建筑物理与建筑设备题库附答案(典型题)单选题(共30题)1、高层建筑的火灾扑救,以下叙述哪条错误?( )A.应立足于自救B.以室内消防给水系统为主C.以现代化的室外登高消防车为主D.应有满足消防水量、水压并始终保持临战状态的消防给水管网【答案】 C2、在木屋架的闷顶内,关于配电线路敷设方式的叙述,下列哪个是正确的?( )A.穿塑料管保护B.穿金属管保护C.采用绝缘子配线D.采用塑料管套绝缘线直接敷设在木屋架上【答案】 B3、建筑太阳能利用的方式中,属于主动式利用太阳功能的是()。

A.为集热蓄热墙式B.为对流环路式样C.为附加阳光间式D.为太阳能集热板通过泵把热量传递到各房间【答案】 D4、下列管道直饮水系统的设计要求中哪项错误?( )A.水质应符合《饮用净水水质标准》的要求B.宜以天然水体作为管道直饮水原水C.应设循环管道D.宜采用调速泵组直接供水方式【答案】 B5、下列光谱辐射的波长最短的是( )A.紫外线B.可见光C.红外线D.X射线【答案】 D6、在空间高度较大的中庭内采用上送风方式时,宜选用以下哪种送风口?()A.条缝形散流器B.方形散流器C.百叶风口D.旋流风口【答案】 D7、供暖地区宿舍建筑的供暖系统设计,以下哪一项不正确?()A.供暖热媒应采用热水B.可采用地面辐射供暖系统C.可采用散热器供暖系统D.应采用分散供暖方式【答案】 D8、以下哪项不是影响居住小区给水加压站数量、规模和水压的因素?()A.小区的规模B.建筑造价C.建筑高度D.建筑物分布【答案】 B9、下列关于防雷引下线敷设位置的叙述中,正确的是()。

A.沿建筑物四周并最短的路径B.沿建筑物内部柱子C.沿电梯井的墙壁D.沿核心筒的墙壁【答案】 A10、在居住小区给水用水量设计中,以下哪项不计入正常用水量?()A.绿化用水B.居民生活用水C.消防用水D.未预见用水和管道漏水【答案】 C11、住宅中插座回路用的剩余电流(漏电电流)保护器,其动作电流应为下列哪个数值?()A.10mAB.30mAC.300mAD.500mA【答案】 B12、当室内燃气管道穿过楼板、楼板平台、墙壁和隔墙时,应采取什么做法?( )A.设套管B.设软接头C.保温D.设固定点【答案】 A13、游泳池设计要求,以下哪条错误?( )A.成人戏水池水深宜为1.5mB.儿童游泳池水深不得大于0.6mC.进入公共游泳池、游乐池的通道应设浸脚消毒池D.比赛用跳水池必须设置水面制波装置【答案】 A14、在一个密闭的房间里,以下哪条说法是正确的?()A.空气温度降低,相对湿度随之降低B.空气温度升高,相对湿度随之降低C.空气温度降低,相对湿度不变D.空气的相对湿度与温度无关【答案】 B15、贮水池的有效容积,不包括以下哪一条?( )A.调节水量B.绿化、洒水、洗车用水量C.生产事故备用水量D.消防贮备水量【答案】 B16、当空气调节区的空间较大、人员较多、温度湿度波动范围小、噪声或洁净标准较高时,宜采用下列哪种空气调节系统?()A.全空气变风量空调系统B.全空气定风量空调系统C.风机盘管空调系统D.变制冷剂流量空调系统【答案】 B17、关于太阳的高度角的说法,以下哪条正确?( )A.太阳高度角与纬度无关B.纬度越低,太阳高度角越高C.太阳高度角与季节无关D.冬季太阳高度角高【答案】 B18、下列选择影剧院观众厅空调机房位置的表述中,正确的是( )A.布置在观众厅正上方屋面上,以降低管道阻力B.布置在观众厅正下方夹层内,以利用夹层空间C.吊装于观众厅吊顶内,以节约机房面积D.空调机房远离观众厅,以隔绝机房噪声【答案】 D19、高位水箱的设置条件,以下哪条是错误的?( )A.室外给水系统供给多层建筑室内所需压力,周期性不足或经常不足B.高层及大型公共建筑为确保用水安全和贮存一定消防水量C.室内给水系统要求经常维持恒压条件D.高位水箱可保证不受污染【答案】 D20、居住建筑的燃气引入管敷设在下列哪个位置是正确的?()A.卧室B.客厅C.卫生间D.厨房【答案】 D21、对高压配电室门窗的要求,下列哪一个是错误的?()A.宜设不能开启的采光窗B.窗台距室外地坪不宜低于1.5mC.临街的一面不宜开窗D.经常开启的门不宜开向相邻的酸、碱、蒸汽、粉尘和噪声严重的场所【答案】 B22、为满足自然通风的需要,《公共建筑节能设计标准》(GB50189—2005)对外窗的可开启面积做出规定,下列哪一项是该标准的规定?( )A.不应小于20%B.不应小于30%C.不应小于40%D.不应小于50%【答案】 B23、旅馆客房之间的送、排风管道,必须采取消声降噪措施,其消声量的选取原则为( )。

2022年度吉林省高处安装、维护、拆除职业资格培训模拟题(含答案)

2022年度吉林省高处安装、维护、拆除职业资格培训模拟题(含答案)

2022年度吉林省高处安装、维护、拆除职业资格培训模拟题(含答案)一、判断题(50题)1.静力破碎剂作业时,孔内注破碎剂后,作业人员应保持安全距离,严禁在注孔区域行走或停留。

A.正确B.错误2.外墙清洗时断电,首先关闭电源,防止来电发生意外。

A.正确B.错误3.高处作业施工中使用吊装设备吊装物件时,高处与地面人员用手势沟通,足以保障吊装物件与施工人员的安全,不必采用其他沟通方式。

A.正确B.错误4.全彩电子显示屏的画面丰富多彩,即时性强,但不适于文字信息发布。

A.正确B.错误5.严禁在设备运行时上下吊篮。

A.正确B.错误6.安全带使用期限为5-8年。

A.正确B.错误7.座板式单人吊具、吊带、衬带、拦腰带局部有破损时,不影响使用。

8.安全带上各种部件不得任意拆掉。

更换新绳时要注意加绳套。

A.正确B.错误9.座板装置的材料不限制,但一般为木质,表面无限制。

A.正确B.错误10.使用梯子攀登作业时高度不得超过4m。

A.正确B.错误11.水平安全绳即水平固定安全绳。

A.正确B.错误12.物体运动状态主要与力的大小,力的方向关。

A.正确B.错误13.高处作业分级方法为A类法和B类法两种。

A.正确B.错误14.上旧天线木杆,应边上边检查脚钉,过接口时应挂好安全带或安全腰带;过接口后再拢好腰绳、腰带上杆。

A.正确B.错误15.静力破碎时,采用具有腐蚀性的静力破碎剂作业时,灌浆人员须佩戴防护手套和防护眼镜。

16.建筑物顶层广告施工中为防止人员和物料坠落,应设置防护网。

A.正确B.错误17.登的越高时,坠落危害就越小。

A.正确B.错误18.目前重用的吊具有座板式单人吊具和电动吊篮两种。

A.正确B.错误19. 安全防护用品,也称劳保用品,是指在施工作业过程中能够对作业人员的人身起保护作用,使作业人员免遭或减轻各种人身伤害或职业危害的用品。

A.正确B.错误20. 在无法实现对危险区域进行隔离的情况下,不可以使用部分可调的安全装置。

2022年吉林省高处安装、维护、拆除资格考试考题(含答案)

2022年吉林省高处安装、维护、拆除资格考试考题(含答案)

2022年吉林省高处安装、维护、拆除资格考试考题(含答案)一、判断题(50题)1.水平安全绳即水平固定安全绳。

A.正确B.错误2.禁止在起吊高度的1倍半径内有其他作业和非作业人员在内。

A.正确B.错误3.保证膨胀螺栓与墙体的充分固定是三角架安装的重要环节。

A.正确B.错误4. 在无法实现对危险区域进行隔离的情况下,不可以使用部分可调的安全装置。

A.正确B.错误5.吊篮上电源箱应能防水、防尘和防震,箱门可不加锁。

A.正确B.错误6.安全帽子里可以再佩戴其他帽子。

A.正确B.错误7.作业场所有冰、雪、霜、水、油等不能高处作业。

A.正确B.错误8.沿脚手架纵向设置的水平杆(垂直墙面方向)是连接内、外排立杆的水平杆件,其作用不是承受并传递施工荷载给立杆。

A.正确B.错误9.建筑物顶层广告施工中为防止人员和物料坠落,应设置防护网。

A.正确B.错误10.建筑物表面清洗作业人员年龄必须达到年满18周岁。

A.正确B.错误11.电蚀是指接触器触头间电弧放电使触头表面腐蚀造成接触不良。

A.正确B.错误12.高处作业的危险有害因素与工作环境系很大。

A.正确B.错误13.用人单位应当为劳动者创造符合国家职业卫生标准和卫生要求的工作环境和条件,并采取措施保障劳动者或者职业卫生保护。

A.正确B.错误14.不准将电动吊篮作为垂直运输和载人设备使用。

A.正确B.错误15.发现事故隐患要立即处理,自己不能处理的要及时上报。

A.正确B.错误16.在攀登或者拆除作业时,扳手、钢丝钳等工具一定要管理好,勿坠落伤人。

A.正确B.错误17. 当工作的上方有发热作业,其下方不得使用安全带,防止灼伤安全带。

A.正确B.错误18.施工操作人员进入现场必须戴合格的安全帽,系好帽带,锁好帽扣。

A.正确B.错误19. 高处作业操纵吊篮作业时,时间久了累了可以坐或躺在吊篮上边操作边休息。

A.正确B.错误20.脚手架中垂直于水平面的竖向杆件,是承受自重和施工荷载的主要杆件。

无人机在林业有害生物监测中的应用考核试卷

无人机在林业有害生物监测中的应用考核试卷
D.无人机的图像分辨率
4.在林业有害生物监测中,以下哪种传感器常用于无人机?()
A.红外传感器
B.激光雷达
C.多光谱相机
D.声波传感器
5.无人机在进行林业有害生物监测时,通常选择的飞行高度是多少?()
A. 50米以下
B. 50-100米
C. 100-200米
D. 200米以上
6.下列哪种方法不适合无人机在林业有害生物监测中的数据处理?()
A.手动解译
B.计算机视觉识别
C.深度学习算法
D.云计算技术
7.在林业有害生物监测中,无人机可以用来监测以下哪种生物?()
A.红蜘蛛
B.松毛虫
C.蚜虫
D.以上都可以
8.下列哪项不是无人机在林业有害生物监测中的优势?()
A.提高监测效率
B.降低监测成本
C.提高监测精度
D.无需专业人员操作
9.在林业有害生物监测中,无人机数据的实时传输主要依赖于以下哪种技术?()
2.在林业有害生物监测中,无人机常用的传感器之一是__________相机。()
3.无人机在林业有害生物监测中的飞行高度一般控制在__________米左右。()
4.为了提高无人机在林业有害生物监测中的续航能力,可以采用__________技术。()
5.在林业有害生物监测中,无人机数据处理常用的方法是__________。()
8.无人机在林业有害生物监测中可以通过实时差分GPS技术提高定位精度。(√)
9.无人机在林业有害生物监测中不需要遵守相关的法律法规。(×)
10.在林业有害生物监测中,无人机可以完全替代传统的人工监测方法。(×)
五、主观题(本题共4小题,每题10分,共40分)
1.请简述无人机在林业有害生物监测中的应用优势及可能存在的问题。(10分)

模拟考试20-职业资格类其他试卷与试题

模拟考试20-职业资格类其他试卷与试题

模拟考试20-职业资格类其他试卷与试题1. 何种无人机须安装使用电子围栏()A. Ⅲ、Ⅳ、Ⅵ、Ⅶ类无人机及重点地区和机场净空区以下进行Ⅱ,V类无人机B. Ⅲ、Ⅳ、Ⅵ、Ⅶ类无人机C. Ⅱ、Ⅲ、Ⅳ、V、Ⅵ、Ⅶ类无人机答案:A2. 容易污染环境的防治方法是()A. 物理防治B. 化学防治C. 农业防治答案:B3. 高毒农药是指对高毒()A. 人B. 害虫C. 作物答案:A4. 对于接入无人机云系统的用户,无须:①向相关部门了解限制区域的划设情况,包括机场障碍物控制面、飞行禁区、未经批准的限制区以及危险区等:②机身需有明确的标识,注明该无人机的型号,编号、所有者、联系方式等信息,以便出现坠机情况时能迅速查找到无人机所有者或操作者信息③运行前需要提前向管制部门提出申请,并提供有效监视手段④运营人按照CA291部的要求,进行合格审定()A. ①②B. ①③④C. ①②③④答案:C5. 农用无人机按机型结构通常分为()A. 单旋翼无人机、多旋翼无人机B. 固定翼无人机、油动无人机C. 电动无人机答案:A6. 空域管理的具体办法由_______制定( )A. 民用航空局B. 中央军事委员会C. 国务院和中央军事委员会答案:C7. 遥控无人机着陆时,风速大或气温低时( )A. 如目测低,加油门量相应小些B. 如目测高,收油门量相应大些C. 如目测低,加油门量相应大些答案:C8. 遥控无人机着陆时,关于大逆风着陆描述正确的是( )A. 下滑速度较大,舵面效应较强,开始拉平的时机应此正常稍晚B. 下滑速度较大,舵面效应较强,开始拉平的时机应此正常稍早C. 下滑速度较小,舵面效应较弱,开始拉平的时机应此正常稍早答案:A9. 遥控无人机着陆时,下列哪种情况,收油门的时机应适当提前,收油门的动作适当加快( )A. 顺风较大B. 逆风较大C. 无风情况答案:A10. 遥控无人机着陆时,收油门过早、过粗,速度减小快,使拉平时的速度小,飞机下沉快( )A. 容易拉平高或者进入平飘时仰角较小B. 容易拉平低或者进入平飘时仰角较大C. 对飞机无影响答案:B11. 当来自北方的冷气团和来自南方的暖气团,两者势均力敌强度相当时,它们的交锋区很少移动,这种锋面称为()A. 静止锋B. 交错锋C. 融合锋答案:A12. 露点温度指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度,形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度,下述哪个正确?[1分]A. 当空气中水汽已达到饱和时,气温与露点温度相同B. 当水汽未达到饱和时,气温一定低于露点温度C. 在100%的相对湿度时,周围环境的温度高于露点温度答案:A13. 风吹来时,那种局地风向不断改变,风速一阵大一阵小的现象称为()A. 风的阵性B. 风切变C. 风向不定答案:A14. 在实际运用中,通常使用气温的垂直递减率单位为()A. ℃/1000mC. ℃/100m答案:C15. 当机翼和尾翼积冰时,下列不正确的描述是()A. 翼型失真(变型)B. 导致摩擦阻力减少C. 压差阻力都增大答案:B16. 下列叙述不属于平流层的特点()A. 空气中的风向、风速不变B. 温度大体不变,平均在56.5℃C. 空气上下对流激烈答案:C17. 飞机的方向安定性过强,而横侧安定性相对过弱,飞机容易出现()A. 飘摆(荷兰滚)B. 螺旋不稳定C. 转弯困难答案:B18. 舵面遥控状态时,平飞中向后稍拉升降舵杆量,飞行器的迎角()A. 增大B. 减小C. 先减小后增大答案:A19. 使飞机绕立轴作旋转运动的力矩称为()A. 俯仰力矩B. 纵向力矩C. 偏航力矩答案:C20. 下发动机处于小油门状态,或怠速甚至关机()A. 俯冲状态B. 爬升状态C. 滑翔状态答案:C21. 通过改变迎角,无人机驾驶员可以控制飞机的( )A. 升力、空速、阻力B. 升力、空速、阻力、重量C. 升力、拉力、阻力22. 飞机的横向和航向稳定性之间()A. 互相独立B. 必须匹配适当C. 横向稳定性好,航向稳定性就差答案:B23. 翼型的最大弯度与弦长的比值称为()A. 相对弯度B. 相对厚度C. 最大厚度答案:A24. 描述飞机在空间姿态的姿态角有()A. 迎角,偏航角,滚转角B. 滚转角,偏航角,俯仰角C. 俯仰角,侧滑角,滚转角答案:B25. 飞机起飞时后缘襟翼放下的角度小于着陆时放下的角度。

无人机1+X理论题库含答案

无人机1+X理论题库含答案

无人机1+X理论题库含答案一、单选题(共100题,每题1分,共100分)1.无人机用无刷电机的主要技术参数有哪些( )A、定子直径,定子高度,kv值功率WB、转子直径,转子高度,kv值功率WC、定子直径,转子高度,kv值功率W正确答案:A2.常规布局飞机失速时( )A、机翼向上的力和尾翼向下的力都降低B、机翼向上的力和尾翼向下的力都增加C、机翼向上的力和尾翼向下的力恒都为零正确答案:A3.真空速明显小于地速是什么原因( )A、无风B、逆风C、顺风正确答案:C4.执行昼间专业任务的航空器,在山区进行作业飞行时,着陆时间最晚不得晚于日落前( )A、10分钟B、15分钟C、20分钟正确答案:B5.遥控无人机着陆时,下列哪种情况,收油门的时机应适当提前,收油门的动作适当加快( )A、实际下滑点与预定下滑点吻合B、实际下滑点在预定下滑点前面C、实际下滑点在预定下滑点后面正确答案:B6.如果民用固定翼无人机在机翼上有一层霜( )A、那么他的失速速度会减小B、那么他的失速速度增加或减小不确定C、那么他的失速速度会增加正确答案:C7.相同迎角,飞行速度增大一倍,阻力增加约为原来的( )A、四倍B、一倍C、二倍正确答案:A8.某活塞式化油器发动机增加油门时熄火则应( )A、调整低速油针B、飞行时不加油门C、调整高速油针正确答案:C9.系统菜单英文( )A、LNKB、SYSC、MDL正确答案:B10.保持油门持续爬升,电机功率会增加还是减小( )A、增加B、不变C、减小正确答案:B11.起飞时,可操纵变螺距螺旋桨的桨叶角到什么状态( )A、小桨叶角及高转速B、小桨叶角及低转速C、大桨叶角及高转速正确答案:A12.一般不用来给无人机提供高度信息的传感器是? ( )A、温度传感器、大气湿度传感器B、无线电高度表、超声波传感器C、GPS、气压计正确答案:A13.THR控制飞机哪个方向的运动( )A、沿横轴左右运动B、沿纵轴前后运动C、沿立轴上下运动正确答案:C14.目前多轴飞行器飞控市场上的MWC飞控特点是( )A、基于Android开发B、可以应用于各种特种飞行器C、配有地面站软件,代码开源正确答案:C15.机场上吹东风时,飞机起飞着陆的最好方向应是:( )A、由西向东B、由北向南C、由东向西正确答案:A16.可能需要处置的危机情况不包括:______( )A、舵面故障B、任务设备故障C、动力装置故障正确答案:B17.《民用无人驾驶航空器实名制登记管理规定》适用于_______的无人机( )A、最大起飞重量不高于7公斤的视距内运行B、空机重量超过250克C、最大起飞重量不低于250克正确答案:C18.X模式6轴飞行器从悬停转换到向左平移,哪两个轴需要减速( )A、右侧两轴B、后方两轴C、左侧两轴正确答案:C19.飞机以一定地速逆风起飞时( )A、滑跑距离将减小B、滑跑距离将不变C、滑跑距离将增大正确答案:A20.发生在低层的风切变严重影响航空器的起降,将发生在这一气层中的风切变称为低空风切变。

无人机森林防火

无人机森林防火

无人机森林防火林业消防无人机的应用重点解决了在地面巡护无法顾及的偏远地区发生林火的早期发现,以及对重大森林火灾现场的各种动态信息的准确把握和及时了解,也可以解决飞机巡护无法夜航、烟雾造成能见度降低无法飞行等问题。

作为现有林业监测手段的有力补充,无人机显示出其它手段无法比拟的优越性,在林业火灾的监测、预防、扑救、灾后评估等方面必将得到广泛的应用。

中文名:无人机森林防火外文名:uav forest fire prevention目录背景介绍无人机在森林防火中的具体用途背景介绍林业是全国生态建设的主体,在保持经济和社会发展中有着不可或缺的作用,我国拥有森林面积1.75亿公顷,森林蓄积量为124.56亿立方米,森林覆盖率为18.21%,既是森林资源大国,又是森林火灾多发国家。

如何有效利用高科技手段解决林业资源调查、森林防火等问题,已成为林业工作的重中之重。

目前,国外森林防火中应用了较多的新技术和新设备,国内在此方面的应用需求也日益增加,对森林保护的投入逐渐加大,先后运用卫星进行资源普查、森林火场监视,而使用无人机系统对森林火情监测则还是初始阶段。

无人机在森林防火中的具体用途一、日常森林防火巡护无人机的巡护效率远远高于传统的人工巡护,能在短时间内完成原本需要多人进行的巡护工作,同时,运行成本也极为低廉。

二、森林防火流程1.快速定位火点。

利用无人机机载的红外和可见光摄像机监测森林火灾,经数控遥测电路实时传输到地面控制站,将火点、热点显示在地面站的数字地图上,经过识别系统确定是否是火点,并进行精确的火点定位,为地面消防部门第一时间提供火场地理坐标(经、纬度)。

2.快速确定火情。

当无人机在火场上方飞行时,还可将火场的轮廓、面积、蔓延速度等数据实时传回地面控制中心,为地面扑火指挥提供可靠信息,使灭火指挥部门迅速有效地组织、布署灭火队伍,提高灭火作战效率,防止救火人员的伤亡。

3.为消防部队提供最佳撤离路径。

各项信息的有效传达不仅使消防部队能迅速调配人员进行重点区域灭火工作,还能及时通知消防人员撤离危险地区,并根据火场图像资料为消防人员提供最佳撤离路径。

工程机械在消防灭火救援中的应用崔维珺

工程机械在消防灭火救援中的应用崔维珺

工程机械在消防灭火救援中的应用崔维珺发布时间:2023-05-10T01:37:09.345Z 来源:《工程建设标准化》2023年5期作者:崔维珺[导读] 在当前人口居住密度与生产密度不断增加的背景之下,火灾发生的安全隐患要素也有所增加沧州市消防救援支队河北沧州市 061000摘要:在当前人口居住密度与生产密度不断增加的背景之下,火灾发生的安全隐患要素也有所增加,因此消防工作面临着较大的任务量。

工程机械装备是当前灭火救援中的关键性武器,在消防作战中发挥着重要作用,能够显著提升灭火救援效率与救援战斗力。

因此在灭火救援工作中应当有效利用工程机械装备,加强战斗服、避火服、防化服等消防防护服装配备,加强工程机械装备的管理与科学使用,充分发挥工程机械装备对减少灭火救援伤亡的作用。

基于此,文章对工程机械在消防灭火救援中的重要性及应用进行了研究,以供参考。

关键词:工程机械;灭火救援;应用措施1工程机械在消防灭火救援中的重要性分析不管是在工程建设施工过程中所用到的机械设备,还是消防救援中应用的设备,均可以称为工程机械,如挖掘机、起重机设备、凿岩机设备以及铲土运输机设备等。

同时,工程机械在消防应急救援中的应用占据着重要作用,它不仅是消防应急救援作业中的重要保障,也是消防部分高效、安全实现救援工作的重要基础保障设备,并为消防应急救援人员的安全提供相应的安全保障。

在消防应急救援作业中,常见的救援设备有吊车工程机械、装载机、破碎机、铲车设备以及起重机设备等,能够用于消防抢险作业、促进消防救援部队的灭火能力,满足多种灭火救援需要。

同时,在消防灭火救援过程中,还应用了破拆工具、吊车等,若是缺乏该类型工程机械设备,很难使消防救援工作人员进入火灾现场,高效、安全地完成救援任务。

由此可见,工程机械在消防应急救援作业中占据着重要作用。

2工程机械在消防灭火救援中的有效应用措施研究2.1统筹设计灭火救援方案为了减少灭火救援伤亡,在火灾发生之后,要求第一时间到达火灾现场,对火情进行精准地判断,包括事故发生的类型、发生地点、环境与建筑物内部结构等,综合判断火灾险情,由此统筹各项要素综合制定灭火救援方案。

2022-2023年注册消防工程师之消防安全技术实务通关提分题库及完整答案

2022-2023年注册消防工程师之消防安全技术实务通关提分题库及完整答案

2022-2023年注册消防工程师之消防安全技术实务通关提分题库及完整答案单选题(共60题)1、城市消防远程监控系统为消防机构提供一个动态掌控社会各单位消防安全状况平台,下列选项中不属于城市消防远程监控系统功能是()。

A.数据采集和传输B.信息处理C.远程查岗D.系统联动【答案】 D2、有关建筑内疏散应急照明灯具照度说法,下列错误是()。

A.某大型地下商场内设置避难走道疏散地面照明最低水平照度不应低于3.0lxB.某高层病房楼内楼梯间前室设置疏设置散照明地面最低水平照度不应低于10.0lxC.某多层办公建筑楼梯间设置疏散照明地面最低水平照度不应低于5.0lxD.某建筑面积为300㎡电影院内设置疏散照明地面最低水平照度不应低于3.0lx【答案】 A3、某建筑高度25m综合楼,地上5层,每层建筑面积为1100㎡,设置了室内外消火栓系统、自动喷水灭火系统、中庭采用防火卷帘和防火玻璃墙与周围连通空间分隔,防火卷帘和防火玻璃墙均采用防护冷却水幕保护。

关于该建筑内各系统火灾延续时间说法,下列不正确是()。

A.该建筑室内消火栓系统火灾延续时间应按不小于3.0h确定B.保护卷帘防护冷却水幕火灾延续时间应按不小于3.0h确定C.该建筑室外消火栓系统火灾延续时间应按不小于3.0h确定D.保护防火玻璃墙防护冷却水幕火灾延续时间应按不小于2.0h确定【答案】 D4、关于总平面布局,下列不符合规范要求的是()。

A.火灾危险性相近或相同的建筑,应当集中布置,利于安全管理B.食用色拉油仓库地坪必须设置在地势较低的位置C.对于全年最小频率风向为东北风的地区,锅炉房可以布置在天然气压缩机室的西南方向D.氢化钠遇水极易产生氢气,应布置在防止水淹且地势较高的位置【答案】 B5、某公共建筑,耐火等级为二级,其建筑构件耐火极限均为符合规范规定最低限值,屋面板耐火极限和屋顶承重构件一致,则屋面外保温系统保温材料燃烧性能不应低于()级。

A.AB.B1C.B2D.B3【答案】 C6、某博物馆珍贵文物展出部分,设计采用气体灭火装置进行保护。

押题宝典注册消防工程师之消防安全技术实务能力提升试卷B卷附答案

押题宝典注册消防工程师之消防安全技术实务能力提升试卷B卷附答案

押题宝典注册消防工程师之消防安全技术实务能力提升试卷B卷附答案单选题(共30题)1、(2021真题)关于微型消防站的说法,错误的是()。

A.微型消防站以救早、灭小和"3min到场"扑救初起火灾为目标B.微型消防站分为消防重点单位微型消防站和社区微型消防站两类C.微型消防站的职责包括防火检查、初起火灾扑救、火灾事故调查等D.微型消防站人员由消防安全重点单位、社区等专兼职消防安全人员组成【答案】 C2、I类飞机库飞机停放和维修区屋顶金属承重构件无防火保护措施,飞机机翼面积为300㎡,有关飞机库飞机停放和维修区灭火系统选型方案,下列正确是()。

A.仅设置屋架内自动喷水灭火系统B.仅设置远控消防泡沫炮灭火系统和泡沫枪C.仅设置泡沫一水雨淋灭火系统和泡沫枪D.仅设置泡沫一水雨淋灭火系统、泡沫枪和翼下泡沫灭火系统【答案】 D3、下列储存物品中,不属于甲类火灾危险性的是()。

A.甲苯B.丙烯C.氢化钠D.冰醋酸【答案】 D4、未设自动灭火系统的砖混结构单层棉织品库房防火分区最大允许建筑面积为()㎡。

A.3000B.2100C.1500D.700【答案】 C5、IG—541混合气体灭火系统灭火设计浓度不应小于灭火浓度()倍。

A.1.1B.1.2C.1.3D.1.5【答案】 C6、高层建筑内多功能厅设在四层及以上楼层时,应符合现行国家工程建设消防技术标准,下列说法中不正确是()。

A.应设置自动喷水灭火系统B.一个厅、室疏散门不应少于两个C.应设置火灾自动报警系统D.一个厅、室使用面积不宜超过500m2【答案】 D7、某润滑油厂房,地上3层,层高4m,润滑油中间储罐设在顶层单独房间内,润滑油中间储罐容量()。

A.不应大于一昼夜B.不应大于5m3C.不应大于m3D.不应大于五昼夜【答案】 B8、(2021年真题)喷水强度消防车最小转弯半径是消防车回转时其()循圆曲线行走轨迹的半径。

A.前轮内侧B.后轮内侧C.前轮外侧D.后轮外侧【答案】 C9、有一商场,地下2层,层高4m,每层建筑面积14000㎡,建筑内部装修全部采用不燃或难燃材料,按照现行国家相应规范设有消防设施。

无人机培训考试

无人机培训考试

无人机考试试题**:分数:时间:1.无人机的英文缩写是()(A).UVS(B).UA.S(C).UA.V【答案】C2.超轻型无人机(Ⅲ类)是指空机质量A. 大于1.5kg 小于等于4kgB. 大于15kg 小于等于116kgC. 大于4kg 小于等于15kg【答案】:C3.超近程无人机活动半径在______以内。

A.15kmB.15~50kmC.50~200km【答案】:A.4.超低空无人机任务高度一般在______之间A.0~100mB.100~1000mC.0~50m【答案】:A.5不属于无人机机型的是()(A).塞纳斯(B)侦察兵(C).捕食者【答案】A6不属于无人机系统的是P6A. 飞行器平台B. 飞行员C. 导航飞控系统【答案】B7常规固定翼/旋翼平台是大气层内飞行的空气的航空器P6A. 重于B. 轻于C. 等于【答案】A.8不属于抵消旋翼机反转力矩的方法有P11A. 尾桨B. 共轴旋翼C. 增大旋翼半径(提高升力面积)【答案】C9多轴旋翼飞行器通过改变控制飞行轨迹。

P12A. 总距杆(直升机)B. 转速C. 尾桨【答案】B10目前主流的民用无人机所采用的动力系统通常为活塞式发动机和两种。

P16A. 涡喷发动机B. 涡扇发动机C. 电动机【答案】C11活塞发动机系统常采用的增压技术主要是用来。

P17A. 提高功率B. 减少废气量C. 增加转速【答案】A12电动动力系统主要由动力电机.动力电源和组成。

P20A. 电池B. 调速系统C. 无刷电机【答案】B13从应用上说,涡桨发动机适用于。

23A. 中低空.低速短距/垂直起降无人机B. 高空长航时无人机/无人战斗机C. 中高空长航时无人机【答案】C14必须属于无人机飞控子系统的是27A. 无人机姿态稳定与控制B. 无人机任务设备管理与控制C. 信息收集与传递【答案】A15不属于无人机飞控子系统所需信息的是27A. 经/纬度(导航子系统)B. 姿态角C. 空速【答案】A16不应属于无人机飞控计算机任务*畴的是29A. 数据中继B. 姿态稳定与控制C. 自主飞行控制【答案】A17无人机通过()控制舵面和发动机节风门来实现无人机控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Image, Graphics and Signal Processing, 2018, 1, 23-29Published Online January 2018 in MECS (/)DOI: 10.5815/ijigsp.2018.01.03Fire Extinguishing System for High-Rise Buildings and Rugged Mountainous Terrains Utilizing Quadrotor Unmanned Aerial VehicleAbdel Ilah N. AlshbatatTafila Technical University, Department of Communications,Electronics and Computer Engineering Tafila, 66110, JordanEmail: a.alshabatat@.jo, abdnoor80@Received: 28 August 2017; Accepted: 16 October 2017; Published: 08 January 2018Abstract—Nowadays, fighting fires in rugged mountainous terrains or in high-rise buildings are both difficult and dangerous. High-rise buildings are containing floors at such a height or position that the deployment of external firefighting equipment and rescue operations may not be feasible or practical. Meanwhile, reaching farms located in a rugged mountainous terrain with firefighting vehicles is often impossible. From this perspective, to meet the need for a fast way to extinguish fire in an area that is hard to be approached by the conventional methods, and to offer the highest level of safety for the public and firefighters; fire extinguishing system is proposed in this paper. The system is structured with six units: Quadrotor Unmanned Aerial Vehicle (QUAV), Robot (Release Mechanism), Automatic Electric_Spring Operated Gun, Fire Extinguishing Ball, Collision Avoidance System, and a Camera. Quadrotor will carry a specific payload and be capable of throwing an extinguishing balls in an area that is chosen by the operator. The proposed system has been implemented, constructed, and tested in an actual scenarios. Experimental results demonstrate the feasibility of our drone in extinguishing fire in its initial stages and of being safe to hover over a fire, drop a fire extinguishing ball, fly back to the firefighter, and hover at 2.5 meters in the air so that it can be reloaded with a new ball without losing its stability.Index Terms—Quadrotor Unmanned Aerial Vehicle (QUAV), Fire Extinguishing Ball, Collision Avoidance System, Robot, Automatic Electric_Spring Operated Gun.I.I NTRODUCTIONFires in high-rise buildings or in rugged mountainous terrains may present severe challenges and an extremely hazardous environment for both public and firefighters. Some of these challenges are not found in traditional low rise buildings or flat area where the deployment of external firefighting equipment may be feasible and easy to use. In a residential buildings, the first step is to determine the location of the fire and to investigate the availability of all facilities like elevators. Meanwhile, fighting fires in rugged mountainous terrains required a special hardware and a well-trained fighters. Since the above conditions are rarely achievable; there is a need to design a flying robot with a unique capability and attach to it a release mechanism for throwing fire extinguishing agents. By the year 2030, unmanned aerial vehicles will be allowed by the Federal Aviation Administration (FAA) to operate in the national airspace system. Accordingly, quadrotor will be soon an important part of any fire extinguishing system that leads to improve the ways in which fires are prevented and extinguished. Quadrotor or drone possess tremendous advantages over other types of UAVs in terms of maneuvering capability, safety, weight, and cost. It can be used for applications such as: search and rescue, surveillance, medical assistance and commercial deliveries. One of the challenges when constructing this type of vehicles is the stabilization problem with dynamic changes in the payload. Facing this problem, the motivation of this project is to develop a quadrotor being used with the purpose of extinguishing a fire and to design a control mechanism as a hand on for those having an original controller. This controller can be implemented for any military or commercial controller without replacing or changing anything in the used one. The requirements of the new quadrotor is to get access to the places in which life can be in danger if entered and drop off fire extinguishing balls using an electrical gun or a release mechanism.Looking at the latest technology that is introduced to the market; we can see that fire extinguishing balls are the most in terms of safety, weight and price. The ball needs to be thrown in the location of the fire and once it is in contact with the fire, it self-activates and releases fire extinguishing agent. As an example, the Elide Fire Ball [1] is created to be simple, and makes the user and property saved from fire respects to fire oxidation. It weighs 1.3 Kg, round shape, handily to throw and toss into a fire. The ball will self-activate in 3-10 seconds after flame contact, bursting and spreading a dry chemical powder automatically and make an alarm noise. The chemicals contained inside the Elide Fire Ball are not harmful to human and environment and they arecertified by standard laboratories from many countries. The core objective of this project is to develop a compact, lightweight and low power consumption aerial system that will help people being affected by fires. The aerial system will be divided into four subsystems. Each part will be designed, tested separately, and then the whole system will be integrated as a one unit. The first unit will be the quadrotor. Quadrotor is going to be built using off the shelf components. Our design will comply with all requirements to extinguish a fire and to be able to stabilize the vehicle while throwing the balls. For this purpose, we will design a robust algorithm that combines payload variation with the main on-board flight controller. This algorithm should meet the need for a fast way to extinguish a fire, and offer the highest level of safety for the operator. Once this system is up and running, a camera is going to be added to the vehicle. The use of the camera in this project is to help in taking quadrotor to the places desired by the controller. The second unit is the automatic electric_spring operated gun. The gun will be fabricated using light materials, its range will be up to 20m and will be controlled remotely. The third unit will be the fire extinguishing ball and the robot. The ball will be similar to the Elide Fire Ball [ 2], and will be filled with a dry chemical powder and being of the explosive type in which it does not present any serious hazard in its actuation. Its weight will be 200g. The last unit will be the collision avoidance system. Fuzzy-based obstacle detection and avoidance system will be used for the purpose of guiding drone inside the buildings.The main contributions of the paper are: (i) Designing a lightweight product that combines an explosive device with a dry chemical powder and is efficient for fighting fires in rugged mountainous terrains or in high-rise buildings. (ii) Designing a lightweight gun and a release mechanism that are capable of launching fire extinguishing ball up to 20m. The gun will be attached to a camera so that it helps in taking quadrotor to the places desired by the controller and recording what is going on in its surroundings. (iii) Developing a quadrotor unmanned aerial vehicle that is capable of carrying the proposed products and meets the system’s requirements. (iv) Integrating the payload variation with the main on-board flight controller, which make the system accurate in correcting any variations in quadrotor’s height and speed and accurate in an identification the location of the fire. (v) Deploying a decision-making methodology by sending fire’s location to the ground, and thus guaranteeing that there is less chance of people getting injured during mission achievement.The remainder of this paper is organized as follows: The next section will start with a survey of current research regarding the technologies that are employed with the aim of using Drones for detecting and extinguishing fires. In Section 3, we explain the main scenario of this project in extinguishing fire in its initial stages using quadrotor’s platform. Section 4 details the system architecture, hardware design, software design, and stabilizing control system. In Section 5, we present the experimental results and finally, we conclude and discuss future work in section 6.II.R ELATED W ORKSRecently, drone technology has been advanced to the point in which its usage needs little or no training. By the year 2030, unmanned aerial vehicles will be allowed by the Federal Aviation Administration (FAA) to operate in the national airspace system. Accordingly, drone will be soon an important part of any fire extinguishing system that leads to improve the ways in which fires are prevented and extinguished. A number of systems have been proposed for the purpose of extinguishing process. The authors in [3] proposed a release mechanism to be mounted on the bottom of the frame of the quadcopter. They proposed a cage and a railing system to hold the Elide Fire Extinguishing ball. The cage used to hold the fire extinguishing ball, and the rails served to guide the ball to its target while the quadrotor hovering over the flame.In [4], the authors proposed a new firefighting Drone to control and supply a solution using CO2 Boll extinguisher. They equipped the drone with a thermostat detector in order to notice the fire over a particular area. The same technique was proposed in [5], the authors proposed a robotic fire extinguishment approach and a prototype of an aerial extinguisher with an inert gas. The prototype can transport only a small volume of an inert gas, and it can extinguish a very small flame. In [6], the authors also proposed a robot that consists of a control station, quadcopter, dropping device, and fire extinguishing device. Liquid in a capsule was proposed to be the fire extinguishing device. It was used for suppression of class A and class B substances.Vision-based detection technique was researched in many articles. A set of image processing algorithms that is capable of effectively detecting and tracking forest fire was developing [7, 8, 9]. Those techniques have become a key component in the UAVs-based forest fire detection system. The Authors in [10] proposed a fire detection algorithm that force the quadcopter to track the fire and estimate its position. Having the same idea, but with different approach; a quadcopter, equipped with sophisticated components to capture and transmit the image or video to the data base was proposed in [11]. The author demonstrates the adoptability of quadcopter in acquiring and communicating information in hazardous environment.The authors in [12] proposed a monitoring software that is used to process UAV aerial data. The software provides the geographical location of the fire and generates a report for the command and control center. Other researchers were studies the potentialities of multiple UAVs technology for several forest-fire related activities. The authors in [13] have been reviewed different types of UAVs for their use and applicability for forest-fire fighting. As the author did in [12], they proposed the use of a camera to generate a clear image to the affected area. In their project, a fleet of heterogeneous UAVs was applied for forest-fires detection,confirmation, localization and monitoring. A system of multiple UAVs was also described in [14] for the same purpose mentioned before. The UAVs were able to fly autonomously over an area of interest and generate an overview image of that area. Consequently, by reviewing all mechanism we came to a conclusion that a multi-purpose aerial system is necessary to extinguish fire when it is found.III.M ETHODOLOGYThe main scenario of this project is to extinguish fire in its initial stages using an Unmanned Aerial Vehicle (UAV) platform in a short period of time. In order to accomplish the necessary functions that the UAV will execute, two sub-scenarios are designed in this project: Fighting fires in rugged mountainous terrains, and fighting fires in high-rise buildings.A. Fighting fires in rugged mountainous terrains.In this scenario, firefighting drone is mainly equipped with a robot (release mechanism), camera, one ultrasonic sensor and four flame sensors. At the beginning and after reaching fire’s location, the system will be semi-automated in such a way that only take-off and landing will need to be controlled but once in the air at the desired altitude from the take-off point, the system is able to continuously monitor the temperature. If the temperature increases beyond a predetermined threshold value (min_temp), drone will fly to the direction to which the temperature is recorded to be relatively maximum among the four sensors. Firefighter at the ground will be able to monitor the location of the fire using the installed camera. Once the drone is hovering over a fire, the system will drop the fire extinguishing ball, and fly it back to the firefighter, and let it to hover at 2.5 meters in the air so that the firefighter can either reload it with a new ball or land it without losing its stability.B. Fighting fires in high-rise buildings.In this scenario, firefighting drone is mainly equipped with a gun, collision avoidance system, and a camera. As we did in scenario (a), drone will fly to the desired floor in which the fire is taking place. Accessing specific rooms in the structure will be through a window, this window has to be open and the drone will eject the ball in a way that it will fall inside the desired room. Meanwhile drone will stay outside the area on fire. Automatic electric_ spring operated gun will launch three balls up to 20m. The size of the ball is smaller than the original one; it is 5cm in diameter. Reloading drone is the same as in scenario (a). Our near future plan is to have a mechanism to open a window and let the drone getting inside the floor. This can be done by using a solid ball to break the window and then using the collision avoidance system and the camera to guide drone to the fire’s location.IV.A RCHITECTURE OF THE F IRE E XTINGUISHING S YSTEM To meet the need for an efficient, reliable, and fast way to extinguish fires in rugged mountainous terrains and high-rise buildings, we developed a practical lightweight system that consists of Quadrotor Unmanned Aerial Vehicle (QUAV), Automatic Electric_Spring Operated Gun, Robot (release mechanism), Collision Avoidance System, Camera, and Fire Extinguishing Ball, figure 1. In the following subsections, we will describe the system architecture, hardware components and software architecture.A. QuadrotorOur prototype developed in this project is called Fire Fighting Drone (FFD), figure 1(a). FFD is an autonomous, power-efficient aerial vehicle which is responsible for caring a specific payload and be capable of throwing an extinguishing ball in an area that is chosen by the operator and hard to be approached by the conventional methods. The FFD’s dynamic model have been first developed in Matlab Simulink. After attaining satisfactory results, the controllers were implemented on a real Drone. The details are presented in the following subsections.1) Mathematical Model of the FFDTwo reference frames are needed to model the drone: the earth inertial frame and the body fixed frame. The vector describing the linear and the angular positions of the Drone is given by: p=[ x y z Φ θ ψ ]T. where Φ, θ , and ψ denote the vehicle’s roll, pitch,and yaw angles along the three orthogonal body axes x, y, z, respectively. The airframe orientation can be written as: R = R(Φ). R(θ). R(ψ).(a) (b)(c)Fig.1. Fire extinguishing system: (a) Quadrotor unmanned aerial vehicle, (b) QUAV equipped with a release mechanism, (c) The whole system:quadrotor, gun, and robot.R =[cθ.cψsΦ.sθ.cψ−cΦ.sψcΦ.sθ.cψ+sΦ.sψcθ.sψcΦ.cψ+sθ.sΦ.sψsθ.cΦ.sψ−sΦ.cψ−sθsΦ.cθcΦ.cθ](1)Where, R(Φ), R(θ), and R(ψ) denote the rotations along x-axis (roll), y-axis (pitch), and z-axis (yaw), respectively. (s) represents the sine, and (c) represents the cosine. The dynamic behavior of the Drone was expressed mathematically in [15] as:ẍ=D m mu 1(cos (Φ).sin (θ).cos (ψ)+sin (Φ).sin (ψ))(2)ÿ=Dm mu 1(sin (θ).cos (Φ).sin (ψ)−sin (Φ).cos (ψ))(3)z̈=D mm u 1(cos (Φ).cos (θ))−g (4)Φ= u 2 lD m /jx (5)θ= u 3 lD m /jy (6)ψ= u 4C/jz (7)2) Mechanical and Electrical Structure of the FFD Q450 glass fiber frame is chosen for this project. Four brushless three-phase out-runner DC motors rated for 920KV are used in this project. Four (10x4.5) inch propellers are mounted on the motors, two pieces for a standard rotation and two pieces for right-hand rotation. The propeller is attached to the DC motor through a standard accessory pack. A multi-rotor flight control board is attached to the central hub, figure 2. This board consists of 32-bit STM32F427 Cortex M4 Processor, 168 MHz clock source, 256 KB RAM, 2 MB Flash, 32 bit STM32F103 failsafe co-processor, ST Micro L3GD20 3-axis 16-bit gyroscope, ST Micro LSM303D 3-axis 14-bit accelerometer / magnetometer, Invensense MPU 6000 3-axis accelerometer/gyroscope, and MEAS MS5611 barometer. To control the speed of the DC motors and thus control the quadrotor, the flight control board is attached to a 30A brushless speed controller (ESC). The Cortex M4 Processor takes sensor inputs and directly controls the four motors by varying the PWM signals sent to each of them. A LiPo battery is attached to theFig.2. HKPilot32 multi-rotor flight control boardquadrotor (4500mAh, 3S). The battery is used to power the flight control board, the ECS’s and the DC motors through a power distribution board. B. Robot (Release Mechanism)The goal is to design a robot that is easily hooked up to the drone and be capable for throwing a ball into fire. As shown in figure 3, The robot consists of: Mechanical claws, Arduino Nano board, High torque DC motor, Gear box, 5v regulator, 5V two channel relay module, RC Receiver, and LiPo battery (1300mah 2S). Claws are designed so that they will open and close whenever the firefighter presses the control button on the quadroter’s remote control, which will relay a radio signal to the RC Receiver. The signal from the receiver is then triggered the Arduino Nano board to send an electrical signal to the motor that will control this action. All components are powered by 1300mah LiPo battery.(a) (b)Fig.3. Robot: (a) Mechanical claws with night light function on, (b)Mechanical claws with night light function off.C. Fire Extinguishing BallFire extinguishing ball is a new technology that combine an explosive device with a fire extinguishing agent. Fires are classified into classes such as class A, B, or C. Class A, B, or C fires can be controlled by dry chemical extinguishing agents. The only all purpose (Class A, B, C rating) dry chemical powder extinguishers contain Monoammonium Phosphate. Monoammonium Phosphate is used in dry chemical fire extinguishers commonly found in offices, schools, and homes.Our goal in this project is to have a fire extinguishing ball that is activated with the fire without requiring human intervention. As a result, this activation will breaks the ball and disperses the fire extinguishing agent. The proposed fire extinguishing ball is comprised of three basic components: Casing, firefighting agent, and detonating device.As shown in figure 4, casing of the ball is composed of a lightweight mixture (Gypsum and rubber based bonding agent (CF 200)). After doing hundreds of tests, mixing Gypsum with CF 200 is the best for the casing of the ball, it will not shatter while throwing it from the drone, and it will resist fire until explosion. Plastic ball is used as a model to form the two half-sections of the spherical body of the extinguishing ball. Plastic balls are then removed; the wall thickness of the casing is measured (0.1-0.2 centimeters), for a device approximately eight centimeters in diameter. A pyrotechnic detonator with a single cord is located withinthe internal cavity of the ball. Cavities are then filled withfire extinguishing agent (Monoammonium Phosphate). Finally, the two casing halves are attached together to form a spherical shape of 200 grams. Field tests indicate that 5-10 seconds are needed for the ball to be activated after flame contact.(a) (b)(c)Fig.4. Fire extinguishing ball: (a) Casing of the ball, (b) Extinguishing agent and pyrotechnic detonator, (c) Fire extinguishing ball is attachedto the Robot.D. Automatic Electric_ Spring Operated GunThe goal is to have a gun that can launch a fire extinguishing ball up to 20m. The materials of the gun are aluminum and plastic, which have a light weight and are easy to manufacture. The gun typically uses a DC motor, which cycles an internal spring_ piston assembly. The DC motor drives a series of two gears mounted inside a gearbox. The gears then compress a piston assembly against a spring. Once the piston is released, the spring drives it forward through the cylinder to push a ball out from the muzzle. To drive the DC motor, we build a small circuit that consists of a servo motor and a push button switch. The servo motor will be attached to unused wireless channel so that the gun can be fired remotely using the RC device dedicated for the quadrotor. On the top of the gun, we attached a collision avoidance system and a video camera. All components are powered by 1300mah LiPo battery and shown in figure 5.Fig.5. Automatic Electric_ Spring Operated Gun E. Collision Avoidance SystemFuzzy-based obstacle detection and avoidance system is used for the purpose of guiding drone inside the buildings. As shown in figure 6, we build a small, light-weight module with four ultrasonic sensors [16]. The sensors used in this project are XL MaxSonar EZ4. Sensors gather data and send it to Arduino development board, where data is processed and then transmitted to flight-control board.(a) (b)Fig.6. Hardware architecture of obstacle avoidance system: (a) bottom side of the board, (b) upper side of the boardF. Fuzzy Based Stabilizer Control SystemTwo problems will be appeared as a result of throwing the fire extinguishing balls out the fuselage of quadrotor: Variations in payload, and recoil force. To tackle those problems; fuzzy based stabilizer control system is presented in this project. The system will enable quadrotor to adaptively interact with a dynamic circumstance using a reactive technique determined by sensory information. Sensory Information is gleaned from a distributed sensor array and sent to the fuzzy logic controller. The controller is then command the flight controller to gradually correct quadrotor’s orientation according to the changes in the patterns of the values collected from consecutive frames. The inputs to the flight controller are based on a set of carefully defined linguistic rules. These rules can be bypassed based on the existence of the balls to ensure that the quadrotor is fully compliant with the current mode.The current version is able to carry only one fire extinguishing ball at a time, which will force the drone to come back to the firefighter in order to continuously reload it with a new fire extinguishing ball. To overcome this problem, we have presented the idea of using a tray of four balls. As shown in figure 7, quadrotor will be loaded with four balls where each one is attached to a sensor (S1_4, S2_3, S3_1, S4_2). Sensors gather data and send it to Arduino development board, where data is processed and accordingly quadrotor is moved in the commanded direction. Commands are obtained through a fuzzy controller and then transmitted to flight control board. The flight controller will decode and execute thecommands.Fig.7. Typical structure of Fuzzy Based Stabilizer Control SystemV. E XPERIMENTAL R ESULTSFire Fighting Drone has been evaluated with several real fire experiments in order to confirm the capabilities of the vehicle and other modules. In the first experiment, the tests were conducted only for the structure and electronic systems of the vehicle. During this stage, Drone is tested in regards to the time taken for the takeoff and landing, ease of maneuverability, and how much time it takes to get over the fire. In the second experiment, we equipped the drone with the Robot and examined how the Fire Extinguishing Ball functioning, the time to load the ball, the time to drop the ball, and the time taken by the vehicle to move to the desired location. The gathered data are presented in table 1 and a snapshots for all tests can be seen in figure 8.As shown in table 1, three balls were tested with a real fire experiment. The tests show that a small affected area can be controlled in its initial state. The range was between 1.8 and 2 cubic meters. This range was acceptable when compared with the size of the ball. To extend this range, we are currently testing our system with a tray of four balls. The design is already presented in section F. The time for the ball to be activated were also varied between five to seven second. We conclude that this variation was due to the difference in wall thickness of the ball's casing. The time to load the ball was not recorded in the table since it differ from one person to another. The recommendations was to train a firefighter from the civil defense so that time can be minimized.Table 1. Data collected during experimental tests(a) (b)(c)Fig.8. Snapshots of the FFD in use: (a) Hovering over a fire, (b) Dropping off the fire extinguishing ball, (c) Dispersing the fireextinguishing agent.VI. C ONCLUSION AND F UTURE W ORKIn this paper, we have presented a new intelligent system that will make the extinguishing process either in rugged mountainous terrains or in high-rise buildings faster, more accurate and cost effective. The system will decrease the need for firefighters to get into dangerous areas and provide an efficient way to reach the affected area within a short period of time.The system has been designed and implemented using Quadrotor Unmanned Aerial Vehicle. Accordingly, we have developed the attached technologies that include: Robot, Automatic Electric_Spring Operated Gun, Fire Extinguishing Ball, Collision Avoidance System, and a Camera. The overall system performance tests have shown that the drone is able to get closer to the fire without endangering human lives. The current version is able to carry only one fire extinguishing ball at a time, which will force the drone to come back to the firefighter in order to continuously reload it with a new fire extinguishing ball. To overcome this problem, we havepresentedthe conceptof the fuzzy based stabilizer control system that will enable the drone to be equipped with a tray of four balls. Future work will include the testing of the tray so that the effective extinguish area can be increased.R EFERENCES[1] W. Marchant, S. Tosunoglu, "Rethinking WildfireSuppression With Swarm Robotics," Proceedings of the 29th Florida Conference on Recent Advances in Robotics, FCRAR 2016, Miami, Florida, May 12-13, 2016.[2] K. Chandrakanth, M. Yaswanth kumar, Ch. Mahesh,"Advanced Integrated Fire Halt Robot," International Journal on Recent and Innovation Trends in Computing and Communication IJRITCC, Volume: 4, Issue: 5, May 2016.[3] C. Beltran, M. Freitas, and A. Moribe, "Unmanned AerialVehicle with fire Extinguishing Grenade Release and Inspection System," Florida International University, November 2013.[4]Y. Akhade, A. Kasar, A. Honrao, N. Girme Fire,"Fighting Drone Using CO2 Boll Extinguisher,"International Journal of Innovative Research in Computer and Communication Engineering, Volume: 5, Issue: 2, February 2017.[5]S. Ogawa, S. Kudo, M. Koide, H. Torikai, and Y.Iwatani," Development and Control of an Aerial Extinguisher with an Inert Gas Capsule," Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetic, Bali, Indonesia, December 5-10, 2014.[6]V. Shadrin, S. Lisakov, A. Pavlov, E. Sypin,"Development of Fire Robot Based on Quadcopter," 17th International Conference on Micro/Nanotechnologies and Electron Devices EDM 2016.[7]M. Li, W. Xu, K. Xu, J. Fan, and D. Hou, "Review of FireDetection Technologies Based on Video Images," Journal of Theoretical & Applied Information Technology, vol.49, no. 2, pp. 700-707, 2013.[8] C. Yuan, Z Liu, and Y. Zhang," UAV-based Forest FireDetection and Tracking Using Image Processing Techniques," International Conference on Unmanned Aircraft Systems (ICUAS) ,Denver Marriott Tech Center ,Denver, Colorado, USA, June 9-12, 2015.[9]P. Kumar, S. Rajak, G. Kumar, T. John," Vision BasedFlying Robot with Sensing Devices for Multi-purpose Application," IEEE Sponsored 2nd International Conference on Innovations in Information Embedded and Communication Systems ICIIECS’15, 2015.[10]M. Abdullah, I. Wijayanto, A. Rusdinar," PositionEstimation and Fire Detection Based on Digital Video Color Space for Autonomous Quadcopter Using Odroid XU4," The 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, Indonesia, 2016.[11]P Kumar, J. Ashok, G. Narayanan," GIS based FireRescue System for Industries Using Quadcopter – A Novel Approach," International Conference on Microwave, Optical and Communication Engineering, Bhubaneswar, India, December 18-20, 2015.[12]L. Zhang , B. Wang , W. Peng, C. Li , Z. Lu and Y Guo,"Forest Fire Detection Solution Based on UAV Aerial Data," International Journal of Smart Home, Vol. 9, No. 8, pp.239-250, 2015. [13] A. Ollero, J. R. Martínez-de-Dios, and L. Merino, "Unmanned Aerial Vehicles as Tools for Forest-fire Fighting," International Conference on Forest Fire Research D. X. Viegas (Ed.), 2006.[14]M. Quaritsch, R. Kuschnig, H. Hellwagner, and B.Rinner," Fast Aerial Image Acquisition and Mosaicking for Emergency Response Operations by Collaborative UAVs," Proceedings of the 8th International ISCRAM Conference – Lisbon, Portugal, May 2011.[15] A. Alshbatat, L. Dong, and P. Vial, "Controlling anUnmanned Quad-rotor Aerial Vehicle with Model Parameter Uncertainty and Actuator Failure," Int. J.Intelligent Systems Technologies and Applications, Vol.15, No. 4, pp.295–322, 2016.[16] A. Alshbatat, A. Soliman, and A. Al-Assaf, "Fuzzy-BasedObstacle Avoidance System for Quadrotor Unmanned Aerial Vehicle," Proceedings of 63rd ISERD International Conference, Manchester, United Kingdom, 19th-20th January 2017.Authors’ ProfilesAbdel Ilah Nour Alshbatat was born inTafila, Jordan, in 1968. He received theB.S. degree in Electrical Engineering /Communications from MutahUniversity/Jordan in 1991, and the M.S.degree in Computer Engineering /Embedded System from YarmoukUniversity/ Jordan in 2004, and the Ph.D.in Electrical and Computer Engineering / Networks from Western Michigan University/ USA in 2010. In 1991, he joined Royal Jordanian Air Force (RJAF) and served in the Directorate of Communication & Electronics ground communication branch, during which, he was responsible for the wireless communication and digital microwave sections. In 2010, he joined the faculty of Tafila Technical University/ Jordan. Dr. Abdel Ilah is currently an Associate Professor in the Department of Communications, Electronics and Computer Engineering. His current research interests include computer networks, wireless networks, embedded systems, unmanned aerial vehicle, brain-computer interface and communication systemsHow to cite this paper: Abdel Ilah N. Alshbatat," Fire Extinguishing System for High-Rise Buildings and Rugged Mountainous Terrains Utilizing Quadrotor Unmanned Aerial Vehicle", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.10, No.1, pp.23-29, 2018.DOI: 10.5815/ijigsp.2018.01.03。

相关文档
最新文档