高三复习:排列组合问题的解题方法
高中数学中的排列与组合解题技巧
高中数学中的排列与组合解题技巧在高中数学中,排列与组合是一个重要的概念和解题方法。
排列与组合涉及到数学中的计数和选择问题,掌握解题技巧对于理解和应用数学知识至关重要。
本文将介绍一些高中数学中排列与组合的解题技巧,帮助学生更好地理解和应用这一知识点。
一、排列的解题技巧排列是指从给定的元素中选取若干个元素按照一定顺序排列的结果。
在解决排列问题时,需要注意以下几个技巧:1. 使用排列的知识计算全排列:全排列是指将所有元素按照不同顺序排列的结果。
当需要计算给定元素全排列的数量时,可以使用排列的知识进行计算。
例如,在班级中选取任意3名同学参加演讲比赛,全排列的数量为P(全,3)。
2. 全排列中的重复元素处理:在计算全排列时,如果存在重复的元素,需要考虑重复元素的情况。
可以先计算全排列的总数,再除以重复元素的排列数量。
例如,在字母“MATH”中,字母“A”重复了2次,在计算全排列时,需要除以2!来消除重复的排列。
3. 限制条件下的排列计算:在一些题目中,可能会有某些元素需要满足一定的限制条件才能参与排列。
在解决这类问题时,需要先确定限制条件下可选的元素数量,再进行排列计算。
例如,从1-10中选取3个数字,要求所选数字之间的差值不小于2,可以先确定可选数字的范围,然后计算排列的数量。
二、组合的解题技巧组合是指从给定的元素中选取若干个元素无序地排列的结果。
在解决组合问题时,需要注意以下几个技巧:1. 使用组合的知识计算组合数量:组合的数量可以使用组合的公式进行计算。
例如,在10个人中选取3个人参加某项活动,可以使用组合的知识计算C(10, 3)。
2. 考虑组合的逆问题:在一些题目中,可能需要求解满足特定条件的组合数量。
此时可以考虑组合的逆问题,即求解不满足条件的组合数量,然后用总组合数量减去不满足条件的组合数量,得到满足条件的组合数量。
例如,在一组数字中,需要选出3个数字,使其和为15,可以先计算出不满足条件的组合数量,再用总组合数量减去不满足条件的组合数量。
排列组合常见21种解题方法
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
(好)高中数学排列组合问题常用的解题方法
排列组合常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么例外的排法种数有种。
分析:把甲、乙视为一人,并且乙不变在甲的右边,则本题相当于4人4的全排列,A424种。
二、相离问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.例2七个人并排站成一行,如果甲乙两个必须不相邻,那么例外排法的种数是。
52分析:除甲乙外,其余5个排列数为A5种,再用甲乙去插6个空位有A652种,例外的排法种数是A5A63600种。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.例3 A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B 可不相邻),那么例外的排法种数有。
分析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即15A560种。
2四、标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。
分析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。
例5有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,例外的选法总数有。
分析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,例外的选法共211有C10C8C72520种。
例谈解答排列组合问题的三种方法
考点透视常见的排列组合问题有分组问题、排队问题、分配问题、计数问题等.解答排列组合问题,需重点讨论完成一件事情所需要的步数、方法数,通常需灵活运用分类计数原理和分步计数原理来求解.那么对于不同的事情,如何计算步数、方法数呢?下面介绍三种方法.一、优先法若题目中的元素有特殊要求,则需采用优先法求解.首先分析题目中有特殊要求的元素的排列方式,再分析题目中其他没有特殊要求的元素的排列方式,最后利用分步计数原理进行求解.例1.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若A 小球必须放进4号盒子里,有多少种不同的放法?剖析:本题中的特殊元素为A 小球,则需采用优先法,优先考虑A 小球的位置,再考虑剩下的6个小球以及盒子的放置顺序.解:先将A 小球放进4号盒子里,有1种放法;再将剩下的6个小球任意放进6个盒子里,有A 66=720种放法;所以一共有A 66A 11=720种不同的放法.二、捆绑法有些题目中要求几个元素必须相邻排列,此时可以运用捆绑法求解.先将必须相邻排列的元素捆绑起来看成“一个整体”,当做1个元素,与其他元素一起排列;然后考虑这个“整体”内部元素的排列顺序;最后根据分步计数原理求解.例2.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若放A 、B 、C 小球的3个盒子的标号相邻,则一共有多少种不同的放法?剖析:根据题意可知,要使放A 、B 、C 小球的3个盒子的标号相邻,需将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,采用捆绑法求解.解:将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,与其他4个盒子一起排列,有A 55=120种放法;将A 、B 、C 3个小球放进标号相邻的盒子,有A 33=6种放法;因此一共有A 55A 33=720种不同的放法.三、插空法有些题目要求某些元素不能相邻排列,对于这类问题,需运用插空法求解.先将没有要求的元素排列;再将要求不能相邻排列的元素插入已排列好的元素间的空隙中;最后利用分步计数原理求解即可.例3.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,并按照盒子的顺序摆成一排,每个盒子只装1个小球.要求放A 、B 、C 3个小球的盒子的标号不相邻,且也不放在第一个位置,则一共有多少种不同的放法?剖析:由题意可知,要使放A 、B 、C 3个小球的盒子的标号不相邻,则需采用插空法,先将放D 、E 、F 、G 4个小球的盒子排列好,再将放A 、B 、C 3个小球的盒子放在其他盒子间的缝隙中.解:先将放D 、E 、F 、G 4个小球的盒子的顺序排列,有A 44=24种方法;这4个盒子之间有3个空隙,加上最后的位置,有4个位置,再将装有A 、B 、C 3个小球的盒子任意放置在这4个位置中,有C 34=4种放法;所以一共有A 44C 34=96种不同的放法.优先法、捆绑法、插空法都是解答排列组合问题的常用方法,但每种方法的适用情形不同,优先法适用于求解有特殊要求的元素问题;捆绑法适用于求解元素相邻问题;插空法适用于求解元素不相邻问题.同学们在解题时,要仔细审题,先明确题目对元素的要求,确定是否有特殊元素,元素是否相邻,然后再选择与之相应的方法进行求解.(作者单位:湖北省十堰市竹山县第一中学)李家森42Copyright ©博看网. All Rights Reserved.。
高考数学如何解决复杂的排列组合题目
高考数学如何解决复杂的排列组合题目高考数学中,排列组合是一个常见的考点,也是考生们容易感到头疼的一部分。
在解决复杂的排列组合题目时,需要一定的方法和技巧。
本文将介绍一些解决复杂排列组合题目的方法和步骤。
一、理解排列和组合的概念在解决复杂排列组合问题之前,我们首先要明确排列和组合的概念。
排列是指从n个不同的元素中取出m个元素进行排列,其中元素的顺序是重要的。
组合是指从n个不同的元素中取出m个元素进行组合,其中元素的顺序是不重要的。
二、解决排列问题的方法对于复杂的排列问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:首先,我们需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定排列问题的类型。
一般来说,排列问题可以分为有重复元素和无重复元素两种情况。
3. 使用排列公式计算:根据问题的类型,使用相应的排列公式进行计算。
对于有重复元素的排列问题,可以使用n个元素中有重复元素的排列公式;对于无重复元素的排列问题,可以使用经典的排列公式进行计算。
4. 注意特殊情况:在解决排列问题时,需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
三、解决组合问题的方法对于复杂的组合问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:与解决排列问题类似,首先需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定组合问题的类型。
一般来说,组合问题可以分为有重复元素和无重复元素两种情况。
3. 使用组合公式计算:根据问题的类型,使用相应的组合公式进行计算。
对于有重复元素的组合问题,可以使用n个元素中有重复元素的组合公式;对于无重复元素的组合问题,可以使用经典的组合公式进行计算。
4. 注意特殊情况:在解决组合问题时,同样需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
高考数学中如何应对复杂的排列组合问题
高考数学中如何应对复杂的排列组合问题在高考数学中,排列组合问题是一类相对较难的题型。
学生在面对这类题目时,常常感到迷茫和困惑。
然而,只要掌握了一定的解题方法和技巧,就能够轻松地解决这些复杂的排列组合问题。
本文将为大家介绍几种应对复杂的排列组合问题的方法。
方法一:分步思考法在解决复杂的排列组合问题时,我们可以采用分步思考的方法,将问题逐步拆解成多个简单的子问题,然后逐个解决这些子问题。
具体步骤如下:1. 分析问题:仔细阅读题目,明确题目要求,明确需要求解的值或条件。
2. 列出已知条件:将题目中已经给出的条件列出来,这将有助于我们对问题的全面理解。
3. 寻找递推关系式:考虑问题的规模,观察已知条件,尝试找出问题的递推关系式。
4. 计算每个子问题的答案:按照递推关系式,计算每个子问题的答案,并逐步推导出最终的解。
5. 检查答案:将最终的解带入题目要求,检查答案是否符合题目要求。
通过以上步骤,我们可以将复杂的排列组合问题拆解成多个简单的子问题,逐一解决,最终得到正确的解答。
方法二:利用组合数公式对于一些特殊的排列组合问题,我们可以利用组合数公式来简化计算。
组合数公式可以表示为:C(n,m) = n! / (m!(n-m)!),其中n为待选取的元素个数,m为待选取的元素个数。
例如,题目要求从10个数字中选取4个数字进行排列组合,则可以利用组合数公式计算:C(10,4) = 10! / (4!(10-4)!) = 210。
方法三:借助图表法对于一些较复杂的排列组合问题,我们可以借助图表法来进行理解和计算。
具体步骤如下:1. 绘制分析图表:根据题目要求,绘制出相应的图表,明确每个元素的位置和关系。
2. 填充元素:根据已知条件,将已知的元素填充进图表中。
3. 推导未知元素:根据图表中已有的元素和递推关系,推导出未知的元素。
4. 检查答案:将最终得到的解带入题目要求,检查答案是否符合题目要求。
借助图表法,我们可以将排列组合问题直观地呈现出来,更好地理解和解决问题。
排列组合问题常用的解题方法含答案
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组<当作一个元素>参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。
二、相离问题插空法元素相离<即不相邻>问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边<A、B可不相邻>.那么不同的排法种数有。
四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。
例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。
六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。
例6:由数字 0.1.2.3.4.5组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。
例7:从1.2.3.…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法<不计顺序>共有多少种?例8:从1.2.…100这100个数中.任取两个数.使其和能被4整除的取法<不计顺序>有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。
n A B n A n B n A B()()()()例9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法?八、定位问题优先法某个<或几个>元素要排在指定位置.可先排这个<几个>元素.再排其他元素。
排列组合题型及解题方法
排列组合题型及解题方法
排列组合是数学中的一个重要概念,用于计算对象的不同排列或组合的数量。
在解决排列组合问题时,可以使用以下几种常见的方法:
1. 计数法:根据问题的条件,逐步计算出排列或组合的数量。
例如,如果要求从n个不同的元素中选取r个元素进行排列,可以使用计数法计算出排列的数量为n(n-1)(n-2)...(n-r+1)。
2. 公式法:排列组合问题有一些常用的公式,可以直接使用这些公式计算出排列或组合的数量。
例如,排列的数量可以使用阶乘计算,组合的数量可以使用组合公式计算。
3. 递归法:对于一些复杂的排列组合问题,可以使用递归的方法进行求解。
递归法的基本思想是将问题分解为更小的子问题,并通过递归调用解决子问题。
4. 动态规划法:对于一些具有重叠子问题的排列组合问题,可以使用动态规划的方法进行求解。
动态规划法的基本思想是将问题划分为多个阶段,并通过保存中间结果来避免重复计算。
在实际应用中,排列组合问题常常与概率、统计、组合优化等领域相关。
解决排列组合问题需要灵活运用数学知识和方法,同时也需要具
备一定的逻辑思维能力。
高中数学排列组合问题的几种基本方法
2 2
5 然后再消去甲乙之间的顺序数 A A5 3 5 4 3 A 5 2 ∴甲总站在乙的右侧的有站法总数为 A2 解法2:先让甲乙之外的三人从5个位置选出3个站好, 3 有 A5 种站法,留下的两个位置自然给甲乙有1种站法 3 3 ∴甲总站在乙的右侧的有站法总数为 A5 1 A5
5.剪截法: n个相同小球放入m(m≤n)个盒子里,要求每个盒 子里至少有一个小球的放法等价于n个相同小球串成 一串从间隙里选m-1个结点剪截成m段. 变式: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名 额不少于该班的序号数,则不同的分配方案共有___ 种. 解: 问题等价于先给2班1个,3班2个,4班3个,再 把余下的10个相同小球放入4个盒子里,每个盒子至 少有一个小球的放法种数问题. 3 将10个小球串成一串,截为4段有 C9 84 种截断法,对应放到4个盒子里. 因此,不同的分配方案共有84种 .
4.消序法(留空法) 解: 如图所示 变式:如下图所示,有5 B 横8竖构成的方格图,从 A到B只能上行或右行共 有多少条不同的路线? 也可以看作是 1,2,3,4,5,6,7,①, B A ②,③,④顺序一定的 将一条路经抽象为如下的一个 11 A 排列,有 11 排法(5-1)+(8-1)=11格:
7.剔除法 (正难则反或间接法) 从总体中排除不符合条件的方法数,这是一种间 接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面解析 几何的某些知识联系,从而增加了问题的综合性,解答这类应 用题时,要注意使用相关知识对答案进行取舍.
排列组合题型方法总结
排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。
在实际问题中,排列组合经常用于解决具体的计数问题。
在本文中,我将总结一些常见的排列组合题型及解题方法。
一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。
在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。
解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。
2. 圆排列:将不同的元素排成一个圆,求出排列的总数。
解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。
3. 重复排列:将一组相同的元素排列,求出排列的总数。
解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。
4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。
解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。
二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。
在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。
解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。
2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。
解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。
3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。
解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。
4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。
解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。
三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。
下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。
高中排列组合问题的解答技巧和记忆方法
高中排列组合问题的解答技巧和记忆方法The following text is amended on 12 November 2020.排列组合问题的解题策略关键词:排列组合,解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
解决高考数学中的排列与组合问题
解决高考数学中的排列与组合问题高考数学中的排列与组合问题常常让考生头疼不已,但只要掌握正确的解题方法和技巧,这些问题将变得简单而有趣。
本文将为大家介绍一些解决高考数学中的排列与组合问题的有效方法。
一、排列问题解决方法排列是从n个元素中选取m个元素进行排列,其中元素的顺序是重要的。
下面是一些解决排列问题的方法:1. 公式法排列问题可以使用公式进行求解,公式为P(n,m) = n!/(n-m)!,其中"!"表示阶乘运算符。
这个公式可以直接计算出排列的结果。
2. 集合法使用集合的概念可以简化排列问题的解决。
将n个元素放入一个集合中,然后从集合中选取m个元素进行排列,最后将所有可能的排列方式求和即可得到结果。
3. 分类讨论法对于一些特殊的排列问题,可以使用分类讨论的方法求解。
将问题分解成几个简单的子问题,然后分别求解并将结果相加即可得到最终的答案。
二、组合问题解决方法组合是从n个元素中选取m个元素进行组合,其中元素的顺序是不重要的。
下面是一些解决组合问题的方法:1. 公式法组合问题可以使用公式进行求解,公式为C(n,m) = n!/(m!(n-m)!)。
通过将排列公式中的重复计数去掉,就可以得到组合的公式。
2. 集合法与排列问题相似,使用集合的概念同样可以简化组合问题的解决。
将n个元素放入一个集合中,然后从集合中选取m个元素进行组合,最后将所有可能的组合方式求和即可得到结果。
3. 分类讨论法对于一些特殊的组合问题,同样可以使用分类讨论的方法求解。
将问题分解成几个简单的子问题,然后分别求解并将结果相加即可得到最终的答案。
三、解决高考数学中的排列与组合问题的技巧除了掌握以上的解题方法外,还有一些技巧可以帮助我们更轻松地解决高考数学中的排列与组合问题:1. 灵活运用计数原理计数原理是解决排列与组合问题的基础,灵活运用计数原理可以帮助我们简化问题,加快解题速度。
2. 注意边界条件解决排列与组合问题时,要注意边界条件的处理。
高中数学轻松搞定排列组合难题二十一种方法(含答案)
高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类1办法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步1有m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,两个位置.443先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
解高中排列组合题的常用方法
解高中排列组合题的常用方法排列组合是高中数学的重点和难点之一,也是高考必考的内容.学好排列组合对同学有两方面的益处,一方面为同学进一步学好概率知识打下坚实的基础;另一方面使同学进一步理解和掌握分类讨论思想、转化思想和对称思想等数学思想.由于排列组合问题不仅内容抽象,题型多样,解法灵活,而且解题过程中极易出现重复或者遗漏的错误,针对这些问题,下文介绍了八种解排列组合题的常用方法,并且结合一些2009年数学高考题来阐述一下这些方法的具体运用.一、分类法(分类问题)对于可分成若干类完成的排列组合问题,把问题分成若干类(使得每类不重不漏),分别计算出每类的排列组合数,再根据加法原理把各类的排列组合数相加即可.例1 甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A. 150种B. 180种C. 300种D. 345种解析此问题可分为两类,第一类是:由甲组中选出一名女生,有C15•C13•C26=225种选法,第二类是:由乙组中选出一名女生,有C25•C16•C12=120种选法,从而共有225+120=345种选法,故选D.例2用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.(用数字作答)解析此问题可分为两类,第一类是:个位、十位和百位上的数字都是偶数的四位数有C23A33C14+A33C13=90个,第二类是:个位、十位和百位上的数字为1个偶数和2个奇数的四位数有C23A33C14+C13C23A33C13=234个,故个位、十位和百位上的数字之和为偶数的四位数共有90+234=324个.评注对于分类问题,关键是正确地分类和准确地计算出每类的排列组合数.练习在11名同学中,有5人只会打篮球,4人只会打乒乓球,另外2人既会打篮球也会打乒乓球,现从11人中选4人打篮球,4人打乒乓球,问共有多少种不同的选法?(答案:185)二、分步法(分步问题)对于可分成若干步完成的排列组合问题,把问题分成若干步,分别计算出每步的排列组合数,再根据乘法原理把各步的排列组合数相乘即可.例3 从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有()A. 120种B. 96种C. 60种D. 48种解析此问题可分为四步完成,第一步是:5人中选4人共有C45种,第二步是:星期五选一人有C14种,第三步是:星期六选两人有C23种,第四步是:星期日选一人有C11种,则不同的选派方法共有C45C14C23C11=60种,故选C.例4 甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).解析此问题可分为两步完成,第一步是:先排甲有7种情况,第二步是:再排乙、丙,此步又分为两类,第一类是:当乙和甲站在同一个台阶有1种情况时,丙站在其它六个台阶之一有6种情况,第二类是:当乙站在其它六个台阶其中之一有6种情况时,丙可以任意站有7种情况,则第二步有1×6+6×7=48种情况,故不同的站法种数是7×48=336种.评注对于分步问题,关键是正确地分步和准确地计算出每步的排列组合数.练习n+1本不同的书分给n个人,每人至少一本,问有多少种不同的分法?(答案:C2n+1Ann)三、排除法/间接法(限制条件问题)对于关于有限制条件的排列组合问题,首先求出不加限制条件的排列组合数,然后减去其中不符合条件的排列组合数.例5 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A. 6种B. 12种C. 30种D. 36种解析两人各选2门的情况有C24C24种,两人所选两门都不相同的情况有C24C22种,则甲、乙所选的课程中至少有1门不相同的选法有C24C24-C24C22=36-6=30种,故选C.例6 某地政府召集5家企业人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为()A. 14B. 16C. 20D. 48解析不考虑是否来自同一企业的种数是C36,而3人有来自同一企业的种数是C22C14,则这3人来自3家不同企业的可能情况的种数为C36-C22C14=20-4=16,故选B.评注对于有限制条件或出现“至少”“至多”之类字眼的题目适合用排除法,就是让不考虑限制条件得到的总排列组合数减去不符合题中限制条件的排列组合数.练习某班有10名中共党员,其中4名男同学,6名女同学,要从这10人中评选出3名“三好学生”,并且至少有1名男同学,问有多少种选法?(答案:100)四、优先法(指定位置问题)对于某几个元素要排在指定位置的排列组合问题,一般应先考虑这些特殊元素,再考虑其他元素.例7 从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()A. 432B. 288C. 216D. 108解析由于是奇数,优先考虑末尾数字从1,3,5,7中取,有种情况;再从剩余三个奇数中选取一个,有C13种情况;从2,4,6三个偶数中选取两个,有C23种情况,再进行十位、百位和千位三个位置的全排列,有A33种情况,则共有C14C13C23A33=216个,故选C.评注上题中要求的是奇数,所以优先考虑末尾数字,再考虑其他位置的数字.练习广东宏远篮球队的10名队员中有3名主力球员,派5名参加比赛,3名主力球员安排在中锋、组织后卫和进攻后卫位置上,从其余7名球员中选2名排在小前锋和大前锋位置,那么不同的出场顺序有多少种?(答案:252)五、插空法(不相邻问题)对于某几个元素不相邻的排列组合问题,可先将其它元素排好,再将这些不相邻的元素在已排好的元素之间及两端的空隙中插入.例8 5个人站成一排,其中甲、乙两人不相邻的排法有种.解析除甲乙外先排其他三人有A33种情况,再将甲乙二人插入前三人形成的四个空隙中有A24种情况,故甲、乙两不相邻的排法有A33A24=72种.评注上题中由于甲、乙不相邻,所以先排其他人,再把甲和乙插进去.练习n个男生要m(m≤n)和个女生合影,要求m个女生两两不相邻,问有多少种不同的排法?(答案:AnnAmn+1)六、捆绑法(相邻问题)对于某几个元素相邻的排列组合问题,可将相邻的元素捆绑在一起,看作一个整体元素与其它元素排列组合,然后再在这个整体元素内部进行排列组合.例9 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 60B. 48C. 42D. 36解析有两位女生相邻可从名女生中任取人捆绑在一起记作a,(a共有C23A22=6种不同排法),剩下一名女生记作b,两名男生分别记作甲、乙,则男生甲必须在a、b之间(若甲在a、b两端,则为使a、b不相邻,只有把男生乙排在a、b之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(a左b右和a右b左)最后再在排好的三个元素中选出四个位置插入乙,则共有12×4=48种不同排法,故选B.评注上题中由于有两名女生相邻,所以要把这两名相邻女生捆绑在一块看成一个整体.练习5名同学要和2名校长合影,要求排成一排,2名校长相邻且不排在两端,问有多少种不同的排法?(答案:960)七、集合法(交叉问题)对于某些排列组合部分之间有交集的排列组合问题,可用集合中求元素个数公式Card(A∪B)=Card(A)+Card(B)-Card(A ∩B)来求解.例10 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为()A. 50B. 45C. 40D.35解析由公式Card(A∪B)=Card(A)+Card(B)-Card(A∩B),得两项都参加的学生人数为:Card(A∩B)=Card(A)+Card(B)-Card(A∪B)=30+25-50=5,则仅参加了一项活动的学生人数为:50-5=45,故选B.评注关键是把公式中的每个量准确地求出来.练习从6名运动员中选出4名参加4×100m接力赛,其中甲不跑第二棒,乙不跑第三棒,共有多少种不同的参赛方法?(答案:252)八、概率法(概率问题)对于几种情况出现概率相同的排列组合问题,只要求出其中一种情况排列组合数,乘以情况总数就可得到总体情况排列组合数;或者只要求出总体情况排列组合数,除以情况总数就可得到每种情况排列组合数.例11 将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).解析由于三个乡镇甲、乙、丙都有可能得到两名大学生,这三种情况出现的概率相同,从而我们不妨只考虑乡镇甲分到两名大学生,乡镇乙、丙各分到一名大学生的情况,这种分配方案有C24C12C11=12种,故总的分配方案有3C24C12C11=3×12=36种.评注关键是搞清楚每种情况发生的概率,再选其中一类特殊情况进行讨论.练习由数字0,1,2,3,4,5,6组成没有重复数字的六位数,其中个位数小于十位数的共有多少个?(答案:2160) 解排列组台题的方法很多,以上只是对常用方法进行了分析,这里只起抛砖引玉的作用,望大家解题时不断积累经验,总结解题规律,掌握方法和技巧,最终达到灵活运用.责任编校徐国坚。
排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全
排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2: 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。
高中数学排列组合解题技巧
高中数学排列组合解题技巧
1.相离问题插空法
相离问题插空法主要用来解决2个或假设干个不相邻元素的排列组合问题,是解决排列组合问题的常见方法之一。
它是指先把无位置要求,无条件限制的元素排列好,然后对有位置要求,受条件限制的元素进展整理,再将受条件限制的元素插入到已排列好的无条件限制元素的间隙或两端中。
2.相邻问题捆绑法
相邻问题捆绑法作为排列组合题最为常见的解法之一,就是在解决对于某几个元素相邻问题时,将相邻元素作为整体加以考虑,视为一个“大”元素参与排序,然后再单独对大元素内部各元素间的排列顺序进展一一分析^p 排列。
3.多元问题分类法
多元问题分类主要用解决元素较多,情况多种时的排列组合问题。
它是在弄清题意的根底上,按结果要求将其分成不相容的几类情况加以考虑,分别计数,最后一一相加,进展总计。
4.特殊元素优先安排法
特殊元素优先安排法是指在具有特殊元素的排列组合问题中,应优先对特殊元素进展安排,再考虑其它元素。
解决排列组合问题的常用方法
按分类计数原理有 种
2、在∠AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )
第一类办法从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有C C 个;第二类办法从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个;第三类办法从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个由加法原理共有N=C C +C C +C C 个三角形
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?
解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;
分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;
插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,
捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法
点评:以上问题归纳为
分给人(有序)
分成堆(无序)
非均匀
均匀
排列组合问题的几种解题方法
排列组合问题的几种解题方法排列、组合问题,在高考中通常是以选择题或填空题的形式考察,它联系实际,题型多样,解法灵活。
自2010年新课改以来,这类问题的难度有所降低,只要掌握恰当的解决方法问题就可以迎刃而解。
备考中有效的方法是将题型与解法归类,识别模型、熟练运用。
下面我将排列組合中的常规题型及解法总结如下:一、相邻元素捆绑法所谓“捆绑法”,就是在解决某几个元素要求相邻问题时,可整体考虑将视为一个“大元素”.例1. 6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有种.解析:因甲、乙两人要排在一起,故甲、乙两人捆在一起视作一人,与其余四人全排列共有种排法,但甲、乙两人之间有种排法,由分步计数原理可知,共有不同的排法.二、相离问题插空法相离问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以将其他元素排好,再将所指定的不相邻元素插入到空隙及两端位置,故称“插空法”.例2. 6个男同学和4个女同学排成一列照相,任何两个女同学不相邻,问有多少种不同的排法?解析:现将6个男同学排好,其不同的排法为种,这6个男同学的空隙及两端共七个位置中再排4个女同学共有种排法,由分步计数原理可知,任何两个女同学不相邻的排法共有种.三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序称为定序问题,这类问题用缩小倍数的方法求解比较方便.例3. 信号兵红旗与白旗挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是解析:5面旗全排列有种挂法,由于3面红旗与2面白旗分别全排列只能作一次挂法,故共有不同信号的种数是=10种.四、定位问题优先法所谓“优先法”,即有限制条件的元素(或位置)在解题时优先考虑.例4. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须在一起,并且水彩画不放在两端,那么不同的陈列方式有()种A. B.C. D.解析:先把3种品种的画看成整体,而水彩画受限制应优先考虑,不能放在头尾,故只能放在中间,又油画与国画有放法,再考虑油画与国画本身各有与种放法,故排列的方法为,故选D.五、至少(至多)问题间接法含“至少”、“至多”的排列组合问题,是分类问题,可用间接法。
高考数学轻松搞定排列组合难题十二种方法
高考数学轻松搞定排列组合难题十二种方法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略定序问题可以用倍缩法,还可转化为占位插入法例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n例6. 8人围桌而坐,共有多少种坐法?练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种十.元素相同问题隔板策略将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C --例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法?2 .100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例如:8本不同的书,按照以下要求分配,各有多少种不同的分法?⑴一堆1本, 一堆2本, 一堆5本;⑵甲得1本,乙得2本,丙得5本;⑶甲、乙、丙三人, 一人1本, 一人2本, 一人5本;⑷平均分给甲、乙、丙、丁四人;⑸平均分成四堆;⑹分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本, 一人2本, 一人2本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合问题的解题方法一、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑.例1、在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个. 解1:(元素优先法)根据所求四位数对0和5两个元素的特殊要求将其分为四类:①含0不含5,共有1324C A =48(个);②含5不含0,共有1334C A =72(个);③含0也含5,共有112224C C A =48(个);④不合0也不含5,共有44A =24(个).所以,符合条件的四位数共有48+72+48+24=192(个).解2:(位置优先法)根据所求四位数对首末两位置的特殊要求可分三步:第一步:排个位,有14C 种方法;第二步;排首位,有14C 种方法;第三步:排中间两位,有24A 种方法.所以符合条件的四位数共有14C 14C 24A =192(个).二、相邻问题“捆绑法”:对于元素相邻的排列问题,可先将相邻元素“捆绑”起来看作一个元素(整体),先与其它元素排列,然后相邻元素之间再进行排列.例2、6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A 55种,甲、乙二人的排列有A 22种,共有A 22·A 55=240种. 三、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可.例3、用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个.解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A 种.四、有序问题“无序法”:对于元素顺序一定的排列问题,可先考虑没有顺序元素的排列,然后除以有顺序的几个元素的全排列即可.例4、3男3女排成一排,若3名男生身高不相等,则按从高到低的一种顺序站的站法有多少种?解:6个人的全排列有A 66种,3名男生不考虑身高的顺序的站法有A 33种,而由高到低又可从左到右,或从右到左(这是两种不同的站法),故共有不同站法2A 66÷A 33=240种. 五、分排问题“直排法”:n 个元素分成m (m <n )排,即为n 个元素的全排列.例5、将6个人排成前后两排,每排3人,有多少种排法.解:6个人中选3个人排在前排有A C 3336种,剩下3人排在后排有A 33种,故共有A C 3336A 33=A 66=720种.六、分组与分配问题的解法例6、6本不同的书,按以下要求各有多少种分法?⑴平均分成三组;⑵分成1本,2本、3本三组;⑶平均分给甲、乙、丙三人;⑷分给甲、乙、丙三人,一人拿1本,一人拿2本、一人拿3本;⑸甲得一本,乙得二本,丙得三本.解:⑴此为平均分组问题,共有153222426=!C C C 分法;⑵此为非平均分组问题,共有60332516=CC C 分法;⑶先分组,再排序,共有9033222426=•!!CC C 种分法;⑷先分组,再排序,36033332516=A C C C 分法;⑸共有60332516=C C C 分法.【注】此例中的每一个小题都提出了一种类型问题,搞清类型的归属对今后解题大有裨益,其中:⑴均匀分组问题;⑵非均匀分组问题;⑶均匀不定向分配问题;⑷非均匀不定向分配问题;⑸非均匀定向分配问题.七、综合问题的解法:对排列组合的综合问题,由于限制条件较多而使问题较为复杂.解此类问题时,应注意解题的基本策略与方法,抓住问题的本质,采用恰当方法求解.1、分类分步法:解排列组合的综合问题,应遵循“按元素的性质进行分类,按事情的发展过程进行分步”的原则,做到分类标准明确,分步层次清楚,不重不漏.例7、6个人排成一排,甲不在排头,乙不在排尾的排法有多少种?解:按元素甲分类:①甲在排尾,此时乙无任何限制条件地和其余4个元素排在一起,有A 55种排法;②甲不在排尾,而甲又不在排头,则甲有A 14种排法,乙不在排尾也有A 14种排法,其它4人有A 44种排法,共有A 55+A 14A 14A44=504种.2、排除法:对含有否定词的问题,也可从总体中把不符合条件的排法除去,此时应注意不能多除,也不能少除.例如:在例8中,6个人的全排列有A 66种,甲在排头的排法有A 55种,乙在排尾的排法有A 55种,甲在排头且乙在排尾的排法有A 44种,故共有A 66-A 55-A 55+A 44=504种. 3、集合思想例8、用0、1、2、3、4、5、6七个数字组成没有重复数字的五位数,若数字3不在百位,数字5不在个位,共有多少个这样的五位数?解:设M={从七个数中任取五个数的排法},A={0在首位的排法},B={3在百位上的排法},C={5在个位上的排法},如图,则满足条件的五位数共有:card (M )-card (A )-card (B )-card (C )+card (A ∩B )+card (B ∩C )+card (C ∩A )-card (A ∩B ∩C )=16083324354657=-+-A A A A 个. 4、图示(表)法:对于某些综合问题,如暂无思路求解,可考虑回归课本,用树图、框图或图表法求解.例9、同室四人各写一张贺年卡,先集中起来,然后每人拿一张别人写的贺年卡,则四张贺年卡的不同分配方法有多少种?解:(树图法)如图,共有9种不同的选法. 例10、3男3女排成一排,下列情形各有多少种排法.⑴男女相间.⑵甲乙之间恰隔二人.解:⑴男女相间的站法有两类:男女男女男女,女男女男女男,共有2A 33·A 33=72种; ⑵甲乙之间恰隔二人有三类:甲××乙××,×甲××乙×,××甲××乙,因甲乙可交换位置,故共有3×A 22×44A =144种. 例11、9人组成的蓝球队中,有7人会打卫,3人会打锋,现选5人,按3卫2锋组队出场,有多少种不同的组队方法?解:9个人中7人会卫3人会锋,故有1人既会卫也会锋,则只会卫的有6人,只会锋的有2人,见下表:故共有A A 2236+A A C 223326+A C A 221236=900种方法. 5、至多、至少问题间接法:对于含有 “至多”、“至少”的组合问题,分类讨论十分麻烦,若用间接法处理,可使问题简化.例12、①某校要从6个班级中选出10人组成一个篮球队,要求每班至少选1人参加,则这10个名额的不同分配方法有多少种?②从4台甲型和5台乙型电视机中任意取出3台,其中至少含甲型与乙型电视机各一台的不同选法有 种?解:①(隔板法)因为名额之间无区别,所以可把它们视作排成一排的10相同的球,要把这10个球分开成6段(每段至少有一个球),这样,第一种分隔方法都对应一种名额的分配方法,这10个球之间(不含两端)共有9个空位,现要在这9个空位中放进5块隔板,共有C 59=126种放法,故共有126种分配方法. ②(排除法)在被取出的3台中,不含甲型或不含乙型的取法分别为34C 与35C 种,故符合题意的取法有39C -34C -35C =70种.6、角色转换法:对元素可重复的排列组合问题,若将元素与位置互换,则可化为相异元素的问题求解.例13、有2个A ,3个B ,4个C 共9个字母排成一排,有多少种排法?解:将字母作为元素,则这是九个元素排在九个位置上的“不尽相异元素的全排列”问题.若将九个位置作为元素,则问题转化为“相异元素不许重复的组合问题”,即共有1260443729 CC C 种不同的排法.7、分组与分配问题的解法例14、6本不同的书,按以下要求各有多少种分法?⑴平均分成三组;⑵分成1本,2本、3本三组;⑶平均分给甲、乙、丙三人;⑷分给甲、乙、丙三人,一人拿1本,一人拿2本、一人拿3本;⑸甲得一本,乙得二本,丙得三本.解:⑴此为平均分组问题,共有153222426=!C C C 分法;⑵此为非平均分组问题,共有60332516=C C C 分法;⑶先分组,再排序,共有9033222426=•!!C C C 种分法;⑷先分组,再排序,36033332516=A C C C 分法;⑸共有60332516=C C C 分法. 【注】此例中的每一个小题都提出了一种类型问题,搞清类型的归属对今后解题大有裨益,其中:⑴均匀分组问题;⑵非均匀分组问题;⑶均匀不定向分配问题;⑷非均匀不定向分配问题;⑸非均匀定向分配问题.8、方程思想例15、球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分。
欲将此十球中的4球击入袋中,且总分不低于5分,则击球方法有 种?解:设击入黄球x 个,红球y 个,则有4x y +=,且25x y +≥(x ,y N ∈),解得14x ≤≤,∴13x y =⎧⎨=⎩或22x y =⎧⎨=⎩或31x y =⎧⎨=⎩或40x y =⎧⎨=⎩,对应每组解的击球方法数分别为1346C C ,2246C C ,3146C C ,4046C C ,∴不同的击球方法数为1346C C +2246C C +3146C C +4046C C =195种.对排列组合的综合问题,常用方法是“先选之,再排之”.在分清分类与分步的标准与方式的基础上,遵循两个原则:一是按元素的性质进行分类,二是按事情发生的过程进行分步.在具体应用中,要注意“类”与“类”间的独立性与并列性和“步”与“步”间的连续性.这要求我们要有周密的逻辑思维能力、准确的计数能力和灵活正确运用基础知识的能力.例16、7个人到7个地方去旅游,甲不去A 地,乙不去B 地,丙不去C 地,丁不去D 地,共有多少种旅游方案?解:(排除法)7个人去7个地方共有77A 种可能.①若甲、乙、丙、丁都去各自不能去的地方旅游,其余的人去剩下的地方有336A =种;②若甲、乙、丙、丁中有3人去各自不能去的地方旅游,有34C 种,4人中剩下的一人有13C 种,其余的人去剩下的地方有33A 种,共有34C 13C 33A =72种;③若甲、乙、丙、丁中有2人去各自不能去的地方旅游,有24C 种,余下的5人去5个不同的地方有55A 种,但其中又包括了有条件的4人中的两人(不妨设为甲乙)同时去各自不能去的地方有33A 种和这两人中有一人去各自不能去的地方有13332A A 种,故共有24C ·(55A -33A -13332A A )=468种;④若甲、乙、丙、丁中有1人去各自不能去的地方旅游,有14C 种,而余下的6个人的旅游方案仍与③的想法一致,共有1216343531363435333433[()(2)]1704C C C A A A A A A A A ------=种.故满足条件的不同旅游方案共有77A -(6+72+468+1704)=2790种.例17、三个学校分别有1名、2名、3名学生获奖,这6名学生排成一排合影,则同校的任何两名学生都不能相邻的排法有 种.解:由题意可分两类:①先在6个位置上排第一个学校的三名学生,两两不相邻(如图),3名学生每两名隔一个空位有2种排法,剩下的三个空位中再选2个排第二个学校的2名同学,最后一名同学自动确定位子,此时有232323272C A A =种排法;②第一个学校的3名同学中有两名中间隔两个位子的有两种排法(如图),剩下的3个位子中,挨着的两个不能同时选,所以从另外两个中选,最后一名同学自动确定位子,此时有132322248C A A =种排法.故满足题设条件的排法共有120种排法.试题集粹:1、从数字0、1、3、5、7中取出不同的三个作系数组成一元二次方程02=++c bx ax ,其中有实根的方程共有 个.2、将6名运动员分成4组,由5名教练员分成4组分别辅导,不同的分配方法有 种.3、身高互不相同的6个人排成2横行3纵列,在第一行的每个人都比他同列的身后的人个子矮,则所有不同排法共有 种.4、乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员中选2名安排在第二、四位置,则不同的出场安排有 种.5、用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答) .6、某小组12位同学毕业前夕要留影,要求排成前5后7两排,组长站在前排正中间,两位女生甲、乙站前排且不相邻,则共有排法种数有 种.7、5个人有相应的5个指纹档案,每个指纹档案上都记录有相应人的指纹痕迹,并有检测指示灯和检测时的手指按扭.5个人中某人把手指按在键扭上,若是他的档案,则指示灯出现绿色,否则出现红色.现在这5人把手指按在5个指纹档案的按扭上去检测,规定一个人只能在一个档案上去检测,且两个人不能在同一档案上去检测,此时指示灯全部出现红色的情况共有 种.8、如图,某城市开发旅游资源,现开发出A 、B 、C 、D 、E 、F 六个旅游景点.该城市某旅行社根据游览景点次序不同而制定团体旅游方案,因为A 景点离火车站最近,根据团体来的时间,决定最先或最后旅游.对于同一交通线路上的B 、C ,可按先远后近或先近后远的方式方式游览,其余不作要求.则可制定不同的旅游方案 种.参考答案:⑴18;⑵15600;⑶90;⑷252;⑸40;⑹2903040;⑺44;⑻96.。