2018南昌市中考必备数学模拟试卷(13)附详细试题答案

合集下载

精选2018年江西省南昌市中考数学三模试卷(有答案解析)

精选2018年江西省南昌市中考数学三模试卷(有答案解析)

2018年江西省南昌市中考三模试卷数学一、选择题(本大题共6 小题,每小题3 分,共18 分)1.2018 的倒数是()A.﹣2018 B.C.D.2018【分析】根据倒数的意义,可得答案.解:2018 的倒数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.人类生存的环境越来越受到人们的关注,某研究机构对空气进行了测量研究,发现在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克.数据0.001293 可用科学记数法表示为()A.0.1293×10﹣2 B.1.293×10﹣3C.12.93×10﹣4 D.0.1293×10﹣3【分析】绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.解:数据0.001293 可用科学记数法表示为1.293×10﹣3.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a| <10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3.计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.解:(A)原式=1,故A 错误;(B)x3与x4不是同类项,不能进行合并,故B错误;(C)原式=a4b6,故C错误;故选:D.【点评】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.解:A、∠1 和∠2 的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1 和∠2 的对顶角是同位角,且相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,且相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2 互为同旁内角,同旁内角相等,两直线不平行,此选项错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.解:从上面观察可得到:.故选:D.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看不见的部分用虚线表示.6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t 变化的函数图象大致是()A.B.C.D.【分析】分析动点P 在每段路径上的运动的过程中的面积增大、减小或不变的趋势即可.解:由点P 的运动可知,当点P 在GF、ED 边上时△ABP 的面积不变,则对应图象为平行于t 轴的线段,则B、C 错误.点P 在AD、EF、GB 上运动时,△ABP 的面积分别处于增、减变化过程.故D 排除故选:A.【点评】本题为动点问题的函数图象判断题,考查学生对于动点运动过程中函数图象的变化趋势的判断.解答关键是注意动点到达临界点前后的图象变化.二、填空题(本大题共6 小题,每小题3 分,共18 分)7.若x的立方根是﹣2,则x=﹣8 .【分析】根据立方根的定义即可求出答案.解:由题意可知:x=(﹣2)3=﹣8故答案为:﹣8【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.8.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是2.40,2.43 .【分析】将已知数据已经由小到大排列,所以可以直接利用中位数和众数的定义求出结果.解:∵把7 天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.43,2.43,2.43.∴它们的中位数为2.40,众数为2.43.故答案为:45,45.故答案为2.40,2.43.【点评】考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数9.如图,⊙O的直径CD垂直于弦AB,∠CAB=67.5°,则∠AOB=90 度.【分析】根据垂径定理得出=,根据∠CAB=67.5°求出和的度数都是135°,求出的度数,即可得出答案.解:∵⊙O 的直径CD 垂直于弦AB,∴=,∵∠CAB=67.5°,∴和的度数都是2×67.5°=135°,∴的度数是360°﹣135°﹣135°=90°,∴∠AOB=90°,故答案为:90.【点评】本题考查了垂径定理和圆周角定理,能求各段弧的度数是解此题的关键.10.已知a、b 是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b 的值是3 .【分析】根据一元二次方程的解及根与系数的关系,可得出a2﹣2a=1、a+b=2,将其代入a2﹣a+b 中即可求出结论.解:∵a、b 是方程x2﹣2x﹣1=0 的两个根,∴a2﹣2a=1,a+b=2,∴a2﹣a+b=a2﹣2a+(a+b)=1+2=3.故答案为:3.【点评】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.11.如图,点A是反比例函数y=﹣(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为4﹣π.【分析】由题意可以假设A(﹣m,m),则﹣m2=﹣4,求出点A 坐标即可解决问题;解:由题意可以假设A(﹣m,m),则﹣m2=﹣4,∴m=≠±2,∴m=2,∴S阴=S正方形﹣S圆=4﹣π,故答案为4﹣π.【点评】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD 是平行四边形,点A、B、C 的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E 是BC的中点,点P 为线段AD 上的动点,若△BEP 是以BE 为腰的等腰三角形,则点P 的坐标为(1,4)或(6,4)或(0,4).【分析】分两种情形分别讨论求解即可;解:如图,作EH⊥AD 于H.由题意BE=5,OA=4,OE=3,当EP=EB=5 时,可得P″(0,4),P′(6,4),(HA=HP′=3),当BP=BE=5 时,P(1,4),综上所述,满足条件的点P坐标为(1,4)或(0,4)或(6,4).【点评】本题考查平行四边形的性质、坐标与图形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共5 小题,每小题6 分,共30 分)13.(6 分)(1)计算:﹣14﹣2×(﹣3)2+ ÷(﹣)(2)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C、D 分别落在点M、N 的位置,发现∠EFM=2∠BFM,求∠EFC 的度数.【分析】(1)原式利用乘方的意义,立方根定义,乘除法则,以及加减法则计算即可求出值;(2)由折叠的性质得到一对角相等,根据已知角的关系求出所求即可.解:(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,则∠EFC=72°.【点评】此题考查了实数的性质,以及平行线的性质,熟练掌握运算法则是解本题的关键.14.(6 分)先化简,再求值:÷(1﹣),其中x=+1.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.解:原式=÷=•=,当x=+1 时,原式===1+ .【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.15.(6 分)如图,AD是⊙O的直径,点O是圆心,C、F是AD上的两点,OC=OF,B、E是⊙O上的两点,且=,求证:BC∥EF.【分析】由△BAC≌△EDF(SAS),推出∠ACB=∠DFE,推出∠BCF=∠EFC,可得BC∥EF.证明:∵=,AD是直径,∴AB=DE,=,∴∠A=∠D,∵OC=OF,OA=OD,∴AC=DF,∴△BAC≌△EDF(SAS),∴∠ACB=∠DFE,∴∠BCF=∠EFC,∴BC∥EF.【点评】本题考查圆周角定理,全等三角形的判定和性质,平行线的判定等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.16.(6 分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB上的高CD.(1)如图①,以等边三角形ABC 的边AB为直径的圆,与另两边BC、AC 分别交于点E、F.(2)如图②,以钝角三角形ABC 的一短边AB为直径的圆,与最长的边AC 相交于点E.【分析】(1)连接AE、BF,找到△ABC 的高线的交点,据此可得CD;(2)延长CB 交圆于点F,延长AF、EB 交于点G,连接CG,延长AB 交CG于点D,据此可得.解:(1)如图所示,CD即为所求;(2)如图,CD 即为所求.【点评】本题主要考查作图﹣基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.17.(6 分)已知某初级中学九(1)班共有40 名同学,其中有22 名男生,18名女生.(1)若随机选一名同学,求选到男生的概率.(2)学校因组织考试,将小明、小林随机编入A、B、C 三个考场,请你用画树状图法或列表法求两人编入同一个考场的概率.【分析】(1)根据概率公式用男生人数除以总人数即可得.(2)根据题意先画出树状图,得出所有等可能的情况数和两人编入同一个考场的可能情况数,再根据概率公式即可得出答案.解:(1)∵全班共有40 名同学,其中男生有22 人,∴随机选一名同学,选到男生的概率为=;(2)根据题意画图如下:由以上树状图可知,共有9 种等可能的情况,其中两人编入同一个考场的可能情况有AA,BB,CC 三种;所以两人编入同一个考场的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m,然后利用概率公式求事件A 或B 的概率.四、解答题(本大题共3 小题,每小题8 分,共24 分)18.(8 分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图.(3)九(1)班全体同学所捐图书是6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?(4)请你估计全校2000 名学生所捐图书的数量.【分析】(1)根据捐2 本的人数是15 人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4 本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6 本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000 即可.解:(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是6 本的人数在扇形统计图中所对应扇形的圆心角为360°×=360°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,∴全校2000 名学生共捐2000×=6280(本),答:全校2000 名学生共捐6280 册书.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.19.(8 分)如图1,2 分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60 米,底座BC 与支架AC 所成的角∠ACB=75°,点A、H、F 在同一条直线上,支架AH 段的长为1 米,HF 段的长为1.50 米,篮板底部支架HE 的长为0.75 米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】(1)直接利用锐角三角函数关系得出cos∠FHE==,进而得出答案;(2)延长FE 交CB 的延长线于M,过A 作AG⊥FM 于G,解直角三角形即可得到结论.解:(1)由题意可得:cos∠FHE==,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F 到地面的距离是4.4 米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.20.(8分)我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线投放“微型”公交车.该公司计划购买10 台“微型”公交车,现有A、B两种型号,已知购买一台A型车比购买一台B型车多20 万元,购买2 台A型车比购买3 台B 型车少60 万元.(1)问购买一台A型车和一台B型车分别需要多少万元?(2)经了解,每台A型车每年节省2.4万元,每台B型车每年节省2万元,若购买这批公交车每年至少节省22.4万,则购买这批公交车至少需要多少万元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y 与x 的函数关系式,然后求出x 的取值范围,即可解答本题.解:(1)设购买一台A型车和一台B型车分别需要a 万元、b 万元,,得,答:购买一台A型车和一台B型车分别需要120 万元、100 万元;(2)设A型车购买x台,则B型车购买(10﹣x)台,需要y 元,y=120x+100(10﹣x)=20x+1000,∵2.4x+2(10﹣x)≥22.4,∴x≥6,∴当x=6 时,y 取得最小值,此时y=1120,答:购买这批公交车至少需要1120 万元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.五、解答题(本大题共2 小题,每小题9 分,共18 分)21.(9 分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y =相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C,与x轴交于点D.(1)求直线AB的表达式.(2)求AC:CB的值.(3)已知点E(3,2),点F(2,0),请你直接判断四边形BDEF的形状,不用说明理由.【分析】(1)先根据反比例函数图象上点的坐标特征求出m、n 的值,从而得到A、B 点的坐标,然后利用待定系数法求直线AB 的解析式;(2)作AM⊥y轴于M,BN⊥y轴于N,如图,证明△AMC∽△BNC,然后利用相似比求的值;(3)先利用直线AB的解析式确定D(﹣2,0),则可判断D点和F点,B点和E 点关于原点对称,所以OD=OF,OB=OE,然后根据平行四边形的判定方法可判断四边形BDEF 为平行四边形.解:(1)把A(m,6)、B(﹣3,n)分别代入y=得6m=6,﹣3n=6,解得m=1,n=﹣2,∴A(1,6),B(﹣3,﹣2),把A(1,6),B(﹣3,﹣2)代入y=kx+b 得,解得,∴直线AB 的解析式为y=2x+4;(2)作AM ⊥y 轴于M ,BN ⊥y 轴于N ,如图, ∵AM ∥BN , ∴△AMC ∽△BNC , ∴==;(3)当y =0 时,2x +4=0,解得x =﹣2,则D (﹣2,0), ∵F (2,0), ∴OD =OF ,∵B (﹣3,﹣2),E (3,2), ∴B 点和E 点关于原点对称, ∴OB =OE ,∴四边形BDEF 为平行四边形.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式和平行四边形的判定. 22.(9分)如图,一次函数y =﹣x ﹣2的图象与二次函数y =ax 2+bx ﹣4的图象交于x 轴上一点A ,与y 轴交于点B ,在x 轴上有一动点C .已知二次函数y=ax 2+bx ﹣4 的图象与y 轴交于点D ,对称轴为直线x =n (n <0),n 是方程 2x 2﹣3x ﹣2=0 的一个根,连接AD . (1) 求二次函数的解析式.(2)当S △ACB =3S △ADB 时,求点C 的坐标.(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB 相似?若存在,试求出点C 的坐标;若不存在,请说明理由.【分析】(1)由一次函数的解析式求得A (﹣2,0),通过解方程2x 2﹣3x ﹣2=0求得抛物线对称轴方程,将点A 的坐标代入二次函数解析式,结合抛物线对称轴公式,联立方程组,求得b 、c 的值;(2) 由三角形的面积公式求得AC 的长度,继而求得点C 的坐标;(3) 需要分类讨论:①AC 与BD 是对应边时,△ADB ∽△BCA ,由相似三角形对应边成比例求得OC 的长度,从而求得点C 的坐标;②当AC 与AB 是对应边时,△ADB ∽△CBA ,由相似三角形对应边成比例求得 OC 的长度,从而求得点C 的坐标. 解:(1)在y =﹣x ﹣2 中,令y =0,则x =﹣2 ∴A (﹣2,0).由2x 2﹣3x ﹣2=0,得x 1=﹣,x 2=2,∴二次函数y =ax 2+bx ﹣4 的对称轴为直线x =﹣,,∴二次函数的解析式为:y =2x 2+2x ﹣4;(2) ∵S △ADB =BD •OA =2,∴S △ACB =3S △ADB =6.∵点C 在x 轴上,∴S=AC•OB=×2AC=6,△ACB∴AC=6.∵点A 的坐标为(﹣2,0),∴当S △ACB =3S △ADB 时,点C 的坐标为(4,0)或(﹣8,0);(3) 存在.理由:令x =0,一次函数与y 轴的交点为点B (0,﹣2), ∴AB ==2,∠OAB =∠OBA =45°.∵在△ABD 中,∠BAD 、∠ADB 都不等于45°,∠ABD =180°﹣45°=135°, ∴点C 在点A 的左边.①AC 与BD 是对应边时,∵△ADB ∽△BCA , ∴==1,∴AC =BD =2,∴OC =OA +AC =2+2=4, ∴点C 的坐标为(﹣4,0).②当AC 与AB 是对应边时,∵△ADB ∽△CBA ∴==, ∴AC =AB =×=4,∴OC =OA +AC =2+4=6, ∴点C 的坐标为(﹣6,0).综上所述,在x 轴上有一点C (﹣4,0)或(﹣6,0),使得以点A 、B 、C 组成的三角形与△ADB 相似.【点评】本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,解一元二次方程,一次函数图象上点的坐标特征,相似三角形对应边成比例的性质,难点在于(3)要分情况讨论.六、解答题(本大题共12 分)23.(12 分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD的边BC上有一动点E,当的值是多少时,△PDE的周长最小?(3)如图(3),点Q是边AB上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE并延长交AB 的延长线于点F,连接CF,G为CF的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.【分析】(1)根据题中“完美矩形”的定义设出AD 与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC 的对称点P′,连接DP′交BC 于点E,此时△PDE 的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB﹣AP 表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由为:由(2)可知BF=BP=AB﹣AP,由等式的性质得到MF=DN,利用AAS 得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G 为CF 中点,得到HG 为中位线,利用中位线性质求出GH 的长即可.(1)证明:在图1中,设AD=BC=a,则有AB=CD=a,∵四边形ABCD 是矩形,∴∠A=90°,∵PA=AD=BC=a,..∴PD==a,∵AB=a,∴PD=AB;(2)解:如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有AB=CD=a,∵BP=AB﹣PA,∴BP′=BP=a﹣a,∵BP′∥CD,∴===;(3)解:GH=,理由为:由(2)可知BF=BP=AB﹣AP,∵AP=AD,∴BF=AB﹣AD,∵BQ=BC,∴AQ=AB﹣BQ=AB﹣BC,∵BC=AD,∴AQ=AB﹣AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,.. ∵AB=CD,∴QF=CD,∵QM=CN,∴QF﹣QM=CD﹣CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,..在△MFH 和△NDH,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=CD=.【点评】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.。

最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

最新-2018年江西省中招考试数学试题卷及答案【word版】 精品

江西省2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ . 三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A 'x处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F . (1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后ABCDFA 'B 'EB A告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.1228 ⎪⎝⎭,于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.030.29 (4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.96644-+==,≈,≈.)江西省南昌市2018年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C图1图2B (E A (F D图3H DACB图4二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +-11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得直线2BD 的解析式为1y x =--. ······································································ 6分 ③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:ABabBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;A B CD F A 'B ' E ABCDFA 'B 'E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.1112224AOC S AC OF ∴==⨯=△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分34AOC AOC S S S π∴=-=-△阴影扇形. ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分BA23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.····································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.···························································· 8分 (3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分 A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上.····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 B (EA (FD14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12= ···················································································· 7分解得1x =14x y ∴==-. ················································································· 8分 (3)α0 153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DB。

人教版2018年江西省南昌市中考数学三模试卷(含答案解析)

人教版2018年江西省南昌市中考数学三模试卷(含答案解析)

2018 年江西省南昌市中考数学三模试卷一、选择题(本大题共 6 小题,每小题 3 分,共18 分)1.2018 的倒数是()A.﹣2018 B. C. D.2018【分析】根据倒数的意义,可得答案.解:2018 的倒数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.人类生存的环境越来越受到人们的关注,某研究机构对空气进行了测量研究,发现在0 摄氏度及一个标准大气压下1cm3 空气的质量是0.001293 克.数据0.001293 可用科学记数法表示为()A.0.1293×10﹣2 B.1.293×10﹣3C.12.93×10﹣4 D.0.1293×10﹣3【分析】绝对值小于1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.解:数据0.001293 可用科学记数法表示为1.293×10﹣3.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a| <10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3.计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.解:(A)原式=1,故A 错误;(B)x3 与x4 不是同类项,不能进行合并,故B 错误;(C)原式=a4b6,故C 错误;故选:D.【点评】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.下列图形中,已知∠1=∠2,则可得到AB∥CD 的是()A. B.C. D.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.解:A、∠1 和∠2 的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1 和∠2 的对顶角是同位角,且相等,所以AB∥CD,此选项正确;C、∠1 和∠2 的是内错角,且相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1 和∠2 互为同旁内角,同旁内角相等,两直线不平行,此选项错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.如图是一个全封闭的物体,则它的俯视图是()A.B. C. D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.解:从上面观察可得到:.故选:D.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看不见的部分用虚线表示.6.如图,在边长为2 的正方形ABCD 中剪去一个边长为1 的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致是()A. B.C. D.【分析】分析动点P 在每段路径上的运动的过程中的面积增大、减小或不变的趋势即可.解:由点P 的运动可知,当点P 在GF、ED 边上时△ABP 的面积不变,则对应图象为平行于t 轴的线段,则B、C 错误.点P 在AD、EF、GB 上运动时,△ABP 的面积分别处于增、减变化过程.故 D 排除故选:A.【点评】本题为动点问题的函数图象判断题,考查学生对于动点运动过程中函数图象的变化趋势的判断.解答关键是注意动点到达临界点前后的图象变化.二、填空题(本大题共 6 小题,每小题 3 分,共18 分)7.若x 的立方根是﹣2,则x=﹣8 .【分析】根据立方根的定义即可求出答案.解:由题意可知:x=(﹣2)3=﹣8故答案为:﹣8【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.8.为参加2018 年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7 天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是 2.40,2.43 .【分析】将已知数据已经由小到大排列,所以可以直接利用中位数和众数的定义求出结果.解:∵把7 天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.43,2.43,2.43.∴它们的中位数为 2.40,众数为2.43.故答案为:45,45.故答案为 2.40,2.43.【点评】考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数9.如图,⊙O 的直径CD 垂直于弦AB,∠CAB=67.5°,则∠AOB=90 度.【分析】根据垂径定理得出=,根据∠CAB=67.5°求出和的度数都是135°,求出的度数,即可得出答案.解:∵⊙O 的直径CD 垂直于弦AB,∴=,∵∠CAB=67.5°,∴和的度数都是2×67.5°=135°,∴的度数是360°﹣135°﹣135°=90°,∴∠AOB=90°,故答案为:90.【点评】本题考查了垂径定理和圆周角定理,能求各段弧的度数是解此题的关键.10.已知a、b 是方程x2﹣2x﹣1=0 的两个根,则a2﹣a+b 的值是 3 .【分析】根据一元二次方程的解及根与系数的关系,可得出a2﹣2a=1、a+b=2,将其代入a2﹣a+b 中即可求出结论.解:∵a、b 是方程x2﹣2x﹣1=0 的两个根,∴a2﹣2a=1,a+b=2,∴a2﹣a+b=a2﹣2a+(a+b)=1+2=3.故答案为:3.【点评】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.11.如图,点A 是反比例函数y=﹣(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为4﹣π.【分析】由题意可以假设A(﹣m,m),则﹣m2=﹣4,求出点A 坐标即可解决问题;解:由题意可以假设A(﹣m,m),则﹣m2=﹣4,∴m=≠±2,∴m=2,∴S阴=S正方形﹣S圆=4﹣π,故答案为4﹣π.【点评】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.如图,在平面直角坐标系中,O 为坐标原点,四边形ABCD 是平行四边形,点A、B、C 的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E 是BC的中点,点P 为线段AD 上的动点,若△BEP 是以BE 为腰的等腰三角形,则点P 的坐标为(1,4)或(6,4)或(0,4).【分析】分两种情形分别讨论求解即可;解:如图,作EH⊥AD 于H.由题意BE=5,OA=4,OE=3,当EP=EB=5 时,可得P″(0,4),P′(6,4),(HA=HP′=3),当BP=BE=5 时,P(1,4),综上所述,满足条件的点P 坐标为(1,4)或(0,4)或(6,4).【点评】本题考查平行四边形的性质、坐标与图形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共 5 小题,每小题 6 分,共30 分)13.(6 分)(1)计算:﹣14﹣2×(﹣3)2+ ÷(﹣)(2)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C、D 分别落在点M、N 的位置,发现∠EFM=2∠BFM,求∠EFC 的度数.【分析】(1)原式利用乘方的意义,立方根定义,乘除法则,以及加减法则计算即可求出值;(2)由折叠的性质得到一对角相等,根据已知角的关系求出所求即可.解:(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+ x=180°,解得:x=72°,则∠EFC=72°.【点评】此题考查了实数的性质,以及平行线的性质,熟练掌握运算法则是解本题的关键.14.(6 分)先化简,再求值:÷(1﹣),其中x=+1.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.解:原式=÷=•=,当x=+1 时,原式===1+ .【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.15.(6 分)如图,AD 是⊙O 的直径,点O 是圆心,C、F 是AD 上的两点,OC =OF,B、E 是⊙O 上的两点,且=,求证:BC∥EF.【分析】由△BAC≌△EDF(SAS),推出∠ACB=∠DFE,推出∠BCF=∠EFC,可得BC∥EF.证明:∵=,AD 是直径,∴AB=DE,=,∴∠A=∠D,∵OC=OF,OA=OD,∴AC=DF,∴△BAC≌△EDF(SAS),∴∠ACB=∠DFE,∴∠BCF=∠EFC,∴BC∥EF.【点评】本题考查圆周角定理,全等三角形的判定和性质,平行线的判定等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.16.(6 分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB 上的高CD.(1)如图①,以等边三角形ABC 的边AB 为直径的圆,与另两边BC、AC 分别交于点E、F.(2)如图②,以钝角三角形ABC 的一短边AB 为直径的圆,与最长的边AC 相交于点E.【分析】(1)连接AE、BF,找到△ABC 的高线的交点,据此可得CD;(2)延长CB 交圆于点F,延长AF、EB 交于点G,连接CG,延长AB 交CG 于点D,据此可得.解:(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【点评】本题主要考查作图﹣基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.17.(6 分)已知某初级中学九(1)班共有40 名同学,其中有22 名男生,18名女生.(1)若随机选一名同学,求选到男生的概率.(2)学校因组织考试,将小明、小林随机编入A、B、C 三个考场,请你用画树状图法或列表法求两人编入同一个考场的概率.【分析】(1)根据概率公式用男生人数除以总人数即可得.(2)根据题意先画出树状图,得出所有等可能的情况数和两人编入同一个考场的可能情况数,再根据概率公式即可得出答案.解:(1)∵全班共有40 名同学,其中男生有22 人,∴随机选一名同学,选到男生的概率为=;(2)根据题意画图如下:由以上树状图可知,共有9 种等可能的情况,其中两人编入同一个考场的可能情况有AA,BB,CC 三种;所以两人编入同一个考场的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m,然后利用概率公式求事件A 或B 的概率.四、解答题(本大题共 3 小题,每小题8 分,共24 分)18.(8 分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图.(3)九(1)班全体同学所捐图书是6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?(4)请你估计全校2000 名学生所捐图书的数量.【分析】(1)根据捐 2 本的人数是15 人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4 本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6 本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000 即可.解:(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为360°×=360°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,∴全校2000 名学生共捐2000×=6280(本),答:全校2000 名学生共捐6280 册书.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.19.(8 分)如图1,2 分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60 米,底座BC 与支架AC 所成的角∠ACB=75°,点A、H、F 在同一条直线上,支架AH 段的长为1 米,HF 段的长为1.50 米,篮板底部支架HE 的长为0.75 米.(1)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(2)求篮板顶端F 到地面的距离.(结果精确到0.1 米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】(1)直接利用锐角三角函数关系得出cos∠FHE==,进而得出答案;(2)延长FE 交CB 的延长线于M,过A 作AG⊥FM 于G,解直角三角形即可得到结论.解:(1 )由题意可得:cos∠FHE==,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.20.(8 分)我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线投放“微型”公交车.该公司计划购买10 台“微型”公交车,现有A、B 两种型号,已知购买一台A 型车比购买一台B 型车多20 万元,购买2 台A型车比购买3 台 B 型车少60 万元.(1)问购买一台A 型车和一台B 型车分别需要多少万元?(2)经了解,每台A 型车每年节省2.4 万元,每台B 型车每年节省2 万元,若购买这批公交车每年至少节省22.4 万,则购买这批公交车至少需要多少万元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y 与x 的函数关系式,然后求出x 的取值范围,即可解答本题.解:(1)设购买一台A 型车和一台B 型车分别需要a 万元、b 万元,,得,答:购买一台A 型车和一台B 型车分别需要120 万元、100 万元;(2)设A 型车购买x 台,则B 型车购买(10﹣x)台,需要y 元,y=120x+100(10﹣x)=20x+1000,∵2.4x+2(10﹣x)≥22.4,∴x≥6,∴当x=6 时,y 取得最小值,此时y=1120,答:购买这批公交车至少需要1120 万元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.五、解答题(本大题共 2 小题,每小题9 分,共18 分)21.(9 分)如图,在平面直角坐标系xOy 中,直线y=kx+b(k≠0)与双曲线y =相交于点A(m,6)和点B(﹣3,n),直线AB 与y 轴交于点C,与x轴交于点D.(1)求直线AB 的表达式.(2)求AC:CB 的值.(3)已知点E(3,2),点F(2,0),请你直接判断四边形BDEF 的形状,不用说明理由.【分析】(1)先根据反比例函数图象上点的坐标特征求出m、n 的值,从而得到A、B 点的坐标,然后利用待定系数法求直线AB 的解析式;(2)作AM⊥y 轴于M,BN⊥y 轴于N,如图,证明△AMC∽△BNC,然后利用相似比求的值;(3)先利用直线AB 的解析式确定D(﹣2,0),则可判断D 点和F 点,B 点和E 点关于原点对称,所以OD=OF,OB=OE,然后根据平行四边形的判定方法可判断四边形BDEF 为平行四边形.解:(1)把A(m,6)、B(﹣3,n)分别代入y=得6m=6,﹣3n=6,解得m=1,n=﹣2,∴A(1,6),B(﹣3,﹣2),把A(1,6),B(﹣3,﹣2)代入y=kx+b 得,解得,∴直线AB 的解析式为y=2x+4;(2)作 AM ⊥y 轴于 M ,BN ⊥y 轴于 N ,如图,∵AM ∥BN ,∴△AMC ∽△BNC ,∴== ;(3)当 y =0 时,2x +4=0,解得 x =﹣2,则 D (﹣2,0),∵F (2,0),∴OD =OF ,∵B (﹣3,﹣2),E (3,2),∴B 点和 E 点关于原点对称,∴OB =OE ,∴四边形 BDEF 为平行四边形.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式和平行四边形的判定.22.(9 分)如图,一次函数 y =﹣x ﹣2 的图象与二次函数 y =ax 2+bx ﹣4 的图象交于 x 轴上一点 A ,与 y 轴交于点 B ,在 x 轴上有一动点 C .已知二次函数 y=ax 2+bx ﹣4 的图象与 y 轴交于点 D ,对称轴为直线 x =n (n <0),n 是方程2x 2﹣3x ﹣2=0 的一个根,连接 AD .(1) 求二次函数的解析式.(2)当 S △ACB =3S △ADB 时,求点 C 的坐标.(3)试判断坐标轴上是否存在这样的点 C ,使得以点 A 、B 、C 组成的三角形与△ADB 相似?若存在,试求出点 C 的坐标;若不存在,请说明理由.【分析】(1)由一次函数的解析式求得 A (﹣2,0),通过解方程 2x 2﹣3x ﹣2=0求得抛物线对称轴方程,将点 A 的坐标代入二次函数解析式,结合抛物线对称轴公式,联立方程组 ,求得 b 、c 的值;(2) 由三角形的面积公式求得 AC 的长度,继而求得点 C 的坐标;(3) 需要分类讨论:①AC 与 BD 是对应边时,△ADB ∽△BCA ,由相似三角形对应边成比例求得 OC 的长度,从而求得点 C 的坐标;②当 AC 与 AB 是对应边时,△ADB ∽△CBA ,由相似三角形对应边成比例求得OC 的长度,从而求得点 C 的坐标.解:(1)在 y =﹣x ﹣2 中,令 y =0,则 x =﹣2∴A (﹣2,0).由 2x 2﹣3x ﹣2=0,得 x 1=﹣,x 2=2,∴二次函数 y =ax 2+bx ﹣4 的对称轴为直线 x =﹣,,∴二次函数的解析式为:y =2x 2+2x ﹣4;(2) ∵S △ADB = BD •OA =2,∴S △ACB =3S △ADB =6.∵点 C 在 x 轴上,∴S △ACB = AC •OB = ×2AC =6,∴AC =6.∵点 A 的坐标为(﹣2,0),∴当 S △ACB =3S △ADB 时,点 C 的坐标为(4,0)或(﹣8,0);(3) 存在.理由:令 x =0,一次函数与 y 轴的交点为点 B (0,﹣2),∴AB = =2,∠OAB =∠OBA =45°.∵在△ABD 中,∠BAD 、∠ADB 都不等于 45°,∠ABD =180°﹣45°=135°,∴点 C 在点 A 的左边.①AC 与 BD 是对应边时,∵△ADB ∽△BCA ,∴==1,∴AC =BD =2,∴OC =OA +AC =2+2=4,∴点 C 的坐标为(﹣4,0).②当 AC 与 AB 是对应边时,∵△ADB ∽△CBA∴== ,∴AC = AB = ×=4, ∴OC =OA +AC =2+4=6,∴点 C 的坐标为(﹣6,0).综上所述,在 x 轴上有一点 C (﹣4,0)或(﹣6,0),使得以点 A 、B 、C 组成的三角形与△ADB 相似.【点评】本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式, 解一元二次方程,一次函数图象上点的坐标特征,相似三角形对应边成比例的性质,难点在于(3)要分情况讨论.六、解答题(本大题共 12 分)23.(12 分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.【分析】(1)根据题中“完美矩形”的定义设出AD 与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P 关于BC 的对称点P′,连接DP′交BC 于点E,此时△PDE 的周长最小,设AD=PA=BC=a,表示出AB 与CD,由AB﹣AP 表示出BP,由对称的性质得到BP =BP′,由平行得比例,求出所求比值即可;(3)GH=,理由为:由(2)可知BF=BP=AB﹣AP,由等式的性质得到MF=DN,利用AAS 得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G 为CF 中点,得到HG 为中位线,利用中位线性质求出GH 的长即可.(1)证明:在图1 中,设AD=BC=a,则有AB=CD=a,∵四边形ABCD 是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)解:如图,作点P 关于BC 的对称点P′,连接DP′交BC 于点E,此时△PDE 的周长最小,设AD=PA=BC=a,则有AB=CD=a,∵BP=AB﹣PA,∴BP′=BP=a﹣a,∵BP′∥CD,∴===;(3)解:GH=,理由为:由(2)可知BF=BP=AB﹣AP,∵AP=AD,∴BF=AB﹣AD,∵BQ=BC,∴AQ=AB﹣BQ=AB﹣BC,∵BC=AD,∴AQ=AB﹣AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF﹣QM=CD﹣CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH 和△NDH,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=CD=.【点评】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.。

江西省2018年中等学校招生考试数学试题卷参考答案

江西省2018年中等学校招生考试数学试题卷参考答案

一、1. B2.A3.D4.C5.C6.D二、7. 8. 9.本题考察列二元一次方程组,抓住题中的等量关系,较为容易列出方程组.【答案】10. 11.2 12.2,,三、13.(1)原式===(2)去分母:.移项,合并:14.∵BD是∠ABC的平分线,∴∠ABD=∠CBD∵CD∥AB ∴∠ABD=∠D∴∠CBD=∠D ∴CD=BC=4又∵CD∥AB ∴△ABE∽△CDE∴=∵CE+AE=AC=6 ∴AE=415.(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.16.【解析】(1)不可能随机(2)共12种可能,“小惠被抽中”的概率是:17.【解析】(1)∵点(1,)在上,∴=2 ∴(1,)把(1,)代入得∵两点关于原点中心对称,∴(2)作BH⊥AC于H,设AC交轴于点D∵∴∵∥轴,∴∥轴,∴∴∴18.【解析】(1)课外阅读时间(min)等级 D C B A人数 3 5 8 4平均数中位数众数80 81 81(2)8÷20×400=160 ∴该校等级为“”的学生有160名;(3)选统计量:平均数80×52÷160=26 ∴该校学生每人一年平均阅读26本课外书19.【解析】(1)如图,作OH⊥AB于H∵OC=OB=60 ∴CH=BH在Rt△OBH中∵ cos∠OBC=∴BH= OB·cos50°≈60×0.64=38.4∴AC=AB-2BH≈120-2×38.4=43.2∴AC的长约为43.2cm.(2)∵AC=60 ∴BC=60 ∵OC=OB=60∴OC=OB=BC=60∴△OBC是等边三角形∴OC弧长==62.8∴点O在此过程中运动的路径长约为62.8cm.20.【解析】(1)作OE⊥AB于点E∵切BC于点C∴OC⊥BC ∠ACB=90°∵ AD⊥BD ∴∠D=90°∴∠ABD+∠BAD =90°∠CBD+∠BOC=90°∵∠BOC=∠AOD ∠AOD=∠BAD∴∠BOC=∠BAD∴∠ABD=∠CBD在△OBC和△OBE中∴△OBC≌△OBE∴OE=OC ∴OE是⊙O的半径. ∵OE⊥AB ∴AB为⊙O的切线.(2)∵tan∠ABC=,BC=6∴AC=8 ∴AB=∵BE=BC=6 ∴AE=4∵∠AOE=∠ABC ∴tan∠AOE=∴EO=3∴AO=5 OC=3 ∴BO=在△AOD和△BOC中∴△AOD∽△BOC ∴即∴AD=五、21.【解析】(1)设则解得∴∵蜜柚销售不会亏本,∴又∴∴∴(2)设利润为元则∴当时,最大为1210∴定价为19元时,利润最大,最大利润是1210元.(3) 当时,110×40=4400<4800∴不能销售完这批蜜柚.22.【解析】(1)①BP=CE 理由如下:连接AC∵菱形ABCD,∠ABC=60°∴△ABC是等边三角形∴AB=AC ∠BAC=60°∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠BAP=∠CAE∴△ABP≌△ACE ∴BP=CE②CE⊥AD∵菱形对角线平分对角∴∵△ABP≌△ACE∴∵∴∴∴∴CF⊥AD 即CE⊥AD(2)(1)中的结论:BP=CE , CE⊥AD 仍然成立,理由如下:连接AC∵菱形ABCD,∠ABC=60°∴△ABC和△ACD都是等边三角形∴AB=AC ∠BAD=120°∠BAP=120°+∠DAP∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠CAE=60°+60°+∠DAP=120°+∠DAP∴∠BAP=∠CAE∴△ABP≌△ACE∴BP=CE∴∠DCE=30°∵∠ADC=60°∴∠DCE+∠ADC=90°∴∠CHD=90°∴CE⊥AD∴(1)中的结论:BP=CE , CE⊥AD 仍然成立.(3) 连接AC交BD于点O , CE, 作EH⊥AP于H∵四边形ABCD是菱形∴AC⊥BD BD平分∠ABC∵∠ABC=60°,∴∠ABO=30°∴ BO=DO=3∴BD=6由(2)知CE⊥AD∵AD∥BC ∴CE⊥BC∵∴由(2)知BP=CE=8 ∴DP=2 ∴OP=5∴∵△APE是等边三角形,∴∵∴∴四边形ADPE的面积是.23.【解析】求解体验(1)把(-1,0)代入得∴∴顶点坐标是(-2,1)∵(-2,1)关于(0,1)的对称点是(2,1)∴成中心对称的抛物线表达式是:即(如右图)抽象感悟(2) ∵∴顶点是(-1,6)∵(-1,6)关于的对称点是∴∵两抛物线有交点∴有解∴有解∴∴(如右图)问题解决(3) ①∵=∴顶点(-1,)代入得:①∵∴顶点(1,)代入得:②由①②得∵,∴∴两顶点坐标分别是(-1,0),(1,12)由中点坐标公式得“衍生中心”的坐标是(0,6)②如图,设,…,与轴分别相于,…,.则,,…,分别关于,…,中心对称.∴,…分别是△,…的中位线,∴,…∵,∴]。

2018年江西省中考数学试卷含答案

2018年江西省中考数学试卷含答案

数学试卷第1页(共28页)数学试卷第2页(共28页)绝密★启用前江西省2018年中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分.每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的绝对值是()A .2-B .2C .12-D .122.计算22()ba a- 的结果为()A .bB .b-C .abD .b a3.如图所示的几何体的左视图为()ABCD4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个6.在平面直角坐标系中,分别过点(),,02,0()A m B m +作x 轴的垂线和1l 和2l ,探究直线1l ,直线2l 与双曲线3y x=的关系,下列结论中错误的是()A .两直线中总有一条与双曲线相交B .当1m =时,两直线与双曲线的交点到原点的距离相等C .当20m -<<时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)7.若分式11x -有意义,则x 的取值范围为.8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共28页)数学试卷第4页(共28页)头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y两,依题意,可列出方程组为.10.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为.11.一元二次方程2420x x +=-的两根为1x ,2x ,则2111242x x x x -+的值为.12.在正方形ABCD 中,6AB =,连接AC ,BD ,P 是正方形边上或对角线上一点,若2PD AP =,则AP 的长为.三、解答题(本大题共11小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分6分,每题3分)(1)计算:2(1)(1)(2)a a a +---;(2)解不等式:2132x x --+≥.14.(本小题满分6分)如图,在ABC △中,8AB =,4BC =,6CA =,CD AB ∥,BD 是ABC ∠的平分线,BD 交AC 于点E .求AE 的长.15.(本小题满分6分)如图,在四边形ABCD 中,AB CD ∥,2AB CD =,E 为AB 的中点.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中,画出ABD △的BD 边上的中线;(2)在图2中,若BA BD =,画出ABD △的AD 边上的高.16.(本小题满分6分)2018年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.数学试卷第5页(共28页)数学试卷第6页(共28页)17.(本小题满分6分)如图,反比例函数 ()0ky k x=≠的图象与正比例函数 2y x =的图象相交于()1,A a ,B两点,点C 在第四象限,CA y ∥轴,o90ABC ∠=.(1)求k 的值及点B 的坐标(2)求tan C的值.18.(本小题满分8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下.收集数据从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min ):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:课外阅读时间(min)x 040x ≤<4080x ≤<80120x ≤<120160x ≤<等级D CB A人数38分析数据补全下列表格中的统计量:平均数中位数众数80得出结论(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B ”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(本小题满分8分)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视图简化示意图,已知轨道120AB cm =,两扇活页门的宽60cm OC OB ==,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若o 50OBC∠=,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.参考数据:o sin 500.77≈,o cos500.64≈,o tan 50 1.19≈,π取3.14.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________图1图2数学试卷第7页(共28页)数学试卷第8页(共28页)20.(本小题满分8分)如图,在ABC △中,O 为AC 上一点,以点O 为圆心,OC 的半径作圆,与BC 相切于点C ,过点A 作AD BO ⊥交BO 的延长线于点D ,且AOD BAD ∠=∠.(1)求证:AB 为O 的切线;(2)若6BC =,4tan 3ABC ∠=,求AD 的长.21.(本小题满分9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(本小题满分9分)在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE △,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是,CE 与AD 的位置关系是;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2图3中的一种情况予以证明或说理).(3)如图4,当点P 在线段BD 的延长线上时,连接BE ,若23AB =,219BE =,求四边形ADPE 的面积.23.(本小题满分12分)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线23y x bx =-+-经过点()1,0-,则b =,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是;抽象感悟我们定义:对于抛物线()20y ax bx c a =++≠,以y 轴上的点()0,M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围;问题解决(3)已知抛物线22(0)y ax ax b a =+-≠.①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a ,b 的值及衍生中心的坐标;②若抛物线y 关于点2(01)k +,的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;…;关于点2(0,)k n +的衍生抛物线为n y ,其顶点数学试卷第9页(共28页)数学试卷第10页(共28页)为n A ;…(n 为正整数).求()1n n A A +的长(用含n 的式子表示).江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是2,故选B .【考点】绝对值的概念2.【答案】A 【解析】2222()b b a a b a a -==,故选A .【考点】分式的运算3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D .【考点】几何体的左视图4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C .【考点】频数分布直方图5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C .【考点】利用轴对称设计图案,平移的性质6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3),直线2l 与双曲线交点为(3,1),到原点的距离,故当1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D .【考点】反比例函数的图象与性质第Ⅱ卷二.填空题7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠.【考点】分式有意义的条件8.【答案】4610⨯【解析】460000610=⨯.【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.数学试卷第11页(共28页)数学试卷第12页(共28页)【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形,∴AD BC =,o90D ∠=由旋转的性质可知AB AE =,BC EF =∴3EF AD ==.∵DE EF =∵3DE =.在Rt ADE △中,AE ===∴AB =.【考点】矩形的性质,旋转的性质,勾股定理11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中,得211420x x -+=,∴21142x x -=-根据根与系数的关系,得122x x = ,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时,①当点P 在AD 边上时,如图1,11233AP AD AB ===;②当点P 在AB 边上时,如图2,设AP x =,则2PD x =,∴2226(2)x x +=解得x =③点P 不可能在BC ,CD上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3,∵2PD OA <,AP OA ≥,∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,32OP x =-,32OD =在Rt OPD △中,222(32)2)(2)x x +=,解得114262x =<,2142x =-(舍去).综上所述,2AP =,23142-.【考点】正方形的性质、勾股定理、分类讨论思想三、解答题13.【答案】(1)45a -(2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法14.【答案】4AE =【解析】∵BD 平分ABC ∠.数学试卷第13页(共28页)数学试卷第14页(共28页)∴ABD CBD ∠=∠∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△.∴CBD D ∠=∠,AB AECD EC =∴BC CD=∵8AB =,6CA =,4CD BC ==,∴846AE AE =-.∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质15.【答案】画法如图所示.(1)AF即为所求(2)BF即为所求【解析】画法如图所示.(1)AF即为所求(2)BF即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心.16.【答案】(1)不可能,随机,14.(2)解法一:根据题意,可以画出如下的树状图:小悦小悦小惠小悦小悦小艳小倩小艳小艳小艳小悦小悦小惠小惠小惠小倩小倩由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.解法二:根据题意,可以列出表格如下:小悦小惠小艳小倩小悦小悦、小惠小悦、小艳小悦、小倩小惠小惠、小悦小惠、小艳小惠、小倩数学试卷第15页(共28页)数学试卷第16页(共28页)小艳小艳、小悦小艳、小惠小艳、小倩小倩小倩、小悦小倩、小惠小倩、小艳由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。

2018年江西省南昌市中考数学三模试卷(解析版)

2018年江西省南昌市中考数学三模试卷(解析版)

第 2 页(共 22 页)
12. (3 分)如图,在平面直角坐标系中,O 为坐标原点,四边形 ABCD 是平行四边形,点 A、B、C 的坐标分别为 A(0,4) ,B(﹣2,0) ,C(8,0) ,点 E 是 BC 的中点,点 P 为线段 AD 上的动点,若△BEP 是以 BE 为腰的等腰三角形,则点 P 的坐标为 .
(1)如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、 F. (2)如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.
17. (6 分)已知某初级中学九(1)班共有 40 名同学,其中有 22 名男生,18 名女生. (1)若随机选一名同学,求选到男生的概率. (2)学校因组织考试,将小明、小林随机编入 A、B、C 三个考场,请你用画树状图法或列 表法求两人编入同一个考场的概率. 四、解答题(本大题共 3 小题,每小题 8 分,共 24 分) 18. (8 分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好 书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐 献图书情况的统计图(每人都有捐书) . 请你根据以上统计图中的信息,解答下列问题: (1)该班有学生多少人? (2)补全条形统计图. (3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少 度? (4)请你估计全校 2000 名学生所捐图书的数量.
﹣2
3
) B.1.293×10
﹣3 ﹣3
﹣4
D.0.1293×10 ) B.x +x =x
4 6 2
﹣1
3. (3 分)计算正确的是( A. (﹣5) =0 C. (﹣a b ) =﹣a b

2018年江西省南昌市中考数学试卷-(word整理版)

2018年江西省南昌市中考数学试卷-(word整理版)

2018年江西省南昌市中考数学试卷-(word整理版)一、选择题(共6小题,每小题3分,共18分)1.2018的相反数的倒数是()A.−12018B.﹣2018 C.12018D.−√20182.下列式子中与(﹣a)2计算结果相同的是()A.(a2)﹣1B.a2a﹣4C.a﹣2÷a4D.a4(﹣a)﹣23.某车间5月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,1.则在这10天中该车间生产零件的次品数的()A.众数是3 B.中位数是1.5 C.平均数是2 D.以上都不正确4.函数y=﹣kx+k与y=﹣(k≠0)在同一坐标系中的图象可能是图中的()A.B.C.D.5.如图是某几何体的三视图,则该几何体是()A.正方体B.圆锥体C.圆柱体D.球体6.已知两条抛物线P和Q的解析式分别是关于y与x的关系式:P:y=x2﹣2mx﹣m2与Q:y=x2﹣2mx ﹣(m2+1).对上述抛物线说法正确的序号是()①两条抛物线与y轴的交点一定不在x轴的上方;②在抛物线P、Q中,可以将其中一条抛物线经过向上或向下平移得到另一条抛物线;③在抛物线P、Q中,可以将其中一条抛物线经过向左或向右平移得到另一条抛物线;④两条抛物线的顶点之间的距离为1.A.①②B.①③④C.①②④D.①②③④二、填空题(共8小题,每小题3分,共24分)7.分解因式:4x2﹣36=.8.如图,△ABC中,∠B=50°,AB=BC,DE是中位线,则∠ADE=.9.如图,点O在∠APB的平分线上,⊙O与PA相切于点C,PO与⊙O相交点D,PO=2,若D为PO的中点,则阴影部分的面积为.10.足球比赛中胜场积3分,平场积1分,负场积0分.中天队第12轮比赛战罢,输了3场,共积19分,若设其胜了x场,平了y场,可列方程组:.11.圆铁环内直径为3cm,外直径为5cm,将这样的圆铁环一个接一个地环套环连成一条锁链(如图)(1)4个环连成的锁链拉直后的最长长度是cm;(2)n个环连成的锁链拉直后的最大长度是cm.12.写出一个二次项系数为2,一根比1大,另一根比1小的一元二次方程:.13.如图,▱ABCD中,∠A=50°AD⊥BD,沿直线DE将△ADE翻折,使点A落在点A′处,AE交BD于F,则∠DEF=.14.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(共4小题,每小题6分,共24分)15.先化简,再求值:,其中a=.16.尺规作图,已知半圆如图,请以直径为底,半径为腰上的高作等腰三角形(不写作法,保留痕迹).17.小明从家赶往考点,可以步行或者骑车,步行路程1500米,骑车路程是步行路程的1.2倍;若骑车速度是步行速度的3倍,且骑车所用时间比步行节约15分钟.求小明步行的速度.18.为做中考前心理调整,学生可观看教育专家的专题DVD光碟.现有两个专家甲乙的四块光碟(光碟分上下篇,分别是甲上篇记作A,甲下篇记作a,乙上篇记作B,乙下篇记作b)散乱放在一起.(1)若光碟表面只标注上下篇,那么从上篇中取一块,再从下篇中取一块,求恰好属于同一个专家光碟的概率.(2)若光碟未作任何标注,从四块光碟中随机取两块,求恰好属于同一专家光碟的概率.四、解答题(共3小题,每小题8分,共24分)19.平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.(1)求菱形ABCD的边长;(2)求双曲线的解析式.20.为了解某县九年级学生中考体育成绩,现从中随机抽取部分学生的体育成绩进行分段(E:0≤x<13;D:13≤x<19;C:19≤x<24;B:24≤x<30;A:30分》)分析统计如下:分数段人数(人)频率A 48 0.20B a 0.25C 84 0.35D 36 bE 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的中考体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的成绩应在分数段内;(填写相应分数段的字母即可)(3)若把体育中考成绩在24分以上定为优秀,那么该县今年3000名九年级学生中,中考体育成绩为优秀的学生人数约有多少名?21.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.五、解答题(共2小题,每小题9分,共18分)22.太阳能是可再生的绿色环保能源,太阳能热水器是最常见的一种太阳能应用方式,如图是某地一个屋顶太阳能热水器的安装截面图.房屋的金顶等腰△ABC中,屋面倾角∠B=21.8°,太阳能真空管MN=1.8m,可伸缩支架MA⊥BC,安装要求安装地区的正午太阳光线垂直照射真空管MN.已知该地正午时直立于水平地面的0.8m长测杆影长0.6m,求符合安装要求的支架MA的长度.(参考数据:tan21.8°=0.4,tan53.13°=,sin53.13°=,tan36.87°=,cos36.87°=)23.如图甲,平面直角坐标系中,边长为2的正方形ABCD顶点A与原点重合,边AB、AD落在坐标轴上,在正方形内有AE=2,过点E作直线MN⊥AE交BC、CD分别于M、N,连接AM、AN.(1)直接写出:∠MAN=°△MCN的周长=.(2)若线段AE=2在正方形外(只考虑第三象限),请在图乙中作出相应的图形,探索线段BM、MN、DN三者之间的关系并给出证明.(3)在图甲中,设BM=x,求△MCN的面积S与x之间的函数关系.六、解答题(本题12分)24.如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线c2的解析式;设c2交x轴于点D 和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式.2018年江西省南昌市中考数学试卷答案1.A.2.D.3.B.4.B.5.C.6.C.7.4(x+3)(x﹣3).8.115°.9.﹣π.10..11.14;(3n+2).12.2x2﹣4x=0.13.65°.14.(0,),(2,0),(,0).15.解:原式=(﹣)÷a=×=,当a=+1时,原式===.16.解:如图,分别以A、B为圆心,半径长为半径画弧,交圆弧于M、N,连接AN、BM,交点为C,则△ABC 为所求的三角形.17.解:设小明步行的速度为x米/分,骑车的速度为3x米/分,由题意得,=+15,解得:x=60,经检验,x=60是原分式方程的解,且符合题意.答:小明步行的速度为60米/分.18.解:(1)∵可能的结果有:Aa,Ab,Ba,Bb,恰好属于同一个专家光碟的有:Aa,Bb,∴恰好属于同一个专家光碟的概率为:;(2)画树状图得:∵共有12种等可能的结果,恰好属于同一专家光碟的有4种情况,∴恰好属于同一专家光碟的概率为:=.19.解:(1)设菱形的边长为x,则BC=AB=x,BE=10﹣2﹣x,∵点C(10,4),∴CE=4,在Rt△BEC中,由勾股定理可得:BC2=BE2+CE2,即x2=(10﹣2﹣x)2+42,解得:x=5,∴菱形ABCD的边长为5;(2)设双曲线的解析式为y=,过点D作DF⊥AB于点F,∵DC∥AB,点C(10,4),∴DF=4,∵AB=5,∴OF=OE﹣EF=10﹣5=5,∴点D(5,4),∴k=20,∴.20.解:(1)随机抽取部分学生的总人数为:48÷0.2=240(人),则a=240×0.25=60(人),b=36÷240=0.15,如图所示:故答案为:60,0.15;(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;故答案为:C;(3)根据题意得:3000×(0.2+0.25)=1350(人),答:中考体育成绩为优秀的学生人数约有1350名.21.解:(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.22.解:如图,DE=0.8,EF=0.6,则DF=1,作DQ⊥DF交EF于Q,∴∠Q=∠EDF,在Rt△EDF中,cos∠EDF===0.8,sin∠EDF==0.6,∵△MNH∽△DQE,∴∠MNH=∠Q,在Rt△MNH中,∵cos∠MNH==0.8,sin∠MNH==0.6,∴NH=0.8×1.8=1.44,MH=0.6×1.8=1.08,在Rt△ANH中,∵tan∠ANH=tan21.8°=,∴AH=1.44×0.4=0.576,∴MA=MH﹣AH=1.08﹣0.576=0.504(m).答:符合安装要求的支架MA的长度为0.504米.23.解:(1)∠MAN=45°,△MCN的周长=4;(2)如图,。

江西省南昌市2018年中考数学试题(解析)

江西省南昌市2018年中考数学试题(解析)

2018年江西省南昌市中考数学试卷一.选择题<共12小题)1.<2018江西)﹣1的绝对值是< )A. 1 B.0 C.﹣1 D.±1考点:绝对值。

分析:根据绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.xxM0whI3Ex2.<2018南昌)在下列表述中,不能表示代数式“4a”的意义的是< )A.4的a倍B.a的4倍C.4个a相加D.4个a相乘考点:代数式。

分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.xxM0whI3Ex解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.xxM0whI3Ex3.<2018江西)等腰三角形的顶角为80°,则它的底角是< )A.20°B.50°C.60°D.80°考点:等腰三角形的性质。

分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=<180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.<2018江西)下列运算正确的是< )A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3a3=2a3 D.<﹣2a2)3=﹣8a6xxM0whI3Ex考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

2018年江西省南昌市中考数学试卷(含答案)

2018年江西省南昌市中考数学试卷(含答案)

精心整理2018年江西省南昌市中考数学试卷参考答案与试卷解读一、选择题<本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)﹣解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.28,则)支笔和2y.中,,,,则B=∠2<)BC的B′恰好“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形12.<3分)<2018?南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大﹣=,﹣=314.<3分)<2018?南昌)不等式组的解集是x>.,故此不等式组的解集为:x>..90°,.AE=EC=AE=EO=DO=﹣﹣2<﹣×=84,=×=12.4.此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出P在直2或4.PC=PB===2=4或.<﹣÷.形,约分即可得到结果.=?=x此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.<1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;<2)找出BE及它的高相乘得20,以AB为一边作平行四边形..=<AD+BC)解:设小正方形的边长为1,则S梯形ABCD4=×CD=4=5A组的卡片上分别画上“√,×,×”,如图1.<1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.<请用“树形图法”或“列表法“求解)<2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.解:<1)列表如下:√×√√<√,√)<×,√)<√,√)×<√,×)<×,×)<√,×)×<√,×)<×,×)<√,×)所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;<2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,则P=;P=tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.<1)求点C的坐标;<2)若点D在反比例函数y=<k>0)的图象上,求反比例函数的解读式.式.BPD=,﹣当y=0时,﹣x+3=0,<k∴反比例函数的解读式为y=.本题考查了反比例函数与一次函数的交点问题,先求出<2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;<3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;,≈=10DE=10cmAB=BD+AD=20,BC=2,P 是⊙O上半部分的一个动点,连接OP,CP.<1)求△OPC的最大面积;<2)求∠OCP的最大度数;=OCP=====,,24.<12分)<2018?南昌)如图1,边长为4的正方形ABCD中,点E在AB边上<不与点A,B 重合),点F在BC边上<不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…<1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的﹣EF=BF=<4DE=DF=EF==[=8+4<EF=<4=4﹣﹣x<4BF=CG=BC=BF+FG+CG=x+x+x=4﹣x轴平x;抛物线0)对应;﹣<a<3)将抛物线y=a n x+b n x+c n<a n>0)的对应准蝶形记为F n<n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将<2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若y=立,反正结论成立.求直线方程只需考虑特殊点即可.解:<1)4;1;;.分析如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A<﹣,),B<,),C<0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;;,∴抛物线y=a<x﹣2)2+3<a>0),碟宽为.=a<x<4a+),,的碟宽为∴=6,a=<x∵a1=,=.<x在B左边),=<x=h)=<)3h n﹣3=…=<)n+1=.n﹣1,且都过F n﹣1的碟宽中点,2,h3,…,h n﹣1,h在直线x=2上,2,h3,…,h n﹣1,h的碟宽右端点横坐标为2+?GFH==<x=<x<2+),。

2018年江西省中考数学试卷-答案

2018年江西省中考数学试卷-答案

江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2-的绝对值是2,故选B . 【考点】绝对值的概念 2.【答案】A 【解析】2222()b b a a b a a-==,故选A . 【考点】分式的运算 3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D . 【考点】几何体的左视图 4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C . 【考点】频数分布直方图 5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C . 【考点】利用轴对称设计图案,平移的性质 6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3)2l 与双曲线交点为(3,1)1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D . 【考点】反比例函数的图象与性质第Ⅱ卷二.填空题 7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠. 【考点】分式有意义的条件 8.【答案】4610⨯ 【解析】460000610=⨯. 【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形, ∴AD BC =,o 90D ∠=由旋转的性质可知AB AE =,BC EF = ∴3EF AD ==. ∵DE EF = ∵3DE =.在Rt ADE △中,AE =∴AB =【考点】矩形的性质,旋转的性质,勾股定理 11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中, 得211420x x -+=,∴21142x x -=- 根据根与系数的关系, 得122x x =,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时, ①当点P 在AD 边上时,如图1,11233AP AD AB ===; ②当点P 在AB 边上时,如图2,设AP x =,则2PD x =, ∴2226(2)x x +=解得x =③点P 不可能在BC ,CD 上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3, ∵2PD OA <,AP OA ≥, ∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,OP x =,OD =在Rt OPD △中,222)(2)x x +=,解得1x 2x =.综上所述,2AP =,.【考点】正方形的性质、勾股定理、分类讨论思想 三、解答题13.【答案】(1)45a - (2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥ 解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法 14.【答案】4AE =【解析】∵BD 平分ABC ∠. ∴ABD CBD ∠=∠ ∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△. ∴CBD D ∠=∠,AB AECD EC=∴BC CD =∵8AB =,6CA =,4CD BC ==, ∴846AEAE=-. ∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质 15.【答案】画法如图所示. (1)AF 即为所求(2)BF 即为所求【解析】画法如图所示. (1)AF 即为所求(2)BF 即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心. 16.【答案】(1)不可能,随机,14. (2)解法一:根据题意,可以画出如下的树状图:由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,小悦小悦 小惠小悦 小悦小艳 小倩 小艳 小艳小艳小悦 小悦 小惠小惠 小惠 小倩 小倩所以61()122P ==小惠被抽中.由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中. 【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。

中考数学试题-2018年江西省南昌市初中毕业暨中等学校招生考试数学试卷及答案 最新

中考数学试题-2018年江西省南昌市初中毕业暨中等学校招生考试数学试卷及答案 最新

机密★2018年6月19日江西省南昌市2018年初中毕业暨中等学校招生考试数学试卷说明:本卷共有五个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算2008(1)-的结果为( ) A .2008B .2008-C .1D .1-2.下列各式中,与2(1)a -相等的是( ) A .21a -B .221a a -+C .221a a --D .21a +3.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手 B .冠军属于外国选手 C .冠军属于中国选手甲 D .冠军属于中国选手乙 4.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.下列图案中是轴对称图形的是( )A. B. C. D.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )7.下列三角形纸片,能沿直线剪一刀得到等腰梯形的是( )2018年北京 2018年雅典 1988年汉城 1980年莫斯科左面 (第6题)A .B .C.D.8.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与② B .②与③ C .③与④ D .①与④ 二、填空题(本大题共8小题,每小题3分,共24分)9.在“W e l i k e m a t h s .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).10.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .11.如图,AB 是O 的直径,点C D ,是圆上两点, 100AOC ∠=,则D ∠= 度.12.方程212xx =-的解是 . 13.相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 .14.在ABC △中,6AB =,8AC =,在DEF △中,4DE =,3DF =,要使ABC △与DEF △相似,需添加的一个条件是 (写出一种情况即可). 15.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .16.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 三、(本大题共4小题,每小题6分,共24分) 17.计算:0(2007)132sin 60-+--°.ABFE O(第16题)yxO 1 3(第15题)50 70A .50 80B . 50100C .50 D .A OBDC (第11题)18.化简:24214a a a+⎛⎫+⎪-⎝⎭·.19.下面三张卡片上分别写有一个等式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?20.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?证明你的结论.四、(本大题共3小题,每小题8分,共24分)21.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.22.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,3.27.07.888.49.812 3 分数人数x1x - 2AD BCFE设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?23.2018年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李用8000元做为预订下表中比赛项目门票的资金. (1)若全部资金用来预订男篮门票和乒乓球门票共10张,问男篮门票和乒乓球门票各订多少张?(2)小李想用全部资金预订男篮、足球和乒乓球三种门票共10张,他的想法能实现吗?请说明理由.比赛项目 票价(元/场)男篮 1000 足球 800 乒乓球500五、(本大题共2小题,每小题12分,共24分)24.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,(04)F -,.(1)画出ABC △的外接圆P ,并指出点D 与P 的位置关系;(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与P 的位置关系,并说明理由;②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与P 的劣弧..CD 围成的图形的面积(结果保留π).25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写xy654321------ 123456------ 123 321O A E DBC出图1,2,3中的顶点C 的坐标,它们分别是 , , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)Hc ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.y C ()A(40)D ,(12)B , O x图1y C()A(0)D e ,()B c d ,O x图2y C ()A a b ,()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图4江西省南昌市2018年初中毕暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分)1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.D 二、填空题(本大题共8小题,每小题3分,共24分) 9.0.18; 10.12; 11.40; 12.2-; 13.答案不惟一,如5; 14.2BCEF=(或A D ∠=∠); 15.11x =-,23x =; 16.如图:三、(本大题共4小题,每小题6分,共24分) 17.解:原式31(31)22=+--⨯································································· 3分 1313=+-- ········································································· 4分 0= ··························································································· 6分18.解:原式22442(4)a a a a-++=-······································································· 2分 22(2)(2)a a a a a+=+-······························································· 4分 2aa =- ······················································································ 7分 19.解:树形图:第一张卡片上的整式 x 1x - 2(第16题) A OE B F第二张卡片上的整式 1x - 2 x 2 x 1x - 所有可能出现的结果1x x - 2x 1x x - 12x - 2x21x - ··················································································································· 4分也可用表格表示: 第一张卡片 上的整式 第二张卡片上的整式x1x - 2x1x x - 2x 1x - 1x x -12x - 22x21x -··················································································································· 4分 所以P (能组成分式)4263==. ····································································· 6分 20.解:AB CF ∥.证明:在ABC △和CFE △中,由DE FE AED CEF AE CE =∠=∠=,,, 得ADE CFE △≌△. ··················································································· 4分 所以A FCE ∠=∠. ······················································································· 5分 故AB CF ∥. ······························································································ 6分 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; ········ 1分 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=; ············································· 2分 方案3最后得分:8; ····················································································· 3分 方案4最后得分:8或8.4. ············································································· 4分(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案. ···························································· 6分 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案. ········································································ 8分 (说明:少答一个方案扣2分,多答一个方案扣1分)22.解:(1)DE BC ∥,ADE ABC ∴△∽△. AD AEAB AC∴=. ······························································································ 1分 又82AD x =- ,8AB =,AE y =,6AC =,8286x y-∴=. 362y x ∴=-+. ··························································································· 3分自变量x 的取值范围为04x ≤≤. ··································································· 4分(2)11326222S BD AE x x ⎛⎫==-+ ⎪⎝⎭22336(2)622x x x =-+=--+. ····································································· 6分∴当2x =时,S 有最大值,且最大值为6. ······················································· 8分 (或用顶点公式求最大值)23.解:(1)设订男篮门票x 张,乒乓球门票y 张. 由题意,得1000500800010x y x y +=⎧⎨+=⎩,., ································································ 3分解得64.x y =⎧⎨=⎩,答:小李可以订男篮门票6张,乒乓球门票4张. ················································· 4分 (2)能,理由如下: ······················································································ 5分 设小李订男篮门票x 张,足球门门票y 张,则乒乓球门票为(10)x y --张.由题意,得1000800500(10)8000x y x y ++--=. ··········································· 7分 整理得5330x y +=,3053xy -=. x y ,均为正整数,∴当3x =时,5y =,102x y ∴--=.∴小李可以预订男篮门票3张,足球门票5张和乒乓球门票2张.∴小李的想法能实现. ···················································································· 8分 五、(本大题共2小题,每小题12分,共24分)24.解:(1)所画P 如图所示,由图可知P 的半径为5,而5PD =. ∴点D 在P 上. ···························································· 3分 (2)① 直线EF 向上平移1个单位经过点D ,且经过点(03)G -,, ∴2221310PG =+=,25PD =,25DG =.222PG PD DG ∴=+.则90PDC ∠=,1PD l ∴⊥.∴直线1l 与P 相切.(另法参照评分) ··························································································· 7分 ② 5PC PD ==,10CD =,222PC PD CD ∴+=.90CPD ∴∠= .xy 2l1lACPB D EFG 654321------ 123456------ 1233212(5)π5π44S ∴==扇形,215(5)22PCD S ==△.∴直线2l 与劣弧CD 围成的图形的面积为5π542-.………………………………………12分 25.解:(1)(52),,()e c d +,,()c e a d +-,. ·············································· 2分 (2)分别过点A B C D ,,,作x 轴的垂线,垂足分别为1111A B C D ,,,, 分别过A D ,作1AE BB ⊥于E ,1DF CC ⊥于点F . 在平行四边形ABCD 中,CD BA =,又11BB CC ∥,180EBA ABC BCF ABC BCF FCD ∴∠+∠+∠=∠+∠+∠= . EBA FCD ∴∠=∠.又90BEA CFD ∠=∠=,BEA CFD ∴△≌△. ····················································································· 5分 AE DF a c ∴==-,BE CF d b ==-.设()C x y ,.由e x a c -=-,得x e c a =+-.由y f d b -=-,得y f d b =+-.()C e c a f d b ∴+-+-,. ···························· 7分 (此问解法多种,可参照评分)(3)m a c e +=+,n b d f +=+或m c e a =+-,n d f b =+-. ····················· 9分 (4)若GS 为平行四边形的对角线,由(3)可得1(27)P c c -,.要使1P 在抛物线上, 则有274(53)(2)c c c c c =--⨯--,即20c c -=.10c ∴=(舍去),21c =.此时1(27)P -,. ······················································· 10分 若SH 为平行四边形的对角线,由(3)可得2(32)P cc ,,同理可得1c =,此时2(32)P ,. 若GH 为平行四边形的对角线,由(3)可得(2)c c -,,同理可得1c =,此时3(12)P -,. 综上所述,当1c =时,抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形.符合条件的点有1(27)P -,,2(32)P ,,3(12)P -,. 12分 yC ()A a b ,()D e f ,()B c d ,EF1B 1A1C 1D Ox。

最新-2018年江西省南昌市中考试卷(word版)-数学 精品

最新-2018年江西省南昌市中考试卷(word版)-数学 精品

江西省南昌市2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个B .5个C .6个D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.(第16题)xA B a b20.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处;(1)求证:B E BF'=;(2)设AE a AB b BF c===,,,试猜想a b c,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB为O的直径,CD AB⊥于点E,交O于点D,OF AC⊥于点F.(1)请写出三条与BC有关的正确结论;(2)当30D∠=,1BC=时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过PABCDFA'B'EBA点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论;(2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.五、(本大题共2小题,每小题12分,共24分)24.如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.18 0 0.29(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.966-+==,≈,≈.)图1图2B (E A (F D图3H DACB图4。

2018年南昌市初三年级毕业调研数学卷(答案)

2018年南昌市初三年级毕业调研数学卷(答案)

南昌市2018届初中毕业年级调研测试卷数学参考答案及评分意见一、选择题(本大题共6小题,每小题3分,共18分)1.A ; 2.D ; 3.B ; 4.D ; 5.A ; 6.B .二、填空题(本大题共6小题,每小题3分,共18分)7.15°; 8.3; 9.65°; 10.15; 11.y =(x +3)2-2;12.(0,3)或(4,0)或(74,0).三、解答题(本大题共5小题,每小题6分,共30分)13.解:(1)①+②,得3x =x +2,解得x =1. ……………1分 把x =1代入②,得1-y =-1,解得y =2. ……………2分 ∴原方程组的解是1,2.x y =⎧⎨=⎩ ……………3分 (2)∵∠1=145°,∴∠EDC =180°-∠1=35°. ……………1分 ∵DE ∥BC ,,∴∠C =∠EDC =35°. ……………2分 在△ABC 中,∠A =90°,∴∠B =90°-∠C =90°-35°=55°. ……………3分14.解:原式=(2)22(2)(2)m m m m m m m +-+⋅+- ……………2分 =2m m -. ……………3分 当m 0,2时,原式有意义. ……………4分∴当m =1时,原式=1112=-- . ……………6分 15.解:(1)如图正方形ABCD ; ……………3分(2)如图平行四边形EFGH .……………6分16.解:(1)D ; ……………2分(2)用树状图法表示是:……………4分由树状图可知,共有6种等可能的结果,其中A 选中有2种结果,即AD 、AE , ∴选中A 型号的概率2163P ==. ……………6分17.解:(1)连接PO,∵PD⊥AO,且AD=OD,∴PD是线段AO的垂直平分线.∴PO=P A=45cm.……………1分∵PC⊥BC,∴∠PCO=90°,在Rt△POC中,27PC=(cm).……………3分(2)过D作DE⊥OB于E,DF⊥PC于F.∵PC⊥OC,∴DF∥OC.∵AO=24cm,且D为AO的中点,∴OD=12cm.cos60°=6cm.4分=.∴点P在直线PC上的位置上升了.……………6分四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)由条形统计图知C有200人,由扇形统计图知C占20%,∴本次参与调查人数有200÷20%=1000(人).………2分(2)B有1000-250-200-400=150(人),补全条形统计图如图所示.……………4分D部分的扇形圆心角是400360144⨯︒=︒.……………6分1000(3)关注交通信息的人数最多或关注政府服务信息的占25%等.……8分19.解:(1)由题意,甲团队不超过50人,则乙团队x人满足70≤x<100.……1分∴W=80(120-x)+70x=-10x+9600.……………2分∵-10<0,∴W随x的增大而减小.∴当x=70时,W有最大值,即为8900(元)……………3分∵两队联合购票费用为60×120=7200(元),∴两队联合购票比分别购票最多可节约8900-7200=1700(元).……………4分(2)由题意,得W=80(120-x)+(70-a)x=-(10+a)x+9600.当x=70时,W有最大值-(10+a)×70+9600=-70a+8900.……………5分两队联合购票费用是(60-2a)×120=-240a+7200.……………6分根据题意,列方程(-70a+8900)-(-240a+7200)=3400.解得a=10.……………8分20.(1)证:连接OD,∵∠ACD=45°,∴∠AOD=90°.…………1分∵DE∥AB,∴∠AOD+∠E DO=180°.∴∠EDO=90°.…………2分∴OD⊥DE,∴ED是⊙O的切线.…………3分(2)①证:∵F 为CD 的中点,∴CF =DF .∵AB 为⊙O 的直径,∴AB ⊥CD .∴∠AFC =90°.∴AF 为CD 的垂直平分线,∴AC =AD . ……………4分∵∠CAB =30°,∴∠C =60°.∴△ACD 是等边三角形. ……………5分②解:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠CAB =30°,且AB =2,∴AC =AB cos30°CD =AC.……………6分∵DE ∥AB ,∴∠E =∠CAB =30°,∠CDE =∠CFA =90°.………7分 ∴3tan30CD ED ==︒,∴11322CDE S ED CD =⋅=⨯8分 五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)设AD 与y 轴交于点E ,∵AD ∥x 轴,∴A 、D 的纵坐标相同.∵A (-2,2),∴AE =2,∴ED =AD -AE =4,∴D (4,2).………2分 ∵D 在反比例k y x=图象上,∴k =4×2=8. ……………3分 (2)∵O 为AC 的中点,∴C 与A 关于原点对称,∴C (2,-2).……4分 设C 向上平移a 个单位,则C′(2,-2+a )在8y x=图象上, ∴2(-2+a )=8,解得a =6. ……………5分 设CC′与AD 相交于F ,则AF =4.∴平移过程中线段AC 扫过的面积是6×4=24.…………6分(3)∵四边形APCQ 是菱形,∴PQ ⊥AC .∵AC 在直线y =-x 上,∴PQ 在直线y =x 上. …………7分由,8,y x y x =⎧⎪⎨=⎪⎩解得1212x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ ……………8分∴8PQ . ……………9分22.解:(1)①-2; ……………1分 ②2a m=-; ……………2分 (2)由顶点2(,)24b b a a --在直线y =kx 上,得2()42b b k a a-=-. ……………3分 ∵b ≠0∴b =2k . ……………4分(3)由(1)(2)结果知,顶点(n ,2n )在直线y =2x 上的抛物线解析式是 22()2y x n n n =--+,即224y x x n=-+. ……………5分 设正方形A m B m C m D m 的顶点A m (m ,2m )在抛物线224y x x m=-+上,且边长为2m , 此时顶点D m (3m ,2m )在另一条抛物线224y x x n=-+上, 由22(3)432m m m n -+⨯=,解得59m n =. ……………7分∵m ≤n ≤12,且m ,n 为正整数,∴当n =9时,m =5,∴2m =10. ……………8分∴满足条件的正方形A 5B 5C 5D 5的边长为10. ……………9分六、综合题(本大题共1小题,共12分)23.解:(1)①AC ; ……………1分 ②在图1中,过B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b . 在Rt △ABC 中,a 2+b 2=c 2,在Rt △BCE 中,a 2+(12b )2=b 2. ……………2分解得a ,c =. ……………3分∴::2a b c ……………4分AFB =∠AFC =90°.22)x h +,22)h +, ……………5分 在Rt △AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2. ……………6分∴AB 2+AC 2=225522a BC =. ……………7分 (3)在图3中,∠B =90°,BC >AB ,∴BC 为△ABC 的奇特边. ∵BC =∴由(1)②知AB ,7AC =. ……………8分 设等腰△ACD 的底边长为y ,由(2)结果知,①当腰为奇特边时,有2225772y +=⨯,解得y …………10分 ②当底边为奇特边时,有2225772y +=⨯,解得y . ∴等腰△ACD……………12分。

江西省南昌市2018年初中毕业暨中等学校招生考试数学试题

江西省南昌市2018年初中毕业暨中等学校招生考试数学试题

江西省南昌市2006年初中毕业暨中等学校招生考试数 学 试 卷说明:本卷共有五个大题,25个小题,全卷满分120分.考试时间120分钟一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内1. 下列四个运算中.结果最小的是 【 】A 1+(-2)B 1-(-2)C l ×(-2)D 1÷(-2)2.在下列运算中,计算正确的是 【 】A 326a a a ⋅=B 824a a a ÷=C 235()a a =D 225()ab a =3. 两圆半径分别为5和3,圆心距为8,则两圆的位置关系是 【 】A 内切B 相交C 外切D 外离4.若点A (2、n )在x 轴上则 点B (n -2 ,n +1)在 【 】A 第一象限B 第二象限C 第三象限D 第四象限5.某运动场的面积为300m 2,则它的万分之一的面积大约相当于 【 】 A 课本封面的面积 B 课桌桌面的面积C 黑板表面的面积D 教室地面的面积6.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米.与他相邻的一 棵树的影长为3. 6米,则这棵树的高度为 【 】A 5 .3米B 4. 8米C 4 .0米D 2.7米7. 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °∠2=y °,则可得到方程组为 【 】A 50,180x y x y =-⎧⎨+=⎩B 50,180x y x y =+⎧⎨+=⎩C 50,90x y x y =-⎧⎨+=⎩ D 50,90x y x y =+⎧⎨+=⎩8.下列图案都是由宁母“m ”经过变形、组合而成的.其中不是中心对称图形的是【 】二、填空题(本大题共8小题,每小题3分.共24分)9.分解因式2a ab -=10-=11.在△ABC 中∠A =80°∠B =60° ,则∠C =12.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜镜片的焦距为 0. 25m ,则y 与x 的函数是关系式为13.若分式11x x -+的值为零,则x 的值为 14.若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积I5. 请在由边长为1的小正三角形组成的虚线网格中,画出1 个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形16用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 张(2)第n 个图案中有白色纸片 张三、(本大题共4小题,每小题6分,共24分)17 计算:()()x y x y -+-2(x-y )18已知关于x 的一元二次方程210x kx +-=(I)求证方程有两个不相等的实数根:(2)设的方程有两根分别为12,x x 日满足1212x x x x +=⋅ 求k 的值19如图,在平面直角坐标系中,点A 在第一象限,点B 的坐标为(3,0),OA =2,∠AOB =60° (I) 求点A 的坐标:(2)若直线AB 交x 轴于点C ,求△AOC 的面积.20 如图AB 是⊙O 的直径,BC 是⊙O 弦OD ⊥CB 于点E ,交BC 于点D(1)请写出三个不同类型的正确结论:(2)连结CD ,设∠CDB =α,∠ABC =β,试找出α与β之间的一种关系式并给予证明.四、(本大题共3小题.每小题8分.共24分)21.如图.在梯形纸片ABCD中.AD∥BC,AD>CD.将纸片沿过点D的直线折叠,使点C落在AD上的点C‘处,折痕DE交BC于点E.连结C,E(1)求证:四边形CD C,E是菱形;(2)若BC=CD+AD,试判断四边形ABED的形状,并加以证明;22一次期中考试中A、B、C、D、E五位同学的数学、英语成绩等有关信息、如下表所示:(I)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是标准分=(个人成绩-平均成绩)÷成绩标准差从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好.友情提示:一组数据的标准差计算公式是S=,其中_x为n个数据12,,,nx x x⋅⋅⋅的平均数.23小杰到学校食堂买饭,看到A 、B 两窗口前面排的人一样多(设为a 人,a >8),就站到A 窗口队伍的后面排队,过了 2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人(1)此时,若小杰继续在A 窗口排队.则他到达A 窗口所花的时间是多少(用含a 的代数式表示)(2)此时,若小杰迅速从A 窗口转移到B 窗口队伍后面重新排队,且到达B 窗口所花的时间比继续在A 窗口排队到达A 窗口所花的时间少,求a 的取值范围(不考虑其它因素).五、(本大题共2小题,每小题12分.共24分)24已知抛物线2y ax bx c =++,经过点A (0,5)和点B (3 ,2)(1)求抛物线的解析式:(2)现有一半径为l ,圆心P 在抛物线上运动的动圆,问⊙P 在运动过程中,是否存在⊙P 与坐标轴相切的情况?若存在,请求出圆心P 的坐标:若不存在,请说明理由;(3)若⊙ Q 的半径为r ,点Q 在抛物线上、⊙Q 与两坐轴都相切时求半径r 的值25问题背景;课外学习小组在一次学习研讨中,得到了如下两个命题:①如图1,在正三角形ABC中,M,N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°.则BM=CN:②如图2,在正方形ABCD中,M、N分别是CD、AD上的点.BM与CN相交于点O,若∠BON=90°.则BM=CN.然后运用类似的思想提出了如下命题:③如图3,在正五边形ABCDE中,M、N分别是CD,DE上的点,BM与CN 相交于点O,若∠BON=108°,则BM=CN.任务要求(1)请你从①.②,③三个命题中选择一个进行证明;(说明:选①做对的得4分,选②做对的得3分,选③做对的得5分)(2) 请你继续完成下面的探索;①如图4,在正n(n≧3)边形ABCDEF 中,M,N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明)②如图5,在正五边形ABCDE中,M、N分别是DE,AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否还成立,若成立,请给予证明.若不成立,请说明理由(I)我选 .证明:江西省南昌市2006年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明1、如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应 的评分细则后评卷2、每题都要评阅到底,不要因为考生的解答中出现错误而中断对题的评阅:当考生的解 答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这题的内容和难度则 可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半:如果这一步以 后的解答有较严重的错误.就不给分 .3、解答右端所注分数,表示考生正确做到这一步应得的累加分数4、只给整数分数一,选择题(本大题共8小题.每小题3分.共24分)1. C ;2. D ,3. C ;4 B ;5. A ;6. B ;7. D ;8. B二、填空题(本大题共8小题,每小题3分.共24分)9.a(a-b);10.;11.40°;12. 100(0)y x x=> ;13. 1; 14 .6π: 15.本题答案不惟一,只要符合要求都给满分,以下答案供参考16.(1)13;(2)3n +l说明:1. 第12小题不写x >O .也给满分2. 第16小题第(1)问1分,第(2)问2分三、(本大题共4小题.每小题6分,共24分)-17.解:原式=2222(2)()x xy y x y -+-- … ……… 2分= 22222x xy y x y -+-+ ……… … 4分= 222y xy - ……… …6分18.(1)证明 △=2241(1)40k k -⨯⨯-=+>, ……… …2分原方程有两个不相等的实数根 ………… 3分(2)解:由根与系数的关系,得 1212,1,x x k x x +=-⋅=- .4分1212x x x x +=⋅ 1k -=- ……… ……… … 5分解得k=1 …………· 6分19.解:(1)过点A 作AD ⊥x 轴,垂足为D则OD =OA cos60°=2×12=1, …… 1分AD =OA sin60°=2 …… 2分∴点A 的坐标为(1) ……3 (2)设直线AB 的解析式为y =kx +b ,则有.30k k b k b b ⎧=⎪⎧+=⎪⎪⎨⎨+=⎪⎩⎪=⎪⎩解得 ……4分 ∴直线AB的解析式为22y x =-+y … … 5分 令x =0,得2y =2OC =1112224AOC S OC OD ∆=⨯⨯=⨯= … … 6分20.(1)不同类型的正确结论不惟一.以下答案供参考:①BE =CE BD CD =②,③∠BED =90°④∠BOD =∠A , ⑤AC ∥OD ⑥AC ⊥BC ⑦222OE BE OB += ⑧;ABC S BC OE ∆=⨯⑨ΔBOD 是等腰三角形⑩ΔBOE ∽ΔBAC 等,说明:1每写对一条给1分,但最多只给3分;2结论与辅助线有关且正确的,也相应给分(2) α与β的关系式主要有如下两种形式,请参照评分:①答;α与β之间的关系式为α-β=90° …… 4分证明:∵AB 为⊙O 的直径,∴∠A +∠ABC =90°又∵四边形ACDB 为圆的内接四边形,∴∠A +∠CDB =180°∴∠CDB -∠ABC =90°即α-β = 90° ……6分说明:关系式写成α = 90°+β或β=α-90°均参照给分②答α与β之间的关系式为;α>2β ……4分证明 ∵ OD =OB , ∴∠ODB =∠ OBD又∵∠ OBD=∠ABC+∠CBD ∴∠ODB>∠ABC∵OD ⊥BC ∴CD BD =∴CD =BD ……5分∴∠CDO =∠ODB =12∠CDB ∴12∠CDB >∠ABC α>2β ……6分说明:若得 出与α与β的关系式为α>β,且证明正确的也给满分四、(本大题共3小题,每小题8分.共24分)2I (1)证明根据题意可得;CD =C ’D ,∠C ’DE =∠CDE ……1分∵AD ∥BC ∴∠C ’DE =∠CED ……2分∴∠CDE =∠CED ……3分∴CD = C ’D =C ’E =CE ……4分∴四边形CD C ’E 是菱形 ……5分(2)答:当BC =CD +AD 时,四边形ABED 为平行四边形 ……… 6分 证明:由(1)知CE =CD又∵BC =CD +AD ∴BE =AD ……… 7分又∵AD ∥BE ∴四边形ABED 为平行四边形 ……… 8分22.解(1)数学考试成绩的平均分_15x =数学(71+72+69+68+70)=70. ……… 2分 英话考试成绩的标准差6S ==英语……4分 (2)设A 同学数学考试成绩标准分为P 数学,英语考试成绩标准分为P 英语,则P 数学=3=(71-70) ……5分 P 英语162÷=(88-85),……6分 P 数学> P 英语从标准分看,A 同学数学比英语考得更好 ……8分23.解(1)小杰继续在A 窗口排队到达A 窗口所花的时间为 42844a a -⨯-=(分) ………3分(2)由题意.得42625244a a -⨯-⨯+⨯> ………6分 解得a >20a 的取值范围为a >20 ………8分五、(本大题共2小题,每小题12分.共24分)24.解:(1)由题意,得;5392c b c =⎧⎧⎨⎨++=⎩⎩b=-4解得c=5………3分 抛物线的解析式为245y x x =-+ …… ……4分(2)当⊙P 在运动过程中,存在⊙P 与坐标轴相切的情况.设点P 坐标为(00,x y ),则则当⊙P 与y 轴相切时,有0x =1,0x =±1由0x = -1,得201141510(1,10)y P =+⨯+=∴-,…… ……5分 由0x = 1,得20214152(1,2)y P =-⨯+=∴ …… ……6分当⊙P 与x 轴相切时有01y =∵ 抛物线开口向上,且顶点在x 轴的上方.∴0y =1由01y ==1,得200451x x -+=,解得0y =2,B(2,1)综上所述,符合要求的圆心P 有三个,其坐标分别为:123(1,10),(1,2),(2,1)P P P - ………… 8分(3)设点Q 坐标为(x ,y ),则当⊙Q 与两条坐标轴都相切时,有y =±x由y =x 得245x x x -+=,即2550x x -+=,解得52x =…… 10分 由y =-x ,得245x x x -+=-.即2350x x -+=,此方程无解 … I 1分∴⊙O 的半径为 52r ±= …… …………12分25(1)根据选择命题的难易程度评分,以下答案供参考:(1) 如选命题①证明:在图1中,∵∠BON =60°∴∠1+∠2=60° … 1分∵∠3+∠2=60°,∴∠1=∠3 … 2分又∵BC =CA ,∠BCM =∠CAN =60°∴ΔBCM ≌ΔCAN … 3分∴BM =CN … 4分(2)如选命题②证明:在图2中,∵∵∠BON =90°∴∠1+∠2=90°∵∠3+∠2=90°,∴∠1=∠3 … 1分又∵BC =CD ,∠BCM =∠CDN =90°∴ΔBCM ≌ΔCDN … 2分∴BM =CN … 3分(3)如选命题③证明;在图3中,∵∠BON =108°∴∠1+∠2=108° … 1分∵∠2+∠3=108°∴∠1=∠3 … 2分又∵BC =CD ,∠BCM =∠CDN =108°………3分∴ΔBCM ≌ΔCDN ……… 4分∴BM =CN … 5分(2)①答:当∠BON=0(n-2)180n 时结论BM =CN 成立.…2分②答当∠BON =108°时。

2018年南昌市初三调研考试数学试卷(含答案)

2018年南昌市初三调研考试数学试卷(含答案)

页脚市2018届初中毕业年级调研测试卷(数学)(全卷满分:120分,考试时间:120分钟)一、 选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项,请将正确选项的序号填入题后的括号。

1、下列四个数: --2 ,1,π其中最小的数是( )。

A. –2 B. 1 C. π2、可燃冰是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源就超过1000亿吨油当量。

将1000亿用科学记数法可表示为( )A. 3110⨯B. 8110⨯C. 8100010⨯D. 11110⨯ 3、下列运算结果,不正确的是( )A. 1211x x x -+=B. 22(1)1x x +=+C. 236(2)8x x -=-D. 321234x x x -÷=- 4、不等式组 21312x x +>-⎧⎨-≤⎩ 的解集,在数轴上表示正确的是( )5、如图,是一个放置在水平试验台上的锥形瓶,它的左视图是( )6、如图,点A 、B 、C 都在O 上,且点C 在弦AB 所对的优弧上,若64AOB ∠=,则ACB ∠的度数是( )A. 26oB. 032 C. 064 D. 032148或 二、 填空题(本大题共6小题,每小题3分,共18分)。

7、如图,将一副三角板和一对边平行的纸条按下列方式摆放,两块三角板的一条直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的边一边上,则1∠的度数是_________. 8、若一组数据 2,a ,3,5,8的平均数为4,则这组数据的中位数是_________.9、如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到'''A B C ,连接'AA ,若0125∠=,则'BAA ∠的度数是________.10、若一元二次方程2320x x --=的两个实数根为12,x x ,则221212x x x x +-的值是_______.11、若抛物线2(1)y x c =-+过点(2,1)-,且向左平移4个单位,则所得新抛物线的解析式_________________.12、如图,在平面直角坐标系中,已知点A(8,0)和B(0,6),点C 是AB 的中点,点P 在拆线AOB 上,直线CP 截△AOB 所得的三角形与△AOB 相似,则点P 的坐标是__________________________.三、 解答题(本大题共5小题,每小题6分,共30分)。

2018年江西省南昌市中考一模数学试卷(解析版)

2018年江西省南昌市中考一模数学试卷(解析版)

2018年江西省南昌市中考数学一模试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014 3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x24.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是.9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是A.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.2018年江西省南昌市中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π【解答】解:根据实数比较大小的方法,可得﹣2<﹣<1<π,∴四个数:﹣2,1,﹣,π,其中最小的数是﹣2.故选:A.2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x2【解答】解:A、﹣x+12x=11x,正确,不合题意;B、(x+1)2=x2+2x+1,错误,符合题意;C、(﹣2x2)3=﹣8x6,正确,不合题意;D、﹣12x3÷3x=﹣4x2,正确,不合题意;故选:B.4.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集是﹣3<x≤1,在数轴上表示为,故选:D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.【解答】解:锥形瓶的左视图为选项A中图形.故选:A.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°【解答】解:∵∠ACB=∠AOB,而∠AOB=64°,∴∠ACB=×64°=32°.即∠ACB的度数是32°.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是3.【解答】解:∵数据2,a,3,5,8的平均数是4,∴=4,解得:a=2,这组数据按照从小到大的顺序排列为:2,2,3,5,8,则中位数为3.故答案为:3;9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是65°.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故答案为:65°.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是15.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴x12+x22﹣x1•x2=(x1+x2)2﹣3x1x2=32﹣3×(﹣2)=15,故答案为:15.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是y=(x+3)2﹣2.【解答】解:∵抛物线y=(x﹣1)2+c过点(2,﹣1),∴﹣1=(2﹣1)2+c,解得:c=﹣2,故抛物线y=(x﹣1)2﹣2向左平移4个单位,所得新抛物线的解析式为:y=(x+3)2﹣2.故答案为:y=(x+3)2﹣2.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,3)、(4,0)、(,0).【解答】解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,可得P为OB的中点,此时P点坐标为(0,3);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,可得P为OA的中点,此时P点坐标为(4,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABO,∴=,∵点A(8,0)和点B(0,6),∴AB==10,∵点C是AB的中点,∴AC=5,∴=,∴AP=,∴OP=OA﹣AP=8﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,3)、(4,0)、(,0).故答案为:(0,3)、(4,0)、(,0)三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.【解答】解:(1)方程组化简,得①+②,得3x=x+2,解得x=1.把x=1代入②,得1﹣y=﹣1,解得y=2.∴原方程组的解是,(2)∵∠1=145°,∴∠EDC=180°﹣∠1=35°.∵DE∥BC,∴∠C=∠EDC=35°.在△ABC中,∠A=90°,∴∠B=90°﹣∠C=90°﹣35°=55°.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.【解答】解:()÷===,当m=1时,原式==﹣1.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.【解答】解:(1)如图正方形ABCD;(2)如图平行四边形EFGH.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是DA.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?【解答】解:(1)A、选购甲品牌的B型号是随机事件;B、选购甲品牌的C型号和乙品牌的D型号是随机事件;C、既选购甲品牌也选购乙品牌是必然事件;D、只选购乙品牌的E型号是不可能事件;故选:D;(2)用树状图法表示是:由树状图可知,共有6种等可能的结果,其中A选中有2种结果,即AD、AE,∴选中A型号的概率=.17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)【解答】解:(1)当P A=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=P A=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC==27cm;(2)当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC 于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO=AO=12,∴DE=DO•sin60°=6,EO=DO=6,∴FC=DE=6,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF中,∵∠PDF=30°,∴PF=DF•tan30°=42×=14,∴PC=PF+FC=14+6=20≈34.6>27,∴点P在直线PC上的位置上升了,此时PC的长约是34.6cm.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.【解答】解:(1)本次参与调查的人数为200÷20%=1000人;(2)B类别人数为1000﹣(250+200+400)=150人,补全图形如下:(3)由条形图知,大家关心交通信息较多,关心城市医疗信息人数最少.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.【解答】解:(1)由题意,甲团队不超过50人,则乙团队x人满足70≤x<100.∴W=80(120﹣x)+70x=﹣10x+9600,∵﹣10<0,∴W随x的增大而减小,∴当x=70时,W有最大值,即为8900(元),∵两队联合购票费用为60×120=7200(元),∴两队联合购票比分别购票最多可节约8900﹣7200=1700(元).(2)由题意,得W=80(120﹣x)+(70﹣a)x=﹣(10+a)x+9600.当x=70时,W有最大值﹣(10+a)×70+9600=﹣70a+8900.两队联合购票费用是(60﹣2a)×120=﹣240a+7200,根据题意,列方程(﹣70a+8900)﹣(﹣240a+7200)=3400.解得a=10.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.【解答】(1)证明:如图1,连接OD,∵∠ACD=45°,∴∠AOD=90°,∵DE∥AB,∴∠AOD+∠EDO=180°.∴∠EDO=90°.∴OD⊥DE,∴ED是⊙O的切线.(2)①证:∵F为CD的中点,∴CF=DF.∵AB为⊙O的直径,∴AB⊥CD.∴∠AFC=90°.∴AF为CD的垂直平分线,∴AC=AD.∵∠CAB=30°,∴∠C=60°.∴△ACD是等边三角形.②解:如图2,连接BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,且AB=2,∴AC=AB cos30°=,∴CD=AC=∵DE∥AB,∴∠E=∠CAB=30°,∠CDE=∠CF A=90°,∴ED==3,∴S=ED×CD=△CDE五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.【解答】解:(1)设AD与y轴交于点E,∵AD∥x轴,∴A、D的纵坐标相同.∵A(﹣2,2),∴AE=2,∴ED=AD﹣AE=4,∴D(4,2).∵D在反比例函数y=的图象上,∴k=4×2=8;(2)∵在平行四边形ABCD中,原点O是对角线AC的中点,∴C与A关于原点对称,∴C(2,﹣2).设点C向上平移a个单位,则C′(2,﹣2+a)在y=的图象上,∴2(﹣2+a)=8,解得a=6.设CC′与AD相交于F,则AF=4.∴平移过程中线段AC扫过的面积是6×4=24;(3)∵四边形APCQ是菱形,∴PQ⊥AC.∵直线AC的解析式为y=﹣x,∴直线PQ的解析式为:y=x,设P点的坐标为(a,a)且a>0,则点Q的坐标为(﹣a,﹣a),∵P、Q两点分别在反比例函数图象的两支上,∴a=,解得:a=2,故P的坐标为:(2,2),Q的坐标为(﹣2,﹣2),∴PQ==8.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=﹣2;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是a=﹣(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.【解答】解:(1)①∵顶点为(1,2)∴﹣=1,﹣=2,解得a=﹣2;②∵顶点为(m,2m),∴﹣=m,﹣=2m,解得a=﹣,故答案为﹣2,a=﹣;(2)由顶点(﹣,﹣)在直线y=kx上,得﹣=k(﹣),∵b≠0,∴b=2k.(3)顶点A1,A2,…,A n在直线y=2x上,∴可设A n(m,2m),点D n所在的抛物线顶点坐标为(n,2n).∴a=﹣,b=4,由(1)(2)结果知,顶点A n(m,2m)所在直的抛物线解析式是y=﹣x2+4x,设正方形A n B n∁n D n的顶点A n(m,2m)在抛物线y=﹣x2+4x上,且边长为2m,此时顶点D n(3m,2m)在另一条抛物线y=﹣x2+4x上,由﹣(3m)2+4×3m=2m,解得m=n,∵m≤n≤12,且m,n为正整数,∴当n=9时,m=5,∴2m=10,∴满足条件的正方形A5B5C5D5的边长为10.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是较长直角边;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.【解答】解:(1)①∵直角三角形斜边上的中线是斜边的一半,∴斜边不是“奇特边”,∵较短直角边上的中线大于较长直角边,∴较短直角边不是“奇特边”,∴较长直角边为奇特边,故答案为:较长直角边;②设AC=BH=2x,则AH=HC=x,由勾股定理得,BC=x,AB=x,则a:b:c=:2:;(2)作BD⊥AM于D,CE⊥AM于E,设BD=x,DM=y,BM=z,在△BDM和△CEM中,∴△BDM≌△CEM,∴CE=BD=x,DM=EM=y,在Rt△ABD中,AB2=BD2+AD2=x2+(y+2z)2=x2+y2+4yz+4z2,在Rt△ACE中,AC2=AE2+EC2=x2+(2z﹣y)2=x2+y2﹣4yz+4z2,则AB2+AC2=2x2+2y2+8z2=2(x2+y2)+8z2=10z2,BC2=(2z)2=4z2,∴AB2+AC2=BC2;(3)作BC边上的中线AE,由(1)得,BC是“奇特边”,∵BC=2,则AE=2,BE=EC=,由勾股定理得,AB==,AC==7,△ACD是“奇特三角形”,当AC为“奇特边”时,72+AD2=×72,解得,AD=,当AD为“奇特边”时,(AD)2+AD2=72,解得,AD=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档