磁电感应式传感器的测量电路
磁电式传感器原理
磁电式传感器原理磁电式传感器是一种常用的传感器类型,特别适用于测量磁场变化的应用。
其原理基于磁敏效应和压电效应,具有灵敏度高、响应速度快等优点。
下面详细介绍磁电式传感器的原理。
一、磁敏效应磁敏效应是指材料在磁场作用下的电学性质发生变化。
主要包括磁电效应(即磁场引起电位移)和磁阻效应(即磁场影响材料电阻)。
磁敏效应的基本原理是磁场会对材料内的电子进行力学作用,使得电子偏离原来的轨道,从而导致尺寸变化。
二、压电效应压电效应是指材料在受到力的作用下产生电场,或者在电场的作用下发生尺寸变化。
这是一种固体物质的基本性质,与晶体的对称性密切相关。
在晶体中,原子排列的对称性会影响电子云的稳定性,进而影响固体的压电性质。
磁电式传感器的原理基于磁敏效应和压电效应。
其工作过程如下:1.磁场变化引起晶体的压电效应,产生电荷。
2.电荷会被转换为电流信号,交由后续电路处理。
3.电路会对电信号进行放大、滤波等处理,得到最终的输出信号。
磁电式传感器的关键是要选用适合的材料,并且对材料进行精细加工,以使其能够精确地检测磁场的变化。
常见的磁电材料包括PZT(铅锆钛)、PMN(铅镁酸锶)、LFO(铁氧体)、TGS(硼酸锌)等。
这些材料具有不同的磁敏、压电性质,可以根据具体的应用需求选用。
四、应用领域磁电式传感器广泛应用于测量磁场变化的场合,例如测量电流、磁场强度、自身磁场等。
具体应用包括:1.电流测量:电流会产生磁场,利用磁电式传感器可以测量电流的大小。
3.自身磁场测量:磁电式传感器可以测量材料本身的磁场,例如测量磁随机存取存储器(MRAM)中的磁场。
总之,磁电式传感器具有灵敏度高、响应速度快等优点,适用于多种测量场合。
随着技术的不断进步,磁电式传感器的应用前景将越来越广阔。
传感器原理及其应用 第6章 磁电式传感器
材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。
磁电感应式传感器的测量电路
2、霍尔元件的工作原理
FL eB
e U H eB
b
FE
eEH
eUH b
U H bB
I dQ bdn e
dt
UH
IB ned
UH
IB ped
3、霍尔系数及灵敏度
N型霍尔系数
RH
1 ne
P型霍尔系数
RH
1 pe
IB U H RH d
霍尔系数由半导体材料性质决定,且决定霍尔电势的强弱。
7、寄生直流电势 :在外加磁场为零、霍尔元件用交 流激励时,霍尔电极输出除了交流不平衡电势外,还 有一直流电势,称为寄生直流电势。
其产生的原因有: ① 激励电极与霍尔电极接触不良, 形成非欧姆接 触, 造成整流效果; ② 两个霍尔电极大小不对称,则两个电极点的热 容不同, 散热状态不同而形成极间温差电势。 寄生直流电势一般在1mV以下,它是影响霍尔片 温漂的原因之一。
v
N
N
壳体
壳体
线 圈线 圈
永 久 永磁 久铁
S
S
弹 簧弹 簧
(a)
恒定磁通动圈(a)式磁电传感器
(b)
恒定磁通动铁(b式) 磁电传感器
二、 磁电感应式传感器基本特性
Io 传
E
Io
E R Rf
BolNv R Rf
感 器R
Rf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
传感器的电流灵敏度为
霍尔器件符号
C A
D
B
C
C
A
BA
B
H
D
D
二、霍尔元件的主要技术参数
传感器技术 电容式、测量电路
① 驱动电缆法
☻ 原理:驱动电缆法是一种等电位屏蔽法。使用电缆屏蔽 层电位跟踪与电缆相连的传感器电容极板电位,使两电 位的幅值和相位均相同,从而消除电缆分布电容的影响。
11
介质变化型电容传感器
☻ 原理:利用极板间介质的介电常数变化将被测量转换成电
容变化的传感器称为介质变化型电容传感器。 以电介质插
入式为例, C C1 C2
0a
[ r1(
L
x
)
r2x
]
x
L
☻
S dC
应用特性: dx
0a
(
r2
r1
)
① 变介质型电容传感器可用来测量电介质的液位或某些材 料的温度、湿度和厚度等。
② 介质变化型电容传感器常用于非导电液体液位的测量, 其灵敏度与介电常数的差值(ε2-ε1)的值成正比,(ε2-ε1)值 越大灵敏度越高。
2020/6/30
12
应用中存在的问题和改进措施
(1) 等效电路(Equivalent circuit)
☎ 考虑电容传感器在高温、高
湿及高频激励的条件下工作,
而不可忽视其附加损耗和电 效应影响时,其等效电路如
C—传感器电容;RP—低频损耗并联电 阻; RS—串联损耗电阻;L—电容器及
图。
引线电感;CP—寄生电容
☎ 在实际应用中高频激励时,每当改变激励频率或者更换 传输线缆时,会使传感器有效电阻和有效灵敏度都发生 变化,因此必须对测量系统重新进行标定。
2020/6/30
13
应用中存在的问题和改进措施
磁电感应式传感器工作原理
图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。
磁电式传感器的工作原理
一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。
磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。
本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。
二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。
根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。
这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。
根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。
2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。
磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。
磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。
根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。
3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。
磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。
常见的磁电材料包括铁电材料和磁电材料。
电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。
封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。
相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。
4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。
当存在磁场时,磁电材料会产生相应的电场变化。
根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。
电磁传感器
如下关系:
e W d dt
(1-2)
根据以上原理,人们设计出两种磁电式传感器结构:变磁 通式和恒磁通式。变磁通式又称为磁阻式, 图1-1是变磁通式磁
电传感器,用来测量旋转物体的角速度。
4
4
3
2
1
3
1 A 6
N
S A 7 5 6 5
(a )
(b )
图1-1(a)为开磁路变磁通式:线圈、磁铁静止不动,测量齿
B o lW R Rf
(1-5)
10
而传感器的输出电压和电压灵敏度分别为
U o IoR f B o lWvR R Rf
f f
(1-6)
SU
Uo v
B o lWR R Rf
(1-7)
当传感器的工作温度发生变化或受到外界磁场干扰、受到机械
振动或冲击时,其灵敏度将发生变化,从而产生测量误差,其 相对误差为
轮安装在被测旋转体上,随被测体一起转动。每转动一个齿,
齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中
产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的 乘积。这种传感器结构简单,但输出信号较小,且因高速轴上 加装齿轮较危险而不宜测量高转速的场合。
5
图1-1(b)为闭磁路变磁通式传感器,它由装在转轴上的内齿 轮和外齿轮、永久磁铁和感应线圈组成,内外齿轮齿数相同。 当转轴连接到被测转轴上时,外齿轮不动,内齿轮随被测轴而 转动,内、外齿轮的相对转动使气隙磁阻产生周期性变化,从
v——相对运动速度。
9
1.1.2 磁电感应式传感器基本特性 当测量电路接入磁电传感器电路时,如图1-3所示,磁电传 感器的输出电流Io为
简述磁电式传感器的工作原理
简述磁电式传感器的工作原理磁电式传感器是一种将磁场信息转化为电信号的传感器,广泛应用在仪器仪表、自动控制、计算机信息处理、航空航天等领域。
其主要工作原理是基于磁电效应和霍尔效应。
磁电效应是指当磁性材料受到外界磁场的作用时,其中的自由电子将受到力的作用,从而在材料内部形成电势差。
这个电势差可以用来测量外部磁场的大小和方向。
磁电效应可以用来将机械运动转换为电信号,从而实现物理量的测量和控制。
霍尔效应是指电流通过横跨磁场的导体时,将在导体的两侧出现电势差。
这个现象的原理是基于洛伦兹力,即受到磁场作用的电荷将受到力的作用而被分离。
霍尔效应与磁电效应相似,也是将磁场信息转换为电信号的一种机制。
磁电式传感器通常通过霍尔效应测量磁场的强度和方向。
磁电式传感器一般由磁性材料、霍尔元件和信号处理电路组成。
在测量时,磁性材料将接收到外界的磁场,从而在其内部产生电势差。
电势差随后被传递给霍尔元件,经过元件内部的放大、滤波等信号处理,最终转换为可用的电信号。
这个电信号的大小和方向分别对应着外界磁场的强度和方向。
磁电式传感器有多种类型,包括线性磁电效应传感器、非线性磁电效应传感器、霍尔电流传感器、霍尔电压传感器等。
线性磁电效应传感器是一种用于测量弱磁场的传感器,可用于检测磁场的方向、大小和分布情况。
而非线性磁电效应传感器则适用于测量强磁场,如磁体在加热过程中的磁场分布。
霍尔电流传感器和霍尔电压传感器是基于霍尔效应进行测量的传感器,分别适用于测量电流和电压。
霍尔电流传感器将电流通过磁场,并测量电势差来计算电流大小,而霍尔电压传感器则通过测量霍尔元件两侧的电势差来计算电压大小。
这些传感器广泛应用在电力系统中,用于测量电流和电压,从而保障设备的安全运行。
磁电式传感器是一种重要的测量和控制元件,广泛应用于工业控制、科学研究、医疗设备等领域。
其工作原理基于磁电效应和霍尔效应,能够将磁场信息转化为电信号,实现对物理量的测量和控制。
磁电式传感器的优点在于具有高度的灵敏度和精度,且不会对被测物体产生影响。
磁电式传感器
Hale Waihona Puke 电式传感器磁电式传感器的优点和局限性
磁电式传感器具有以下优点:结构简单、可 靠性高、寿命长、测量准确度高、抗干扰能 力强等。同时,磁电式传感器也存在一些局 限性,例如对温度和湿度的变化比较敏感, 容易受到外界磁场的影响,以及输出信号较 小需要放大处理等。因此,在实际应用中需 要根据具体需求选择合适的传感器类型和规 格
磁电式传感器
磁电式传感器的未来发展趋势
随着科技的不断进步和应用需求的不断提高,磁电式传感器的发展趋势如下
高精度与高可靠性:为了满足各种高精度和高可靠性应用的需求,需要不断提 高磁电式传感器的测量准确度和稳定性。可以采用新型材料和技术手段优化传 感器的结构和工艺,提高其性能指标。同时加强传感器的可靠性设计,提高其 稳定性和使用寿命
2
由于其结构简单、测量准确、可靠 性高、寿命长等优点,磁电式传感 器在工业自动化、航空航天、能源、
交通等领域得到了广泛应用
磁电式传感器
磁电式传感器的原理
磁电式传感器的工作原理基于法 拉第电磁感应定律,当导体线圈 在磁场中作切割磁感线运动时, 线圈中就会产生感应电动势。感 应电动势的大小与导体线圈的匝 数、磁感应强度B、线圈面积和 切割速度成正比。因此,通过测 量感应电动势的大小,就可以确 定被测量的变化
由于磁电式传感器具有测量准确、可靠性高、寿命长等优点,因此广泛应用于以下领域
电力工业:用于测量发电机、变压器的磁场电流和位移,以及电缆的局部放电 等 航空航天:用于测量飞机的飞行速度、加速度、陀螺仪等 能源:用于风力发电机的转速和功率测量,以及水轮机的流量和压力测量等
磁电式传感器 1 交通:用于测量汽车和火车的速度、加速度、里程表等 2 机器人:用于机器人的定位、导航和控制等 3 环境监测:用于测量空气质量、水质等环境参数 4 自动化生产线:用于测量生产线上物体的位置、速度等参数,实现自动化控制 5 医疗器械:用于测量心脏、呼吸等生理参数 6 安全监控:用于监控摄像头、红外探测器等安全设备中的磁场变化,实现报警功能 7 科学实验:用于磁场、电流等物理量的测量和实验研究
磁电式传感器
6.1.4 磁电感应式传感器的应用
4.单灯型道口报警装置 列车接近道口时,列车车轮对掠过道口两
侧磁电式传感器(也称探头),传感器感应信 号经微处理器处理后通过无线传输开启道口两 侧警示灯及语音系统,自动声光报警(小心火 车,注意安全),提醒过往车辆及行人。
6.1 磁电感应式传感器
机电工程系
引言
1820年,奥斯特发现了电流的磁效应,由 于笃信自然力的统一,伟大的物理学家法拉第 提出了“磁能否产生电”的想法,经过无数次 试验,终于于1831年首次发现了电磁感应现象。
一百多年来,电磁感应现象的应用层出不 穷,比如:发电机、变压器、话筒等。在传感 器中,也有一类是应用了电磁感应原理的传感 器——磁电感应式传感器。
磁电式传感器具有较大的输出功率,故配用电 路较简单,并且性能稳定,工作带宽一般为10~ 1000Hz,所以得到普遍应用。
6.1.1 基本原理
电磁感应定律 无论任何原因使通过闭合回路面积的磁通
量发生变化,都会建立起感应电动势,产生的 感应电动势正比于磁通量对时间变化率的负值。
根据电磁感应定律,当N匝线圈在恒定磁场 内运动时,设穿过线圈的磁通为Φ,则线圈内 的感应电动势E与磁通变化率dΦ/dt有如下关
6.1.3 测量电路
磁电式传感器直接输出感应电动势,且通 常具有较高的灵敏度,所以一般不需要高增益 放大器。但磁电式传感器是速度传感器,若要 获取加速度或位移信号,则需配用微分或积分 电路。测量电路的框图如下:
6.1.4 磁电感应式传感器的应用
1. 动圈式振动速度传感器 传感器测量的参数是振动速度, 若在测量电
速度及加速度检测—磁电式速度传感器
自动检测技术
2)温度误差 当温度变化时,式(5-7)中右边三项都不为零,
对铜线而言每摄氏度变
化量为dL/L≈0.157×10-4,
dR/R≈0.43×10-2,dB/B每摄氏度的变化量取决于永久磁铁的
磁性材料。对铝镍钴永久磁合金,dB/B≈-0.02×10-2,这样由
式(5-7)可得近似值:
这一数值是很可观的,所以需要进行温度补偿。补偿通常采 用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁性材 料做成。它在正常工作温度下已将空气隙磁通分路掉一小部分。
自动检测技术
磁电式传感器的工作原理是基于法拉第电磁感应 原理。当匝数为N的线圈在磁场中运动而切割磁力 线,或通过闭合线圈的磁通量ф发生变化时,线 圈中将产生感应电势e
e N d
dt
磁电式传感器的分类
按工作原理不同,磁电感应式传感器可分为恒定磁通式 和变磁通式,即动圈式传感器和磁阻式传感器。
变磁通 式
三、 磁电感应式传感器测量电路
自动检测技术
图5-4 磁电感应式传感器测量电路方框图 磁电式传感器直接输出感应电动势,且传感器通常具有
较高的灵敏度,不需要高增益放大器。但磁电式传感器是速 度传感器,若要获取被测位移或加速度信号,则需要配用积 分或微分电路。图5-4为一般测量电路方框图。
自动检测技术Leabharlann 产生磁场的永久磁铁和线圈都固定
不动,通过磁通Φ的变化产生感应 电动势e。常用于角速度的测量。
恒磁通 式
工作气隙中的磁通保持不变,线圈 相对永久磁铁运动,并切割磁力线 而产生感应电势。
自动检测技术
动圈式磁电感应式传感器可以分为线速度型 和角速度型
自动检测技术
磁电式转速传感器根据磁路的不同,分成开磁路 式和闭磁路式两种。
磁电式传感器
洛伦兹力FB为
FB evB
v —半导体电子运动的速度;
e —电子的电荷量。
霍尔电场产生的电场力FH为
FH
eE H
eU H w
电流密度 j n,env 是单位体积中的载流子数。则流经 载流体的电流
I jwd nevwd
将电子速度 v 代I 入式(7-20), 则霍IB ned
由上可见:当传感器的结构确定后,B.S、W、 均l为定值,
因此,感应电势e与相对速度 (或 v)成正比。
根据上述基本原理,磁电式传感器可分为两种基本 类型 : 变磁通式;恒定磁通式。
1. 变磁通式
永久磁铁与线圈均不动, 感应电势是由变化的磁通产生的。 如图7-1所示的转速传感器。
●结构特点:
永久磁铁、线圈和外壳均固定不 动,齿轮安装在被测旋转体轴上。当 齿轮转动时,齿轮与软铁磁轭之间的 气隙距离随之变化,从而导致气隙磁 阻和穿过气隙的主磁通发生变化。
一、工作原理:
根据电磁感应定律, 线圈两端的感应电势e正比于 匝链线圈的磁通的变化率, 即
e W d
dt
Φ—匝链线圈的磁通;W—线圈匝数。
★若线圈在恒定磁场中作直线运动并切割磁力线 时, 则线圈两端产生的感应电势e为
e WBl dx sin WBlvsin
dt
B—磁场的磁感应强度;x—线圈与磁场相对运动的位移; v—线圈与磁场相对 运动的速度;θ—线圈运动方向与磁场方向之间的夹角; W—线圈的有效匝 数; l—每匝线圈的平均长度。
霍尔转速表的其他安装方法 霍尔元件
磁铁
只要黑色金属旋转体的表面存在缺口或突 起, 就可产生磁场强度的脉动, 从而引起霍 尔电势的变化, 产生转速信号。
霍尔式无触点汽车电子点火装置
磁电式传感器解析,磁电式传感器的原理结构及其应用
磁电式传感器解析,磁电式传感器的原理结构及其应用
磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它能把被测对象的机械能转换成易于测量的电信号,是一种无源传感器。
磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定。
磁电式传感器的原理结构磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;
利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
根据电磁感应定律,当W匝线圈在均恒磁场内运动时,设穿过线圈的磁通为,则线圈内的感应电势e与磁通变化率d/dt 有如下关系:
根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。
下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构
(a)旋转型(变磁));(b)平移型(变气隙)
其中永久磁铁1(俗称磁钢)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
变磁式结构
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动线圈切割磁力线而产生。
这类结构有两种,如下图所示。
图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。
气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动时,线圈中产生的感应电势e为。
tyut传感器与射频识别复习题(没答案)
第一章传感器是技术和的重要部件。
传感器测试对象分为:与传感器是获取中信息的主要途径与手段。
传感器可狭义的定义为: “将外界的变换为的一类元件。
”传感器的发展:1、什么是传感器?按照国标定义,“传感器”应该如何说明含义。
2、传感器由哪几部分组成。
试述它们的作用和相互关系。
3、传感器的图形符号如何表示?它们各部分代表什么含义?4、空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?第二章1.今有0.5级的0℃~300 ℃和1.0级的0 ℃~100 ℃两个温度计,要测80 ℃的温度,试问采用哪一个温度计好?2.对某一重物进行了十次等精度测量,测值为20.62 20.82 20.78 20.82 20.7020.78 20.84 20.78 20.85 20.85 (单位:g)求:(1)测量值的算术平均值(2)测量值的标准差3)测量结果的表达3.有一组等精度无系统误差的独立测量列,16个测量值分别为:39.44,39.27,39.94,39.44,38.91,39.69,39.48,40.56,39.78,39.35,39.86,39.71,39.46,40.12,39.39,39.76。
试判断粗大误差4.某超声波测距传感器装置,检查范围为0~500m,在整个测量范围内,与理想线性输出的最大误差为3m,其线性度为多少?5.测得某检查装置的一组输入输出数据如下:x123456y 2.20 4.00 5.987.910.1012.05求: (1)端基线性度(2)最小二乘线性度6玻璃水银温度计通过玻璃温包将热量传递给水银,可用一阶微分方程式来表示。
现已知某玻璃水银温度计特性的微分方程是,y代表水银柱高(m),x代表输入温度(℃)。
求该温度计的时间常数及静态灵敏度7. 用某一阶环节的传感器测量100Hz的正弦信号,如要求幅值误差限制在以内,时间常数应取多少?如果用该传感器测量50Hz的正弦信号,其幅值误差和相位误差各为多少?1、误差按表示方法划分可分为()和(),按误差出现的规律划分可分为(),()和(),按被测量随时间变化的速度划分可分为()和(),按使用条件划分可分为()和()。
磁电式传感器原理
磁电式传感器原理
磁电式传感器是一种常用的物理量测量装置,它利用磁电效应实现对磁场的测量。
磁电效应是指当磁场作用于特定的材料时,会在材料中产生电势差或电流。
磁电式传感器的工作原理可以分为两个步骤:磁场的感应和电信号的转换。
首先,当磁场作用于磁电式传感器中的磁敏材料时,磁敏材料内部的自由电子会受到力的作用,从而形成一个电势差或电流。
这是由于磁场会改变电子的运动轨迹,导致电荷在材料中的分布发生变化。
这个电势差或电流的大小与磁场的强度成正比。
然后,磁电式传感器会将产生的电势差或电流信号转换成可用的测量信号。
这通常通过将电势差转换成电压信号或通过电流信号经过放大和滤波后得到。
这样的测量信号可以用来表示磁场的强度或与其他物理量的关系。
磁电式传感器有许多应用领域,包括磁场测量、运动传感、接近开关等。
它们通常具有灵敏度高、响应速度快、稳定性好等特点,可以实现对磁场的准确测量。
同时,磁电式传感器还可以通过改变磁敏材料的性质或结构,实现对不同范围和分辨率的测量需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8 章 磁电式传感器
4、霍尔电势温度系数:在一定磁感应强度和激励电流 下,温度每变化1℃时,霍尔电势变化的百分率称为霍 尔电势温度系数。
5、内阻温度系数:霍尔元件在无磁场及工作温度范围 内,温度每变化1℃时,输入电阻与输出电阻变化的百 分率。
第8 章 磁电式传感器
第八章 磁电式传感器
第一节 磁电感应式传感器 第二节 霍尔传感器 第三节 磁敏传感器
第8 章 磁电式传感器
第一节 磁电感应式传感器
一、 磁电感应式传感器工作原理
导体在稳恒均匀磁场中运动 e d Bl dx Blv
dt
dt
式中: B——稳恒均匀磁场的磁感应强度; l—— v——导体相对磁场的运动速度。
RH
1 pe
IB U H RH d
霍尔系数由半导体材料性质决定,且决定霍尔电势的强弱。
霍尔元件灵敏度(KH):单位磁感应强度和单位控制 电流作用时,所能输出的霍尔电势的大小。
设 KH=RH / d
UH= KH I B
第8 章 磁电式传感器
讨论:为什么只能用半导体材料作霍尔元件。
N型材料电阻率 1 ne
P型材料电阻率
1
pe
UH
IB d
霍尔常数等于霍尔片材料的电阻率与电子迁移率μ 的乘积。 若要霍尔效应强,则希望有较大的霍尔系数 RH,因此要求霍尔片材料有较大的电阻率和载流子迁 移率。 一般金属材料载流子迁移率很高,但电阻率很 小;而绝缘材料电阻率极高,但载流子迁移率极低, 故只有半导体材料才适于制造霍尔片。
8 76 5 4 3
3
1、芯轴
2、外壳
2
3、弹簧片 4、铝支架
5、永久磁铁
6、线圈
7、阻尼环
1 8、引线
第8 章 磁电式传感器
第二节 霍尔传感器
一、霍尔效应和霍尔元件的工作原理
1、霍尔效应
在半导体薄片中通以电流I,在与薄片垂直方向加磁 场B,则在半导体薄片的另外两端,产生一个大小与控制 电流I和B乘积成正比的电动势,这种现象称为霍尔效应。
第8 章 磁电式传感器
弹簧
簧
v 极掌 线圈
v 极掌 线圈
磁轭 磁轭
补 偿 线 圈补 偿 线 圈
N
N
S
S
v
v
N
N
壳体
壳体
线 圈线 圈
永 久 永磁 久铁
S
S
弹 簧弹 簧
(a)
恒定磁通动圈(a)式磁电传感器
(b)
恒定磁通动铁(b式) 磁电传感器
第8 章 磁电式传感器
二、 磁电感应式传感器基本特性
Io 传
第8 章 磁电式传感器
2、霍尔元件的工作原理
FL eB
e U H eB
b
FE
eEH
eUH b
U H bB
I dQ bdn e
dt
UH
IB ned
UH
IB ped
第8 章 磁电式传感器
3、霍尔系数及灵敏度
N型霍尔系数
RH
1 ne
P型霍尔系数
第8 章 磁电式传感器
常 用 国 产 霍 尔 元 件 的 技 术 参 数
第8 章 磁电式传感器
三、霍尔元件测量电路和输出电路
1、基本测量电路
IH
I
B
RL
R E
图中控制电流I由电源E
供给,R为调节电阻,保
证器件内所需控制电
流I。霍尔输出端接负
载 UH 或
RL,RL可是一般电阻 放大器的输入电阻、
或表头内阻等。磁场B
BolWR f R Rf
相对误差为
dSI dB dl dR
SI B l R
第8 章 磁电式传感器
三、磁电感应式传感器的测量电路
微分电路
磁电式 传感器
量程选择
前置放大 积分电路
SW
显示 主放大器 或
记录
第8 章 磁电式传感器
四、磁电感应式传感器的应用 动圈式振动速度传感器
第8 章 磁电式传感器
7、寄生直流电势 :在外加磁场为零、霍尔元件用交 流激励时,霍尔电极输出除了交流不平衡电势外,还 有一直流电势,称为寄生直流电势。
其产生的原因有: ① 激励电极与霍尔电极接触不良, 形成非欧姆接 触, 造成整流效果; ② 两个霍尔电极大小不对称,则两个电极点的热 容不同, 散热状态不同而形成极间温差电势。 寄生直流电势一般在1mV以下,它是影响霍尔片 温漂的原因之一。
第8 章 磁电式传感器
霍尔器件符号
C A
D
B
C
C
A
BA
B
H
D
D
第8 章 磁电式传感器
二、霍尔元件的主要技术参数
1、额定功耗P0: 霍尔元件在环境温度T=250C时,允许 通过霍尔元件的电流和电压的乘积。 2、 输入电阻和输出电阻
Ri:激励电极间的电阻值。 Ro:霍尔元件电极间的电阻。 3、不等位电势U0:在额定控制电流I下,不加磁场时, 霍尔电极间的空载霍尔电势。
垂直通过霍尔器件,在
磁场与控制电流作用
下,由负载上获得电
压。
实际使用时,器件输入信号可以是I或B,或者IB,而输出 可以正比于I或B, 或者正比于其乘积IB。
第8 章 磁电式传感器
2、霍尔电势输出电路
(1) 开关应用
+15V
R1
H
+
R2
-
R3 R4
-15V
第8 章 磁电式传感器
1 VCC 稳压
霍耳元件
6、 额定激励电流和最大允许激励电流:当霍尔元件 自身温升10℃时所流过的激励电流称为额定激励电流。 以元件允许最大温升为限制所对应的激励电流称为最 大允许激励电流。因霍尔电势随激励电流增加而线性 增加,所以使用中希望选用尽可能大的激励电流,因 而需要知道元件的最大允许激励电流。改善霍尔元件 的散热条件,可以使激励电流增加。
E
Io
E R Rf
BolNv R Rf
感 器R
Rf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
传感器的电流灵敏度为
SI
Io v
BolN R Rf
第8 章 磁电式传感器
而传感器的输出电压和电压灵敏度分别为
Uo
IoRf
BolWv Rf R Rf
SU
Uo v
N匝线圈处于变化的磁场中 e N d
dt
两种磁电式传感器结构:变磁通式和恒磁通式。
第8 章 磁电式传感器
NS
开磁路变磁通式:这种传感器结构简单,但输出信号 较小,且因高速轴上加装齿轮较危险而不宜测量高转 速的场合。
第8 章 磁电式传感器
A A
闭磁路变磁通式:感应电势的频率与被测转速成正比。
放大
整形
输出 3
H
+
BT
-
地
2
霍尔开关集成传感器内部结构框图