同济六版高数课件(青岛大学)8.4

合集下载

同济版高等数学第六版课件第八章第七节平面及其方程

同济版高等数学第六版课件第八章第七节平面及其方程

高等数学的学习建议
重视基础知识: 掌握基本概念、 定理和公式, 为后续学习打 下坚实基础。
多做练习:通 过大量练习, 加深对知识点 的理解和记忆纳总结: 及时归纳所学 内容,找出重 点和难点,有 针对性地进行
复习。
培养数学思维: 高等数学不仅 仅是计算和公 式,更重要的 是培养数学思 维和解决问题
平面的判定条件
三个不共线的点 确定一个平面
两条相交直线确 定一个平面
一条直线与这条 直线外一点确定 一个平面
两平面相交,交 线是两平面的公 共线
平面的性质定理
平面内任意两点确定一条直线
平面内任意三点确定一个平面
平面内任意四点确定一个平面
平面内任意五点确定一个平面
04
平面与直线的位置 关系
平行关系
几何法求解平面方程
定义:通过几何 图形和空间位置 关系来求解平面 方程的方法
适用范围:适用 于平面图形比较 简单的情况
步骤:先确定平 面上的两个不共 线的点,然后通 过这两个点确定 平面的法向量, 最后写出平面方 程
注意事项:需要 熟练掌握空间几 何和向量知识
参数法求解平面方程
参数方程的建立 参数的消元过程 参数的求解方法 参数法求解平面方程的步骤
平面方程的 基本形式
多个平面的 交面求解
两个平面的 交线求解
实际应用中 的交面求解
07
总结与展望
本节内容的总结回顾
平面方程的建立与求解方法 平面方程的应用举例 平面方程的分类与性质 平面方程与其他数学概念的联系
下节内容的预习准备
回顾本节内容: 回顾平面及其方 程的相关概念和 知识点,加深对 平面几何的理解。
的方程。
点法:通过已 知平面上的一 个点和该平面 的法向量,确 定一个平面的

同济版高等数学第六版课件第八章第五节曲面及其方程

同济版高等数学第六版课件第八章第五节曲面及其方程

定义
三、柱面
观察柱面的形成过程:
平行于定直线并沿定曲线 移动的直线所形成的曲面称为柱面.
这条定曲线 叫柱面的准线动直线 L 叫柱面的母线.
定义
三、柱面
观察柱面的形成过程:
平行于定直线并沿定曲线 移动的直线所形成的曲面称为柱面.
这条定曲线 叫柱面的准线动直线 L 叫柱面的母线.
这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义
以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.
这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义
以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.
这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义
以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.
定义
三、柱面
观察柱面的形成过程:
平行于定直线并沿定曲线 移动的直线所形成的曲面称为柱面.
这条定曲线 叫柱面的准线动直线 L 叫柱面的母线.
定义
三、柱面
观察柱面的形成过程:
平行于定直线并沿定曲线 移动的直线所形成的曲面称为柱面.
这条定曲线 叫柱面的准线动直线 L 叫柱面的母线.
水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨迹.
曲面的实例:
一、曲面方程的概念
曲面方程的定义:
以下给出几例常见的曲面.

根据题意有
所求方程为
特殊地:球心在原点时方程为

根据题意有
所求方程为
根据题意有

化简得所求方程
例4 方程 的图形是怎的?
这条定直线叫旋转 曲面的轴.

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

同济版高等数学第六版课件第八章第五节曲面及其方程

同济版高等数学第六版课件第八章第五节曲面及其方程
制造领域,如汽车、航空和船舶制造等。
直纹曲面在建筑设计中的应用
总结词
设计曲面建筑外观
VS
详细描述
直纹曲面方程在建筑设计中用于描述复杂 的曲面结构。通过直纹曲面,建筑师可以 创造出独特且富有艺术感的建筑外观。直 纹曲面在建筑设计中的广泛应用,不仅提 高了建筑的审美价值,也为建筑师提供了 更多的创作空间。
方程
锥面的方程通常表示为 x^2 + y^2 = r^2(z),其中 (x, y) 是平面上的点,r 是锥顶到平面的距离,z 是锥面的参数。
性质
锥面是一个非对称的曲面,在锥顶处曲率为无穷大。
旋转曲面
定义
旋转曲面是由一条平面曲线绕 一条直线旋转一周所形成的曲
面。
方程
旋转曲面的方程通常表示为 x = x(t), y = y(t), z = z(t),其 中 t 是参数,x(t), y(t), z(t) 是
非标准曲面
定义
01
非标准曲面是指不符合常规形式的曲面,如参数曲面、隐式曲
面等。
性质
02
非标准曲面具有一些特殊的几何性质,如曲率、法向量等,这
些性质有助于理解曲面的几何结构。
应用
03
非标准曲面在计算机图形学、计算几何等领域有广泛的应用,
如动画设计、虚拟现实、游戏开发等。
曲面的微分性质
定义
曲面的微分性质是指曲面在局部的几何性质,如切线、法线、曲率 等。
给定的平面曲线。
性质
旋转曲面是一个具有旋转对称 性的曲面,其曲率随旋转角度
而变化。
直纹曲面
定义
直纹曲面是由一条直线按一定方式移动所形成的曲面 。
方程
直纹曲面的方程通常表示为 z = f(x, y),其中 f(x, y) 是给定的函数,(x, y) 是平面上的点。

高等数学第六版上下册全同济大学出版社

高等数学第六版上下册全同济大学出版社
直积 A B (x , y) x A, y B
B ABAc
y
特例: R R 记 R2
为平面上的全体点集
高等数学第六版上下册全同济大学 出版社
B AB
OA x
目录 上页 下页 返回 结束
二、 映射
引例1.
某校学生的集合
学号的集合
按一定规则查号
某教室座位
某班学生的集合
的集合
按一定规则入座
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
引例2.
引例3.
(点集) (点集)
向 y 轴投影
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
与之对应, 则称
f 为从 X 到 Y 的映射, 记作 f : X Y.
引例2
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
高等数学第六版上下册全同济大学 出版社
(满射)
目录 上页 下页 返回 结束
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
y 1 x
值域 f (D) [0, ) y 2 x
f
(Leabharlann 1 2)21 2
2
O
f
(
1 t
)
11 , t
2, t
0t 1 t 1

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)
跳跃间断点
左右极限都存在
第二类间断点
无穷间断点
振荡间断点
左右极限至少有一个不存在
在点
间断的类型
在点
连续的等价形式
思考与练习
1. 讨论函数
x = 2 是第二类无穷间断点 .
间断点的类型.
2. 设

提示:
3. P65 题 3 , *8

连续函数.
答案: x = 1 是第一类可去间断点 ,
P65 题*8 提示:
显然
正根 .
二、 连续与间断
一、 函数
三、 极限
习题课
函数与极限
第一章
一、 函数
1. 概念
定义:
定义域
值域
图形:
( 一般为曲线 )

函数为特殊的映射:
其中
2. 特性
有界性 ,
单调性 ,
奇偶性 ,
周期性
3. 反函数
设函数
为单射,
反函数为其逆映射
4. 复合函数
给定函数链
则复合函数为
作业 P65 4 ; 5
备用题 确定函数
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
一、连续函数的运算法则
第九节
二、初等函数的连续性
连续函数的运算与
初等函数的连续性
第一章
定理2. 连续单调递增函数的反函数也连续单调递增.
在其定义域内连续
一、连续函数的运算法则
, 使



内连续,
存在, 则
必在
内有界.
上连续 , 且恒为正 ,
例5. 设

同济高等数学第六版上册第一章ppt.

同济高等数学第六版上册第一章ppt.

第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

最新同济版高等数学第六版课件第八章第七节平面及其方程精品课件

最新同济版高等数学第六版课件第八章第七节平面及其方程精品课件
同济版高等数学第六版课件第八 章第七节平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一平
面,这向量就叫做该平面的法
M0
线向量.
法线向量的特征:
o
① 平面的法向量不唯一;
x
②平面的法向量垂直于平面内的任一向量.
n
M y
• C z + D = 0 表示 平行于 xoy 面 的平面; • A x + D =0 表示 平行于 yoz 面 的平面; • B y + D =0 表示 平行于 zox 面 的平面.
cC D 0,
A D, B D,
a
b
C D. c
将 A D, B D, C D,
a
b
c
代入所设方程得 xyz1 平面的截距式方程 a bc
x轴上截距 y 轴上截距 z轴上截距
例 5 求平行于平面6x y 6z 5 0而与三个坐标面所围 成的四面体体积为一个单位的平面方程. z
例 7 设 P0( x0 , y0 , z0 )是平面 Ax By Cz D 0外一点,求
P0到平面的距离.
n
解 P 1 (x 1 ,y 1 ,z 1 )
P0
dPrn P j1P0
P1P0 n n
P1
N
A ( x 0 x 1 ) B (y 0 y 1 ) C ( z 0 z 1 ) A 2 B 2 C 2
例 3 设平面过原点及点(6,3,2),且与平面4x y 2z 8垂
直,求此平面方程.
解 设平面为 A B x C y D z 0 , 由平面过原点知 D0, 由平面过点(6,3,2)知 6 A 3 B 2 C 0 n { 4 , 1 ,2 } ,4 A B 2 C 0

同济六版高数课件青岛大学

同济六版高数课件青岛大学
内容特点
同济六版高数教材注重数学基础知识的传授和数学思维的培养,涵盖了高等数学的主要内容,包括极限、导数、微积 分、线性代数、微分方程等。
影响与评价
同济六版高数教材是国内高校应用较为广泛的高等数学教材之一,被广大师生认可和推荐,对于提高学 生的数学素养和思维能力具有积极的作用。
青岛大学高数课程概述
03
第二章:导数与微分
导数定义与性质
01
导数的定义
导数描述了函数在某一点处的切线的 斜率,是函数局部变化率的一种度量 。
02
导数的性质
导数具有一些重要的性质,如线性性 质、乘积法则、商的法则、链式法则 等。
03
导数的几何意义
导数在几何上表示函数图像在某一点 处的切线的斜率,即函数值增量与自 变量增量之比在增量趋于0时的极限 。
探讨多元函数在某点附近的变化率,为偏导数和全微 分的研究奠定基础。
偏导数与全微分
偏导数
描述多元函数在某一变量上的变化率,通过偏 导数可研究函数局部性质。
全微分
全面研究多元函数在各变量上的变化,通过全 微分可近似计算函数值的变化。
链式法则
探讨复合函数偏导数的计算方法,简化复杂函数的偏导数计算。
二重积分与三重积分
微分的几何意义
微分在几何上表示函数图像在某一点处的切线的纵坐标增量。
微分的应用
微分在近似计算、误差估计、求极值等方面有重要应用。
04
第三章:不定积分
不定积分定义与性质
不定积分定义
不定积分是微积分中的一个重要概念, 它表示一个函数的原函数或反导数。 给定一个函数f(x),其不定积分记作 ∫f(x)dx,表示f(x)的一个原函数。
物理应用
定积分在物理中有广泛的应用,例如在计算匀加 速直线运动的路程、变力做功等问题中都会用到 定积分的计算方法。

同济版高等数学第六版课件第八章第五节曲面及其方程

同济版高等数学第六版课件第八章第五节曲面及其方程

曲面的应用领域
物理学:研究曲面形状对 物理现象的影响
计算机图形学:用于创建 三维模型和动画
地质学:用于描述地球表 面的形态
生物学:用于研究生物体 的表面结构
工程学:用于设计各种曲 面形状的物体,如汽车车 身、飞机机翼等
数学:用于研究曲面的性 质和结构,以及解决相关 的数学问题
06
曲面方程的解题技 巧与注意事项
同济版高等数学第 六版课件第八章第 五节曲面及其方程
单击此处添加副标题
汇报人:PPT
目录
添加目录项标题 曲面方程的求解方法 曲面方程的拓展知识
曲面及其方程的基本概念
曲面方程的应用实例 曲面方程的解题技巧与注 意事项
01
添加章节标题
02
曲面及其方程的基 本概念
曲面的定义和分类
曲面的定义:曲面是连续但不光滑的二维图形,由一条或多条曲线组成
04
曲面方程的应用实 例
球面方程的应用
定义:球面方程是描述球面形状的数学方程 应用实例1:计算球面上的点到球心的距离 应用实例2:确定球面上点的坐标 应用实例3:绘制球面图形
柱面方程的应用
定义:柱面方程是 平面与空间直线或 平面相交形成的曲 面
应用实例1:在计 算机图形学中,柱 面方程可以用来描 述三维图形的旋转 和扭曲
总结:通过对解题思路的总结,可以更好地掌握曲面方程的解题技巧 和注意事项,提高解题效率。
感谢观看
汇报人:PPT
解题技巧
熟练掌握曲面方 程的基本形式和 性质
灵活运用代数运 算技巧,简化方 程
掌握常见的曲面 方程的解题方法
注意方程的适用 范围和限制条件
注意事项
理解曲面方程的 基本概念和性质

同济六版高等数学第一章第五节课件PPT课件

同济六版高等数学第一章第五节课件PPT课件
x x
解: sixn1
lim 1 0 x x
利用定理 2 可知
limsinx 0. x x
说明 : y = 0 是
y sin x 的渐近线 . x
y
y sin x x
o
x
第4页/共17页
❖极限的四则运算法则 •定理3
如果 lim f(x)A lim g(x)B 那么
(1)lim[f(x)g(x)]limf(x)limg(x)AB >>> (2)lim f(x)g(x)lim f(x)lim g(x)AB
x x 0 u u 0
例例 9 9 l x 求 3 x x 2 3 9 i m 解 解 y x 2 9 y 是 u 由 u 与 x 2 9 复 合 而 成 的
x 3 x 3 因 为 l x 2 9 i 6 m 所 以 lx 2 i 9 l m u i 6 m
例例 6 6 求 x l 2 3 x x 3 2 2 x 2 x i 5 1 m

先用x3去除分子及分母 然后取极限
x l 2 3 i x x 3 2 2 x m 2 x 5 1 x l 3 x 2 i x 1 2 2 m 5 x 1 3 0 2 0 x x 3
x x 0 u u 0
•说明
把定理中g(x)u0(xx0)换成g(x)(xx0或x) 而把f(u)A(uu0)换成f(u)A(u)可类似结果
第12页/共17页 下页
❖定理6(复合函数的极限运算法则)
设函数yf[g(x)]是由函数yf(u)与函数ug(x)复合而成 f[g(x)]在点x0的某去心邻域内有定义 若g(x)u0(xx0) f(u)A(uu0) 且l 在f x[ 0g 的( x ) 某i 去l 心邻f ( ] u 域m ) 内i A g (x)u0m 则

同济六版高数第一册第一单元.ppt

同济六版高数第一册第一单元.ppt
定理 映射 f : X Y 可逆 f 是 X 到Y 的一一映射.
上页 下页 返回 结束
三. 函数
1.函数概念 定义 设 A , B 是两个实数集, 则称映射 f :AB 为 一 元自变函量数, 记 为因变量 函数值 f : x y f (x), x A .
A 称为函数 f 的定义域, 记作 D( f ).
则 A C.
上页 下页 返回 结束
2 集合的基本运算
并集
由集合A与集合B的中所有元素构成的集合 称为A与B的并集,记为 A B
AB {x x A或 xB}
An { x n0 N , x An0 }
n1
A A BB
运算律
A A A, A A
B A AB A
上页 下页 返回 结束
我们也称 f 为“一一映射”. 单位映射: x X , f ( x) x, 即 f : x x
称为X上的单位映射, 记为 I或X I.
上页 下页 返回 结束
X
Y
f 满射
X f
Y f(X)
单射
X f
Y f(X)
内射
X
Y
f 单满射
上页 下页 返回 结束
例1 设A表示信管学院所有大一学生的集合, 用一种确定方法 f 给每一个学生分配一 个学号, 将全体学生学号的集合记为B. 这是一个集合 A到集合 B 的映射.
o
U(a, ) { x 0 x a }. 开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
上页 下页 返回 结束
例1、把-2的1/2邻域表示为开区间
解:U (2, 1) 2
(2 1 ,2 1) 22
( 5 , 3) 22

高等数学第六版上下册全同济大学出版社

高等数学第六版上下册全同济大学出版社

k π x k π π 时 , cot x 0
2
2
2
高等数学第六版上下册全同济大学
出版社
目录 上页 下页 返回 结束
4. 初等函数
(1) 基本初等函数
幂函数、指数函数、对数函数、三角函数、反三角函数
(2) 初等函数 由常数及基本初等函数经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
否则称为非初等函数 .
例如 ,
y xx, ,
x0 x0
可表为 y
x2 , 故为初等函数.
又如 , 双曲函数与反双曲函数也是初等函数 .
( 自学, P17 – P20 )
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
非初等函数举例: 符号函数
取整函数 当
y
当x> 0
当x= 0 当x< 0
目录 上页 下页 返回 结束
引例2.
引例3.
(点集) (点集)
向 y 轴投影
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
与之对应, 则称
f 为从 X 到 Y 的映射, 记作 f : X Y.
2
例如, 反正弦主值 定义域
又如, 绝对值函数
值域
1 O 1x
2
定义域
值域
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
例4. 已知函数
y
f
(x)
2 1
x, x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 空间曲线及其方程
一、空间曲线的一般方程
第八章
二、空间曲线的参数方程
三、空间曲线在坐标面上的投影
机动
目录
上页
下页
返回
结束
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
G( x, y, z ) 0 L F ( x, y, z ) 0
S2
S1
例如,方程组
z
2
C
表示圆柱面与平面的交线 C.
机动
目录
上页
下页
返回
结束
三、空间曲线在坐标面上的投影
设空间曲线 C 的一般方程为
消去 z 得投影柱面
则C 在xoy 面上的投影曲线 C´为
z
C
H ( x, y ) 0 z0 y 消去 x 得C 在yoz 面上的投影曲线方程 x C R( y, z ) 0 x0 T ( x, z ) 0 消去y 得C 在zox 面上的投影曲线方程 y0
机动 目录 上页 下页 返回 结束
例如,
x2 y2 z 2 1 C: 2 x ( y 1) 2 ( z 1) 2 1
在xoy 面上的投影曲线方程为
z
C
o x
1 y
x 2 2 y 2 2 y 0 z0
机动
目录
上页
下页
返回
结束
又如,
上半球面 和锥面
x 2 y 2 ax z0
ay x
x 2 z 2 a 2 y 0
机动
( x 0 , z 0)
目录
上页
下页
返回
结束
备用题 求曲线
绕 z 轴旋转的曲面与平面
x y z 1的交线在 xoy 平面的投影曲线方程.
解: 旋转曲面方程为 z x 2 y 2 ,它与所给平面的
y

上升高度 h 2 b , 称为螺距 .
机动 目录 上页 下页 返回 结束
例1. 将下列曲线化为参数方程表示:
解: (1) 根据第一方程引入参数 , 得所求为
(2) 将第二方程变形为
故所求为
机动
目录
上页
下页
返回
结束
例2. 求空间曲线 : 时的旋转曲面方程 . 解: 转过角度 后到点 则
绕 z 轴旋转
点 M1绕 z 轴旋转,
这就是旋转曲面满足的参数方程 .
机动 目录 上页 下页 返回 结束
例如, 直线
绕 z 轴旋转所得旋转曲面方程为
消去 t 和 , 得旋转曲面方程为
机动
目录
上页
下页
返回
结束
又如, xoz 面上的半圆周
绕 z 轴旋转所得旋转曲面 ( 即球面 ) 方程为
说明: 一般曲面的参数方程含两个参数 , 形如
所围的立体在 xoy 面上的投影区域为: 二者交线在
xoy 面上的投影曲线所围之域 . 二者交线
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .
2 2
机动
C
x
目录
o
1
y
上页
下页
返回
结束
内容小结
• 空间曲线
• 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
思考与练习
o
1 y
上页 下页 返回 结束
x
机动 目录
又如,方程组
z
表示上半球面与圆柱面的交线C.
ay x
机动
目录
上页
下页
返回
结束
二、空间曲线的参数方程
将曲线C上的动点坐标x, y, z表示成参数t 的函数:
z
称它为空间曲线的 参数方程.
例如,圆柱螺旋线 的参数方程为
M
令 t , b
v
x
o
z x 2 y 2 交线为 x y z 1 此曲线向 xoy 面的投影柱面方程为
此曲线在 xoy 面上的投影曲线方程为 x y x 2 y 2 1 z 0
机动 目录 上页 下页 返回 结束
P324 题 1,2,7(展示空间图形)
机动
目录
上页
下页
返回
结束
答案: P324 题1
x 1 (1) y2
z 4 x y (2) yx0
2
2
z
z
1
o o
2 y
o x
2y
x
机动
目录
上页
下页
返回
结束
(3)
x z a
2 2
2
x2 y2 a2
z
a
o
a
y
x
机动
目录
上页
下页
返回
结束
P324 题2 (1)
y 5x 1 y x3 y x3
z
y 5x 1
o
y
机动
目录
上页
下页
返回
结束
P324 题2(2)
z
x2 y2 1 4 9 y3
x
思考: 对平面 y b
2
3
y
交线情况如何?
交线情况如何?
机动
目录
上页
下页
返回
结束
P325 题 7
z
z
ay x
相关文档
最新文档