2014-2015学年上海市八年级(上)期末数学模拟试卷(6)

合集下载

上海市各区2014学年第一学期期末考试八年级数学试卷合集

上海市各区2014学年第一学期期末考试八年级数学试卷合集

2013学年第一学期期末考试八年级数学试卷① (满分100分,考试时间90分钟)一、 选择题:(本大题共5题,每题2分,满分10分)1、下列等式一定成立的是( )A =、=、3=± D 、=9 2、下列一元二次方程有两个相等实数根的是( )A .x 2+3=0B .x 2+2x=0C .(x+1)2=0D .(x+3)(x ﹣1)=0 3、下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)4、下列函数中,自变量x 的取值范围是x ≥3的是( )A .31-=x y B.31-=x y C. 3-=x y D. 3-=x y5、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为( )A .45oB .75oC .15oD .前述均可二、填空题:(本大题共15题,每题2分,满分30分)DBFECA6、1-b a (0≠a )的有理化因式可以是____________.7、计算:8214- = .8、已知x=3是方程x 2﹣6x+k=0的一个根,则k= .9、关于x 的一元二次方程x 2﹣2x+2+m 2=0的根的情况是 .10、在实数范围内分解因式x 2+2x-4 .11、已知矩形的长比宽长2米,要使矩形面积为55.25米2,则宽应为多少米?设宽为x 米,可列方程为 .12、正比例函数x y 2-=图象上的两上点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则y 1 和y 2的大小关系是______________. 13、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系及定义域是______________. 14、已知正比例函数y=mx 的图象经过(3,4),则它一定经过______________象限.15、函数y =1x +x 的图象在__________________象限.16如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交 于点E ,则∠ABE=______°.17、若△ABC 的三条边分别为5、12、13,则△ABC 之最大边上的中线长为 .18、A 、B 为线段AB 的两个端点,则满足PA-PB=AB 的动点P 的轨迹是_____________________________.19、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的 三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是 .20、如图,△ABC 中,AB=AC ,∠BAC=56°,∠BAC 的平分线与AB 的 垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为 度.三、(本大题共8题,第21--24题每题6分;第25--27题每题8分.第28题每题12分.满分60分)21、计算:18)21(|322|2+----. 22、解方程:0142=+-x x .23、已知关于x 的一元二次方程0322=+-m x x 没有实数根,求m 的最小整数值.B24、到三角形三条边距离相等的点,叫做此三角形的内心,由此我们引入 如下定义:到三角形的两条边距离相等的点,叫做此三角形的准内心. 举例:如图若AD 平分∠CAB ,则AD 上的点E 为△ABC 的准内心.应用:(1)如图AD 为等边三角形ABC 的高,准内心P 在高AD 上,且 PD=AB 21,则∠度数为_____________度.(2)如图已知直角△ABC 中斜边AB=5,BC=3,准内心P 在BC 边上,求CP 的长.25、前阶段国际金价大幅波动,在黄金价格涨至每克360元时,大批被戏称为“中国大妈”的非专业人士凭满腔热情纷纷入场买进黄金,但十分遗憾的是国际金价从此下跌,在经历了二轮大幅下跌后,日前黄金价格已跌至每克291.60元,大批 “中国大妈”被套,这件事说明光有热情但不专业也是难办成事的;同学们:你们现在14、15岁,正值学习岁月,务必努力学习。

2015年上海市春季高考数学模拟试卷六

2015年上海市春季高考数学模拟试卷六

2015年上海市春季高考模拟试卷六一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.) 1、不等式304xx -≤+的解集是___________. 2、在ABC ∆中,角,,C A B 满足sin :sin :sin 1:2:7A B C =,则最大的角等于________. 3、若复数z 满足()2z i z =-(i 是虚数单位),则=z ____________. 4、已知全集U R =,集合{}{}0,,13,A xx a x RBx x x R =+≥∈=-≤∈,若()[]2,4U C A B =-,则实数a 的取值范围是___________. 5、从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中的概率是__________. 6、设直线1:20l ax y +=的方向向量是1d ,直线()2:140l x a y +++=的法向量是2n ,若1d 与2n 平行,则a =_________.7、若圆锥的侧面积为3π,底面积为π,则该圆锥的体积为__________. 8、若不等式101x x a>-+对任意x R ∈恒成立,则实数a 的取值范围是________.9、若抛物线22y px =的焦点与双曲线222x y -=的右焦点重合,则p =_________.10、设函数()()[)()36log 1,6,3,,6x x x f x x -⎧-+∈+∞⎪=⎨∈-∞⎪⎩的反函数为()1f x -,若119f a -⎛⎫= ⎪⎝⎭,则()4f a +=__________. 11、设()8,a Rx a ∈-的二项展开式中含5x 项的系数为7,则()2l i m nn a a a →∞+++=_________.12、已知定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=有3个不同的实数根123,,x x x ,则222123x x x ++=____________.二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2- 14、已知z 是复数,21,2z i i+=+-则z =( ) A . 1i - B . 2i + C . 12i - D . 3i + 15、不等式11xx <+的解集是( ) A . {}10x x -<< B . {},1x x R x ∈≠-且 C . R D . {}01x x << 16.已知,,i j k 表示共面的三个单位向量, i j ⊥,那么()()i k j k +⋅+的取值范围是( ) A . []3,3- B . []2,2- C . 21,21⎡⎤-+⎣⎦ D . 12,12⎡⎤-+⎣⎦17、已知函数()sin(3)f x x ϕ=+的图象关于直线23x π=对称,则ϕ的最小正值等于( ) A . 8π B . 4π C . 3π D . 2π18、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( ).A m αβα⊥⊂且 .B m αβα⊥且 .C m n n β⊥且 .D m n αβ⊥且19、5.甲、乙两个小组,甲组有3名男生2名女生,乙组有3名女生2名男生,从甲、乙两组中各选出3名同学,则选出的6人中恰有1名男生的概率等于( )A . 3100B . 4100C . 5100D . 610020、已知直线x y a +=与圆224x y +=交于,B A 两点,且OA OB OA OB +=-(其中O为坐标原点),则实数a 等于( ).A 2 .B 2- .C 22-或 .D 66-或21、已知曲线210x y ++=与双曲线2221(0)y x b b-=>的渐近线相切,则此双曲线的焦距等于( )A . 22B . 23C . 4D . 2522、对于定义在实数集R 上的函数()f x ,若()f x 与(1)f x +都是偶函数,则( ) A .()f x 是奇函数 B .(1)f x -是奇函数 C .(2)f x +是偶函数 D .(2)f x +是奇函数23、在直三棱柱111ABC A B C -中,12AA =,二面角11B AA C --的大小等于060,B 到面1AC 的距离等于3,1C 到面1AB 的距离等于23,则直线1BC 与直线1AB 所成角的正切值等于( ) A .7 B . 6 C . 5 D . 224、对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数:①()sin 2x f x π⎛⎫=⎪⎝⎭;②()221f x x =-;③()12x f x =-;④()()2log 22f x x =-. 其中存在唯一“可等域区间”的“可等域函数”为( ) .A ①②③ .B ②③ .C ①③ .D ②③④ 三、解答题25、(本题满分7分)设{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,试判断集合A 与集合B 的关系; (2)若B A ⊆,求实数a 组成的集合C .26、(本题满分7分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,向量()2s i n ,2c o s m B B = ,()3cos ,cos n B B =-,且1m n ⋅=-.(1)求角B ;(2)若2b =,求ABC ∆面积的最大值.27、(本题满分8分) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2,22PA AB AD ===,求 (1)PCD ∆的面积;(2)异面直线BC 与AE 所成角的大小. 28、(本题满分13分) 在数列{}n a 中,112a =-,()*1212,n n a a n n n N -=--≥∈,设n n b a n =+. (1)证明:数列{}n b 是等比数列; (2)求数列{}n nb 的前n 项和n T ; 29、(本题满分12分)抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B .(1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.PA BCDE30、(本题满分13分)设a 是实数,函数()42x xf x a=+-()x R ∈(1)求证:函数()f x 不是奇函数;(2)当0a ≤时,求满足()2f x a >的x 取值范围;(3)求函数()y f x =的值域(a 表示). 31、(本题满分18分)设()(),0P a b a b ⋅≠、(),2R a 为坐标平面xoy 上的点,直线OR (O 为坐标原点)与抛物线24y x ab=交于点Q (异于O ). (1)若对任意0ab ≠,点Q 在抛物线()210y mx m =+≠上,试问当m 为何值时,点P 在某一圆上,并求出该圆方程M ;(2)若点()(,)0P a b ab ≠在椭圆2241x y +=上,试问:点Q 能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3)对(1)中点P 所在圆方程M ,设A 、B 是圆M 上两点,且满足1OA OB ⋅=,试问:是否存在一个定圆S ,使直线AB 恒与圆S 相切.2015年春季高考模拟试卷2015年春季高考模拟试卷六参考答案1、()[),43,-∞-+∞;2、23π;3、2;4、(),4-∞-;5、12;6、23-;7、223π;8、()2,2-;9、4;10、2-;11、13-;12、5; 13-17、CABDD 18-24CACDC AB25、(1)由28150x x -+=得3x =或5x =,所以{}3,5A =.若15a =,得1105x -=,即5x =,所以{}5B =,故B A Ü. (2)因为{}3,5A =,又B A ⊆.①当B =∅时,则方程10ax -=无解,则0a =; ②当B ≠∅时,则0a ≠,由10ax -=,得1x a =,所以13a =或15a =,即13a =或15a = 故集合11035C ⎧⎫=⎨⎬⎩⎭,,.26、(1)【3π】(2)【 3】 27、(1)【23】(2)【 4π】28、(1)略(2)【222n n n T +=-】29、(1)【24y x =】(2)【2】(3)【3-】 30、(略)31、解:(1)222,4y x a aQ b b y xab ⎧=⎪⎪⎛⎫⇒⎨⎪⎝⎭⎪=⎪⎩, 代入22211a y mx m b b ⎛⎫=+∴=+ ⎪⎝⎭2220ma b b ⇒+-=当1m =时,点 (,)P a b 在圆:M ()2211x y +-=上(2)(),P a b 在椭圆2241x y +=上,即()2221a b += ∴可设1cos ,sin 2a b θθ==又2,a Q b b ⎛⎫ ⎪⎝⎭,于是2Q Q a x b y b ⎧=⎪⎪∴⎨⎪=⎪⎩222222242cos sin sin Q Q a y mx m m b b θθθ⎛⎫⎛⎫⎛⎫⎛⎫⇒-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222164cos 16sin sin m θθθ=-=(令4m =)∴点Q 在双曲线22416y x -=上 (3)圆M 的方程为()2211x y +-=设()()1122:,,,,,AB x ky A x y B x y λ=+由1OA OB ⋅=()()2222222211221122121111221x y x y y y y y y y +⋅+=--+⋅--+=⋅=⇒1214y y = 又()22111x y x ky ⎧+-=⎪⎨=+⎪⎩ ()()2221210k y k y λλ⇒++-+=,21222111421y y k k λλ∴==⇒=++又原点O 到直线AB 距离21d k λ=+ 12d ∴=,即原点O 到直线AB 的距离恒为12∴直线AB 恒与圆221:4S x y +=相切.。

上海市2014届普通高中学生学业水平考试数学模拟试卷 1--6 排版打印稿 题目部分

上海市2014届普通高中学生学业水平考试数学模拟试卷 1--6 排版打印稿 题目部分
11. 过半径为 2 的球 O 表面上一点 A 作球 O 的截面, 若 OA 与该截面 所成角是 60º,则该截面的面积是_____________. 12. 已知集合 A
A
1 100
是 结束
x , y
x a y 1 1 , B

x , y x 1
1 2 1

B. y x
3
C. y x 2
D. y x
2
15. 下列命题中正确的是: A.若 ac bc ,则 a b . C.若 B.若 a b , 则 a b .
2 2
………(

1 1 , 则 a b. a b
D.若
a b ,则 a b . 2a ,则





5
二、选择题(本大题满分 36 分,每小题有且只有一个正确答案.选对得 3 分,否则一律得 0 分. ) 13.在空间, “两条直线没有公共点”是“这两条直线平行”的 A.充分不必要条件. B.必要不充分条件.

………( D.既不充分也不必要条件 ………(

C.充要条件.
14.下列函数中,值域为 R 的是 A. y x
x2 y2 1 的焦点坐标是__________________. 10 6 2x 1 3. 不等式 . 0 的解集为 x
2. 双曲线 4. 计算: lim
3n 1 _________. n n 3
.
5. 函数 y arccos( x 1) 的定义域为
6. 某公司生产三种型号的轿车,产量分别为 1200 辆、6000 辆和 2000 辆,为检验该公司的产品质量, 现用分层抽样的方法抽取 46 辆进行检验,这三种型号的轿车依次应 抽取 、 、 . 7. 计算行列式:

2014-2015年上海市长宁区八年级(上)期末数学试卷含参考答案

2014-2015年上海市长宁区八年级(上)期末数学试卷含参考答案

厘米; 厘米; .
(2)物体每增加一千克重量弹簧伸长
(3) 弹簧总长度 y (厘米) 与所挂物体的重量 x (千克) 的函数关系式是
25. (6 分)等腰直角三角形 ABC 中,∠A=90°,∠B 的平分线交 AC 于 D,过点 C 向 BD 作垂线,并与 BD 延长线交于点 E,求证:BD=2CE.
5. (2 分)已知(x1,y1)和(x2,y2)是直线 y=﹣3x 上的两点,且 x1>x2,则 y1 与 y2 的大小关系是( A.y1>y2 ) C.y1=y2 D.以上都有可能
B.y1<y2
6. (2 分)下,它的一条边长与这条边上的高满足正比例关系 B.长方形的面积一定时,它的长和宽满足正比例关系 C.正方形的周长与边长满足正比例关系 D.圆的面积和它的半径满足正比例关系 7. (2 分)如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三 角形一定是( A.锐角三角形 ) B.钝角三角形 C.等边三角形 D.直角三角形
2014-2015 学年上海市长宁区八年级(上)期末数学试卷
一、单项选择题: (本大题共 8 题,每题 2 分,满分 16 分) 1. (2 分)函数 y= A.x≥3 自变量 x 的取值范围是( B.x≤3 C.x>3 ) D.x<3 )
2. (2 分)下列二次根式中,与 A. B. C.
是同类二次根式的是( D.
2. (2 分)下列二次根式中,与 A. B. C.
是同类二次根式的是( D.

【解答】解:A、 B、 C、 D、 故选:A. 与 与 与
8. (2 分)下列说法错误的是(

第 1 页(共 19 页)
A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的 平分线 B.到点 P 距离等于 1 cm 的点的轨迹是以点 P 为圆心,半径长为 1cm 的圆

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

2014-2015学年上海市黄浦区八年级第一学期期末数学试卷带答案

2014-2015学年上海市黄浦区八年级第一学期期末数学试卷带答案

2014-2015学年上海市黄浦区初二(上)期末数学试卷一、选择题:(每题3分,共18分1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣x D.x2﹣mx﹣2=03.(3分)已知函数y=kx中y随x的增大而减小,那么它和函数y=在同一直角坐标系内的大致图象可能是()A.B.C.D.4.(3分)已知正比例函数y=kx(k>0)的图象上有两点A(x1,y1)、B(x2,y2),且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定5.(3分)下列说法中,正确的是()A.假命题的逆命题不一定是假命题B.真命题的逆命题也是真命题C.命题“若x>0,y<0,则xy<0”的逆命题是真命题D.命题“对顶角相等”的逆命题是真命题6.(3分)已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm二、填空题:(每题2分,共24分)7.(2分)计算:﹣=.8.(2分)分母有理化:=.9.(2分)方程(x﹣1)2﹣4=0的解为.10.(2分)命题“等腰三角形的两个底角相等”的逆命题是.11.(2分)在实数范围内因式分解:2x2﹣3x﹣1=.12.(2分)已知直角坐标平面内两点A(3,﹣7)和B(﹣2,﹣2),那么A、B 两点间的距离等于.13.(2分)函数y=中自变量x的取值范围是.14.(2分)经过点D半径为5的圆的圆心的轨迹是.15.(2分)如果关于x的方程kx2﹣2x+4=0有两个实数根,那么k的取值范围是.16.(2分)如图,正方形ABCD被分成两个小正方形和两个长方形,如果两小正方形的面积分别是2和5,那么两个长方形的面积和为.17.(2分)如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB 上的高和中线,那么∠DCE=度.18.(2分)点E、F分别在一张长方形纸条ABCD的边AD、BC上,将这张纸条沿着直线EF对折后如图,BF与DE交于点G,如果∠BGD=30°,长方形纸条=cm2.的宽AB=3cm,那么这张纸条对折后的重叠部分面积S△GEF三、简答题:(每题6分,共42分)19.(6分)计算:+×﹣.20.(6分)解方程:x(x﹣2)=8.21.(6分)如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,Rt△PAO的面积为3,且∠OPA=30°.求:(1)反比例函数解析式;(2)直线OP的表达式.22.(6分)某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t (分钟)的函数关系如图所示,请根据图象提供的信息回答下列问题:(1)此人离开出发地最远距离是千米;(2)此人在这次行走过程中,停留所用的时间为分钟;(3)由图中线段OA可知,此人在这段时间内行走的速度是每小时千米;(4)此人在120分钟内共走了千米.23.(6分)已知:∠MON、点A及线段a(如图).求作:点P,使得点P到OM 和ON的距离相等,且PA=a.(要求尺规作图,保留作图痕迹,不必写作法和证明)24.(6分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.25.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.四、解答题:(每题8分,共16分)26.(8分)如图,等边△OAB和等边△AFE的一边都在x轴上,反比例函数y=(k>0)的图象经过边OB的中点C和AE的中点D.已知等边△OAB的边长为8,(1)直接写出点C的坐标;(2)求反比例函数y=解析式;(3)求等边△AFE的边长.27.(8分)如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.线段PQ的垂直平分线与直线BC、AD分别相交与点E、F点.(1)若E、F分别与B、D重合,求AP的长.(2)当E、F在边BC、AD上时,设AP=x,BE=y,求y与x的函数关系式及x取值范围;(3)是否存在这样的一点P,使△PQE为直角三角形?若存在,请求出AP的值,若不存在请说明理由.2014-2015学年上海市黄浦区初二(上)期末数学试卷参考答案与试题解析一、选择题:(每题3分,共18分1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.【解答】解:A、被开方数含分母,不是最简二次根式,故A选项错误;B、=2,被开方数含能开得尽方的因数,不是最简二次根式,故B选项错误;C、满足最简二次根式的定义,是最简二次根式,故C选项正确;D、,被开方数含能开得尽方的因数,不是最简二次根式,故D选项错误.故选:C.2.(3分)下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣x D.x2﹣mx﹣2=0【解答】解:A、△=5>0,方程有两个不相等的实数根;B、△=﹣108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.3.(3分)已知函数y=kx中y随x的增大而减小,那么它和函数y=在同一直角坐标系内的大致图象可能是()A.B.C.D.【解答】解:∵函数y=kx中y随x的增大而减小,∴k<0,∴函数y=kx的图象经过二、四象限,故可排除A、B;∵k<0,∴函数y=的图象在二、四象限,故C错误,D正确.故选:D.4.(3分)已知正比例函数y=kx(k>0)的图象上有两点A(x1,y1)、B(x2,y2),且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【解答】解:∵正比例函数y=kx中,k>0,∴此函数是增函数.∵x1>x2,∴y1>y2.故选:B.5.(3分)下列说法中,正确的是()A.假命题的逆命题不一定是假命题B.真命题的逆命题也是真命题C.命题“若x>0,y<0,则xy<0”的逆命题是真命题D.命题“对顶角相等”的逆命题是真命题【解答】解:A.假命题的逆命题不一定是假命题,正确,B.真命题的逆命题不一定是真命题,故本选项错误,C.命题“若x>0,y<0,则xy<0”的逆命题是假命题,故本选项错误,D.命题“对顶角相等”的逆命题是假命题,故本选项错误,故选:A.6.(3分)已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选:B.二、填空题:(每题2分,共24分)7.(2分)计算:﹣=.【解答】解:=2﹣=.故答案为:.8.(2分)分母有理化:=﹣﹣2.【解答】解:原式==﹣﹣2.故答案为﹣﹣2.9.(2分)方程(x﹣1)2﹣4=0的解为﹣1,3.【解答】解:(x﹣1)2﹣4=0则x﹣1=±2,解得:x1=﹣1,x2=3.故答案为:﹣1,3.10.(2分)命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.11.(2分)在实数范围内因式分解:2x2﹣3x﹣1=2(x﹣)(x﹣).【解答】解:令2x2﹣3x﹣1=0,解得:x=,则原式=2(x﹣)(x﹣).故答案为:2(x﹣)(x﹣).12.(2分)已知直角坐标平面内两点A(3,﹣7)和B(﹣2,﹣2),那么A、B 两点间的距离等于5.【解答】解:∵直角坐标平面内两点A(3,﹣7)和B(﹣2,﹣2),∴A、B两点间的距离为:=.故答案为:5.13.(2分)函数y=中自变量x的取值范围是x>2.【解答】解:由y=,得X﹣2>0,解得x>2.故答案为:x>2.14.(2分)经过点D半径为5的圆的圆心的轨迹是以D为圆心,5为半径的圆.【解答】解:根据题意,圆心的轨迹是到定点的距离等于定长5cm的所有点的集合,根据圆的定义,即:以点D为圆心,5cm长为半径的圆.故答案为:以点D为圆心,5cm长为半径的圆.15.(2分)如果关于x的方程kx2﹣2x+4=0有两个实数根,那么k的取值范围是k≤,且k≠0.【解答】解:∵关于x的方程kx2﹣2x+4=0有两个实数根,∴△=b2﹣4ac≥0,且k≠0,即:4﹣16k≥0,解得:k≤,∴k的取值范围为k≤,且k≠0.故答案为:k≤,且k≠0.16.(2分)如图,正方形ABCD被分成两个小正方形和两个长方形,如果两小正方形的面积分别是2和5,那么两个长方形的面积和为.【解答】解:∵两小正方形的面积分别是2和5,∴两小正方形的边长分别是和,∴两个长方形的面积和为:×2=2;故答案为:2.17.(2分)如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB 上的高和中线,那么∠DCE=50度.【解答】解:∠A=20°,CD为AB边上的高,∴∠ACD=70°,∵∠ACB=90°,CE是斜边AB上的中线,∴CE=AE,∴∠ACE=∠A=20°,∴∠DCE的度数为70°﹣20°=50°.故答案为:50.18.(2分)点E、F分别在一张长方形纸条ABCD的边AD、BC上,将这张纸条沿着直线EF对折后如图,BF与DE交于点G,如果∠BGD=30°,长方形纸条=9cm2.的宽AB=3cm,那么这张纸条对折后的重叠部分面积S△GEF【解答】解:作EM⊥FG,垂足为M,过点G作GH⊥CF,垂足为H.∵AE∥BF,AB⊥BF,EM⊥MB,∴EM=AB=3.同理:GH=DC=3.∵DE∥CF,∴∠GFH=∠BGD=30°.在Rt△FGH中,∠GFH=30°,∴FG=2GH=6.==9(cm2).∴S△GEF故答案为:9.三、简答题:(每题6分,共42分)19.(6分)计算:+×﹣.【解答】解:原式===.20.(6分)解方程:x(x﹣2)=8.【解答】解:x(x﹣2)=8x2﹣2x﹣8=0(x﹣4)(x+2)=0x﹣4=0,x+2=0解得:x1=﹣2,x2=4.21.(6分)如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,Rt△PAO的面积为3,且∠OPA=30°.求:(1)反比例函数解析式;(2)直线OP的表达式.【解答】解:(1)设反比例函数解析式为y=,∵Rt△PAO的面积为3,∴k=6,∴y=;∴反比例函数解析式是:y=;(2)设直线OP的解析式为y=kx,设P(a,),代入y=kx得k=,∴y=x.22.(6分)某人沿一条直路行走,此人离出发地的距离S(千米)与行走时间t (分钟)的函数关系如图所示,请根据图象提供的信息回答下列问题:(1)此人离开出发地最远距离是4千米;(2)此人在这次行走过程中,停留所用的时间为20分钟;(3)由图中线段OA可知,此人在这段时间内行走的速度是每小时 4.5千米;(4)此人在120分钟内共走了8千米.【解答】解:由图象得:(1)此人离开出发地最远距离是4千米;(2)此人在这次行走过程中,停留所用的时间为60﹣40=20分钟;(3)∵40分钟=小时,∴3÷=4.5(千米/时)∴此人在这段时间内行走的速度是每小时4.5千米;(4)此人在120分钟内共走了3+0+1+4=8(千米).故答案为:(1)4,(2)20,(3)4.5,(4)8.23.(6分)已知:∠MON、点A及线段a(如图).求作:点P,使得点P到OM 和ON的距离相等,且PA=a.(要求尺规作图,保留作图痕迹,不必写作法和证明)【解答】解:所以两个位置的点P就是所要求作的点.每作对一个点P得2分,共4分;结论2分.24.(6分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.【解答】解:∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=∠CAB=(90°﹣∠B),∵DE垂直平分AB,∴AD=BD,∴∠DAE=∠B,∴∠DAE=∠CAB=(90°﹣∠B)=∠B,∴3∠B=90°,∴∠B=30°.答:若DE垂直平分AB,∠B的度数为30°.25.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.【解答】(1)证明:连接BM、DM.∵∠ABC=∠ADC=90°,点M、点N分别是边AC、BD的中点,∴BM=AC,CM=AC,∴,∵N是BD的中点,∴MN是BD的垂直平分线,∴MN⊥BD.(2)解:∵∠BCA=15°,,∴∠BCA=∠CBM=15°,∴∠BMA=30°,∵OB=OM,∴∠OBM=∠BMA=30°,∵AC=10,,∴BM=5,在Rt△BMN中,∠BNM=90°,∠NBM=30°,∴,答:MN的长是2.5.四、解答题:(每题8分,共16分)26.(8分)如图,等边△OAB和等边△AFE的一边都在x轴上,反比例函数y=(k>0)的图象经过边OB的中点C和AE的中点D.已知等边△OAB的边长为8,(1)直接写出点C的坐标;(2)求反比例函数y=解析式;(3)求等边△AFE的边长.【解答】解:(1)过点B作BG⊥x轴于点G,∵等边△OAB的边长为8,∴OA=OB=8,∴OG=﹣A=4,BG=OB•sin60°=8×=4,∴B(4,4),∵点C是OB边的中点,∴点C的坐标是(2,2);(2)∵点C在反比例函数图象上,∴把x=2,y=2代入反比例函数解析式,解得k=4.∴反比例函数解析式为y=;(3)过点D作DH⊥AF,垂足为点H.解法一:设AH=a(a>0).在Rt△DAH中,∵∠DAH=60°,∴∠ADH=30°.∴AD=2AH=2a,由勾股定理得:DH=a.∵点D在第一象限,∴点D的坐标为(8+a,a).∵点D在反比例函数y=的图象上,∴把x=8+a,y=a代入反比例函数解析式,解得a=2﹣4 (a=﹣2﹣4<0不符题意,舍去).∵点D是AE中点,∴等边△AFE的边长为8﹣16;解法二:∵点D在第一象限,∴设点D的坐标为(m,)(m>0).∴AH=m﹣8,DH=.在Rt△DAH中,∵∠DAH=60°,∴∠ADH=30°.∴AD=2AH=2(m﹣8),由勾股定理得:DH=(m﹣8).所以=(m﹣8),解得:m=2+4.∴AH=2﹣4,∵点D是AE中点,∴等边△AFE的边长为8﹣16.27.(8分)如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.线段PQ的垂直平分线与直线BC、AD分别相交与点E、F点.(1)若E、F分别与B、D重合,求AP的长.(2)当E、F在边BC、AD上时,设AP=x,BE=y,求y与x的函数关系式及x取值范围;(3)是否存在这样的一点P,使△PQE为直角三角形?若存在,请求出AP的值,若不存在请说明理由.【解答】解:(1)如图1,AP=x,则BP=8﹣x;∵BD垂直平分PQ;∴PB=BQ=8﹣xRt△BQC中(8﹣x)2=x2+62,解得:x=,则AP=;(2)连接EP、EQ∵EF垂直平分PQ;∴EP=EQ在Rt△PBE和Rt△QCE中(8﹣x)2+y2=x2+(6﹣y)2,则y=,∵0≤y≤6,∴≤x≤;(3)当E在BC边上,若△PQE为直角三角形,则只有∠PEQ=90°,∵∠PEQ=90°,∴∠PEB+∠QEC=90°,∵∠BPE+∠PEB=90°,∴∠BPE=∠QEC,在△PBE和△ECQ中∵,∴△PBE≌△ECQ(AAS),则BE=CQ=x=y,∵y=,∴解得:x=7,∵x=7不在定义域范围内,∴不存在,当E在边BC(或CB)延长线上时,△PQE每个角都小于90°,不可能为直角三角形,综上所述,这样的P点不存在.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考 数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,142、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( )A.4个 B.3个 C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH ==C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A .∠A =∠1+∠2 B .2∠A =∠1+∠2 C .3∠A =2∠1+∠2 D .3∠A =2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根 木条这样做的道理是_______________。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

2014-2015学年第一学期(2014新版)数学实验教材六年级上册期末复习检测试卷(五)

2014-2015学年第一学期(2014新版)数学实验教材六年级上册期末复习检测试卷(五)

2014-2015学年第一学期(2014新版)数学实验教材六年级上册期末复习检测试卷(五)班级姓名成绩一、填空。

20%1、填上适当的分数或整数:26毫升=升时=分公顷=平方米25立方分米=立方米2、3÷5==()×=÷()=3、在()里填上<、>或=×18()18×()÷()÷()×94、荣华水果店运进12千克水果,如果每天卖出,天可以全部卖完;如果每天卖出千克,天可以全部卖完。

5、吨小麦磨面粉吨,吨小麦可磨1吨面粉,1吨小麦可磨面粉吨。

1公顷6、在长方形内画出公顷的。

7、从4里面每次减去,减次得0;是60米的。

8、从甲地到乙地,上坡路占,平路占,其余是下坡路。

一辆汽车在甲乙两地往返一趟,共行下坡路15千米,甲乙两地相距千米。

二、判断。

10%1、一根绳子截成两段,第一段长米,第二段长,第一段比第二段短。

()2、如果一个数比1大,那么它的倒数一定比1小。

()3、被除数和除数都是是真分数时,所得的商大于被除数。

()4、甲数除以乙数,等于甲数乘乙数的倒数。

()5、、a、b都不为0,如果a×=b÷,那么a<b。

()三、口算。

10%12×=×=6-=×=0.25×0.25=1÷=÷=÷7=÷=×÷×=四、脱式计算。

12%÷×21×÷×÷÷五、解方程。

12%χ=χ+χ=χ-=12χ÷=六、解决问题。

36%1、儿童乐园的碰碰车项目,原来每玩10分2、一个平行四边形的高是分米,底是钟收20元,六一儿童节那天调整了价格,降高的,这个平行四边形的面积是多少低了,这样每玩10分钟碰碰车,比原来可平方分米?以少付多少元?3、联谊菜场黄瓜的售价每千克3元,是西红柿4、一批水泥,用去12吨,剩下的是用去售价的,西红柿每千克售价多少元?的,这批水泥原来有多少吨?(用方程解答)5、一根15米长的木条,先锯下全长的,又6、一台收割机3小时能收割小麦公顷,锯下米,两次共锯下多少米?照这样计算,8公顷小麦需要收割几小时?。

八年级(上)期末数学试卷【带解析】 (3)

八年级(上)期末数学试卷【带解析】 (3)

八年级(上)期末数学试卷一、选择题1.下列计算正确的是()A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a32.点M(1,3)关于y轴对称点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,﹣1)3.若三角形的三条边长分别为4,5,x,则x的取值范围是()A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<94.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣25.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.136.下列二次根式中,不能与合并的是()A.B.C. D.7.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=()A.20°B.65°C.86°D.95°8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短9.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A.4 B.6 C.8 D.1010.点A,B在数轴上,它们所对应的数分别是3,,且点A,B到原点的距离相等,求x的值()A.1 B.﹣1 C.4 D.﹣4二、填空题11.当x=时,分式无意义.12.分解因式:﹣x2+2x﹣1=.13.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)14.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,则PD=.15.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.16.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,∠B=30°,∠C=80°,BE=3,AF=2,填空:(1)AB=;(2)∠BAD=;(3)∠DAF=;(4)S△AEC=.三、解答题17.(2015秋•江门校级期末)(﹣)×.18.(2014•怀化一模)化简:﹣.19.(2011•桐乡市二模)已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.四、解答题20.(2013•太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.21.(2006•贵阳)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?22.(2007•乐山)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.23.(2015秋•泰兴市期末)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.24.(2015秋•江门校级期末)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF;(1)求证:Rt△ABE≌Rt△CBF;(2)求证:AB=CE+BF;(3)若∠CAE=30°,求∠ACF度数.25.(2015秋•江门校级期末)如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);(2)比较(1)两种结果,你能得到怎样的等量关系?请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.2017-2018学年广东省江门市蓬江二中八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列计算正确的是()A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.2.点M(1,3)关于y轴对称点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)解答即可.【解答】解:点M(1,3)关于y轴对称点的坐标为:(﹣1,3),故选:B.【点评】本题考查的是关于x轴、y轴的对称点的坐标,平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.3.若三角形的三条边长分别为4,5,x,则x的取值范围是()A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<9【考点】三角形三边关系.【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵三角形的两边长分别为4和5,∴第三边长x的取值范围是:5﹣4<x<5+4,即:1<x<9,故选:C.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.4.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.13【考点】多边形内角与外角.【分析】利用任何多边形的外角和是360°即可求出答案.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.6.下列二次根式中,不能与合并的是()A.B.C. D.【考点】同类二次根式.【专题】常规题型.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.【点评】本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.7.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=()A.20°B.65°C.86°D.95°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D的度数,根据三角形的内角和定理求出∠OAD即可.【解答】解:∵△OAD≌△OBC,∠O=65°,∠C=20°,∴∠D=∠C=20°,∴∠OAD=180°﹣∠O﹣∠D=180°﹣20°﹣65°=95°,故选D.【点评】本题考查了全等三角形的性质,三角形的内角和定理的应用,解此题的关键是求出∠D的度数和得出∠OAD=180°﹣∠O﹣∠D,注意:全等三角形的对应角相等.8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.9.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A.4 B.6 C.8 D.10【考点】含30度角的直角三角形.【分析】根据直角三角形的性质求出∠BCD=30°,根据直角三角形的性质求出BC的长,同理解答即可.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选:C.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.10.点A,B在数轴上,它们所对应的数分别是3,,且点A,B到原点的距离相等,求x的值()A.1 B.﹣1 C.4 D.﹣4【考点】解分式方程;数轴.【分析】根据题意列出关于x的分式方程,再求解即可.【解答】解:∵点A,B到原点的距离相等,∴3=,4x﹣1=9﹣6x,解得x=1,检验:把x=1代入3﹣2x=3﹣2=1≠0,∴x=1是原方程的解.【点评】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.二、填空题11.当x=5时,分式无意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件为x﹣5=0,即可求得x的值.【解答】解:根据题意得:x﹣5=0,所以x=5.故答案为5.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母等于0,求得x的值即可.12.分解因式:﹣x2+2x﹣1=﹣(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式﹣1,进而利用完全平方公式分解因式即可【解答】解:﹣x2+2x﹣1=﹣(x2﹣2x+1)=﹣(x﹣1)2.故答案为:﹣(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.13.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第③块去配,其依据是根据定理ASA(可以用字母简写)【考点】全等三角形的应用.【分析】显然第③中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.14.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,则PD= 5.【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义和平行线的性质得到∠COP=∠CPO=∠BOP,即可得出PC=OC,根据角平分线的性质得出PD=PE,求出PE,即可求出PD.【解答】解:∵OP平分∠AOB,∴∠AOP=∠BOP,∵PC∥OB,∴∠CPO=∠BOP,∴∠CPO=∠AOP,∴PC=OC,∵PC=10,∴OC=PC=10,过P作PE⊥OA于点E,∵PD⊥OB,OP平分∠AOB,∴PD=PE,∵PC∥OB,∠AOB=30°∴∠ECP=∠AOB=30°在Rt△ECP中,PE=PC=5,∴PD=PE=5,故答案为:5.【点评】题主要考查了含30°角的直角三角形的性质,角平分线的性质,平行线的性质的应用,注意:角平分线上的点到角的两边距离相等.15.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【分析】先根据图形翻折不变性的性质得出△DEB≌△DCB,故DE=CD,EB=BC,故可得出结论.【解答】解:∵△DEB由△DCB翻折而成,∴△DEB≌△DCB,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,AC=7cm,∴△AED的周长=AD+DE+AE=(AD+CD)+(AB﹣BE)=AC+AB﹣BC=7+8﹣6=9cm.故答案为:9cm【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.16.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,∠B=30°,∠C=80°,BE=3,AF=2,填空:(1)AB=2AF;(2)∠BAD=35°;(3)∠DAF=25°;(4)S△AEC=S△ABE.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】熟悉三角形的角平分线、中线、高的概念:三角形的一个角的平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;连接顶点和对边中点的线段叫三角形的中线;三角形的高即从顶点向对边引垂线,顶点和垂足间的线段.根据概念,运用几何式子表示.【解答】解:(1)∵∠B=30°,AF是高,∴AB=2AF;(2)∵∠B=30°,∠C=80°,∴∠BAC=70°,∴∠BAD=35°;(3)∵∠BAF=60°,∴∠DAF=25°;(4)S△AEC=S△ABE,故答案为:2AF;35°;25°;S△ABE【点评】本题考查了三角形的角平分线、中线和高.此题是一道基础题,能够根据三角形的中线、角平分线和高的概念得到线段、角之间的关系.三、解答题17.(2015秋•江门校级期末)(﹣)×.【考点】二次根式的混合运算.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【解答】解:原式=(4﹣5)×=﹣×=﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(2014•怀化一模)化简:﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣===.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.19.(2011•桐乡市二模)已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.【考点】全等三角形的判定;平行线的性质.【专题】证明题.【分析】(1)首先由AE=AB可以得到∠B=∠AEB,然后由AD∥BC可以得到∠AEB=∠DAE,由此即可证明题目的结论;(2)利用(1)的结论,而且AD=BC,AE=AB,由此即可证明△ABC≌△EAD.【解答】证明:(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四、解答题20.(2013•太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题;探究型.【分析】(1)根据题意画出图形即可;(2)首先根据等腰三角形的性质与三角形内角与外角的性质证明∠C=∠FAC,进而可得AF∥BC;然后再证明△AEF≌△CEB,即可得到AF=BC.【解答】解:(1)如图所示;(2)AF∥BC,且AF=BC,理由如下:∵AB=AC,∴∠ABC=∠C,∴∠DAC=∠ABC+∠C=2∠C,由作图可得∠DAC=2∠FAC,∴AF∥BC,∵E为AC中点,∴AE=EC,在△AEF和△CEB中,∴△AEF≌△CEB(ASA).∴AF=BC.【点评】此题主要考查了作图,以及平行线的判定,全等三角形的判定,关键是证明∠C=∠FAC.21.(2006•贵阳)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?【考点】分式方程的应用.【专题】应用题.【分析】求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.【解答】解:设甲每天加工x个玩具,那么乙每天加工(35﹣x)个玩具.由题意得:.(5分)解得:x=15.(7分)经检验:x=15是原方程的根.(8分)∴35﹣x=20(9分)答:甲每天加工15个玩具,乙每天加工20个玩具.(10分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(2007•乐山)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】作图题.【分析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【点评】本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.23.(2015秋•泰兴市期末)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.【考点】实数与数轴;二次根式的性质与化简.【分析】根据数轴上点的位置关系,可得a、b的大小,根据二次根式的性质,差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a)=a+1+2﹣2b﹣b+a=2a﹣3b+3.【点评】本题考查了实数与数轴,利用数轴上点的位置关系﹣1<a<0<b<1,又利用了二次根式的性质,差的绝对值是大数减小数.24.(2015秋•江门校级期末)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF;(1)求证:Rt△ABE≌Rt△CBF;(2)求证:AB=CE+BF;(3)若∠CAE=30°,求∠ACF度数.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,可以得到Rt△ABE和Rt△CBF全等的条件,从而可以证明Rt△ABE≌Rt△CBF;(2)根据Rt△ABE≌Rt△CBF,可以得到AB=BC,BE=BF,然后即可转化为AB、CE、BF的关系,从而可以证明所要证明的结论;(3)根据Rt△ABE≌Rt△CBF,AB=CB,∠CAE=30°,可以得到∠ACF的度数.【解答】(1)证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)证明:∵Rt△ABE≌Rt△CBF,∴AB=BC,BE=BF,∵BC=BE+CE,∴AB=CE+BF.(3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=∠CAE+∠EAB,∴∠BCA=∠BAC=45°,∴∠EAB=15°,∵Rt△ABE≌Rt△CBF,∴∠EAB=∠FCB,∴∠FCB=15°,∴∠ACF=∠FCB+∠BCA=15°+45°=60°,即∠ACF=60°.【点评】本题考查全等三角形的判定与性质,解题的关键是明确题意,找出所要证明结论需要的条件.25.(2015秋•江门校级期末)如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);(2)比较(1)两种结果,你能得到怎样的等量关系?请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.【考点】完全平方公式的几何背景.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n)2,四个小长方形的面积为4mn,中间阴影部分的面积为S=(m+n)2﹣4mn;方法二,图2中阴影部分为正方形,其边长为m﹣n,所以其面积为(m﹣n)2.(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)2﹣4mn=(m﹣n)2.由(2)得,将m﹣n=5,mn=14,代入(2)式可求m+n=9.【解答】解:(1)方法一:∵大正方形的面积为(m+n)2,四个小长方形的面积和为4mn,∴中间阴影部分的面积为(m+n)2﹣4mn.方法二:∵中间小正方形的边长为m﹣n,∴其面积为(m﹣n)2.(2)(m+n)2﹣4mn=(m﹣n)2.∵m﹣n=5,mn=14,∴(m+n)2﹣4×14=52,得m+n=9或m+n=﹣9(舍),故m+n的值为9.【点评】本题考查了完全平方式的实际应用,完全平方式与正方形的面积公式和长方形的面积公式联系在一起,学会观察图形是关键.。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

2014—2015八年级数学上册第一次月考试题(2013-2014)

2014—2015八年级数学上册第一次月考试题(2013-2014)

谷硐中学2014—2015学年度第一学期八年级数学第一次月考试题姓名 班级 得分一、择题(每空4分,共40分)( )1.下列条件中,不能..确定两个三角形全等的条件是 A.三条边对应相等 B. 两角和其中一角的对边对应相等C.两角和它们的夹边对应相等D. 两边和一角对应相等( )2.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带A. 第1块B. 第2块C. 第3块D. 第4块( )3.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点。

如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是A.4 厘米 B.5厘米 C. 6 厘米 D.无法确定( )4.如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,则∠MAC 的度数等于A .120° B.70° C.60° D.50°.3题图 4题图( )5. 能把一个任意三角形分成面积相等的两部分是A.角平分线B.中线C.高D.A 、B 、C 都可以( )6.下列长度的三条线段中,能组成三角形的是A 、3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm( )7.已知,等腰三角形的两边长是5厘米和11厘米,它的周长是A 、21厘米B 、27厘米C 、21厘米或27厘米D 、16厘米( )8.若一个多边形的内角和是1080°,则此多边形的边数是A 、10B 、8C 、6D 、12D CA B第19题图 第21题图 ( )9.如图,AB ⊥BC ,D 为BC 的中点,以下结论正确的个数是。

①△ABD ≌△ACD ②AB=AC ③∠B=∠C ④AD 是△ABC 的角平分线。

2014-2015年上海市普陀区八年级上学期期末数学试卷带答案word版

2014-2015年上海市普陀区八年级上学期期末数学试卷带答案word版

2014-2015学年上海市普陀区八年级(上)期末数学试卷一、填空题(本大题共有14题,每题2分,满分28分)1.(2分)化简:(x>0)=.2.(2分)如果最简二次根式2和是同类二次根式,那么x=.3.(2分)不解方程,判别方程3x2+4x=﹣2的根的情况:.4.(2分)在实数范围内分解因式:x2﹣3x﹣2=.5.(2分)某商店八月份的营业额是100万元,预计十月份的营业额可达到144万元,如果九、十月份营业额的月增长率相同,那么这个商店营业额的月增长率为.6.(2分)已知关于x的方程x2+(m﹣2)x+m2﹣1=0有两个实数根,那么m 的取值范围是.7.(2分)函数的定义域是.8.(2分)已知f(x)=x2﹣3x﹣2,当f(a)=8时,a的值等于.9.(2分)已知点A(x1,y1)和点B(x2,y2)在反比例函数y=(k<0)的图象上,且x1<0<x2,判断y1、y2的大小关系:y1y2.(填“>”、“=”、“<”)10.(2分)如图,在△ABC中,已知AB=AC,AB的垂直平分线DE与AC、AB分别交于点D、E,如果∠A=40°,那么∠DBC的度数为.11.(2分)经过已知点M和N的圆的圆心的轨迹是.12.(2分)已知直角坐标平面内的两点A(1,4)、B(﹣3,2),那么A、B两点间的距离等于.13.(2分)如图,将一张宽为2cm的长方形纸条折叠,折痕为AB,重叠部分为△ABC.如果∠ACB=30°,那么△ABC的面积等于.14.(2分)一个正比例函数和一个反比例函数的图象都经过点A,如果点A的纵坐标为a,那么这两个函数的比例系数的积等于(用a表示).二、选择题(本大题共有4题,每题3分,满分12分)15.(3分)下列方程中,一元二次方程的是()A.=0 B.x2+1=0 C.y+x2=1 D.=116.(3分)函数y=kx与y=﹣在同一坐标系内的大致图象是()A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(2)和(4)17.(3分)下列各命题中,真命题的是()A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题18.(3分)如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,以下判断正确的个数有()①DE=AC;②DE⊥AC;③∠EAF=∠ADE;④∠CAB=30°.A.1个 B.2个 C.3个 D.4个三、(本大题共有7题,满分60分)19.(7分)计算:﹣(4﹣).20.(7分)解方程:x(x﹣)=3x﹣4.21.(7分)甲、乙两车分别从A地将一批物资运往B地,两车离A地的距离s (千米)与其相关的时间t(小时)变化的图象如图所示.读图后填空:(1)A地与B地之间的距离是千米;(2)甲车由A地前往B地时所对应的s与t的函数解析式是;(3)甲车出发小时后被乙车追上;(4)甲车由A地前往B地比乙车由A地前往B地多用了小时.22.(8分)如图,已知AE平分∠BAC,ED垂直平分BC,EF⊥AC,EG⊥AB,垂足分别是点F、G.求证:(1)BG=CF;(2)AB=AF+CF.23.(8分)如图,已知四边形ABCD中,AB=24,AD=15,BC=20,CD=7,∠ADB+∠CBD=90°.(1)在BD的同侧作△A′BD,使△A′BD≌△ADB(点A与点A′不重合)(不写作法和结论,保留作图痕迹);(2)求四边形ABCD的面积.24.(11分)如图,已知直线y=kx(k>0)与双曲线y=交于A、B两点,且点A的纵坐标为4,第一象限的双曲线上有一点P(1,a),过点P作PQ∥y轴交直线AB于点Q.(1)直接写出k的值及点B的坐标;(2)求线段PQ的长;(3)如果在直线y=kx上有一点M,且满足△BPM的面积等于12,求点M的坐标.25.(12分)如图,在△ABC中,∠ACB=90°,D是AB的中点,CD=3,过点A作∠CAE=∠B,交边CB于点E,交线段CD于点H.(1)求证:AE⊥CD;(2)设AC=x,CH=y,求y关于x的函数解析式及定义域;(3)当AE=CD时,求CH的长.2014-2015学年上海市普陀区八年级(上)期末数学试卷参考答案与试题解析一、填空题(本大题共有14题,每题2分,满分28分)1.(2分)化简:(x>0)=3x.【解答】解:=.故答案为:3x.2.(2分)如果最简二次根式2和是同类二次根式,那么x=3.【解答】解:因为最简二次根式2和是同类二次根式,可得:x+4=2x+1,解得:x=3.故答案为:3.3.(2分)不解方程,判别方程3x2+4x=﹣2的根的情况:方程没有实数根.【解答】解:∵3x2+4x=﹣2,∴3x2+4x+2=0,∵△=42﹣4×3×2=﹣8<0,∴方程没有实数根.故答案为:方程没有实数根.4.(2分)在实数范围内分解因式:x2﹣3x﹣2=.【解答】解:令x2﹣3x﹣2=0,则a=1,b=﹣3,c=﹣2,∴x==,∴x2﹣3x﹣2=.故答案为:.5.(2分)某商店八月份的营业额是100万元,预计十月份的营业额可达到144万元,如果九、十月份营业额的月增长率相同,那么这个商店营业额的月增长率为20%.【解答】解:设这个商店营业额的月增长率为x,依题意有100×(1+x)2=144,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,x=0.2=20%.故答案为:20%.6.(2分)已知关于x的方程x2+(m﹣2)x+m2﹣1=0有两个实数根,那么m 的取值范围是m≤2.【解答】解:∵关于x的方程x2+(m﹣2)x+m2﹣1=0有两个实数根,∴△=(m﹣2)2﹣4×1×(m2﹣1)=﹣4m+8≥0,∴m≤2.故答案为:m≤2.7.(2分)函数的定义域是.【解答】解:要使函数有意义,则2x﹣3≥0,解得x.故答案为x≥.8.(2分)已知f(x)=x2﹣3x﹣2,当f(a)=8时,a的值等于5或﹣2.【解答】解:把x=a代入得:a2﹣3a﹣2=8,整理得:(a﹣5)(a+2)=0,解得:a=5或a=﹣2.故答案为:5或﹣2.9.(2分)已知点A(x1,y1)和点B(x2,y2)在反比例函数y=(k<0)的图象上,且x1<0<x2,判断y1、y2的大小关系:y1>y2.(填“>”、“=”、“<”)【解答】解:反比例函数y=(k<0)的图象上经过第二、四象限,如图所示:∵x1<0<x2,∴y1>y2.故答案为:>.10.(2分)如图,在△ABC中,已知AB=AC,AB的垂直平分线DE与AC、AB分别交于点D、E,如果∠A=40°,那么∠DBC的度数为30°.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB==70°又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为30°.11.(2分)经过已知点M和N的圆的圆心的轨迹是线段MN的垂直平分线.【解答】解:根据同圆的半径相等,则圆心应满足到点M和点N的距离相等,即经过已知点M和点N的圆的圆心的轨迹是线段MN的垂直平分线.故答案为:线段MN的垂直平分线.12.(2分)已知直角坐标平面内的两点A(1,4)、B(﹣3,2),那么A、B两点间的距离等于.【解答】解:∵直角坐标平面内的两点A(1,4)、B(﹣3,2),∴AB==2.故答案是:.13.(2分)如图,将一张宽为2cm的长方形纸条折叠,折痕为AB,重叠部分为△ABC.如果∠ACB=30°,那么△ABC的面积等于4cm2.【解答】解:如图所示,过A作AD⊥BC于D.∵纸条为长方形,∴∠1=∠2,又∵长方形纸条折叠,折痕为AC,重叠部分为△ABC,∴∠1=∠BAC,∴∠2=∠BAC,∴AC=BC∵∠ABC=30°,∴AB=2AD=4cm,∴BC=AB=4cm,∴△ABC的面积=AD•BC=×4×2=4(cm2).故答案为:4cm2.14.(2分)一个正比例函数和一个反比例函数的图象都经过点A,如果点A的纵坐标为a,那么这两个函数的比例系数的积等于a2(用a表示).【解答】解:设正比例函数解析式为y=mx,反比例函数解析式为y=,A点坐标为(x,a),∵两函数图象都经过点A,∴a=mx,a=,∴mn=a2.故答案为:a2.二、选择题(本大题共有4题,每题3分,满分12分)15.(3分)下列方程中,一元二次方程的是()A.=0 B.x2+1=0 C.y+x2=1 D.=1【解答】解:A、=0是无理方程,故A错误;B、x2+1=0是一元二次方程,故B正确;C、y+x2=1是二元二次方程,故C错误;D、=1是分式方程,故D错误;故选:B.16.(3分)函数y=kx与y=﹣在同一坐标系内的大致图象是()A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(2)和(4)【解答】解:(1)∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴正比例函数y=kx的图象经过二、四象限,故错误;(2)∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴正比例函数y=kx的图象经过二、四象限,故正确;(3)∵由反比例函数的图象在二、四象限可知,﹣k<0,∴k>0,∴正比例函数y=kx的图象经过一、三象限,故错误;(4)∵由反比例函数的图象在二、四象限可知,﹣k<0,∴k>0,∴正比例函数y=kx的图象经过二、四象限,故正确;故选:D.17.(3分)下列各命题中,真命题的是()A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【解答】解:A、每个命题都有逆命题,所以A选项正确;B、每个定理不一定有逆定理,所以B选项错误;C、真命题的逆命题不一定是真命题,所以C选项错误;D、假命题的逆命题不一定是假命题,所以D选项错误.故选:A.18.(3分)如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,以下判断正确的个数有()①DE=AC;②DE⊥AC;③∠EAF=∠ADE;④∠CAB=30°.A.1个 B.2个 C.3个 D.4个【解答】解:点D是AB的中点,则AD=,∵AB=2BC,∴AD=BC,∵EA⊥AB,CB⊥AB,∴∠B=∠EAB=90°,在△AED与△BAC中,,∴△AED≌△BAC,∴∠E=∠CAB,DE=AC,∴①正确;∵∠E+∠EDA=90°,∴∠FAD+∠EDA=90°,∴∠AFD=180°﹣(∠FAD+∠EDA)=90°,∴DE⊥AC,∴②正确;∵∠EAF与∠ADE都是∠E的余角,∴∠EAF=∠ADE,∴③正确;∵BC是AB的一半,而不是AC的一半,故∠CAB不等于30°,∴④错误;故选:C.三、(本大题共有7题,满分60分)19.(7分)计算:﹣(4﹣).【解答】解:原式=×4﹣4×+3=2﹣+3=4.20.(7分)解方程:x(x﹣)=3x﹣4.【解答】解:去括号得:x2﹣4x=3x﹣4,去分母得:3x2﹣8x=6x﹣8,即3x2﹣14x+8=0,分解因式得:(x﹣4)(3x﹣2)=0,解得x1=4,x2=.21.(7分)甲、乙两车分别从A地将一批物资运往B地,两车离A地的距离s (千米)与其相关的时间t(小时)变化的图象如图所示.读图后填空:(1)A地与B地之间的距离是60千米;(2)甲车由A地前往B地时所对应的s与t的函数解析式是s=20t;(3)甲车出发 1.5小时后被乙车追上;(4)甲车由A地前往B地比乙车由A地前往B地多用了2小时.【解答】解:(1)A地与B地之间的距离是60千米;(2)甲车由A地前往B地时所对应的s与t的函数解析式是乙车由A地前往B 地时所对应的s与t的函数解析式,代入(3,60),得s=20t;(3)由题意可知20t=30,解得t=1.5.所以甲车出发1.5小时后被乙车追上;(4)甲车由A地前往B地比乙车由A地前往B地多用了3﹣1=2小时.22.(8分)如图,已知AE平分∠BAC,ED垂直平分BC,EF⊥AC,EG⊥AB,垂足分别是点F、G.求证:(1)BG=CF;(2)AB=AF+CF.【解答】证明:(1)连接CE、BE,∵ED垂直平分BC,∴EC=EB,∵AE平分∠CAB,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△CFE和Rt△BGE中,,∴Rt△CFE≌Rt△BGE,∴BG=CF;(2)∵AE平分∠BAC,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△AGE和Rt△AFE中,,∴Rt△AGE≌Rt△AFE,∴AG=AF,∵AB=AG+BG,∴AB=AF+CF.23.(8分)如图,已知四边形ABCD中,AB=24,AD=15,BC=20,CD=7,∠ADB+∠CBD=90°.(1)在BD的同侧作△A′BD,使△A′BD≌△ADB(点A与点A′不重合)(不写作法和结论,保留作图痕迹);(2)求四边形ABCD的面积.【解答】解:(1)如图1所示,△A′BD 即为所求;(2)由(1)中作图得知:∠A′BD=∠ADB ,A′B=AD=15,A′D=AB=24,如图1,连接A′C ,∵∠ADB +∠CBD=90°,∴∠A′BD +∠CBD=90°,即∠A′BC=90°,∴A′B 2+BC 2=A′C 2,∵A′B=15,BC=20,∴A′C=25,在R t △A′CD 中,A′D=24,CD=7,∴A′D 2+CD 2=576+49=625,∵A′C 2=625,∴A′D 2+CD 2=A′C 2.∴△A′D C 是直角三角形,且∠A′DC=90°, ∴,∵S △A'BD =S △ABD ,∴S 四边形ABCD =S 四边形A'BCD =234.24.(11分)如图,已知直线y=kx (k >0)与双曲线y=交于A 、B 两点,且点A 的纵坐标为4,第一象限的双曲线上有一点P (1,a ),过点P 作PQ ∥y 轴交直线AB 于点Q .(1)直接写出k 的值及点B 的坐标;(2)求线段PQ 的长;(3)如果在直线y=kx 上有一点M ,且满足△BPM 的面积等于12,求点M 的坐标.【解答】解:(1)∵A 在双曲线y=交于,且A 的纵坐标为4,∴A 坐标为(2,4),代入直线y=kx ,可得4=2k ,解得k=2,又A 、B 关于原点对称,∴点B 的坐标为(﹣2,﹣4).(2)∵点P (1,a )在双曲线上, ∴代入,可得点P 的坐标为(1,8).∵PQ ∥y 轴,且点Q 在直线AB 上,∴可设点Q 的坐标为(1,b ).代入y=2x ,得点Q 的坐标为(1,2).∴PQ=6.(3)设点M 的坐标为(m ,2m ).S △BPQ =.①当点M 在BQ 的延长线上时,S △BPM =S △BPQ +S △MPQ ,,m=2. 点M 的坐标为(2,4).②当点M 在QB 的延长线上时,S △BPM =S △MPQ ﹣S △BPQ ,,m=﹣6.点M的坐标为(﹣6,﹣12).综上所述:点M的坐标为(2,4),(﹣6,﹣12).25.(12分)如图,在△ABC中,∠ACB=90°,D是AB的中点,CD=3,过点A作∠CAE=∠B,交边CB于点E,交线段CD于点H.(1)求证:AE⊥CD;(2)设AC=x,CH=y,求y关于x的函数解析式及定义域;(3)当AE=CD时,求CH的长.【解答】(1)证明:∵∠ACB=90°,D是AB的中点,∴CD=BD,∴∠B=∠DCB,又∵∠CAE=∠B,∴∠DCB=∠CAE,∵∠DCB+∠ACD=90°,∴∠CAE+∠ACD=90°,又∵∠CAE+∠ACD+∠AHC=180°,∴∠AHC=90°.即AE⊥CD,(2)解:∵CD=3,∴AD=3.在Rt△ACH中,由勾股定理得:AH2=x2﹣y2,在Rt△ADH中,由勾股定理得:AH2=32﹣(3﹣y)2,∴x2﹣y2=32﹣(3﹣y)2,得到,(0<x<);(3)解:过点D作DG⊥BC,垂足为G,∵AE⊥CD,∴∠CAH+∠ACH=∠ACH+∠DCG=90°,∴∠CAH=∠DCG,在△ACE与△CGD中,,∴△ACE≌△CGD,∴CG=AC=x,∵CD=BD,DG⊥BC,∴CB=2CG=2x,在Rt△ABC中,由勾股定理得:x2+(2x)2=62,解得:,∴,即.附赠数学基本知识点1 知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列根式中,是最简二次根式的是()A。

$\frac{1}{2}$ $\sqrt{2}$ B。

3 $\sqrt{2}$ C。

8 D。

12 $\sqrt{2}$2.下列计算正确的是()A。

3+2=5 B。

3×2=6 C。

12-3=9 D。

8÷2=43.下列各点在函数y=2x的图象上的是()A。

(2,-1) B。

(-1,2) C。

(1,2) D。

(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。

1,1,2 B。

2,3,4 C。

2,3,5 D。

3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。

甲比乙的成绩稳定 B。

乙比甲的成绩稳定 C。

甲、乙两人的成绩一样稳定 D。

无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。

$\sqrt{33}$ B。

6 C。

4 D。

$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。

y1>y2 B。

y1=y2 C。

y1<y2 D。

无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。

4cm B。

5cm C。

6cm D。

8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。

4cm B。

5cm C。

6cm D。

8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。

2014-2015学年八年级第一学期期中质量调研检测数学试(含答案)

2014-2015学年八年级第一学期期中质量调研检测数学试(含答案)
3.下列各数中,无理数是(▲)
A.3.14B. C. D.
4.如图,AF=DC,BC∥EF,只需补充一个条件
,就可得△ABC≌△DEF.下列条件中
不符合要求的是(▲)
A.BC=EFB.AB=DE
C.∠B=∠ED.AB∥DE
5.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性
则DE=.
16.如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB
上的两个动点,点C是线段PQ的中点,且PQ=4.则动点C
运动形成的路径长是.
三、解答题(本大题共8小题,共68分)
17.(6分)写出3个无理数与3个负实数,分别填入下列的集合中,且使两集合重叠部分中的数有且只有一个.
18.(7分)如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转
7.3.8.<.9.-4.10.- .11.5.
12.35°.13.60.14. .15. .16.π.
三、解答题(本大题共9题,68分)
17.答案不唯一,填对一个处得2分,共6分
18.证明:∵S梯形ABEF= (EF+AB)·BE= (a+b)·(a+b)= (a+b)2……2分
∵Rt△CDA≌Rt△CGF,∴∠ACD=∠CFG
∵∠CFG+∠GCF=90°,∴∠ACD+∠GCF=90°
即∠ACF=90°………………………………3分
∵S梯形ABEF=S△ABC+S△CEF+S△ACF
∴S梯形ABEF= ab+ ab+ c2………………………………5分
∴ (a+b)2= ab+ ab+ c2…………………………6分
∴a2+2ab+b2=2ab+c2
= ×5×2+ ×5×1……………7分

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2014上海市中考数学模拟试卷

2014上海市中考数学模拟试卷

上海市中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,满分36分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错或不选得0分)1.(3分)(2013•黄埔区模拟)﹣的绝对值是()A.B.C.﹣6 D.6﹣考点:绝对值分析:根据负数的绝对值是它的相反数解答.解答:解:|﹣|=.故选B.点评:本题考查了绝对值:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•黄埔区模拟)“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000是()A.568×103B.56.8×104C.5.68×105D.0.568×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000亿有6位,所以可以确定n=6﹣1=5.解答:解:568 000=5.68×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.(3分)(2013•黄埔区模拟)下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:①平行四边形,不是轴对称图形,是中心对称图形,故本小题错误;②正方形,既是轴对称图形又是中心对称图形,故本小题正确;③等腰梯形,是轴对称图形,不是中心对称图形,故本小题错误;④菱形,既是轴对称图形又是中心对称图形,故本小题正确;⑤正六边形,既是轴对称图形又是中心对称图形,故本小题正确.综上所述,既是轴对称图形又是中心对称图形的有②④⑤共3个.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.4.(3分)(2013•黄埔区模拟)一个几何体的三视图完全相同,该几何体可以是()A.圆锥B.圆柱C.长方体D.球考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.5.(3分)(2013•黄埔区模拟)下列运算正确的是()A.x3•x5=x15B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣12考点:完全平方公式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法求解.解答:解:A、x3•x5=x3+5=x8,故本选项错误;B、(2x2)3=23•x2×3=8x6,故本选项正确;C、x9÷x3=x9﹣3=x6,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.点评:本题考查了同底数幂的乘法,积的乘方,同底数幂的除法,以及完全平方公式,熟记性质与公式,理清指数的变化是解题的关键.6.(3分)(2013•黄埔区模拟)如图,梯形ABCD中AD∥BC,对角线AC、BD相交于点O,若AO:CO=2:3,AD=4,则BC等于()A.12 B.8C.7D.6考点:相似三角形的判定与性质;梯形.专题:探究型.分析:先根据相似三角形的判定定理得出△AOD∽△COB,再由相似三角形的对应边成比例即可得出BC的长.解答:解:∵梯形ABCD中AD∥BC,∴∠ADO=∠OBC,∠AOD=∠BOC,∴△AOD∽△COB,∵AO:CO=2:3,AD=4,∴==,=,解得BC=6.故选D.点评:本题考查的是相似三角形的判定与性质,先根据相似三角形的判定定理得出△AOD∽△COB是解答此题的关键.7.(3分)(2013•黄埔区模拟)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)考点:二次函数的性质.分析:把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.解答:解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,所以,顶点坐标为(2,1).故选B.点评:本题考查了二次函数的性质,把解析式配方写成顶点式解析式是解题的关键,本题也可以利用顶点公式求解.8.(3分)(2013•黄埔区模拟)分式方程=1的解是()A.﹣1 B.1C.8D.15考点:解分式方程.分析:观察可得最简公分母是(x﹣8),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣8),得7=x﹣8,解得x=15.检验:把x=15代入(x﹣8)=7≠0,即x=15是原分式方程的解.则原方程的解为:x=15.故选D.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.9.(3分)(2013•黄埔区模拟)在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是()A.B.C.D.考点:概率公式.分析:由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是红球的有2种情况,利用概率公式即可求得答案.解答:解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球,∴从口袋中任意摸出一个球是红球的概率是:=.故选B.点评:此题考查了概率公式的应用.此题比较简单,注意概率=所求情况数与总情况数之比.10.(3分)(2013•黄埔区模拟)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为()A.外离B.相交C.内切D.外切考点:圆与圆的位置关系.分析:由两圆的半径分别是3和4,圆心距的长为1,利用两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别是3和4,圆心距的长为1,∵4﹣3=1,∴两圆的位置关系为内切.故选C.点评:此题考查了圆与圆的位置关系.注意解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.11.(3分)(2013•黄埔区模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()D.πA.10πB.C.π考点:弧长的计算;勾股定理.专题:压轴题;网格型.分析:由题意可知点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长,故在直角三角形ACD中,由AD及DC的长,利用勾股定理求出AC的长,然后利用弧长公式即可求出.解答:解:如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC==,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l==π.故选C点评:此题考查了弧长公式,以及勾股定理,解本题的关键是根据题意得到点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长.12.(3分)(2013•黄埔区模拟)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D 的位置,则⊙O自转了()A.2周B.3周C.4周D.5周考点:直线与圆的位置关系;等边三角形的性质.专题:压轴题.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.解答:解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选C.点评:本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2013•黄埔区模拟)因式分解:﹣m2+n2=(n+m)(n﹣m).考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式即可.解答:解:﹣m2+n2,=n2﹣m2,=(n+m)(n﹣m).故答案为:(n+m)(n﹣m).点评:本题考查了利用平方差公式分解因式,熟记平方差公式的结构,两个平方项且符号相反是解题的关键.14.(3分)(2013•黄埔区模拟)=2.考点:分母有理化.分析:观察式子的特点,分子可化为×,可以直接约分.解答:解:===2,故答案为:2.点评:此题主要考查了分母有理化,注意观察式子的特点是解题的关键,通过约分的方法进行分母有理化.15.(3分)(2013•黄埔区模拟)在函数y=中,自变量x的取值范围是x≥.考点:函数自变量的取值范围;二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.解答:解:根据题意得:2x﹣1≥0,解得,x≥.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.(3分)(2013•黄埔区模拟)一个多边形的每一个外角都等于18°,它是二十边形.考点:多边形内角与外角.分析:多边形的外角和是固定的360°,依此可以求出多边形的边数.解答:解:∵一个多边形的每个外角都等于18°,∴多边形的边数为360°÷18°=20.则这个多边形是二十边形.故答案为:二十.点评:本题主要考查了多边形的外角和定理:多边形的外角和是360°.17.(3分)(2013•黄埔区模拟)一组数据:1、﹣1、0、4的方差是.考点:方差.专题:计算题;压轴题.分析:先求出该组数据的平均数,再根据方差公式求出其方差.解答:解:∵=(1﹣1+0+4)=1,∴S2=[(1﹣1)2+(1+1)2+(0﹣1)2+(4﹣1)2]=(4+1+9)=,故答案为.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.(3分)(2013•黄埔区模拟)如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是(,﹣).考点:一次函数的性质;垂线段最短.专题:计算题;压轴题.分析:作AB′⊥BB′,B′即为当线段AB最短时B点坐标,求出AB′的解析式,与BB′组成方程组,求出其交点坐标即可.解答:解:设AB′解析式为y=kx+b,∵AB′⊥BB′,BB′解析式为y=2x﹣4,∴2k=﹣1,k=﹣,于是函数解析式为y=﹣x+b,将A(﹣1,0)代入y=﹣x+b得,+b=0,b=﹣,则函数解析式为y=﹣x﹣,将两函数解析式组成方程组得,,解得,故B点坐标为(,﹣).故答案为(,﹣).点评:本题考查了一次函数的性质和垂线段最短,找到B′点是解题的关键,同时要熟悉待定系数法求函数解析式.三、解答题(本大题共8题,满分66分.解答时应写出必要的文字说明、演算步骤或推理过程)19.(6分)(2013•黄埔区模拟)计算:4cos45°+(π+3)0﹣+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据45°角的余弦等于,任何非0数的0次幂等于1,二次根式的化简,有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:4cos45°+(π+3)0﹣+()﹣1,=4×+1﹣2+6,=2﹣2+1+6,=7.点评:本题考查了实数的运算,主要有特殊角的三角函数值,零指数幂,二次根式的化简,负整数指数幂,是基础运算题,特殊角的三角函数值容易混淆,需熟练掌握.20.(6分)(2013•黄埔区模拟)先化简,再求值:,其中a=5.考点:分式的化简求值.分析:先将括号内的部分通分,再将除式进行因式分解,然后把除法转化为乘法解答.解答:解:原式=•=•=当a=5时,==.点评:本题考查的是分式的化简求值,要知道,分式的通分、约分、因式分解以及分式的除法法则.21.(8分)(2013•黄埔区模拟)已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.考点:作图—复杂作图;全等三角形的判定.专题:压轴题.分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.解答:解:(1)作出∠B的平分线BD;(2分)作出AB的中点E.(4分)(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,(6分)∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).(8分)点评:此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.(8分)(2013•黄埔区模拟)去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)本次调查的样本容量是50,调查中“了解很少”的学生占50%;(2)补全条形统计图;(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议.考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据扇形图可知“了解很少”占50%,用“了解很少”的频数除以“了解很少”的百分比即可得到样本容量;(2)样本容量乘以“基本了解”百分比即可得到“基本了解”的频数;(3)求出样本中“很了解”占样本容量的百分比,用此百分比乘以900,即可得到该校约有多少名学生“很了解”北海的历史文化;(4)根据统计图进行回答,言之有理即可.解答:解:(1)由扇形统计图可知,“了解很少”占50%,样本容量为25÷50%=50人,(2)正确作出图形.(见下图)(3)该校“很了解”北海历史文化的学生约有名×900=90人,(4)不了解和很少了解的约占60%,说明同学们对北海历史文化关注不够,建议加强有关北海历史文化的教育,多种形式的开展有关活动(只要说得有理就给分).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)(2013•黄埔区模拟)某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1)设男生有6x人,则女生有5x人,根据男女生的人数的和是55人,即可列方程求解;(2)设选出男生y人,则选出的女生为(20﹣y)人,根据:①男生人数不少于7人;②女生人数超过男生人数2人以上,即可列出不等式组,从而求得y的范围,再根据y是整数,即可求得y的整数值,从而确定方案.解答:解:(1)设男生有6x人,则女生有5x人.(1分)依题意得:6x+5x=55(2分)∴x=5∴6x=30,5x=25(3分)答:该班男生有30人,女生有25人.(4分)(2)设选出男生y人,则选出的女生为(20﹣y)人.(5分)由题意得:(6分)解之得:7≤y<9∴y的整数解为:7、8.(7分)当y=7时,20﹣y=13当y=8时,20﹣y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.(8分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24.(8分)(2013•黄埔区模拟)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?考点:二次函数的应用;一次函数的应用.专题:压轴题.分析:(1)根据图象可以得到函数经过点(10,20)和(14,160),利用待定系数法即可求得函数的解析式;(2)超市每星期的利润可以表示成x的函数关系式,然后根据函数的性质即可确定.解答:解:(1)设y=kx+b由题意得:,解之得:k=﹣10;b=300.∴y=﹣10x+300.(2)由上知超市每星期的利润:W=(x﹣8)•y=(x﹣8)(﹣10x+300)=﹣10(x﹣8)(x﹣30)=﹣10(x2﹣38x+240)=﹣10(x﹣19)2+1210答:当x=19即定价19元/个时超市可获得的利润最高.最高利润为1210元.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.25.(10分)(2013•黄埔区模拟)如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.考点:切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:(1)首先连接OC,由CD是⊙O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB;(2)①连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长,继而可得⊙O的半径长;②连接CF与BF.由四边形ABCF是⊙O的内接四边形,易证得△DCF∽△DAC,然后根据相似三角形的对应边成比例,求得AF的长,又由AB是⊙O的直径,即可得∠BFA 是直角,利用勾股定理求得BF的长,即可求得tan∠BAE的值.解答:(1)证明:连接OC.(1分)∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,(2分)∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB;(3分)(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°,∵∠1=∠2,∴△ACD∽△ABC,∴,(5分)∵AC2=AD2+CD2=42+82=80,∴AB==10,∴⊙O的半径为10÷2=5.(6分)②连接CF与BF.∵四边形ABCF是⊙O的内接四边形,∴∠ABC+∠AFC=180°,∵∠DFC+∠AFC=180°,∴∠DFC=∠ABC,∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,∴∠2=∠DCF,∵∠1=∠2,∴∠1=∠DCF,∵∠CDF=∠CDF,∴△DCF∽△DAC,∴,(8分)∴DF==2,∴AF=AD﹣DF=8﹣2=6,∵AB是⊙O的直径,∴∠BFA=90°,∴BF==8,∴tan∠BAD=.(10分)点评:此题考查了切线的性质、相似三角形的判定与性质、等腰三角形的性质、圆周角定理以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.26.(12分)(2013•黄埔区模拟)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.考点:反比例函数综合题.专题:计算题;压轴题.分析:(1)过C作CN垂直于x轴,交x轴于点N,由A、B及C的坐标得出OA,OB,CN的长,由∠CAB=90°,根据平角定义得到一对角互余,在直角三角形ACN中,根据两锐角互余,得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等,且AC=BC,利用AAS得到三角形ACN与三角形AOB全等,根据全等三角形的对应边相等可得出CN=0A,AN=0B,由AN+OA求出ON的长,再由C在第二象限,可得出d的值;(2)由第一问求出的C与B的横坐标之差为3,根据平移的性质得到纵坐标不变,故设出C′(m,2),则B′(m+3,1),再设出反比例函数解析式,将C′与B′的坐标代入得到关于k与m的两方程,消去k得到关于m的方程,求出方程的解得到m 的值,即可确定出k的值,得到反比例函数解析式,设直线B′C′的解析式为y=ax+b,将C′与B′的坐标代入,得到关于a与b的二元一次方程组,求出方程组的解得到a 与b的值,即可确定出直线B′C′的解析式;(3)存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,理由为:设Q为GC′的中点,令第二问求出的直线B′C′的解析式中x=0求出y 的值,确定出G的坐标,再由C′的坐标,利用线段中点坐标公式求出Q的坐标,过点Q作直线l与x轴交于M′点,与y=的图象交于P′点,若四边形P′G M′C′是平行四边形,则有P′Q=Q M′,易知点M′的横坐标大于,点P′的横坐标小于,作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x轴于点F,由两直线平行得到一对同位角相等,再由一对直角相等及P′Q=QM′,利用AAS可得出△P′EQ 与△QFM′全等,根据全等三角形的对应边相等,设EQ=FM′=t,由Q的横坐标﹣t表示出P′的横坐标,代入反比例函数解析式确定出P′的纵坐标,进而确定出M′的坐标,根据P′H﹣EH=P′H﹣QF表示出P′E的长,又P′Q=QM′,分别放在直角三角形中,利用勾股定理列出关于t的方程,求出方程的解得到t的值,进而确定出P′与M′的坐标,此时点P′为所求的点P,点M′为所求的点M.解答:解:(1)作CN⊥x轴于点N,∵A(﹣2,0)、B(0,1)、C(d,2),∴OA=2,OB=1,CN=2,∵∠CAB=90°,即∠CAN+∠BAO=90°,又∵∠CAN+∠ACN=90°,∴∠BAO=∠ACN,在Rt△CNA和Rt△AOB中,∵,∴Rt△CNA≌Rt△AOB(AAS),∴NC=OA=2,AN=BO=1,∴NO=NA+AO=3,又点C在第二象限,∴d=﹣3;(2)设反比例函数为y=(k≠0),点C′和B′在该比例函数图象上,设C′(m,2),则B′(m+3,1),把点C′和B′的坐标分别代入y=,得k=2m;k=m+3,∴2m=m+3,解得:m=3,则k=6,反比例函数解析式为y=,点C′(3,2),B′(6,1),设直线C′B′的解析式为y=ax+b(a≠0),把C′、B′两点坐标代入得:,∴解得:;∴直线C′B′的解析式为y=﹣x+3;(3)存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,理由为:设Q是G C′的中点,令y=﹣x+3中x=0,得到y=3,∴G(0,3),又C′(3,2),∴Q(,),过点Q作直线l与x轴交于M′点,与y=的图象交于P′点,若四边形P′G M′C′是平行四边形,则有P′Q=Q M′,易知点M′的横坐标大于,点P′的横坐标小于,作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x轴于点F,∵QF∥P′E,∴∠M′QF=∠QP′E,在△P′EQ和△QFM′中,∵,∴△P′EQ≌△QFM′(AAS),∴EQ=FM′,P′Q=QM′,设EQ=FM′=t,∴点P′的横坐标x=﹣t,点P′的纵坐标y=2•y Q=5,点M′的坐标是(+t,0),∴P′在反比例函数图象上,即5(﹣t)=6,解得:t=,∴P′(,5),M′(,0),则点P′为所求的点P,点M′为所求的点M.点评:此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,勾股定理,坐标与图形性质,利用待定系数法求函数解析式,平移的性质,是一道综合性较强的试题,要求学生掌握知识要全面.。

沪科版八年级数学(上2014-2015)期末测试卷(含答案)

沪科版八年级数学(上2014-2015)期末测试卷(含答案)

八年级数学期末模拟-----NO.2考试时间:120分钟 满分150分一、精心选一选(本大题共10小题,每小题4分,共40分) 1、下列各条件中,能作出惟一的ABC ∆的是 ( ) A 、AB=4,BC=5,AC=10 B 、AB=5,BC=4 40A ︒∠= C 、90A ︒∠=,AB=8 D 、60A ︒∠=,50B ︒∠= ,AB=52、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ).A 、 4cmB 、 5cmC 、9cmD 、 13cm3、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )4、下列语句不是命题的是………………………………………………( ) A 、x 与y 的和等于0吗? B 、不平行的两条直线有一个交点 C 、两点之间线段最短D 、对顶角不相等。

5、在下图中,正确画出AC 边上高的是( ).(A ) (B ) (C ) (D )6、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b < 7、在以下四个图形中。

对称轴条数最多的一个图形是( ).二、细心填一填(本大题共6小题,每小题5分,共30分). 8、写一个图象交y 轴于点(0,-3),且y 随x 的增大而增大的一次函数关系式________ .9、如图(12)在等腰△ABC 中,AB=BC ,∠A=360,BD 平分∠ABC ,问该图中等腰三角形有___个图(14)10、如图13,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”。

2014-2015学年上海市松江区八年级(上)期中数学试卷

2014-2015学年上海市松江区八年级(上)期中数学试卷

2014-2015学年上海市松江区八年级(上)期中数学试卷一、填空题(每题2分,共30分)1.(2分)(2014秋•松江区校级期中)求值:=.2.(2分)(2014秋•松江区校级期中)化简:=.3.(2分)(2014秋•松江区校级期中)如果最简二次根式和是同类二次根式,那么a=.4.(2分)(2014秋•松江区校级期中)不等式(1﹣)x<1的解集为.5.(2分)(2014秋•松江区校级期中)方程x2+2x=0的根是.6.(2分)(2014秋•松江区校级期中)在实数范围内因式分解:3x2﹣x﹣1=.7.(2分)(2014秋•松江区校级期中)如果关于x的一元二次方程2x2+3x+m﹣4=0有一个根是x=1,那么m=.8.(2分)(2014秋•松江区校级期中)函数y=的定义域是.9.(2分)(2015•松江区二模)如果f(x)=,那么f(3)=.10.(2分)(2014秋•松江区校级期中)已知y是x的正比例函数,且当x=2时,y=1,则y关于x的函数解析式是.11.(2分)(2014秋•松江区校级期中)已知正比例函数y=(5m﹣3)x,如果y随着x的增大而减小,那么m的取值范围为.12.(2分)(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.13.(2分)(2014秋•松江区校级期中)一种药品经过两次降价后,每盒的价格由原来的50元降至32元,那么平均每次降价的百分率是.14.(2分)(2014秋•松江区校级期中)已知等腰△ABC的三边为a、b、c,其中a=2,且b,c的长是关于x的方程x2﹣8x+m﹣1=0的两个根,则m=.15.(2分)(2014秋•松江区校级期中)若a>0,b>0,且(﹣3)=2(﹣2),则的值为.二、选择题(每题3分,共15分)16.(3分)(2011秋•东丰县期末)下列各式中,是最简二次根式的是()A.B.C.D.17.(3分)(2014秋•松江区校级期中)若等式=•成立,则x的取值范围是()A.x≥﹣3B.x≥3C.﹣3≤x≤3D.不能确定18.(3分)(2014秋•松江区校级期中)在下列方程中,一定是关于x的一元二次方程的是()A.x(x+3)=﹣1+x2B.ax2+5x+3=0C.3x2++1=0D.x2﹣2=6x19.(3分)(2014秋•松江区校级期中)在水管放水的过程中,放水的时间x(分)与流出的水量y(立方米)是两个变量.已知水管每分钟流出的水量是0.2立方米,放水的过程共持续10分钟,则y关于x 的函数图象是()A.B.C.D.20.(3分)(2009•株洲)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c三、简答题(每题4分,共20分)21.(5分)(2014秋•松江区校级期中)计算:+6﹣4x.22.(5分)(2014秋•松江区校级期中)计算:÷×.23.(5分)(2014秋•松江区校级期中)解方程:3x2+1=2x.24.(5分)(2014秋•松江区校级期中)用配方法解方程:2x2+x﹣4=0.四、解答题(25-27每题6分,第28题7分,第29题10分,共35分)25.(6分)(2014秋•松江区校级期中)已知:x=,求x2﹣2x+2的值.26.(6分)(2014秋•松江区校级期中)在关于x的方程2x2﹣4x+k=1中,根的判别式的值是8,求k的值,并解这个方程.27.(7分)(2014秋•松江区校级期中)已知正比例函数y=kx(k≠0)的图象经过第一、三象限,且过点(k,k+2),求这个正比例函数的解析式.28.(8分)(2014秋•松江区校级期中)如图,要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙垂直的一边要开一扇2米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库的宽和长分别为多少米?29.(8分)(2014秋•松江区校级期中)如图(a)所示,在平面直角坐标系中,点A的坐标为(﹣9,0),直线L的解析式为:y=﹣2x,在直线L上有一点B使得△ABO的面积为27.(1)求点B的坐标;(2)如图(b),在当点B在第二象限时,四边形OABC为直角梯形,OA△BC,求梯形OABC的面积;(3)在(2)的条件下是否存在直线m经过坐标原点O,且将直角梯形OABC的面积分为1:5的两部分?若存在请直接写出直线m的解析式;若不存在请说明理由.2014-2015学年上海市松江区八年级(上)期中数学试卷参考答案一、填空题(每题2分,共30分)1.32.2-3.44.x>-1-5.x1=0,x2=-26.3(x+)(x-)7.-1 8.x≥9.10.y=x11.m<12.k<13.20%14.1715.0或二、选择题(每题3分,共15分)16.C17.B18.D19.D20.A三、简答题(每题4分,共20分)21.22.23.24.四、解答题(25-27每题6分,第28题7分,第29题10分,共35分)25.26.27.28.29.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年上海市八年级(上)期末数学模拟试卷(6)一、选择题(每题4分,共40分)在每小题给出的四个选项中,只有一项是符合题意的,把所选项前的代号填在题后的括号内.1.(4分)若有意义,则x能取的最小整数是()A.﹣4 B.﹣1 C.1 D.02.(4分)若x=+1,则x+的值为()A.﹣2 B.0 C.2 D.3.(4分)已知一个三角形的两边长是方程x2﹣8x+15=0的两根,则第三边y的取值范围是()A.y<8 B.3<y<5 C.2<y<8 D.无法确定4.(4分)王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%5.(4分)已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:16.(4分)已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.B.3 C.+2 D.7.(4分)如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定8.(4分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形9.(4分)顺次连接等腰梯形各边中点所得的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形10.(4分)矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60二、填空题(每题5分,计20分)11.(5分)若x=﹣3,则的值为.12.(5分)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=.13.(5分)菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.14.(5分)两个正方形,小正方形的边长比大正方形的边长的一半多4cm,大正方形的面积比小正方形的面积的2倍少32cm2,则大、小两个正方形的边长依次是.三、解答题(共90分)15.(8分)已知:.16.(8分)已知关于x的方程x2+kx﹣2=0的一个解与方程解相同.(1)求k的值;(2)求方程x2+kx﹣2=0的另一个解.17.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?18.(8分)如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.19.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?20.(10分)温州市处于东南沿海,夏季经常遭受台风袭击,一次,温州气象局测得台风中心在温州市A的正西方向300千米的B处,以每小时10千米的速度向东偏南30°的BC方向移动,距台风中心200千米的范围是受台风严重影响的区域.试问:(1)台风中心在移动过程中离温州市最近距离是多少千米?(2)温州市A是否受台风影响?若不会受到,请说明理由;若会受到,求出温州市受台风严重影响的时间.21.(12分)(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图(1).它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图(2),请你将它分割成6块,再拼合成一个正方形.(要求:先在图(2)中画出分割线,再画出拼成的正方形并标明相应数据)22.(12分)某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示.(1)问长方形的长应为多少?(2)请你在长方框上点出数字1的位置,并说明确定该位置的方法;(3)请你在长方框上点出钟面上其余数字的位置,并写出相应的数字(说明:要画出必要的,反映解题思路的辅助线).23.(14分)阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC 中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.2014-2015学年上海市八年级(上)期末数学模拟试卷(6)参考答案与试题解析一、选择题(每题4分,共40分)在每小题给出的四个选项中,只有一项是符合题意的,把所选项前的代号填在题后的括号内.1.(4分)若有意义,则x能取的最小整数是()A.﹣4 B.﹣1 C.1 D.0【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:依题意有4x+1≥0,解得x≥﹣.故x能取的最小整数是0.故选D.【点评】本题主要考查了二次根式的意义和性质,注意掌握概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(4分)若x=+1,则x+的值为()A.﹣2 B.0 C.2 D.【分析】把x的值代入后,先分母有理化,再合并.【解答】解:x+=+1+=+1+﹣1=2.故选D.【点评】此题比较简单,直接把已知代入便可解答.3.(4分)已知一个三角形的两边长是方程x2﹣8x+15=0的两根,则第三边y的取值范围是()A.y<8 B.3<y<5 C.2<y<8 D.无法确定【分析】求出方程的两根确定出三角形两条边,即可求出第三边的范围.【解答】解:方程x2﹣8x+15=0,分解因式得:(x﹣3)(x﹣5)=0,可得x﹣3=0或x﹣5=0,解得:x1=3,x2=5,∴第三边的范围为5﹣3<y<5+3,即2<y<8.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.(4分)王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.5.(4分)已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.6.(4分)已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.B.3 C.+2 D.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,∠B=60°,AB=1,则∠A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.【点评】熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理.7.(4分)如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定【分析】因为是直角三角形,所以可以直接运用勾股定理,然后运用圆的面积公式来求解.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2又∵∴S1=π=π•,=()=π•=S1∴S1=S2,故选A.【点评】此题考查的是勾股定理的运用,三角形的直角边之和等于第三边,而且圆的面积公式中R2正好与勾股定理中的平方有联系,因此可将二者结合起来看.8.(4分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.9.(4分)顺次连接等腰梯形各边中点所得的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形【分析】因为等腰梯形的对角线相等,根据三角形中位线定理,所得四边形的各边都相等,所以判定为菱形.【解答】解:如图所示.根据三角形中位线定理,EF=GH=BD;FG=EH=AC.∵ABCD为等腰梯形,∴AC=BD.∴EF=GH=FG=EH.∴EFGH为菱形.故选C.【点评】此题考查了菱形的判定方法、等腰梯形的性质、三角形中位线定理等知识点.菱形的判别方法:①定义;②四边相等;③对角线互相垂直平分.10.(4分)矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60【分析】根据矩形的每一个角都是直角求出∠DAF,再根据翻折变化的性质可得∠DAE=∠EAF,然后求解即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=∠BAD﹣∠BAF=90°﹣60°=30°,由翻折的性质得,∠DAE=∠EAF,∴∠DAE=×30°=15°.故选A.【点评】本题考查了翻折变换的性质,矩形的性质,是基础题,熟记性质各是解题的关键.二、填空题(每题5分,计20分)11.(5分)若x=﹣3,则的值为1.【分析】先将被开方数分解因式,再把x代入二次根式,运用平方差公式进行计算.【解答】解:∵x=﹣3,∴====1.【点评】主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.12.(5分)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=3.【分析】先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【解答】解:∵x1,x2是方程x2+x﹣1=0的两个根,∴x1+x2=﹣=﹣=﹣1,x1•x2===﹣1,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣1)2﹣2×(﹣1)=1+2=3.故答案是:3.【点评】本题考查了根与系数的关系、完全平方公式.解题的关键是先求出x1+x2和x1•x2的值.13.(5分)菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.14.(5分)两个正方形,小正方形的边长比大正方形的边长的一半多4cm,大正方形的面积比小正方形的面积的2倍少32cm2,则大、小两个正方形的边长依次是16,12.【分析】本题的等量关系有两个,即小正方形的边长=大正方形的边长×+4cm,大正方形的面积=小正方形的面积×2﹣32cm2,根据这两个等量关系列出方程组.【解答】解:设小正方形的边长为xcm,大正方形的边长为ycm.根据题意,得解得.故答案为:16,12.【点评】此题主要考查了一元二次方程的应用,找到关键描述语“小正方形的边长比大正方形的边长的一半多4cm”,“大正方形的面积比小正方形的面积的2倍少32cm2”,找到等量关系是解决问题的关键三、解答题(共90分)15.(8分)已知:.【分析】根据二次根式的意义可知x和y的值,把x和y的值代入代数式就可以求出它的值.【解答】解:根据二次根式有意义,得,解得x=,∴,∴﹣=﹣=﹣=﹣=1.【点评】根据二次根式的意义确定x和y值,再把x和y的值代入二次根式进行化简求值.16.(8分)已知关于x的方程x2+kx﹣2=0的一个解与方程解相同.(1)求k的值;(2)求方程x2+kx﹣2=0的另一个解.【分析】(1)分式方程较完整,可先求出分式方程的解,代入整式方程即可求得k的值;(2)根据两根之积=即可求得另一根.【解答】解:(1)由解得x=2,经检验x=2是方程的解.把x=2代入方程x2+kx﹣2=0,得:22+2k﹣2=0,解得:k=﹣1;(2)由(1)知方程x2+kx﹣2=0化为:x2﹣x﹣2=0,方程的一个根为2,则设它的另一根为x2,则有:2x2=﹣2∴x2=﹣1.【点评】此题主要考查方程解的意义,及同解方程、解方程等知识.注意运用根与系数的关系使运算简便.17.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?【分析】仔细分析该题,可画出草图,关键是旗杆高度、绳子长及绳子下端距离旗杆底部8米这三线段长可构成一直角三角形,解此直角三角形即可.【解答】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.18.(8分)如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.19.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?【分析】此题属于经营问题,若设每件衬衫应降价x元,则每件所得利润为(40﹣x)元,但每天多售出2x件即售出件数为(20+2x)件,因此每天赢利为(40﹣x)(20+2x)元,进而可根据题意列出方程求解.【解答】解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.【点评】(1)当降价20元和10元时,每天都赢利1200元,但降价10元不满足“尽量减少库存”,所以做题时应认真审题,不能漏掉任何一个条件;(2)要用配方法将代数式变形,转化为一个完全平方式与一个常数和或差的形式.20.(10分)温州市处于东南沿海,夏季经常遭受台风袭击,一次,温州气象局测得台风中心在温州市A的正西方向300千米的B处,以每小时10千米的速度向东偏南30°的BC方向移动,距台风中心200千米的范围是受台风严重影响的区域.试问:(1)台风中心在移动过程中离温州市最近距离是多少千米?(2)温州市A是否受台风影响?若不会受到,请说明理由;若会受到,求出温州市受台风严重影响的时间.【分析】本题可利用直角三角形性质来解,(1)先作出点A到BC的垂线,就求出了台风中心距A市的最短距离,(2)求出最短距离和200米相比,可以看到最短距离小于200米,可见A市会受到台风影响,然后再向以A为圆心,200千米为半径作弧交BC于E、F,解直角三角形即可.【解答】解:(1)过点A作AD⊥BC于D,由题意得AB=300,∠ABD=30°∴AD=AB=150(km);(3分)(2)∵150<200∴温州市点A受到台风严重影响设台风中心距A点200km处,刚好处在BC上的E,F两点则在Rt△ADE中,AE=200,AD=150∴DE==∴EF=2DE=∴温州市A受台风严重影响的时间为.(6分)【点评】本题考查了直角三角形的性质,解题关键是正确作出辅助线.21.(12分)(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图(1).它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图(2),请你将它分割成6块,再拼合成一个正方形.(要求:先在图(2)中画出分割线,再画出拼成的正方形并标明相应数据)【分析】(1)可设直角三角形的两条直角边,根据勾股定理得到两条直角边的一个关系式,再结合已知条件联立解方程组,求出两条直角边的长.则小正方形的面积即为大正方形的面积减去4个直角三角形的面积;(2)根据面积不变,可知要拼成的正方形的边长是.13=4+9,故可以把它分割成4个直角边分别是2和3的直角三角形和两个长宽分别是1和0.5的矩形.【解答】解:(1)设直角三角形的两条边分别为a、b(a>b),则依题意有:,①两边平方﹣②,得ab=6,(a﹣b)2=(a+b)2﹣4ab=1,∴a﹣b=1,故小正方形的面积为1.(2)【点评】(1)注意正方形的面积即为直角三角形斜边的平方;(2)注意根据图形的面积不变进行分析.22.(12分)某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示.(1)问长方形的长应为多少?(2)请你在长方框上点出数字1的位置,并说明确定该位置的方法;(3)请你在长方框上点出钟面上其余数字的位置,并写出相应的数字(说明:要画出必要的,反映解题思路的辅助线).【分析】(1)根据题意即可求得∠AOC=2∠BOC,即可求得∠BOC=30°,故OB= BC,即可求得长方形的长是宽的倍,即可解题.(2)法一、作∠AOC的平分线,找到与AC的交点;法二、设数字1标在AC上的点D处,求出AD的长.(3)根据(2)中作法,逐一解答.【解答】解:(1)由题意知∠AOC=2∠BOC,∵∠AOC+∠BOC=90°∴∠BOC=30°,∠AOC=60°,∴tanB==,即OB=BC,∴矩形ABCD长是宽的倍,∴长方形的长是20厘米.(2)如图,设长方形对角线的交点为O,数字12、2在长方形中所对应的点分别为A、C,连接OA、OB.方法一:作∠AOC的平分线,交AC于点D,则点D处为数字1的位置.方法二:设数字1标在AC上的点D处,连接OD,则∠AOD=30°,AD=OA•tan30°=,由此可确定数字1的位置;(3)如图所示:【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.23.(14分)阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=150°,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC 中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.【分析】(1)此类题要充分运用旋转的性质,以及全等三角形的性质得对应角相等,对应边相等,得出∠PAP′=60°,再利用等边三角形的判定得出△APP′为等边三角形,即可得出∠APP′的度数,即可得出答案;(2)利用已知首先得出△AEG≌△AFE,即可把EF,BE,FC放到一个直角三角形中,从而根据勾股定理即可证明.【解答】解:(1)将△ABP绕顶点A旋转到△AC P′处,∴△BAP≌△CAP′,∴AB=AC,AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠PAP′=60°,∴△APP′是等边三角形,∴∠APP′=60°,因为B P P′不一定在一条直线上连接PC,∴P′C=PB=4,PP′=PA=3,PC=5,∴∠PP′C=90°,∴△PP′C是直角三角形,∴∠APB=∠AP′C=∠APP′+∠P′PC=60°+90°=150°,∴∠BPA=150°;故答案是:150°,△ABP;(2)把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG.∴AG=AF,BG=CF,∠ABG=∠ACF=45°.∵∠BAC=90°,∠GAF=90°.∴∠GAE=∠EAF=45°,在△AEG和△AFE中,∵∴△AEG≌△AFE.∴EF=EG,又∵∠GBE=90°,∴BE2+BG2=EG2,即BE2+CF2=EF2.【点评】熟练掌握旋转的性质,充分运用全等三角形的性质找到相关的角和线段之间的关系.。

相关文档
最新文档