(完整word版)职高数学第三章函数习题集及答案

合集下载

中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案

中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案

中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案中职数学基础模块测试题《函数、指数函数、对数函数》(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案1.下列各组函数中,表示同一函数的是()x2A.y=与y=xB.y=x与y=x2x C.y=x与y=log2x D.y=x0与y=1 22.下列函数,在其定义域内,既是奇函数又是增函数的是()1A.y=x23.若a>b,则有()B.y=2x C.y=x3 D.y=log x2A.a2>b2B.lg a>lg bC.2a>2bD.a>b4.log81=()A、2B、4C、-2D、-435.计算log1.25+log0.2=()A.-2 B.-1 C.2 D.1226.y=x-a与y=log x在同一坐标系下的图象可能是()ay y y y1O1x1O1x1O1x1O1x-1 A -1B-1C-1D7.设函数f(x)=log x(a>0且a≠1),f(4)=2,则f(8)=()aA.2B.12 C.3 D.13158.2?38?464=()A、4B、287C、22D、89.下列函数在区间(0,+∞)上是减函数的是()A、y=x12B、y=x13C、y=x-2D、y=x2(1) 64 3 + ( 2 + 3)0 = __________;(2)化简: (lg 2 - 1) 2 =__________(5)方程 3 x 2-8 = ( ) -2 x 的解集为________________3 - x- (- ) -2+ 810.75 + (1 - 5) 010.若函数 y = log (ax 2 + 3x + a ) 的定义域为 R ,则 a 的取值范围是()21 3 13A. (-∞, - )B. ( , +∞)C. (- , +∞)D. (-∞, )2 2 22二、填空题(共 5 小题,每题 4 分,共 20 分)2 (- )(3)如果 log x < log ( x - 1) ,那么 a 的取值范围是__________ aa(4)用不等号连接: log 5log 0.20.26 ; 若 3m > 3n ,则 m n13三、解答题(本大题共 6 小题,共计 40 分)1.(6 分)求函数 y = log (2 x - 1) + 的定义域。

中职数学对口升学复习第3部分《函数》历年真题

中职数学对口升学复习第3部分《函数》历年真题

第三部分《函数》历年真题汇总一、选择题1.(2019)下列函数在定义域内为增函数的是( )A. 21x y =B. x 21logC. xy -=2D. x y 1=答案:A2. (2019)下列函数为奇函数的( )A. x x y +=2B. x x y +=3C. 12+=x yD. x y =答案:B3.(2018)下列函数在定义域内为增函数的是 ( )A. Y=x 0.5B. y=lg(0.5x)C. 2xy -=D. y=x1答案:A4.(2018)下列函数为偶函数的是 ( )A. y=sinxB. y=sin(π+x)C. y=sin(π-x)D. y=sin(2π-x) 答案:D6.(2016)下列函数中,既是奇函数又在区间(0,)+∞上单调递减的是 ( )A. xy e =B.1y x =C. 21y x =-+D. 23y x =答案:B7.(2015)下列函数中既是偶函数又在区间(0,+∞)上单调递减的函数是 ( )A. xy 1=B. xe y =C. y=-x 12+D. 23x y =答案:C8.(2014)已知函数f(x)=11x x +-,则f(2)= ( )A. -13B. 13C. 1D. 3答案:D9.(2014)下列函数中既是奇函数又是增函数的是( )A. y=1xB. y=2xC. y=﹣12x D. y=3x 2答案:B10.(2013)下列函数中既是奇函数又是增函数的是( )A. xy 1=B. 22x y =C. x y 31-= D. y=3x答案:D11.(2013)设f(x)=5x 2-4,则f(2)= ( )A. 20B. 10C. 16D. 6答案:C12.(2012)函数xy 2log 11-=的定义域是( )A. [)2,0B. ()2,0C. (]2,0D. []2,0答案:B13.(2012)下列函数中,既是偶函数,又是区间()+∞,0内的增函数是( )A. x y =B. 3x y =C. x x y 22+=D. 2x y -=答案:A 二、填空题1. (2019)⎩⎨⎧<-≥-=0,10,)(x x x x x f ,f[f(1)]=______________.答案:-22.(2018)设⎩⎨⎧<-≥-=0,0,)(x x x x x f 则=-+)1()1(f f答案:0答案:{|2x 1}x x ≥≤或4.(2016)函数y=lg(-652++x x )的定义域是________________答案:(-1,6)5.(2015)已知函数,则f(3)=___________________ 答案:156.(2013)函数1232++=x x y 的最小值是________________________ 答案:237.(2012)已知函数()13-=x x f ,则()=⎪⎭⎫ ⎝⎛⋅212f f答案:25 8.(2011)二次函数122--=x x y 的单调递减区间为 ; 答案:(,1]-∞;三、解答题1.(2019)求函数x x x y 2ln 22+--=的定义域.(6分)22)(+-=x x x f解析:}2|{≥x x2.(2018)求函数)(2x 2ln )(X x f -=的定义域和最大值.(6分)解析:定义域(0,2),当x=1时,y 有最大值03.(2016)已知二次函数满足f(-1)=f(3)=8,且f(0)=5,求此函数的解析式及单调递增区间。

中职数学第三章测试题及答案.docx

中职数学第三章测试题及答案.docx

第三章函数测试卷一、填空题:(每空 2 分)1、函数 f ( x)1 的定义域是 。

x 12、函数 f ( x)3x2 的定义域是。

3、已知函数 f (x) 3x 2,则 f (0) , f (2) 。

4、已知函数 f (x)x 21,则 f (0), f ( 2)。

5、函数的表示方法有三种,即:。

6、点 P 1,3 关于 x 轴的对称点坐标是 ;点 M (2,-3 )关于 y 轴的对称点坐标是;点 N (3, 3) 关于原点对称点坐标是。

7、函数 f (x)2x 2 1 是函数;函数 f ( x) x 3x 是函数;8、每瓶饮料的单价为元,用解析法表示应付款和购买饮料瓶数之间的函数关系 式可以表示为 。

9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。

二、选择题(每题 3 分)1、下列各点中,在函数 y 3x 1的图像上的点是( )。

A .(1,2) B. (3,4 ) C.(0,1)D.(5,6) 2、函数 y 1的定义域为()。

2x 3A .,B.,33 , C. 3 , D.3 ,2 2223、下列函数中是奇函数的是( )。

A . y x 3B.y x 21 C. y x 3D. y x 3 14、函数 y 4x 3 的单调递增区间是 ()。

A .,B.0,C.,0D.0.5、点 P (-2 ,1)关于 x 轴的对称点坐标是( )。

A .(-2 , 1) B. ( 2, 1) C.(2 ,-1) D.(-2 ,-1) 6、点 P (-2 ,1)关于原点 O 的对称点坐标是( )。

A .(-2 , 1) B. ( 2, 1) C.(2 ,-1)D.(-2 ,-1) 7、函数 y2 3x 的定义域是()。

A.222D.2 ,B.,C.,, 33338、已知函数 f (x)x27 ,则 f (3) =()。

A.-16 C. 2三、解答题:(每题 5 分)1、求函数y3x 6 的定义域。

中职数学第3章《函数》单元检测试题及答案【基础模块上册】

中职数学第3章《函数》单元检测试题及答案【基础模块上册】

⎨12020 届中职数学第三章《函数》单元检测(满分 100 分,时间:90 分钟)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10答案1.下列函数与 y=x 表示同一个函数的是()A. y =x2xB.s=tC. y =| x |D. y = ( x ) 22.若函数 f ( x ) = ⎧ 2,x ≤ 0 ,则 f (-2) + f (3) = ()⎩ 3 + x 2, x > 0A.7B.14C. 12D.23.下列函数中既是奇函数又是增函数的是( )A. y = e xB. y =1xC. y = x + 1D. y = x 34. f ( x )=x 2 + bx - 1是偶函数,则常数 b 的值为( )A.-1B.0C. 1D. 2 5.函数 y = 1 的单调减区间是()xA. RB. (-∞,0)∪(0,+∞)C. N *D. (-∞,0)、(0,+∞)6. y = x - a 与 y = log x 在同一坐标系下的图象可能是() ay1O 1x-1y1O 1 x-1y1O x-1y1O 1 x-1A B C D7.若函数 f ( x )=3x 2 + 2(a - 1)x 在则 (-∞,1] 上为减函数,则( )A. a=-2B. a=2C. a ≥ -2D. a ≤ -2 8.函数的 y = - x 2 - 4 x - 7 的顶点坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3) D .(2,3)9.一次函数 y=(3-k)x-k 的图像过第二、三、四象限,则 k 的取值范围是( )A. k > 3B. 0 < k ≤ 3C. 0 ≤ k < 3D. 0 < k < 310.设二次函数图像满足顶点坐标为(2,-1),且图像过点(0,3),则函数的解析式为 ( )A. y = x 2 - 4 x + 3 . y = x 2 + 4 x + 3 C. y = 2 x 2 + 8 x + 3 D. y = 2 x 2 - 8x + 33x -5 二、填空题(共 8 小题,每题 4 分,共 32 分)11.若函数 f ( x ) = ax - 2 ,且 f (2) = 4 ,则 a= 12.当 x= 时,函数 y = x 2 + 4 x + 3 有最小值13.函数 f ( x ) = x 2 - 2 x - 3 的递减区间是,递增区间是1 14.用区间表示函数 y = 的定义域为______________15.已知函数 f(x)=2x-1,则 f[f(2)]=16.若函数 f(x)=3x+m-1 是奇函数,则常数 m=17.已知二次函数 y = ( m - 3) x 2 + ( m - 2) x + 6 为偶函数,则函数的单调增区间为 18.函数 f(x)=(3k-6)x+2 在 R 上是减函数,则 k 的取值范围为三、解答题(6 小题,共 38 分)19.(8 分)求下列函数的定义域:(1) f ( x ) = 1 - x + 3 1 + x (2) f ( x ) =2 x - 1 x - 320.(6 分)f(x)是定义在(0,+∞)上的单调递减函数,且 f(x)<f(x-2),求 x 的取值范围.21.若函数 f(x)=3x-1,g(x)=x 2,求 g[f(x)]的值.22.(6 分)证明:函数 y=2x-3 在(-∞,+∞)上是增函数。

职高数学第三章函数习题集及答案

职高数学第三章函数习题集及答案

3.1函数的概念及其表示法习题练习3.1.11、求y=3x-1的定义域:2、指出下列各函数中,哪个与函数y x=是同一个函数:(1)2xyx=;(2)y;(3)s t=.3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。

参考答案:1、R2、(3)3、6、12、0练习3.1.21、利用“描点法”作出函数xy=的图像,并判断点(16,4)是否为图像上的点2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。

3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。

参考答案:1、作图略,在。

2、y=8x,(x为正整数)3、y=2x(x为正整数)3.2函数的性质习题练习3.2.11、判断函数y=-2x+3的单调性.23、判断函数y=8X+3的单调性.参考答案: 1、减2、左增、右减3、增练习3.2.21、判断y=8X+3的奇偶性:2、判断y=4X 的奇偶性3、判断y=X 2的奇偶性 参考答案:1、非奇非偶函数2、奇函数3、偶函数3.3函数的实际应用举例习题练习3.31、.求()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩的定义域;2、求函数()221,0,,0.x xy f x x x -⎧⎪==⎨>⎪⎩的定义域;3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩的定义域;4、作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩的图像 5、设函数()221,20,1,0 3.x xf x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.6、设函数7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩作出函数的图像 参考答案: 1、-2<=x<=3 2、R3、x>=04、略5、略6、略解斜三角形单元测试题班级: 姓名 学号: 成绩: 一选择题:(每题4分)1、在ABC ∆中,等于则c b a C B A :: ::sin :sin :sin 432=( ) A .4:3:2 B 、2:3:4 C 、1:2:3 D 、1:2:32、在ABC ∆中,060,3==A a 则 ABC ∆的外接圆半径为 ( )A .1B 、 2C 、 4D 、 33、在ABC ∆中,已知060,2,6===A b a 则B 为( )A .450B 、600C 、1350D 450 或1350 4、已知C S b a ABC ∠===则且 ,31268∆的度数是( ) A 、300 B 、600或1200 C 、600 D 、12005、在ABC ∆中,B a A b cos cos =则这个三角形为 ( ) A 、直角三角形 B 、锐角三角形 C 等腰三角形 D 等边三角形、6、在ABC ∆中,若222c b a +>则ABC ∆一定为 ( ) A .直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定 7、在ABC ∆中,已知则 7c , 3,2===b a ABC ∆的面积为 ( )A 、3B 、 1.5C 、323D 、72 8、在等腰ABC ∆中,AB=AC ,底边BC 的长为2,且52=B A sin sin , 则ABC ∆的周长为( )A 、8B 、10C 、12D 、14 9、在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为300、600、则塔高为 ( ) A 、m 3400B 、m 33400 C 、m 3200 D 、 m 200 10、ABC ∆的周长为12+,且C B A sin sin sin 2=+,则边AB 的长为 ( )A 、1B 、2C 、3D 、 2 11、已知圆的半径为1,则圆的内接正六边形的面积为( )A 、3B 、23 C 、 2 D 、 233 12、在ABC ∆中,已知A caB 则 , ,2450==的度数为( ) A 、900 B 、600 C 、450 D 300二、填空题:(每题4分)13、在ABC ∆中,若,ab c b a =-+222则角C 的度数为14、海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成600视角,从B 岛望C 岛和A 岛成750视角,那么B 岛和C 岛间的距离是15、在,则三角形的最大角为中,已知537===c b a ABC , ,∆ 度 16、已知锐角三角形的边长分别为1、3、a 则a 的取值范围是 17、在△ABC 中,内角2B=A+C ,且AB=8,BC=5, 则△ABC 的内切圆的面积为 三、解答题:(每题8分、共32分)18、在ABC ∆中,,6,2,450===c a A 解这个斜三角形。

中职数学第三章测试题及答案资料讲解

中职数学第三章测试题及答案资料讲解

第三章函数测试卷一、填空题:(每空2分)1、函数11)(+=x x f 的定义域是 。

2、函数23)(-=x x f 的定义域是 。

3、已知函数23)(-=x x f ,则=)0(f ,=)2(f 。

4、已知函数1)(2-=x x f ,则=)0(f ,=-)2(f 。

5、函数的表示方法有三种,即: 。

6、点()3,1-P 关于x 轴的对称点坐标是 ;点M (2,-3)关于y 轴的对称点坐标是 ;点)3,3(-N 关于原点对称点坐标是 。

7、函数12)(2+=x x f 是 函数;函数x x x f -=3)(是 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为 。

9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。

二、选择题(每题3分)1、下列各点中,在函数13-=x y 的图像上的点是( )。

A .(1,2) B.(3,4) C.(0,1) D.(5,6)2、函数321-=x y 的定义域为( )。

A .()+∞∞-, B.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,Y C.⎪⎭⎫⎢⎣⎡+∞,23 D. ⎪⎭⎫ ⎝⎛+∞,23 3、下列函数中是奇函数的是( )。

A .3+=x y B.12+=x y C.3x y = D.13+=x y4、函数34+=x y 的单调递增区间是( )。

A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.05、点P (-2,1)关于x 轴的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)6、点P (-2,1)关于原点O 的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)7、函数x y 32-=的定义域是( )。

A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C. ⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 8、已知函数7)(2-=x x f ,则)3(-f =( )。

中职数学基础模块(上册)基础练习-第三章函数

中职数学基础模块(上册)基础练习-第三章函数

第三章 函数第三章 第一课时 函数的概念【基础知识·一定要看】1.函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有__________的数 f x 和它对应,那么就称:f A B 为从集合A 到集合B 的一个函数.记作: y f x ,x A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {|}f x x A 叫做函数的值域. 2.求函数定义域的常用方法: (1)分母不为零;(2)偶次根式,则被开方数大于或等于零; (3)0的0次没有意义;(4)对数的真数大于零;(还没学)3.相同函数:个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.4.分段函数:如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数. 一、选择题1.在下面四个图中,可表示函数 y f x 的图象的可能是( )A. B. C. D.2.函数1()f x x的定义域是( ) A.[2,0)(0,)B.[2,) C.RD.(,0)(0,)3.下列每组中的两个函数是同一函数的是( )A.1y 与0y x ; B.y y x ;C.y x 与2y;D.y x 与y4. 23,12,1x x f x x x ,则(2)f 等于( )A.-2 B.0C.1D.65.函数 2112f x x x, 0,4x 的值域( )A. 0,4 B. 1,5 C. 1,4D.1,526.已知 2146f x x ,则 5f 的值为( ) A.26B.20C.18D.167.已知函数 2,32,3x x f x x x .则 3f f ( )A.1 B.4 C.9 D.16二、填空题8.函数()1f x 的定义域为 . 9.若 234f x x Bx ,且 112f ,则B = . 10.已知函数()y f x 的表达式4()1f x x,若()2f a ,则实数 a . 11.二次函数 22f x x x , 1,1x ,则函数 f x 在此区间上的值域为 . 三、解答题12.已知函数 1f x ax x过点(1,5),求a 的值.第三章 第二课时 函数的表示方法【基础知识·一定要看】1.函数的三种表示方法:①待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.②换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.常见的几种基本初等函数①正比例函数(0)y kx k ②一次函数(0)y kx b k ③反比例函数(0)ky k x④二次函数2(0)y ax bx c a 一、选择题1.已知(21)44f x x ,则(1)f 的值为( ) A.2B.4C.6D.82.函数 y f x 的图象如图所示,则 9f ( ) A.5 B.4C.3D.23.已知 212f x x x ,则 f x ( ) A.2xB.21xC.21xD.22x4.已知 f x 是反比例函数,且(3)1f ,则 f x 的解析式为( ) A. 3f x xB. 3f x xC. 3f x xD. 3f x x5.若函数 f x 和 g x 分别由下表给出: 则 1g f ( ) A.4 B.3C.2D.16.已知 32f x x ,则 21f x 等于( ) A.32xB.61x C.21xD.65x7.已知()f x 是一次函数,且(1)35f x x ,则()f x 的解析式为( ) A.()32f x xB.()32f x xC.()23f x xD.()23f x x二、填空题8.已知 22143f x x ,则 f x .9.已知函数 f x 对于任意的x 都有 212f x x f x ,则 f x . 10.已知等腰三角形的周长为18,底边长为x ,腰长为y ,则y 关于x 的函数关系式为 . 三、解答题11.已知函数 224f x x x . (1)求 0f ; (2)求 f x 的解析式.第三章 第三课时 函数的性质【基础知识·一定要看】1.函数的单调性 ①单调函数的定义 自左向右看图象是上升的自左向右看图象是下降的②证明函数单调性的步骤第一步:取值.设12x x ,是()f x 定义域内一个区间上的任意两个自变量,且12x x ; 第二步:变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; 第三步:定号.判断差的正负或商与1的大小关系; 第四步:得出结论. 2.函数的奇偶性 ①函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为奇函数. ②奇偶函数的图象与性质偶函数:函数()f x 是偶函数 函数()f x 的图象关于y 轴对称; 奇函数:函数()f x 是奇函数 函数()f x 的图象关于原点中心对称;若奇函数()y f x 在0x 处有意义,则有(0)0f .③用定义判断函数奇偶性的步骤第一步:求函数()f x 的定义域,判断函数的定义域是否_______________,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;第二步:求()f x ,若 f x f x ,则()f x 是奇函数;若()f x =()f x ,则()f x 是偶函数;若()()f x f x ,则()f x 既不是奇函数,也不是偶函数;若()()f x f x 且 f x f x ,则()f x 既是奇函数,又是偶函数.1.若函数 1y a x b ,x R 在其定义域上是增函数,则( ) A.1aB.1aC.0bD.0b2.函数 f x 在R 上是减函数,则有( ) A. 25f fB. 25f fC. 25f fD. 25f f3.下列函数中,既是偶函数又在 0, 上单调递增的函数是( ) A.y xB.1y xC.21y xD.1y x4.若偶函数 f x 在 ,1 上是减函数,则( ) A. 2.513f f f B. 1 2.53f f f C. 3 2.51f f fD. 31 2.5f f f5.函数 f x 是定义在 0, 上的增函数,则满足 1213f x f的x 的取值范围是( ) A.12,33B.12,33C.12,23D.12,236.函数22y x x 单调减区间是( ) A.1,2B. 1,C.1,2D. ,【填空】7.已知 f x 是偶函数, 12f ,则 11f f .8.函数()y f x 是定义在R 上的增函数,且 29f m f m ,则实数m 的取值范围是 .9.函数()y f x 是定义在R 上的奇函数,当0x 时,3()f x x x ,则(2)f .10.已知 y f x 在定义域 0,1上是减函数,且 121f a f a ,则实数a 的取值范围 .11.已知函数2()()2f x x m .(1)若函数()f x 的图象过点(2,2),求函数y ()f x 的单调递增区间; (2)若函数()f x 是偶函数,求m 值.12.已知函数 1f x x x(1)判断 f x 的奇偶性并说明理由; (2)判断 f x 在 0,1上的单调性并加以证明.第三章 第四课时 函数的应用一、选择题1.据调查,某存车处(只存放自行车和电动车)在某天的存车量为400辆次,其中电动车存车费是每辆一次2元,自行车存车费是每辆一次1元.若该天自行车存车量为x 辆次,存车总收入为y 元,则y 关于x 的函数关系式是( ) A. 4000400y x x B. 8000400y x x C. 4000400y x xD. 8000400y x x2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (立方米)的反比例函数,其图像如图所示,则这个函数的解析式为( )A.69P VB.96P VC.69P VD.96P V3.某物体一天中的温度T 是时间t 的函数:3()360T t t t ,时间的单位是小时,温度的单位是C ,0 t 表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为( ) A.18CB.8CC.0CD.4C二、填空题4.若某一品种的练习册每本2.5元,则购买x 本的费用y 与x 的函数关系是 . 5.某社区超市的某种商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x ,那么该商品的日利润最大时,当日售价为 元.三、解答题6.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本 (元)是印数 (册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册?x x7.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为 min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?。

中职数学基础模块上册第三章《函数》单元检测试题及参考答案

中职数学基础模块上册第三章《函数》单元检测试题及参考答案

中职数学第三章《函数》单元检测(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各组的两个函数,表示同一个函数的是( )A.x x y 2=与x y =B.2xx y =与x y 1= C.||x y =与x y = D.2)(x y =与x y =2.若函数22,0()3,0x f x x x ≤⎧=⎨+>⎩ ,则=+-)3()2(f f ( ) A.7 B.14 C. 12 D.23.下列函数中既是奇函数又是增函数的是( )A.23x y =B. xy 1= C. 1+=x y D.3x y = 4.一次函数y=2x+1的图像不经过的象限是( )A. 第一B. 第二C. 第三D. 第四5.函数1y x=的单调减区间是( )A. RB. (-∞,0)∪(0,+∞) C. N * D. (-∞,0)、(0,+∞) 6. y x a =-与log a y x =在同一坐标系下的图象可能是( )7.已知函数()21f x x +=,则)2(+x f =( )A. 2x +1B. 2x +5C. x +2D. x8.一次函数b kx y +=的图像关于原点对称,则二次函数c bx ax y ++=2)0(≠a 的图像关于( )对称。

A.x 轴B.y 轴C.原点 D .直线y=xA9.不等式022≥+-m x x 对于一切实数均成立,则m 的取值范围是( ) A.0>m B.0<m C.1≥m D.1≤m 10.设二次函数图像满足顶点坐标为(2,-1),且图像过点(0,3),则函数的解析式为( )A.342+-=x x y .342++=x x y C.3822++=x x y D.3822+-=x x y二、填空题(共8小题,每题4分,共32分)11.若函数2()34f x x x =+-,则()0f x ≥的解集为:12.设函数⎩⎨⎧>+≤-=)0(,2)0(,1)(2x x x x x f ,则)]2([-f f =13.函数y=24++x x 的定义域为 14.用区间表示函数y =13x -5 的定义域为______________15.已知函数f(x)=2x-1,则f[f(2)]= 16.若函数f(x)=3x+m-1是奇函数,则常数m=17.已知一次函数的图像过点(-1,2)、(2,-1),则其解析式为__________ 18.已知二次函数6)2()3(2+-+-=x m x m y 为偶函数,则函数的单调增区间为:三、解答题(6小题,共38分)19.判断函数1()f x x x=+的奇偶性。

中职数学第三章测试题及答案

中职数学第三章测试题及答案

第三章函数测试卷一、填空题:(每空2分)1、函数11)(+=x x f 的定义域是 。

2、函数23)(-=x x f 的定义域是 。

3、已知函数23)(-=x x f ,则=)0(f ,=)2(f 。

4、已知函数1)(2-=x x f ,则=)0(f ,=-)2(f 。

5、函数的表示方法有三种,即: 。

6、点()3,1-P 关于x 轴的对称点坐标是 ;点M (2,-3)关于y 轴的对称点坐标是 ;点)3,3(-N 关于原点对称点坐标是 。

7、函数12)(2+=x x f 是 函数;函数x x x f -=3)(是 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为 。

9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。

二、选择题(每题3分)1、下列各点中,在函数13-=x y 的图像上的点是( )。

A .(1,2) B.(3,4) C.(0,1) D.(5,6)2、函数321-=x y 的定义域为( )。

A .()+∞∞-, B.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323, C.⎪⎭⎫⎢⎣⎡+∞,23 D. ⎪⎭⎫ ⎝⎛+∞,23 3、下列函数中是奇函数的是( )。

A .3+=x y B.12+=x y C.3x y = D.13+=x y4、函数34+=x y 的单调递增区间是( )。

A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.05、点P (-2,1)关于x 轴的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)6、点P (-2,1)关于原点O 的对称点坐标是( )。

A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)7、函数x y 32-=的定义域是( )。

A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C. ⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 8、已知函数7)(2-=x x f ,则)3(-f =( )。

【中职专用】中职数学总复习——第三章函数(单元测试)

【中职专用】中职数学总复习——第三章函数(单元测试)

第三章单元测试一、选择题(每题3分)1.与函数y=x 为同一函数的是( )A .33x y = B.y=丨x 丨 C.2x y = D.x x y 2= 2.下列各函数中,既是增函数,又是奇函数的是( )A. y=3xB.x y 3=C.x y 3log =D.y=sinx3.函数21652--+-=x x x y 的定义域是( ) A .{}32/<<x x B.{}32/><x x x 或C.{}33/>≤x x x 或D.{}32/≥<x x x 或4.已知f(x)是偶函数,当x ≥0时,f (x )=x+2,则当x<0时,f(x)的表达式是( )A.x+2B.-x+2C.x-2D.-x-25.函数y=x ²+2(a-2)x+5在(4,+∞)上是增函数,则a 的取值范围是()A.a ≤-2B.a ≥-2C.a ≤-6D. a ≥-66.设函数f (x )的定义域是[0,1],则f (x ²)的定义域是()A.{0,1}B.{-1,1}C.(-1,1)D. {-1,0}7.二次函数y=x ²-4x+1的顶点坐标及最值是(A. 顶点坐标(2,-3) 最大值-3B.顶点坐标(2,-3),有最小值-3C .顶点坐标(-2,5),有最小值5D .顶点坐标(2,5),有最小值58.函数y=62--x x ,当y<0时x 的取值范围是( )A.()()+∞-∞-,32,B.[-2,3]C.(-2,3)D.()[)+∞-∞-,32,9.如图,一次函数y=kx+b 与二次函数y=ax ²+bx+c 的大致图像时( )A . 10.设偶函数y=f(x)在区间{-4,-1}上是单调增函数,且有最大值y=3,则y=f(x)在区间{1,4}上有( )A.最大值f(4)=3B.最大值f (1)=3 C .最小值f(4)=-3 D.最小值f(1)=-311.函数f(x)=11+-x x a a (a>0,a ≠1)是( ) A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数12.函数y=245x x --的递增区间是( )A.(-∞,-2]B.[-5,-2]C.[-2,1]D.[-5,2]二、填空题13.函数y=x ²-2x 的最小值是_____.14.若f(x-1)=x ²-2x+3,则f(x)=_________15.若f (2x-1)=12-x ,则f (-3)=__________16.当x ∈[1,4]时,函数y=x ²-2x 的值域 _________17.如果函数f(x)=x ²+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a 的取值范围是_________18.若函数f(x)是定义在R 上得偶函数,且图像经过点(-1,2),则f(1)+f(-1)=_________19.抛物线y=3x ²向上平移2个单位,再向右平移3个单位,所得抛物线函数的表达式是_________三.解答题20.求函数y=x x 2413-++的定义域21.已知f(x)=cbx x ++12是奇函数,且f (1)=2 (1).求b,c 的值;(2)证明f(x)在[1,+∞)上是增函数。

中职数学基础模块上册第三章《函数》单元检测试题及参考答案

中职数学基础模块上册第三章《函数》单元检测试题及参考答案

中职数学第三章《函数》单元检测(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各组的两个函数,表示同一个函数的是( )A.x x y 2=与x y =B.2xx y =与x y 1= C.||x y =与x y = D.2)(x y =与x y =2.若函数22,0()3,0x f x x x ≤⎧=⎨+>⎩ ,则=+-)3()2(f f ( ) A.7 B.14 C. 12 D.23.下列函数中既是奇函数又是增函数的是( )A.23x y =B. xy 1= C. 1+=x y D.3x y = 4.一次函数y=2x+1的图像不经过的象限是( )A. 第一B. 第二C. 第三D. 第四5.函数1y x=的单调减区间是( )A. RB. (-∞,0)∪(0,+∞) C. N * D. (-∞,0)、(0,+∞) 6. y x a =-与log a y x =在同一坐标系下的图象可能是( )7.已知函数()21f x x +=,则)2(+x f =( )A. 2x +1B. 2x +5C. x +2D. x8.一次函数b kx y +=的图像关于原点对称,则二次函数c bx ax y ++=2)0(≠a 的图像关于( )对称。

A.x 轴B.y 轴C.原点 D .直线y=xA9.不等式022≥+-m x x 对于一切实数均成立,则m 的取值范围是( ) A.0>m B.0<m C.1≥m D.1≤m 10.设二次函数图像满足顶点坐标为(2,-1),且图像过点(0,3),则函数的解析式为( )A.342+-=x x y .342++=x x y C.3822++=x x y D.3822+-=x x y二、填空题(共8小题,每题4分,共32分)11.若函数2()34f x x x =+-,则()0f x ≥的解集为:12.设函数⎩⎨⎧>+≤-=)0(,2)0(,1)(2x x x x x f ,则)]2([-f f =13.函数y=24++x x 的定义域为 14.用区间表示函数y =13x -5 的定义域为______________15.已知函数f(x)=2x-1,则f[f(2)]= 16.若函数f(x)=3x+m-1是奇函数,则常数m=17.已知一次函数的图像过点(-1,2)、(2,-1),则其解析式为__________ 18.已知二次函数6)2()3(2+-+-=x m x m y 为偶函数,则函数的单调增区间为:三、解答题(6小题,共38分)19.判断函数1()f x x x=+的奇偶性。

职高高一数学第三章函数复习题精编版

职高高一数学第三章函数复习题精编版

职高高一数学第三章函数复习题精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】复习题3第三章函数班级__________姓名___________学号________一、 选择题:1、函数2231)(x x x f -+=的定义域是()A 、{x|-2<x<2}B 、{x|-3<x<3}C 、{x|-1<x<2}D 、{x|-1<x<3}2、已知函数11)(-+=x x x f ,则f(-x)=() A 、)(1x f B 、-f(x)C 、-)(1x f D 、f(x) 3、函数f(x)=342+-x x ()A 、在(2,∞-)内是减函数B 、在(4,∞-)内是减函数C 、在(0,∞-)内是减函数D 、在(+∞∞-,)内是减函数4、下列函数中既是奇函数又是偶函数的是()A 、y=3xB 、y=x 1C 、22x y =D 、x y 31-= 5、奇函数y=f(x)(x ∈R)的图像必经过的点是()A(-a,-f(a))B(-a,f(a)) C(a,-f(a))D(a,)(1a f ) 二、填空题 (1)设f(x)=,0,32,0,3{2>+≤-x x x x 则f(-2)=_______________. (2)函数y=21x -的定义域为_______________.(3)设f(x)=542-x ,则f(2)=______________,f(x+1)=_______________.(4)函数y=22-x 的增区间为____________________.(5)已知f(x)=,0,3,0,3{3>-≤-x x x x 则f(-2)=____________,f(2)=_______________.3.设函数f (x )=722-x ,求f(-1),f(5),f(a),f(x+h)的值.4.求下列函数的定义域:(1)f(x)=112-+x x ;(2)f(x)=x x 322+. 5.讨论下列函数的奇偶性:(1)f(x)=3-52x ;(2)g(x)=212+-x x (3)f(x)=x(2x +1)6.设f(x)=⎪⎪⎩⎪⎪⎨⎧--,23,2,2x x .0,01,1≥<≤--<x x x(1)写出函数的定义域;(2)求f(-2),f (-21),f(3)的值; (3)作出函数f (x )的图像.7.为了鼓励居民节约用水,某市改革居民用水的计费方法,每月的收费标准如下:月用水量不超过203m 时,按2元/3m 计费,每月用水量超过203m 时,其中的203m 按2元/3m 计费,超过的部分按元/3m 计费,设每户月用水量为x 3m ,应交水费为y 元。

(完整版)中职数学第三章习题及答案

(完整版)中职数学第三章习题及答案

第三章:函数一、填空题:(每空2分)11、函数f (x) —的定义域是 _____________________________ 。

x 12、函数f (x) 3x 2的定义域是______________________________ 。

3、已知函数f(x) 3x 2,贝U f (0) _____ , f (2) _______ 。

4、已知函数f (x) x21,则f(0) _______ , f ( 2) _________ 。

5、函数的表示方法有三种,即:______________________________________ 。

6点P 1,3关于x轴的对称点坐标是 ____________ ;点M (2, -3)关于y轴的对称点坐标是_________ ;点N(3, 3)关于原点对称点坐标是______________ 。

7、函数f(x) 2x2 1是 ___________ 函数;函数f(x) x3 x是______________ 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为___________ 。

9、常用对数表中,表示对数与对数值之间的关系采用的是___________ 的方法。

二、选择题(每题3分)1、下列各点中,在函数y 3x 1的图像上的点是( )。

A. (1, 2)B. (3,4)C.(0,1)D.(5,6)2、函数 1y的疋义域为( )。

2x3f 333 f 3A. B. ,£ C., D.-22223、下列函数中是奇函数的是( )。

A. y :x 32B. y x 1C.3y x3D.y x 14、函数y 4x3的单调递增区间是()0A. B. 0, C.,0 D. 0.5、点P(-2,1) 关于x轴的对称点坐标是( )。

A. (-2, 1)B. (2, 1)C.(2,-1)D.(-2, -1)6、点P(-2,1) 关于原点0的对称点坐标是( )0A. (-2, 1)B. (2, 1)C.(2,-1)D.(-2, -1)7、函数y 23x的定义域是( )。

中职数学上册第三章《函数》单元测验题

中职数学上册第三章《函数》单元测验题

中职数学《第三章函数》电元测验题(时限:90分钟分值:100分)崇阳职校2017级汽修2班学生姓名:得分:一、选择题:(5*3=15分)(1) 函数f(x)=√ x2-4的定义域是()A。

(-2,2) B. [—2,2) C。

(—∞,—2)∪(2,+∞) D. (—∞,-2]∪[2,+∞)(2)已知函数f(x)=(x+1)/(x—1),则f(—2)=( )A。

—1/3 B。

1/3 C。

1 D。

3(3) 函数f(x)=x2—4x+3( )A. 在(—∞,2)内是减函数 B。

在(-∞,4)内是减函数C. 在(—∞,0)内是减函数 D。

在(-∞,+ ∞)内是减函数(4)下列函数中既是奇函数又是增函数的是()A。

y=3x B. y=1/x C.y=2x2 D。

y=-x/3(5)设点(3,4)为奇函数,y=f(x)图像上的点,则下列各点在函数图像上的是()A. (—3,4)B. (3,-4) C。

(-3,—4) D. (-4,-3)二、填空题:(5*3=15分)3-x2,x≤0(1)设f(x)= 则f(-2)= ;2x+3,x>0(2)函数y=√1—x2 的定义域为(3)设f(x)=5x2—4,则f(2)= ,f(2)=(4)函数y=x2-2的增区间为x-3,x≤0(5)已知f(x)= 则f(—2)= ,f(2)=x3—x,x>0三、解答题:(5+10+15+15+5=50分)1、设函数f(x)=2x2-7,求f(-1),f(5),f(a),f(x+h),f(0)的值。

2、求下列函数的定义域.(1)f(x)=√2x+1/(x—1) (2) f(x)=√2x2+3x3、讨论下列函数的奇偶性。

(1) f(x)=3—5x2 (2) g(x)=2x2—x+1 (3) f(x)=x(x2+1)-2,—1≤x<04、设f(x)=3x—2, x≥0(1)求函数的定义域;(2)求f(-1/2)与f(2)的值; (3)作出函数图像。

中职第三章函数单元测试题

中职第三章函数单元测试题

第三章 函数单元测试题(时间90分钟,分数120分)一、选择题(共10题,每题4分,共40分)1.下列函数中,与函数x y =表示同一函数的是( ) A.2xy x =B.2y x =C.33x y = D.2)(x y =2. 下列四个图像中(如下图),属于函数图象的是(1) (2) (3) (4) A.(1)(2) B.(1)(3)(4) C.(2)(3)(4) D.(1)(2)(3)(4) 3.下列函数中,在区间()0,+∞上为减函数的是( ) A. y=x 2B.C. 23+=x yD.1y x =4.右图是函数f(x)= 的图像,下列说法不正确的是( )A.该函数属于奇函数.B.该函数属于反比例函数.C.该函数在区间(-∞,0)上位增函数.D.该函数在区间(0,+∞)上位减函数. 5. 函数x x x f -++=211)(的定义域是( )A.{|x 21≠-≥x x 且}B.{|x 21≠-≥x x 或}C.}21|{<≤-x xD.{|x 1->x } 6.二次函数y =x 2-2x +5的值域是( )A.[4,+∞)B.(4,+∞)C.(-∞,4)D.(-∞,4] 7.下列函数是奇函数的是( )A.f(x)=x+x 3+x 5B.f(x)=x 2+1C.f(x)=x +1D.f(x)=x 2,x ∈[-1,3] 9.如果偶函数在具有最大值,那么该函数在有( )A .最大值B .最小值C .没有最大值D . 没有最小值 10.函数在和都是增函数,若,且那么( ) A . B .C .D .无法确定二、判断下列函数的奇偶性(共4题,每题5分,共20分)11、 12、13、14、y =(x +1)(x -1)三、解答题(共4题,共60分)15(12分)已知函数()12f x x =++ 求:(1)f(x)的定义域。

(2)求()3f -,23f ⎛⎫⎪⎝⎭的值;16(9分)判断函数f (x )=-3(x -2)2+5在(2,+∞)的单调性。

中职数学第三章函数小测试卷(2020级)+参考答案

中职数学第三章函数小测试卷(2020级)+参考答案

2020-2021学年第一学期2020级中职数学第三章《函数》测试卷(时间:90分钟,总分:100分)班级: 姓名: 座号: 成绩:一、选择题:(3′×15=45′)二、填空题:(3′×5=15′)1.已知函数()21x f x =−,则(1)f = ;2.已知函数()2f x x b =−的图像经过点(3,1),则实数b 的值等于 ;3.函数y =的定义域为 ;4.函数y =的定义域为 ;5.函数31y x =+在(,)−∞+∞上是单调 (递增或递减)函数.三、解答题:(40′) 1. 已知函数()32f x x a =+(1)求(0)f ;(用含有a 的代数式表示) (2)如果()23f a a =−,求a 的值.2. 已知二次函数2()f x x ax b =++满足(0)(2)3f f ==−,求 (1)函数()f x 的解析式;(2)设函数()f x 的图像与x 轴交于A 、B 两点,求AB .3.已知函数21()1x f x x −=+,求1(2),(),()(1),()(1).3f f f f a a f a a ≠−−≠其中4.求下列函数的定义域:(1)()g x = (2)23()2f x x =+(3)()lg(23)g x x =+ (4)5()3x f x x −=+5. 已知二次函数的图像的顶点为3(,1)2−,且过原点,求二次函数解析式.一、 选择题:(3′×15=45′)1.下列各组函数中为同一函数的是( )A. ()21f n n =+,()2g n n =B. ()1f x x =−,()g x =C. 21()1x f x x +=−,1()1g x x =− D. ()f x ()g x x = 2.函数215322y x x =−−−的值域是( )A. 5{|}2y y ≥−B. 5{|}2y y ≤− C. {|2}y y ≥ D. {|2}y y ≤3.函数2()f x x =的图像( )A. 关于原点对称B. 关于y 轴对称C. 关于点(0,1)对称D. 关于直线1x =对称4.二次函数21()12f x x =−+的图像( )A. 开口向上,顶点为(0,1)−B. 开口向下,顶点为(0,1)−C. 开口向上,顶点为(0,1)D. 开口向下,顶点为(0,1)5.函数y = 的定义域( )(2019合格性1)A. {|9}x x <B. {|9}x x ≤C. {|9}x x ≥D.{|9}x x > 6.偶函数()f x 在(,0)−∞上是增函数,则( )A. (2)(1)f f >−B. (2)(1)f f <−C. (2)(1)f f =−D. 无法判断(2)(1)f f −与的大小 7.函数()lg(1)f x x =+的定义域为( )A. {|0}x x >B. {|0}x x ≠C. {|1}x x >−D. {|1}x x ≠− 8.下列函数是奇函数又是增函数的是( )(2020等级性2)A. 1y x =+B. 7y x =C. 2x y =D. 2y x = 9.函数9()7f x x =− 的定义域为( )(2020合格性2) A. (,7)−∞ B. (7,)+∞ C. (,7)(7,)−∞+∞ D. R10.已知定义域为R 的偶函数()f x 在区间[0,)+∞上为增函数,那么(4),(3),(2)f f f −−之间的大小关系是( )A. (4)(3)(2)f f f −<−<B. (4)(3)(2)f f f −>−>C. (3)(4)(2)f f f −<−<D. (2)(4)(3)f f f <−<− 11.已知53()8f x x ax bx =++−,且(2)10f −=,则(2)f =( )A. 26−B. 18−C. 10−D. 10 12.下列函数为偶函数的是( )A. 1y x=B. 2y x =C. 3y x =D. y =13.如果奇函数()f x 在区间[3,7]上是增函数,且最小值为5,那么()f x 在区间 [7,3]−−上是( ) A. 增函数且最小值为5− B. 增函数且最大值为5− C. 减函数且最小值为5− D. 减函数且最大值为5−14.若函数()f x 是定义在R 上的奇函数,且0x >时,2()2f x x x =−,则不等式()0f x <的解集为( ) A. {|22}x x −<< B. {|22}x x x <−>或 C. {|202}x x x −<<>或 D. {|22}x x x <−<<或015.函数2()24f x x ax =−+在区间(,2]−∞上为减函数,则a 的取值范围是( ) A. 2a ≥ B. 2a = C. 2a ≥− D. 2a =−参考答案一、选择题:(3′×15=45′)二、填空题:(3′×5=15′) 1. 1; 2. 1;3. (,1][1,)−∞−⋃+∞;4. [4,)+∞;5. 递增.二、 解答题:(40′) 1.(1)(0)2f a = (2)()32()5()235231f x x a f a a f a a a a a =+∴==−∴=−∴=−又2.(1)2()23f x x x =−−; (2)4AB =.3. (2)1f =,11()34f =−,5f =−,21()1a f a a −=+,21()1a f a a +−=−4.(1)[5,)−+∞ (2)R(3)3(,)2−+∞ (4)(,3)(3,)−∞−⋃−+∞5. 243()()192f x x =−++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1函数的概念及其表示法习题练习3.1.1
1、求y=3x-1的定义域:
2、指出下列各函数中,哪个与函数y x
=是同一个函数:
(1)
2
x
y
x
=;(2
)y;(3)s t=.
3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。

参考答案:
1、R
2、(3)
3、6、12、0
练习3.1.2
1、利用“描点法”作出函数x
y=的图像,并判断点(16,4)是否为图像上的点
2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。

3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。

参考答案:
1、作图略,在。

2、y=8x,(x为正整数)
3、y=2x(x为正整数)
3.2函数的性质习题
练习3.2.1
1、判断函数y=-2x+3的单调性.
2
3、判断函数y=8X+3的单调性.
参考答案:
1、减
2、左增、右减
3、增
练习3.2.2
1、判断y=8X+3的奇偶性:
2、判断y=4X 的奇偶性
3、判断y=X 2的奇偶性 参考答案:
1、非奇非偶函数
2、奇函数
3、偶函数
3.3函数的实际应用举例习题
练习3.3
1、.求()221,
20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩
„的定义域; 2、求函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩„的定义域;
3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩
„的定义域; 4、作出函数()1,0,1,
0x x y f x x x -<⎧==⎨+⎩…的图像 5、设函数()221,20,1,0 3.x x f x x x +-<⎧⎪=⎨-<<⎪⎩„作出函数的图像.
6、设函数7,03,4,
310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩
„„作出函数的图像 参考答案:
1、-2<=x<=3
2、R
3、x>=0
4、略
5、略
6、略。

相关文档
最新文档