一元二次方程专题复习

合集下载

一元二次方程(知识点+考点+题型总结)

一元二次方程(知识点+考点+题型总结)

一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

一元二次方程复习知识点梳理

一元二次方程复习知识点梳理

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。

一元二次方程复习课(绝对经典)

一元二次方程复习课(绝对经典)
2
2
关于 x的一元二次方程 x (2k 3) x k 0有
2 2
两个不相等的实数根 、
(1)求k的取值范围; ( )若 6, 求( ) 3 5的值 2 解: )由题意得, (2
2
解得, k1 1, k 2 3 3 k , k 1 4
2 8、x 2 4 x 2 0, 请用配方法转化成( m) n的 x
形式,则
( x 2) 2
2
9、请写出一个一元二次方程,
它的根为-1和2
(x+1)(x-2)=0
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
的一个根是-1,则
4 , 另一根为______ x=-3
若a为方程 x2 x 5 0 的解,则 a 2 a 1 的值 为 6
6、若a是方程x 3x 3 0的一个根,则
2
3a 9a 2
2
11
2
7、n是方程x m x n 0一个根(n 0), n m -1
2、若(m+2)x 2 +(m-2) x -2=0是关于x的一元二 ≠- 2 次方程则m 。
一元二次方程的一般式
ax bx c 0 (a≠0)
2
一元二次方程 一般形式 二次项系 一次项 常数项 数 系数
3x²=1
2y(y-3)= -4
3x²-1=0
2y2-6y+4=0
3 2
0
-6
-1 4

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题, [课时作业]的第6、7题。

1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

点击一:一元二次方程的定义一元二次方程的定义:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.针对练习1: 下列方程是一元二次方程的有__________。

(1)x 2+x1-5=0(2)x 2-3xy+7=0(3)x+12 x =4(4)m 3-2m+3=0 (5)22x 2-5=0 (6)ax 2-bx=4答案: (5)针对练习2: 已知(m+3)x 2-3mx -1=0是一元二方程,则m 的取值范围是 。

答案:一元二次方程二次项的系数不等于零。

故m≠-3 点击二:一元二次方程的一般形式元二次方程的一般形式是ax 2+bx +c =0(a ≠0),其中ax 2是二次项,bx 是一次项,c 是常数项,a 是二次项系数,b 是一次项系数,c 是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax 2+bx +c =0(a ≠0)的一般形式.其中,尤其注意a ≠0的条件,有了a ≠0的条件,就能说明ax 2+bx +c =0是一元二次方程.若不能确定a ≠0,并且b ≠0,则需分类讨论:当a ≠0时,它是一元二次方程;当a =0时,它是一元一次方程.针对练习3: 把方程(1-3x )(x +3)=2x 2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.答案:原方程化为一般形式是:5x 2+8x -2=0(若写成-5x 2-8x +2=0,则不符合人们的习惯),其中二次项是5x 2,二次项系数是5,一次项是8x ,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m 是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习3: 若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2009的值. 答案: m 3+2m 2+2009=m 3+ m 2+m 2+2009=m (m 2+ m )+ m 2+2009=m+ m 2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件? 【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx 2-3x=x 2-mx+2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m≠1.所以关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax 2+bx+c=0(a 、b 、c 是已知数,a≠0),其中a 叫做二次项系数,b 叫做一次项系数c 叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。

复习2:一元二次方程根的判别式

复习2:一元二次方程根的判别式

4、若关于x的一元二次方程mx2-2x+1=0有两个不相等实数根,
则m的取值范围是
()
A.m<1
B. m<1且m≠0
C.m≤1
D. m≤1且m≠0
5、若关于x的方程x2+(2k-1)x+k2-7/4=0有两个相等的实数根,则 k= .
6.关于x的一元二次方程mx2-(3m-1)x+2m-1=0, 其根的判别式的值为1,求m的值及该方程的根。
则x1+x2=
;x1x2= ;
2、方程2x2-kx-6=0的一个根是2,则k=

另一个根为( )
3、以2,-3为根的一元二次方程是

4、已知a、b是方程x2+x-1=0的两实根,则
a2+2a+b=
拓展已知a、b满足6a=a2+4,6b=b2+4,
求 ab ba
思维训练. 1、在一元二次方程
ax2 bx c 0(a 0)中
3、一元二次方程的根与系数的关系:注意:此关系是在( )条件下存 在的。若 ax2+bx+c=0 的两根为 X1、x2,则x1+x2= ;x1x2= ;
4、以x1、x2为根(二次项系数为1)的一元二次方程是——————
➢ 课时训练(一)
Hale Waihona Puke 1、下列一元一次方程中,有实数根的是( )
A
.x2-x+1=0
➢ 要点、考点聚焦
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.

一元二次方程复习1

一元二次方程复习1

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。

一元二次方程专题复习资料

一元二次方程专题复习资料

一元二次方程专题复习知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。

2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。

如果n <0,则原方程 。

(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。

3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根, 即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x , (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。

4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。

5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。

一元二次方程复习题

一元二次方程复习题

一元二次方程复习题一. 知识归纳1 一元二次方程概念ax 2+bx +c =0(a ≠0)2 解法①直接开平方法②配方法③公式法④因式分解法3 根的判别式⊿△=b 2-4ac4 根与系数关系1x + 2x =ab-, 1x ·2x =a c二. 填空题1方程02=x 的解为__________,方程()()040022≥-≠=++ac b a c bx ax 的解为________若关于x 的二次方程(m +1)x 2-3x +2=0有两个相等的实数根,则m =______.2设方程0432=-+x x 的两根分别为1x ,2x ,则1x + 2x =______,1x ·2x =________ =+2221x x ________, ()221x x -=________, 121213x x x x ++=___________3 若方程x 2-5x +m =0的一个根是1,则m =________4 两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是________5 已知方程2x 2+(k -1)x -6=0的一个根为2,则k =_______6若关于x 的一元二次方程mx 2+3x-4=0有实数根,则m 的值为______ 7方程 无实根,则 ______8如果 是一个完全平方公式,则 ______。

9若方程 的两根之差的绝对值是8,则 ______。

10若方程的两根之比为3,则_____。

11在实数范围内分解因式:=-52x ___ _,12-+x x =____________122--x x =______________132--x x =____________12若a ,b 为实数,且()0232=-+-+ab b a ,则以a ,b 为根的一元二次方程是_______________13以方程0122=--x x 的两根的相反数为根的一元二次方程是______________ 三. 选择题1下列方程(1)-x 2+2=0 (2)2x 2-3x =0 (3)-3x 2=0 (3)x 2+x1=0 (5)232+x =5x (6)2x 2-3=(x -3)(x 2+1)中是一元二次方程的有( )A 、2个B 、3个C 、4个D 、5个2下列配方正确的是( )(1) x 2+3x =(x +23)2-23 (2)x 2+2x +5=(x +1)2+4 (3)x 2-21x +43=(x -41)2+161 (4)3x 2+6x +1=3(x +1)2-23方程(x -1)2+(2x +1)2=9x 的一次项系数是( )A 、2B 、5C 、-7D 、7 4方程x 2-3x +2-m =0有实根,则m 的取值范围是( ) A 、m >-41 B 、m ≥41 C 、m ≥-41 D 、m >41 5方程(m +1)x 2-(2m +2)x +3m -1=0有一个根为0,则m 的值为( ) A 、32 B 、31 C 、-32 D 、-316方程()()1231=+-x x 化为02=++c bx ax 形式后,a 、b 、c 的值为( ) (A )1,–2,-15 (B )1,-2,15(C )-1,2,15 (D )–1,2,–15 7方程()()02322=-+x x 的解的个数是( ) (A )1 (B )2 (C )3 (D )48若方程07532=--x x 的两根为x 1,x 2,下列表示根与系数关系的等式中,正确的是( )(A)7,52121-=⋅=+x x x x (B )37,352121=⋅-=+x x x x(C )37,352121=⋅=+x x x x (D )37,352121-=⋅=+x x x x9以215-和215+为根的一元二次方程是( ) (A )0152=+-x x (B )02522=+-x x (C )0152=++x x (D )02522=++x x 10如果一元二次方程02=++c bx ax 的两个根是x 1,x 2,那么二次三项式c bx ax ++2分解因式的结果是( )(A )()()212x x x x c bx ax --=++ (B )()()212x ax x ax c bx ax --=++(C )()()212x x x x a c bx ax ++=++ (D )()()212x x x x a c bx ax --=++11在实数范围内,1842++x x 可以分解为( )(A )()()3232++-+x x (B )⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛+--232232x x (C )()()322322++-+x x (D )()()32232241++-+x x12已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是( ) (A )1±=m (B )1-=m (C )1=m (D )0=m13如果关于x 的方程3ax 2-23(a -1)x +a =0有实数根,则a 的取值范围是( )A 、a <21且a ≠0 B 、a ≥21 C 、a ≤21且a ≠0 D 、a ≤21 14若方程2x (kx -4)-x 2+6=0没有实数根,则k 的最小整数值是( ) A 、1 B 、2 C 、3 D 、415一元二次方程一根比另一根大8,且两根之和为6,那么这个方程是( )A 、x 2-6x -7=0B 、x 2-6x +7=0C 、x 2+6x -7=0D 、x 2+6x +7=016已知方程07822=+-x x 的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角 形的斜边的长是( ) (A )9(B )6 (C )3(D )317若一元二次方程02=++q px x 的两根之比为3∶2,则q p ,满足的关系式是( ) (A )q p 2532= (B )q p 2562= (C )q p 3252= (D) q p 6252= 18方程x 2-2x-m=0有两个正实根,则m 的取值范围是 ( ) A 、0<m<1 B 、m>0 C 、-1≤m <0 D、m <-1 19一元二次方程ax 2+bx+c=0(a ≠0)的两根之和为m ,两根平方和为n ,则c bm an ++2121 的值为( )A 、0B 、22n m + C 、2m D 、2n 20已知关于x 的一元二次方程032=+-m x x 的两根21x x 、满足161112221=+x x ,则m 的值为( )A 、4B 、-36C 、4或-36D 、-36或-421若一元二次方程的两根21x x 、满足下列关系:=+++22121x x x x 0,05222121=+--x x x x ,则这个一元二次方程( )A 、032=++x x B 、032=--x x C 、032=+-x x D 、032=-+x x 四. 解方程1、04)221(2=-+x 2、0662=++x x3、06)32(5)32(2=+---x x4、22)3(4)23(-=+x x 5、06122=+-x x6、34124)3(2-+=-x x五. 在实数范围内分解因式 1、592-x2、3742--x x3、22582y xy x +-六. 解答题1已知方程0132=--x x 的两个根是21,x x ,求代数式 (1)()()1121--x x ;(2)111221+++x xx x 的值。

一元二次方程复习题(知识点梳理)打印版

一元二次方程复习题(知识点梳理)打印版

考点一、概念 (1)定义:含有_______未知数,并且未知数的最高次数是______的______方程,就叫做一元二次方程。

(2)一元二次方程的一般表达式:)0(02≠=++a c bx ax ,其中_______是二次项,________是二次项系数;________是一次项,________是一次项系数;__________是常数项。

⑶判断一元二次方程的依据:①二次项系数不为“0”;②未知数最高次数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

考点二、一元二次方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值; 典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。

⑴求k 的值; ⑵方程的另一个解。

3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。

4、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a - 考点三、一元二次方程的解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次(一)直接开方法:形如())0(2≥=+b b a x ,()()22n bx m ax +=+等形式均适用直接开方法典型例题:例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。

《一元二次方程》全章复习

《一元二次方程》全章复习

《一元二次方程》全章复习1. 一元二次方程的有关概念2. 配方法的应用3. 根判别式,根与系数的关系4. 一元二次方程的解法:1)直接开平方法 2)因式分解法 3)配方法 4)公式法5. 实际问题:1)传播与数字问题 2)增长率与销售问题 3)有关面积的问题【巩固练习】1.下列方程是一元二次方程的是( ) A.211x x x-=+ B.224x xy y -+= C.20ax bx c +=+ D.(x 1)1x x -=- 2.在一元二次方程2410x x --=中,二次项系数和一次项系数分别为( )A.1,4B.1,-4C.-1,-4D.2,4x x -3.在一元二次方程260x kx --=中,已知一个根为3x =,则实数k 的值为( )A.1B.-1C.2D.-24.关于x 的一元二次方程22(a 1)10x x a -++-=的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.12 5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( )A.m <1B.m > -1C.m < -1D.m > 16. 若关于x 的方程2(m 1)02x m mx +-+=有两个不等的实数根,则m 的取值范围是7. 已知2410x x a +=-可变为2(2)x b -的形式,则ab=8. 若关于x 的方程2(2)10x x m m +++=-有两个相等的实数根,则m=9.已知一个矩形长比宽多2cm ,其面积为82cm ,则此长方形的周长是10. 若方程2310x x b +=+无解,则b 应满足的条件是11. 若关于x 的方程22(21)20k x x k -+-+=+有实数根,则k 的取值范围是 12. 若分式2817x x x -+-的值为0,则x= 13. 关于x 的方程22202x x a b a +-=+的根是14. 若关于x 的方程260x x k +=+的两根之差为2,则k=15. 已知关于x 的方程22(31)0x x m m --+=有两根为12,x x ,且121134x x +=-,则m= 16.用恰当的方法解下列方程: (1)21(3)13x += (2)2(21)2(2x 1)x +=+(3)(x 8)16x += (4)2280x x +-=(5)22(32)(2x 1)x +=- (5)2(21)4(21)40y y +-++=17.已知,αβ是方程2250x x +-=的两个实数根,求22ααβα++的值18.已知12,x x 是方程2214160x x +-=的两个实数根,求下列代数式的值,(1)212()x x - (2)2112x x x x + (3)12(2)(2)x x -- (4)12x x -19.已知关于x 的方程222(a 1)740x x a a +-+--=的两根为12,x x ,且满足12123340x x x x --+=,求a 的值20.实数k 在什么范围取值时,方程22(k 1)0kx kx -+-=有两个正的实数根21.若关于x 的方程2430x x k -+-=的两根为12,x x ,且满足123x x =,试求出方程的两个实数根及k 的值23.若n > 0,关于x 的方程21(m 2n)04x x mn --+=有两个相等的正的实数根,求m n24.如果2246130x x y y -++=,求(xy)z25.水果店花500元进了一批水果,按40%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利67元.若两次打折相同,每次打了几折?26.如图,在△ABC中,AB=10m,BC= 40m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?25.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)。

完整版一元二次方程知识点总结和例题复习

完整版一元二次方程知识点总结和例题复习

知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。

(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。

根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。

配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。

2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。

(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。

2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。

数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点一因式分解法:适应于(ax+b)(cx+d)=0形式。

因式分解的步骤:(1)化方程为一般形式;(2)将方程左边因式分解;(3)根据“至少有一个因式为零”,得到两个一元一次方程.(4)两个一元一次方程的根就是原方程的根.例题:1、(2x+1)2= -3 (2x+1)2、 x(2x-3)=(3x+2)(2x-3)考点二 十字相乘法①二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 ②二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。

例:0652=++x x 0122=--x x变式训练:01272=+-x x 0892=++x x例:061362=++x x 06562=--x x变式训练:012932=--x x 018332=--x x考点三 一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆1.4022.0203.,22ac b b x x a a ⎧⎪≠-⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。

相关文档
最新文档